/** / _____) _ | | ( (____ _____ ____ _| |_ _____ ____| |__ \____ \| ___ | (_ _) ___ |/ ___) _ \ _____) ) ____| | | || |_| ____( (___| | | | (______/|_____)_|_|_| \__)_____)\____)_| |_| (C)2013 Semtech ___ _____ _ ___ _ _____ ___ ___ ___ ___ / __|_ _/_\ / __| |/ / __/ _ \| _ \/ __| __| \__ \ | |/ _ \ (__| ' <| _| (_) | / (__| _| |___/ |_/_/ \_\___|_|\_\_| \___/|_|_\\___|___| embedded.connectivity.solutions=============== Description: LoRa MAC layer implementation License: Revised BSD License, see LICENSE.TXT file include in the project Maintainer: Miguel Luis ( Semtech ), Gregory Cristian ( Semtech ) and Daniel Jaeckle ( STACKFORCE ) Copyright (c) 2017, Arm Limited and affiliates. SPDX-License-Identifier: BSD-3-Clause */ #include #include "LoRaMac.h" #include "LoRaMacCrypto.h" #if defined(FEATURE_COMMON_PAL) #include "mbed_trace.h" #define TRACE_GROUP "LMAC" #else #define tr_debug(...) (void(0)) //dummies if feature common pal is not added #define tr_info(...) (void(0)) //dummies if feature common pal is not added #define tr_error(...) (void(0)) //dummies if feature common pal is not added #endif //defined(FEATURE_COMMON_PAL) using namespace events; /** * EventQueue object storage */ static EventQueue *ev_queue; /*! * Maximum length of the fOpts field */ #define LORA_MAC_COMMAND_MAX_FOPTS_LENGTH 15 /*! * LoRaMac duty cycle for the back-off procedure during the first hour. */ #define BACKOFF_DC_1_HOUR 100 /*! * LoRaMac duty cycle for the back-off procedure during the next 10 hours. */ #define BACKOFF_DC_10_HOURS 1000 /*! * LoRaMac duty cycle for the back-off procedure during the next 24 hours. */ #define BACKOFF_DC_24_HOURS 10000 /*! * Check the MAC layer state every MAC_STATE_CHECK_TIMEOUT in ms. */ #define MAC_STATE_CHECK_TIMEOUT 1000 /*! * The maximum number of times the MAC layer tries to get an acknowledge. */ #define MAX_ACK_RETRIES 8 /*! * The frame direction definition for uplink communications. */ #define UP_LINK 0 /*! * The frame direction definition for downlink communications. */ #define DOWN_LINK 1 LoRaMac::LoRaMac(LoRaWANTimeHandler &lora_time) : mac_commands(*this), _lora_time(lora_time) { lora_phy = NULL; //radio_events_t RadioEvents; _params.keys.LoRaMacDevEui = NULL; _params.keys.LoRaMacAppEui = NULL; _params.keys.LoRaMacAppKey = NULL; memset(_params.keys.LoRaMacNwkSKey, 0, sizeof(_params.keys.LoRaMacNwkSKey)); memset(_params.keys.LoRaMacAppSKey, 0, sizeof(_params.keys.LoRaMacAppSKey)); _params.LoRaMacDevNonce = 0; _params.LoRaMacNetID = 0; _params.LoRaMacDevAddr = 0; _params.LoRaMacBufferPktLen = 0; _params.LoRaMacTxPayloadLen = 0; _params.UpLinkCounter = 0; _params.DownLinkCounter = 0; _params.IsUpLinkCounterFixed = false; _params.IsRxWindowsEnabled = true; _params.IsLoRaMacNetworkJoined = false; _params.AdrAckCounter = 0; _params.NodeAckRequested = false; _params.SrvAckRequested = false; _params.ChannelsNbRepCounter = 0; _params.timers.LoRaMacInitializationTime = 0; _params.LoRaMacState = LORAMAC_IDLE; _params.AckTimeoutRetries = 1; _params.AckTimeoutRetriesCounter = 1; _params.AckTimeoutRetry = false; _params.timers.TxTimeOnAir = 0; MulticastChannels = NULL; LoRaMacParams.AdrCtrlOn = false; LoRaMacParams.MaxDCycle = 0; } LoRaMac::~LoRaMac() { } /*************************************************************************** * ISRs - Handlers * **************************************************************************/ void LoRaMac::handle_tx_done(void) { ev_queue->call(this, &LoRaMac::OnRadioTxDone); } void LoRaMac::handle_rx_done(uint8_t *payload, uint16_t size, int16_t rssi, int8_t snr) { ev_queue->call(this, &LoRaMac::OnRadioRxDone, payload, size, rssi, snr); } void