/* * Copyright (c) 2016, ARM Limited, All Rights Reserved * SPDX-License-Identifier: Apache-2.0 * * Licensed under the Apache License, Version 2.0 (the "License"); you may * not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /* This file can be compiled externally to provide the page allocator algorithm * for devices NOT supported by uVisor. For this purpose this file is copied as * is into the target build folder and compiled by the target build system. */ #if defined(UVISOR_PRESENT) && (UVISOR_PRESENT == 1) #include #include "page_allocator.h" #include "page_allocator_faults.h" #include "vmpu_unpriv_access.h" #include "vmpu.h" #include "halt.h" #include "context.h" /* Since the page table memory is provided by the user, all accesses to it * are depriviledged! */ #define page_table_read vmpu_unpriv_uint32_read #define page_table_write vmpu_unpriv_uint32_write /* For uVisor in supported mode the page allocator is always called through a * SVC call, which automagically serializes access to it. */ #define UVISOR_PAGE_ALLOCATOR_MUTEX_AQUIRE {} #define UVISOR_PAGE_ALLOCATOR_MUTEX_RELEASE {} #define UVISOR_PAGE_UNUSED UVISOR_BOX_ID_INVALID #endif /* defined(UVISOR_PRESENT) && (UVISOR_PRESENT == 1) */ #include "page_allocator_config.h" /* Contains the page usage mapped by owner. */ uint32_t g_page_owner_map[UVISOR_MAX_BOXES][UVISOR_PAGE_MAP_COUNT]; /* Contains total page usage. */ uint32_t g_page_usage_map[UVISOR_PAGE_MAP_COUNT]; /* Contains the configured page size. */ uint32_t g_page_size; /* Points to the beginning of the page heap. */ const void * g_page_heap_start; /* Points to the end of the page heap. */ const void * g_page_heap_end; /* Contains the number of free pages. */ uint8_t g_page_count_free; /* Contains the total number of available pages. */ uint8_t g_page_count_total; /* Contains the shift of the page owner mask. */ uint8_t g_page_map_shift; /* Contains the rounded up page end address for ARMv7-M MPU region alignment. */ uint32_t g_page_head_end_rounded; /* Helper function maps pointer to page id, or UVISOR_PAGE_UNUSED. */ uint8_t page_allocator_get_page_from_address(uint32_t address) { /* Range check the returned pointer. */ if (address < (uint32_t) g_page_heap_start || address >= (uint32_t) g_page_heap_end) { return UVISOR_PAGE_UNUSED; } /* Compute the index for the pointer. */ return (address - (uint32_t) g_page_heap_start) / g_page_size; } void page_allocator_init(void * const heap_start, void * const heap_end, const uint32_t * const page_size) { if (!page_size || !vmpu_public_flash_addr((uint32_t) page_size)) { HALT_ERROR(SANITY_CHECK_FAILED, "Page size pointer (0x%08x) is not in flash memory.\n", (unsigned int) page_size); } if (!heap_start || !vmpu_public_sram_addr((uint32_t) heap_start)) { HALT_ERROR(SANITY_CHECK_FAILED, "Page heap start pointer (0x%08x) is not in sram memory.\n", (unsigned int) heap_start); } if (!heap_end || !vmpu_public_sram_addr((uint32_t) heap_end)) { HALT_ERROR(SANITY_CHECK_FAILED, "Page heap end pointer (0x%08x) is not in sram memory.\n", (unsigned int) heap_end); } if (heap_end < heap_start) { HALT_ERROR(SANITY_CHECK_FAILED, "Page heap end pointer (0x%08x) is smaller than heap start pointer (0x%08x).\n", (unsigned int) heap_end, (unsigned int) heap_start); } if ((*page_size < UVISOR_PAGE_SIZE_MINIMUM) || !vmpu_is_region_size_valid(*page_size)) { HALT_ERROR(SANITY_CHECK_FAILED, "Page size (%uB) not supported by this platform!\n", *page_size); } uint32_t start = vmpu_round_up_region((uint32_t) heap_start, *page_size); if (start == 0) { HALT_ERROR(SANITY_CHECK_FAILED, "Page heap start address 0x%08x cannot be aligned with page size %uB!