LoRaMac::handle_rx_error(void) { ev_queue->call(this, &LoRaMac::OnRadioRxError); } void LoRaMac::handle_rx_timeout(void) { ev_queue->call(this, &LoRaMac::OnRadioRxTimeout); } void LoRaMac::handle_tx_timeout(void) { ev_queue->call(this, &LoRaMac::OnRadioTxTimeout); } void LoRaMac::handle_cad_done(bool cad) { //TODO Not implemented yet //ev_queue->call(this, &LoRaMac::OnRadioCadDone, cad); } void LoRaMac::handle_fhss_change_channel(uint8_t cur_channel) { // TODO Not implemented yet //ev_queue->call(this, &LoRaMac::OnRadioFHSSChangeChannel, cur_channel); } void LoRaMac::handle_mac_state_check_timer_event(void) { ev_queue->call(this, &LoRaMac::OnMacStateCheckTimerEvent); } void LoRaMac::handle_delayed_tx_timer_event(void) { ev_queue->call(this, &LoRaMac::OnTxDelayedTimerEvent); } void LoRaMac::handle_ack_timeout() { ev_queue->call(this, &LoRaMac::OnAckTimeoutTimerEvent); } void LoRaMac::handle_rx1_timer_event(void) { ev_queue->call(this, &LoRaMac::OnRxWindow1TimerEvent); } void LoRaMac::handle_rx2_timer_event(void) { ev_queue->call(this, &LoRaMac::OnRxWindow2TimerEvent); } /*************************************************************************** * Radio event callbacks - delegated to Radio driver * **************************************************************************/ void LoRaMac::OnRadioTxDone( void ) { GetPhyParams_t getPhy; PhyParam_t phyParam; SetBandTxDoneParams_t txDone; TimerTime_t curTime = _lora_time.TimerGetCurrentTime( ); if( _params.LoRaMacDeviceClass != CLASS_C ) { lora_phy->put_radio_to_sleep(); } else { OpenContinuousRx2Window( ); } // Setup timers if( _params.IsRxWindowsEnabled == true ) { _lora_time.TimerSetValue( &_params.timers.RxWindowTimer1, RxWindow1Delay ); _lora_time.TimerStart( &_params.timers.RxWindowTimer1 ); if( _params.LoRaMacDeviceClass != CLASS_C ) { _lora_time.TimerSetValue( &_params.timers.RxWindowTimer2, RxWindow2Delay ); _lora_time.TimerStart( &_params.timers.RxWindowTimer2 ); } if( ( _params.LoRaMacDeviceClass == CLASS_C ) || ( _params.NodeAckRequested == true ) ) { getPhy.Attribute = PHY_ACK_TIMEOUT; phyParam = lora_phy->get_phy_params(&getPhy); _lora_time.TimerSetValue( &_params.timers.AckTimeoutTimer, RxWindow2Delay + phyParam.Value ); _lora_time.TimerStart( &_params.timers.AckTimeoutTimer ); } } else { McpsConfirm.Status = LORAMAC_EVENT_INFO_STATUS_OK; MlmeConfirm.Status = LORAMAC_EVENT_INFO_STATUS_RX2_TIMEOUT; if( _params.LoRaMacFlags.Value == 0 ) { _params.LoRaMacFlags.Bits.McpsReq = 1; } _params.LoRaMacFlags.Bits.MacDone = 1; } // Verify if the last uplink was a join request if( ( _params.LoRaMacFlags.Bits.MlmeReq == 1 ) && ( MlmeConfirm.MlmeRequest == MLME_JOIN ) ) { _params.LastTxIsJoinRequest = true; } else { _params.LastTxIsJoinRequest = false; } // Store last Tx channel _params.LastTxChannel = _params.Channel; // Update last tx done time for the current channel txDone.Channel = _params.Channel; txDone.Joined = _params.IsLoRaMacNetworkJoined; txDone.LastTxDoneTime = curTime; lora_phy->set_band_tx_done(&txDone); // Update Aggregated last tx done time _params.timers.AggregatedLastTxDoneTime = curTime; if( _params.NodeAckRequested == false ) { McpsConfirm.Status = LORAMAC_EVENT_INFO_STATUS_OK; _params.ChannelsNbRepCounter++; } } void LoRaMac::PrepareRxDoneAbort( void ) { _params.LoRaMacState |= LORAMAC_RX_ABORT; if( _params.NodeAckRequested ) { handle_ack_timeout(); } _params.LoRaMacFlags.Bits.McpsInd = 1; _params.LoRaMacFlags.Bits.MacDone = 1; // Trig OnMacCheckTimerEvent call as soon as possible _lora_time.TimerSetValue( &_params.timers.MacStateCheckTimer, 1 ); _lora_time.TimerStart( &_params.timers.MacStateCheckTimer ); } void LoRaMac::OnRadioRxDone( uint8_t *payload, uint16_t size, int16_t rssi, int8_t snr ) { LoRaMacHeader_t macHdr; LoRaMacFrameCtrl_t fCtrl; ApplyCFListParams_t applyCFList; GetPhyParams_t getPhy; PhyParam_t phyParam; bool skipIndication = false; uint8_t pktHeaderLen = 0; uint32_t address = 0; uint8_t appPayloadStartIndex = 0; uint8_t port = 0xFF; uint8_t frameLen = 0; uint32_t mic = 0; uint32_t micRx = 0; uint16_t sequenceCounter = 0; uint16_t sequenceCounterPrev = 0; uint16_t sequenceCounterDiff = 0; uint32_t downLinkCounter = 0; MulticastParams_t *curMulticastParams = NULL; uint8_t *nwkSKey = _params.keys.LoRaMacNwkSKey; uint8_t *appSKey = _params.keys.LoRaMacAppSKey; uint8_t multicast = 0; bool isMicOk = false; McpsConfirm.AckReceived = false; McpsIndication.Rssi = rssi; McpsIndication.Snr = snr; McpsIndication.RxSlot = RxSlot; McpsIndication.Port = 0; McpsIndication.Multicast = 0; McpsIndication.FramePending = 0; McpsIndication.Buffer = NULL; McpsIndication.BufferSize = 0; McpsIndication.RxData = false; McpsIndication.AckReceived = false; McpsIndication.DownLinkCounter = 0; McpsIndication.McpsIndication = MCPS_UNCONFIRMED; lora_phy->put_radio_to_sleep(); _lora_time.TimerStop( &_params.timers.RxWindowTimer2 ); macHdr.Value = payload[pktHeaderLen++]; switch( macHdr.Bits.MType ) { case FRAME_TYPE_JOIN_ACCEPT: if( _params.IsLoRaMacNetworkJoined == true ) { McpsIndication.Status = LORAMAC_EVENT_INFO_STATUS_ERROR; PrepareRxDoneAbort( ); return; } if (0 != LoRaMacJoinDecrypt( payload + 1, size - 1, _params.keys.LoRaMacAppKey, _params.LoRaMacRxPayload + 1 )) { McpsIndication.Status = LORAMAC_EVENT_INFO_STATUS_CRYPTO_FAIL; return; } _params.LoRaMacRxPayload[0] = macHdr.Value; if (0 != LoRaMacJoinComputeMic( _params.LoRaMacRxPayload, size - LORAMAC_MFR_LEN, _params.keys.LoRaMacAppKey, &mic )) { McpsIndication.Status = LORAMAC_EVENT_INFO_STATUS_CRYPTO_FAIL; return; } micRx |= ( uint32_t ) _params.LoRaMacRxPayload[size - LORAMAC_MFR_LEN]; micRx |= ( ( uint32_t ) _params.LoRaMacRxPayload[size - LORAMAC_MFR_LEN + 1] << 8 ); micRx |= ( ( uint32_t ) _params.LoRaMacRxPayload[size - LORAMAC_MFR_LEN + 2] << 16 ); micRx |= ( ( uint32_t ) _params.LoRaMacRxPayload[size - LORAMAC_MFR_LEN + 3] << 24 ); if( micRx == mic ) { if (0 != LoRaMacJoinComputeSKeys( _params.keys.LoRaMacAppKey, _params.LoRaMacRxPayload + 1, _params.LoRaMacDevNonce, _params.keys.LoRaMacNwkSKey, _params.keys.LoRaMacAppSKey )) { McpsIndication.Status = LORAMAC_EVENT_INFO_STATUS_CRYPTO_FAIL; return; } _params.LoRaMacNetID = ( uint32_t ) _params.LoRaMacRxPayload[4]; _params.LoRaMacNetID |= ( ( uint32_t ) _params.LoRaMacRxPayload[5] << 8 ); _params.LoRaMacNetID |= ( ( uint32_t ) _params.LoRaMacRxPayload[6] << 16 ); _params.LoRaMacDevAddr = ( uint32_t ) _params.LoRaMacRxPayload[7]; _params.LoRaMacDevAddr |= ( ( uint32_t ) _params.LoRaMacRxPayload[8] << 8 ); _params.LoRaMacDevAddr |= ( ( uint32_t ) _params.LoRaMacRxPayload[9] << 16 ); _params.LoRaMacDevAddr |= ( ( uint32_t ) _params.LoRaMacRxPayload[10] << 24 ); // DLSettings LoRaMacParams.Rx1DrOffset = ( _params.LoRaMacRxPayload[11] >> 4 ) & 0x07; LoRaMacParams.Rx2Channel.Datarate = _params.LoRaMacRxPayload[11] & 0x0F; // RxDelay LoRaMacParams.ReceiveDelay1 = ( _params.LoRaMacRxPayload[12] & 0x0F ); if( LoRaMacParams.ReceiveDelay1 == 0 ) { LoRaMacParams.ReceiveDelay1 = 1; } LoRaMacParams.ReceiveDelay1 *= 1000; LoRaMacParams.ReceiveDelay2 = LoRaMacParams.ReceiveDelay1 + 1000; // Apply CF list applyCFList.Payload = &_params.LoRaMacRxPayload[13]; // Size of the regular payload is 12. Plus 1 byte MHDR and 4 bytes MIC applyCFList.Size = size - 17; lora_phy->apply_cf_list(&applyCFList); MlmeConfirm.Status = LORAMAC_EVENT_INFO_STATUS_OK; _params.IsLoRaMacNetworkJoined = true; } else { MlmeConfirm.Status = LORAMAC_EVENT_INFO_STATUS_JOIN_FAIL; } break; case FRAME_TYPE_DATA_CONFIRMED_DOWN: case FRAME_TYPE_DATA_UNCONFIRMED_DOWN: { // Check if the received payload size is valid getPhy.UplinkDwellTime = LoRaMacParams.DownlinkDwellTime; getPhy.Datarate = McpsIndication.RxDatarate; getPhy.Attribute = PHY_MAX_PAYLOAD; // Get the maximum payload length if( _params.RepeaterSupport == true ) { getPhy.Attribute = PHY_MAX_PAYLOAD_REPEATER; } phyParam = lora_phy->get_phy_params(&getPhy); if( MAX( 0, ( int16_t )( ( int16_t )size - ( int16_t )LORA_MAC_FRMPAYLOAD_OVERHEAD ) ) > phyParam.Value ) { McpsIndication.Status = LORAMAC_EVENT_INFO_STATUS_ERROR; PrepareRxDoneAbort( ); return; } address = payload[pktHeaderLen++]; address |= ( (uint32_t)payload[pktHeaderLen++] << 8 ); address |= ( (uint32_t)payload[pktHeaderLen++] << 16 ); address |= ( (uint32_t)payload[pktHeaderLen++] << 24 ); if( address != _params.LoRaMacDevAddr ) { curMulticastParams = MulticastChannels; while( curMulticastParams != NULL ) { if( address == curMulticastParams->Address ) { multicast = 1; nwkSKey = curMulticastParams->NwkSKey; appSKey = curMulticastParams->AppSKey; downLinkCounter = curMulticastParams->DownLinkCounter; break; } curMulticastParams = curMulticastParams->Next; } if( multicast == 0 ) { // We are not the destination of this frame. McpsIndication.Status = LORAMAC_EVENT_INFO_STATUS_ADDRESS_FAIL; PrepareRxDoneAbort( ); return; } } else { multicast = 0; nwkSKey = _params.keys.LoRaMacNwkSKey; appSKey = _params.keys.LoRaMacAppSKey; downLinkCounter = _params.DownLinkCounter; } fCtrl.Value = payload[pktHeaderLen++]; sequenceCounter = ( uint16_t )payload[pktHeaderLen++]; sequenceCounter |= ( uint16_t )payload[pktHeaderLen++] << 8; appPayloadStartIndex = 8 + fCtrl.Bits.FOptsLen; micRx |= ( uint32_t )payload[size - LORAMAC_MFR_LEN]; micRx |= ( ( uint32_t )payload[size - LORAMAC_MFR_LEN + 1] << 8 ); micRx |= ( ( uint32_t )payload[size - LORAMAC_MFR_LEN + 2] << 16 ); micRx |= ( ( uint32_t )payload[size - LORAMAC_MFR_LEN + 3] << 24 ); sequenceCounterPrev = ( uint16_t )downLinkCounter; sequenceCounterDiff = ( sequenceCounter - sequenceCounterPrev ); if( sequenceCounterDiff < ( 1 << 15 ) ) { downLinkCounter += sequenceCounterDiff; LoRaMacComputeMic( payload, size - LORAMAC_MFR_LEN, nwkSKey, address, DOWN_LINK, downLinkCounter, &mic ); if( micRx == mic ) { isMicOk = true; } } else { // check for sequence roll-over uint32_t downLinkCounterTmp = downLinkCounter + 0x10000 + ( int16_t )sequenceCounterDiff; LoRaMacComputeMic( payload, size - LORAMAC_MFR_LEN, nwkSKey, address, DOWN_LINK, downLinkCounterTmp, &mic ); if( micRx == mic ) { isMicOk = true; downLinkCounter = downLinkCounterTmp; } } // Check for a the maximum allowed counter difference getPhy.Attribute = PHY_MAX_FCNT_GAP; phyParam = lora_phy->get_phy_params( &getPhy ); if( sequenceCounterDiff >= phyParam.Value ) { McpsIndication.Status = LORAMAC_EVENT_INFO_STATUS_DOWNLINK_TOO_MANY_FRAMES_LOSS; McpsIndication.DownLinkCounter = downLinkCounter; PrepareRxDoneAbort( ); return; } if( isMicOk == true ) { McpsIndication.Status = LORAMAC_EVENT_INFO_STATUS_OK; McpsIndication.Multicast = multicast; McpsIndication.FramePending = fCtrl.Bits.FPending; McpsIndication.Buffer = NULL; McpsIndication.BufferSize = 0; McpsIndication.DownLinkCounter = downLinkCounter; McpsConfirm.Status = LORAMAC_EVENT_INFO_STATUS_OK; _params.AdrAckCounter = 0; mac_commands.ClearRepeatBuffer(); // Update 32 bits downlink counter