\n", (unsigned int) heap_start, (unsigned int) *page_size); } g_page_size = *page_size; /* This is the page heap start address. */ g_page_heap_start = (void *) start; /* How many pages can we fit in here? */ if (start > (0xFFFFFFFFUL - g_page_size) || (start + g_page_size) > (uint32_t) heap_end) { g_page_count_total = 0; } else { g_page_count_total = ((uint32_t) heap_end - start) / g_page_size; } /* Clamp page count to table size. */ if (g_page_count_total > UVISOR_PAGE_MAX_COUNT) { DPRINTF("uvisor_page_init: Clamping available page count from %u to %u!\n", g_page_count_total, UVISOR_PAGE_MAX_COUNT); /* Move the heap start address forward so that the last clamped page is located nearest to the heap end. */ g_page_heap_start += (g_page_count_total - UVISOR_PAGE_MAX_COUNT) * g_page_size; /* Clamp the page count. */ g_page_count_total = UVISOR_PAGE_MAX_COUNT; } g_page_count_free = g_page_count_total; /* Remember the end of the heap. */ g_page_heap_end = g_page_heap_start + g_page_count_total * g_page_size; g_page_head_end_rounded = vmpu_round_up_region((uint32_t) g_page_heap_end, g_page_size * 8); /* Compute the page map shift. * This initial shift fully left aligns the page map. */ g_page_map_shift = UVISOR_PAGE_MAP_COUNT * 32 - g_page_count_total; g_page_map_shift -= (g_page_head_end_rounded - (uint32_t) g_page_heap_end) / g_page_size; DPRINTF( "page heap: [0x%08x, 0x%08x] %ukB -> %u %ukB pages\n", (unsigned int) g_page_heap_start, (unsigned int) g_page_heap_end, (unsigned int) (g_page_count_free * g_page_size / 1024), (unsigned int) g_page_count_total, (unsigned int) (g_page_size / 1024) ); /* Force a reset of owner and usage page maps. */ memset(g_page_owner_map, 0, sizeof(g_page_owner_map)); memset(g_page_usage_map, 0, sizeof(g_page_usage_map)); } int page_allocator_malloc(UvisorPageTable * const table) { UVISOR_PAGE_ALLOCATOR_MUTEX_AQUIRE; uint32_t pages_required = page_table_read((uint32_t) &(table->page_count)); uint32_t page_size = page_table_read((uint32_t) &(table->page_size)); /* Check if the user even wants any pages. */ if (pages_required == 0) { DPRINTF("uvisor_page_malloc: FAIL: No pages requested!\n\n"); UVISOR_PAGE_ALLOCATOR_MUTEX_RELEASE; return UVISOR_ERROR_PAGE_INVALID_PAGE_COUNT; } /* Check if we can fulfill the requested page size. */ if (page_size != g_page_size) { DPRINTF("uvisor_page_malloc: FAIL: Requested page size %uB is not the configured page size %uB!\n\n", page_size, g_page_size); UVISOR_PAGE_ALLOCATOR_MUTEX_RELEASE; return UVISOR_ERROR_PAGE_INVALID_PAGE_SIZE; } /* Check if we have enough pages available. */ if (pages_required > g_page_count_free) { DPRINTF("uvisor_page_malloc: FAIL: Cannot serve %u pages with only %u free pages!\n\n", pages_required, g_page_count_free); UVISOR_PAGE_ALLOCATOR_MUTEX_RELEASE; return UVISOR_ERROR_PAGE_OUT_OF_MEMORY; } /* Get the calling box id. */ const page_owner_t box_id = g_active_box; DPRINTF("uvisor_page_malloc: Requesting %u pages with size %uB for box %u\n", pages_required, page_size, box_id); /* Update the free pages count. */ g_page_count_free -= pages_required; /* Point to the first entry in the table. */ void * * page_table = &(table->page_origins[0]); /* Iterate through the page table and find the empty pages. */ uint32_t page = 0; for (; (page < g_page_count_total) && pages_required; page++) { /* If the page is unused, map_get returns zero. */ if (!page_allocator_map_get(g_page_usage_map, page)) { /* Remember this page as used. */ page_allocator_map_set(g_page_usage_map, page); /* Pages of box 0 are accessible to all other boxes! */ if (box_id == 0) { uint32_t ii = 0; for (; ii < UVISOR_MAX_BOXES; ii++) { page_allocator_map_set(g_page_owner_map[ii], page); } } else { /* Otherwise, remember ownership only for active box. */ page_allocator_map_set(g_page_owner_map[box_id], page); } /* Reset the fault count for this page. */ page_allocator_reset_faults(page); /* Get the pointer to the page. */ void * ptr = (void *) g_page_heap_start + page * g_page_size; /* Zero the entire page before handing it out. */ memset(ptr, 0, g_page_size); /* Write the pages address to the table in the first page. */ page_table_write((uint32_t) page_table, (uint32_t) ptr); page_table++; /* One less page required. */ pages_required--; DPRINTF("uvisor_page_malloc: Found an empty page 0x%08x entry at index %u\n", (unsigned int) ptr, page); } } DPRINTF("uvisor_page_malloc: %u free pages remaining.\n\n", g_page_count_free); UVISOR_PAGE_ALLOCATOR_MUTEX_RELEASE; return UVISOR_ERROR_PAGE_OK; } int page_allocator_free(const UvisorPageTable * const table) { UVISOR_PAGE_ALLOCATOR_MUTEX_AQUIRE; if (g_page_count_free == g_page_count_total) { DPRINTF("uvisor_page_free: FAIL: There are no pages to free!\n\n"); UVISOR_PAGE_ALLOCATOR_MUTEX_RELEASE; return UVISOR_ERROR_PAGE_INVALID_PAGE_TABLE; } uint32_t page_count = page_table_read((uint32_t) &(table->page_count)); uint32_t page_size = page_table_read((uint32_t) &(table->page_size)); if (page_size != g_page_size) { DPRINTF("uvisor_page_free: FAIL: Requested page size %uB is not the configured page size %uB!\n\n", page_size, g_page_size); UVISOR_PAGE_ALLOCATOR_MUTEX_RELEASE; return UVISOR_ERROR_PAGE_INVALID_PAGE_SIZE; } if (page_count == 0) { DPRINTF("uvisor_page_free: FAIL: Pointer table is empty!\n\n"); UVISOR_PAGE_ALLOCATOR_MUTEX_RELEASE; return UVISOR_ERROR_PAGE_INVALID_PAGE_COUNT; } if (page_count > (unsigned) (g_page_count_total - g_page_count_free)) { DPRINTF("uvisor_page_free: FAIL: Pointer table too large!\n\n"); UVISOR_PAGE_ALLOCATOR_MUTEX_RELEASE; return UVISOR_ERROR_PAGE_INVALID_PAGE_TABLE; } /* Get the calling box id. */ const page_owner_t box_id = g_active_box; /* Iterate over the table and validate each pointer. */ void * const * page_table = &(table->page_origins[0]); int table_size = page_count; for (; table_size > 0; page_table++, table_size--) { void * page = (void *) page_table_read((uint32_t) page_table); /* Compute the index for the pointer. */ uint8_t page_index = page_allocator_get_page_from_address((uint32_t) page); /* Range check the returned pointer. */ if (page_index == UVISOR_PAGE_UNUSED) { DPRINTF("uvisor_page_free: FAIL: Pointer 0x%08x does not belong to any page!\n\n", (unsigned int) page); UVISOR_PAGE_ALLOCATOR_MUTEX_RELEASE; return UVISOR_ERROR_PAGE_INVALID_PAGE_ORIGIN; } /* Check if the page belongs to the caller. */ if (page_allocator_map_get(g_page_owner_map[box_id], page_index)) { /* Clear the owner and usage page maps for this page. */ page_allocator_map_clear(g_page_usage_map, page_index); /* If the page was owned by box 0, we need to remove it from all other boxes! */ if (box_id == 0) { uint32_t ii = 0; for (; ii < UVISOR_MAX_BOXES; ii++) { page_allocator_map_clear(g_page_owner_map[ii], page_index); } } else { /* Otherwise, only remove for the active box. */ page_allocator_map_clear(g_page_owner_map[box_id], page_index); } g_page_count_free++; DPRINTF("uvisor_page_free: Freeing page at index %u\n", page_index); } else { /* Abort if the page doesn't belong to the caller. */ if (!page_allocator_map_get(g_page_usage_map, page_index)) { DPRINTF("uvisor_page_free: FAIL: Page %u is not allocated!\n\n", page_index); } else { DPRINTF("uvisor_page_free: FAIL: Page %u is not owned by box %u!\n\n", page_index, box_id); } UVISOR_PAGE_ALLOCATOR_MUTEX_RELEASE; return UVISOR_ERROR_PAGE_INVALID_PAGE_OWNER; } } DPRINTF("uvisor_page_free: %u free pages available.\n\n", g_page_count_free); UVISOR_PAGE_ALLOCATOR_MUTEX_RELEASE; return UVISOR_ERROR_PAGE_OK; }