if( multicast == 1 ) { McpsIndication.McpsIndication = MCPS_MULTICAST; if( ( curMulticastParams->DownLinkCounter == downLinkCounter ) && ( curMulticastParams->DownLinkCounter != 0 ) ) { McpsIndication.Status = LORAMAC_EVENT_INFO_STATUS_DOWNLINK_REPEATED; McpsIndication.DownLinkCounter = downLinkCounter; PrepareRxDoneAbort( ); return; } curMulticastParams->DownLinkCounter = downLinkCounter; } else { if( macHdr.Bits.MType == FRAME_TYPE_DATA_CONFIRMED_DOWN ) { _params.SrvAckRequested = true; McpsIndication.McpsIndication = MCPS_CONFIRMED; if( ( _params.DownLinkCounter == downLinkCounter ) && ( _params.DownLinkCounter != 0 ) ) { // Duplicated confirmed downlink. Skip indication. // In this case, the MAC layer shall accept the MAC commands // which are included in the downlink retransmission. // It should not provide the same frame to the application // layer again. skipIndication = true; } } else { _params.SrvAckRequested = false; McpsIndication.McpsIndication = MCPS_UNCONFIRMED; if( ( _params.DownLinkCounter == downLinkCounter ) && ( _params.DownLinkCounter != 0 ) ) { McpsIndication.Status = LORAMAC_EVENT_INFO_STATUS_DOWNLINK_REPEATED; McpsIndication.DownLinkCounter = downLinkCounter; PrepareRxDoneAbort( ); return; } } _params.DownLinkCounter = downLinkCounter; } // This must be done before parsing the payload and the MAC commands. // We need to reset the MacCommandsBufferIndex here, since we need // to take retransmissions and repetitions into account. Error cases // will be handled in function OnMacStateCheckTimerEvent. if( McpsConfirm.McpsRequest == MCPS_CONFIRMED ) { if( fCtrl.Bits.Ack == 1 ) {// Reset MacCommandsBufferIndex when we have received an ACK. mac_commands.ClearCommandBuffer(); } } else {// Reset the variable if we have received any valid frame. mac_commands.ClearCommandBuffer(); } // Process payload and MAC commands if( ( ( size - 4 ) - appPayloadStartIndex ) > 0 ) { port = payload[appPayloadStartIndex++]; frameLen = ( size - 4 ) - appPayloadStartIndex; McpsIndication.Port = port; if( port == 0 ) { // Only allow frames which do not have fOpts if( fCtrl.Bits.FOptsLen == 0 ) { if (0 != LoRaMacPayloadDecrypt( payload + appPayloadStartIndex, frameLen, nwkSKey, address, DOWN_LINK, downLinkCounter, _params.LoRaMacRxPayload )) { McpsIndication.Status = LORAMAC_EVENT_INFO_STATUS_CRYPTO_FAIL; } // Decode frame payload MAC commands mac_commands.ProcessMacCommands( _params.LoRaMacRxPayload, 0, frameLen, snr, MlmeConfirm, LoRaMacCallbacks, LoRaMacParams, *lora_phy ); } else { skipIndication = true; } } else { if( fCtrl.Bits.FOptsLen > 0 ) { // Decode Options field MAC commands. Omit the fPort. mac_commands.ProcessMacCommands( payload, 8, appPayloadStartIndex - 1, snr, MlmeConfirm, LoRaMacCallbacks, LoRaMacParams, *lora_phy ); } if (0 != LoRaMacPayloadDecrypt( payload + appPayloadStartIndex, frameLen, appSKey, address, DOWN_LINK, downLinkCounter, _params.LoRaMacRxPayload )) { McpsIndication.Status = LORAMAC_EVENT_INFO_STATUS_CRYPTO_FAIL; } if( skipIndication == false ) { McpsIndication.Buffer = _params.LoRaMacRxPayload; McpsIndication.BufferSize = frameLen; McpsIndication.RxData = true; } } } else { if( fCtrl.Bits.FOptsLen > 0 ) { // Decode Options field MAC commands mac_commands.ProcessMacCommands( payload, 8, appPayloadStartIndex, snr, MlmeConfirm, LoRaMacCallbacks, LoRaMacParams, *lora_phy ); } } if( skipIndication == false ) { // Check if the frame is an acknowledgement if( fCtrl.Bits.Ack == 1 ) { McpsConfirm.AckReceived = true; McpsIndication.AckReceived = true; // Stop the AckTimeout timer as no more retransmissions // are needed. _lora_time.TimerStop( &_params.timers.AckTimeoutTimer ); } else { McpsConfirm.AckReceived = false; if( _params.AckTimeoutRetriesCounter > _params.AckTimeoutRetries ) { // Stop the AckTimeout timer as no more retransmissions // are needed. _lora_time.TimerStop( &_params.timers.AckTimeoutTimer ); } } } // Provide always an indication, skip the callback to the user application, // in case of a confirmed downlink retransmission. _params.LoRaMacFlags.Bits.McpsInd = 1; _params.LoRaMacFlags.Bits.McpsIndSkip = skipIndication; } else { McpsIndication.Status = LORAMAC_EVENT_INFO_STATUS_MIC_FAIL; PrepareRxDoneAbort( ); return; } } break; case FRAME_TYPE_PROPRIETARY: { memcpy( _params.LoRaMacRxPayload, &payload[pktHeaderLen], size ); McpsIndication.McpsIndication = MCPS_PROPRIETARY; McpsIndication.Status = LORAMAC_EVENT_INFO_STATUS_OK; McpsIndication.Buffer = _params.LoRaMacRxPayload; McpsIndication.BufferSize = size - pktHeaderLen; _params.LoRaMacFlags.Bits.McpsInd = 1; break; } default: McpsIndication.Status = LORAMAC_EVENT_INFO_STATUS_ERROR; PrepareRxDoneAbort( ); break; } _params.LoRaMacFlags.Bits.MacDone = 1; // Trig OnMacCheckTimerEvent call as soon as possible _lora_time.TimerSetValue( &_params.timers.MacStateCheckTimer, 1 ); _lora_time.TimerStart( &_params.timers.MacStateCheckTimer ); } void LoRaMac::OnRadioTxTimeout( void ) { if( _params.LoRaMacDeviceClass != CLASS_C ) { lora_phy->put_radio_to_sleep(); } else { OpenContinuousRx2Window( ); } McpsConfirm.Status = LORAMAC_EVENT_INFO_STATUS_TX_TIMEOUT; MlmeConfirm.Status = LORAMAC_EVENT_INFO_STATUS_TX_TIMEOUT; _params.LoRaMacFlags.Bits.MacDone = 1; } void LoRaMac::OnRadioRxError( void ) { if( _params.LoRaMacDeviceClass != CLASS_C ) { lora_phy->put_radio_to_sleep(); } else { OpenContinuousRx2Window( ); } if( RxSlot == RX_SLOT_WIN_1 ) { if( _params.NodeAckRequested == true ) { McpsConfirm.Status = LORAMAC_EVENT_INFO_STATUS_RX1_ERROR; } MlmeConfirm.Status = LORAMAC_EVENT_INFO_STATUS_RX1_ERROR; if( _lora_time.TimerGetElapsedTime( _params.timers.AggregatedLastTxDoneTime ) >= RxWindow2Delay ) { _lora_time.TimerStop( &_params.timers.RxWindowTimer2 ); _params.LoRaMacFlags.Bits.MacDone = 1; } } else { if( _params.NodeAckRequested == true ) { McpsConfirm.Status = LORAMAC_EVENT_INFO_STATUS_RX2_ERROR; } MlmeConfirm.Status = LORAMAC_EVENT_INFO_STATUS_RX2_ERROR; _params.LoRaMacFlags.Bits.MacDone = 1; } } void LoRaMac::OnRadioRxTimeout( void ) { if( _params.LoRaMacDeviceClass != CLASS_C ) { lora_phy->put_radio_to_sleep(); } else { OpenContinuousRx2Window( ); } if( RxSlot == RX_SLOT_WIN_1 ) { if( _params.NodeAckRequested == true ) { McpsConfirm.Status = LORAMAC_EVENT_INFO_STATUS_RX1_TIMEOUT; } MlmeConfirm.Status = LORAMAC_EVENT_INFO_STATUS_RX1_TIMEOUT; if( _lora_time.TimerGetElapsedTime( _params.timers.AggregatedLastTxDoneTime ) >= RxWindow2Delay ) { _lora_time.TimerStop( &_params.timers.RxWindowTimer2 ); _params.LoRaMacFlags.Bits.MacDone = 1; } } else { if( _params.NodeAckRequested == true ) { McpsConfirm.Status = LORAMAC_EVENT_INFO_STATUS_RX2_TIMEOUT; } MlmeConfirm.Status = LORAMAC_EVENT_INFO_STATUS_RX2_TIMEOUT; if( _params.LoRaMacDeviceClass != CLASS_C ) { _params.LoRaMacFlags.Bits.MacDone = 1; } } } /*************************************************************************** * Timer event callbacks - deliberated locally * **************************************************************************/ void LoRaMac::OnMacStateCheckTimerEvent( void ) { GetPhyParams_t getPhy; PhyParam_t phyParam; bool txTimeout = false; _lora_time.TimerStop( &_params.timers.MacStateCheckTimer ); if( _params.LoRaMacFlags.Bits.MacDone == 1 ) { if( ( _params.LoRaMacState & LORAMAC_RX_ABORT ) == LORAMAC_RX_ABORT ) { _params.LoRaMacState &= ~LORAMAC_RX_ABORT; _params.LoRaMacState &= ~LORAMAC_TX_RUNNING; } if( ( _params.LoRaMacFlags.Bits.MlmeReq == 1 ) || ( ( _params.LoRaMacFlags.Bits.McpsReq == 1 ) ) ) { if( ( McpsConfirm.Status == LORAMAC_EVENT_INFO_STATUS_TX_TIMEOUT ) || ( MlmeConfirm.Status == LORAMAC_EVENT_INFO_STATUS_TX_TIMEOUT ) ) { // Stop transmit cycle due to tx timeout. _params.LoRaMacState &= ~LORAMAC_TX_RUNNING; mac_commands.ClearCommandBuffer(); McpsConfirm.NbRetries = _params.AckTimeoutRetriesCounter; McpsConfirm.AckReceived = false; McpsConfirm.TxTimeOnAir = 0; txTimeout = true; } } if( ( _params.NodeAckRequested == false ) && ( txTimeout == false ) ) { if( ( _params.LoRaMacFlags.Bits.MlmeReq == 1 ) || ( ( _params.LoRaMacFlags.Bits.McpsReq == 1 ) ) ) { if( ( _params.LoRaMacFlags.Bits.MlmeReq == 1 ) && ( MlmeConfirm.MlmeRequest == MLME_JOIN ) ) {// Procedure for the join request MlmeConfirm.NbRetries = _params.JoinRequestTrials; if( MlmeConfirm.Status == LORAMAC_EVENT_INFO_STATUS_OK ) {// Node joined successfully _params.UpLinkCounter = 0; _params.ChannelsNbRepCounter = 0; _params.LoRaMacState &= ~LORAMAC_TX_RUNNING; } else { if( _params.JoinRequestTrials >= _params.MaxJoinRequestTrials ) { _params.LoRaMacState &= ~LORAMAC_TX_RUNNING; } else { _params.LoRaMacFlags.Bits.MacDone = 0; // Sends the same frame again handle_delayed_tx_timer_event(); } } } else {// Procedure for all other frames if( ( _params.ChannelsNbRepCounter >= LoRaMacParams.ChannelsNbRep ) || ( _params.LoRaMacFlags.Bits.McpsInd == 1 ) ) { if( _params.LoRaMacFlags.Bits.McpsInd == 0 ) { // Maximum repetitions without downlink. Reset MacCommandsBufferIndex. Increase ADR Ack counter. // Only process the case when the MAC did not receive a downlink. mac_commands.ClearCommandBuffer(); _params.AdrAckCounter++; } _params.ChannelsNbRepCounter = 0; if( _params.IsUpLinkCounterFixed == false ) { _params.UpLinkCounter++; } _params.LoRaMacState &= ~LORAMAC_TX_RUNNING; } else { _params.LoRaMacFlags.Bits.MacDone = 0; // Sends the same frame again handle_delayed_tx_timer_event(); } } } } if( _params.LoRaMacFlags.Bits.McpsInd == 1 ) {// Procedure if we received a frame if( ( McpsConfirm.AckReceived == true ) || ( _params.AckTimeoutRetriesCounter > _params.AckTimeoutRetries ) ) { _params.AckTimeoutRetry = false; _params.NodeAckRequested = false; if( _params.IsUpLinkCounterFixed == false ) { _params.UpLinkCounter++; } McpsConfirm.NbRetries = _params.AckTimeoutRetriesCounter; _params.LoRaMacState &= ~LORAMAC_TX_RUNNING; } } if( ( _params.AckTimeoutRetry == true ) && ( ( _params.LoRaMacState & LORAMAC_TX_DELAYED ) == 0 ) ) {// Retransmissions procedure for confirmed uplinks _params.AckTimeoutRetry = false; if( ( _params.AckTimeoutRetriesCounter < _params.AckTimeoutRetries ) && ( _params.AckTimeoutRetriesCounter <= MAX_ACK_RETRIES ) ) { _params.AckTimeoutRetriesCounter++; if( ( _params.AckTimeoutRetriesCounter % 2 ) == 1 ) { getPhy.Attribute = PHY_NEXT_LOWER_TX_DR; getPhy.UplinkDwellTime = LoRaMacParams.UplinkDwellTime; getPhy.Datarate = LoRaMacParams.ChannelsDatarate; phyParam = lora_phy->get_phy_params( &getPhy ); LoRaMacParams.ChannelsDatarate = phyParam.Value; } // Try to send the frame again if( ScheduleTx( ) == LORAMAC_STATUS_OK ) { _params.LoRaMacFlags.Bits.MacDone = 0; } else { // The DR is not applicable for the payload size McpsConfirm.Status = LORAMAC_EVENT_INFO_STATUS_TX_DR_PAYLOAD_SIZE_ERROR; mac_commands.ClearCommandBuffer(); _params.LoRaMacState &= ~LORAMAC_TX_RUNNING; _params.NodeAckRequested = false; McpsConfirm.AckReceived = false; McpsConfirm.NbRetries = _params.AckTimeoutRetriesCounter; McpsConfirm.Datarate = LoRaMacParams.ChannelsDatarate; if( _params.IsUpLinkCounterFixed == false ) { _params.UpLinkCounter++; } } } else { lora_phy->load_defaults(INIT_TYPE_RESTORE); _params.LoRaMacState &= ~LORAMAC_TX_RUNNING; mac_commands.ClearCommandBuffer(); _params.NodeAckRequested = false; McpsConfirm.AckReceived = false; McpsConfirm.NbRetries = _params.AckTimeoutRetriesCounter; if( _params.IsUpLinkCounterFixed == false ) { _params.UpLinkCounter++; } } } } // Handle reception for Class B and Class C if( ( _params.LoRaMacState & LORAMAC_RX ) == LORAMAC_RX ) { _params.LoRaMacState &= ~LORAMAC_RX; } if( _params.LoRaMacState == LORAMAC_IDLE ) { if( _params.LoRaMacFlags.Bits.McpsReq == 1 ) { _params.LoRaMacFlags.Bits.McpsReq = 0; LoRaMacPrimitives->MacMcpsConfirm( &McpsConfirm ); } if( _params.LoRaMacFlags.Bits.MlmeReq == 1 ) { _params.LoRaMacFlags.Bits.MlmeReq = 0; LoRaMacPrimitives->MacMlmeConfirm( &MlmeConfirm ); } // Verify if sticky MAC commands are pending or not if( mac_commands.IsStickyMacCommandPending( ) == true ) {// Setup MLME indication SetMlmeScheduleUplinkIndication( ); } // Procedure done. Reset variables. _params.LoRaMacFlags.Bits.MacDone = 0; } else { // Operation not finished restart timer _lora_time.TimerSetValue( &_params.timers.MacStateCheckTimer, MAC_STATE_CHECK_TIMEOUT ); _lora_time.TimerStart( &_params.timers.MacStateCheckTimer ); } // Handle MCPS indication if( _params.LoRaMacFlags.Bits.McpsInd == 1 ) { _params.LoRaMacFlags.Bits.McpsInd = 0; if( _params.LoRaMacDeviceClass == CLASS_C ) {// Activate RX2 window for Class C OpenContinuousRx2Window( ); } if( _params.LoRaMacFlags.Bits.McpsIndSkip == 0 ) { LoRaMacPrimitives->MacMcpsIndication( &McpsIndication ); } _params.LoRaMacFlags.Bits.McpsIndSkip = 0; } // Handle MLME indication if( _params.LoRaMacFlags.Bits.MlmeInd == 1 ) { _params.LoRaMacFlags.Bits.MlmeInd = 0; LoRaMacPrimitives->MacMlmeIndication( &MlmeIndication ); } } void LoRaMac::OnTxDelayedTimerEvent( void ) { LoRaMacHeader_t macHdr; LoRaMacFrameCtrl_t fCtrl; AlternateDrParams_t altDr; _lora_time.TimerStop( &_params.timers.TxDelayedTimer ); _params.LoRaMacState &= ~LORAMAC_TX_DELAYED; if( ( _params.LoRaMacFlags.Bits.MlmeReq == 1 ) && ( MlmeConfirm.MlmeRequest == MLME_JOIN ) ) { ResetMacParameters( ); altDr.NbTrials = _params.JoinRequestTrials + 1; LoRaMacParams.ChannelsDatarate = lora_phy->get_alternate_DR(&altDr); macHdr.Value = 0; macHdr.Bits.MType = FRAME_TYPE_JOIN_REQ; fCtrl.Value = 0; fCtrl.Bits.Adr = LoRaMacParams.AdrCtrlOn; /* In case of join request retransmissions, the stack must prepare * the frame again, because the network server keeps track of the random * LoRaMacDevNonce values to prevent reply attacks. */ PrepareFrame( &macHdr, &fCtrl, 0, NULL, 0 ); } ScheduleTx( ); } void LoRaMac::OnRxWindow1TimerEvent( void ) { _lora_time.TimerStop( &_params.timers.RxWindowTimer1 ); RxSlot = RX_SLOT_WIN_1; RxWindow1Config.Channel = _params.Channel; RxWindow1Config.DrOffset = LoRaMacParams.Rx1DrOffset; RxWindow1Config.DownlinkDwellTime = LoRaMacParams.DownlinkDwellTime; RxWindow1Config.RepeaterSupport = _params.RepeaterSupport; RxWindow1Config.RxContinuous = false; RxWindow1Config.RxSlot = RxSlot; if( _params.LoRaMacDeviceClass == CLASS_C ) { lora_phy->put_radio_to_standby(); } lora_phy->rx_config(&RxWindow1Config, ( int8_t* )&McpsIndication.RxDatarate); RxWindowSetup( RxWindow1Config.RxContinuous, LoRaMacParams.MaxRxWindow ); } void LoRaMac::OnRxWindow2TimerEvent( void ) { _lora_time.TimerStop( &_params.timers.RxWindowTimer2 ); RxWindow2Config.Channel = _params.Channel; RxWindow2Config.Frequency = LoRaMacParams.Rx2Channel.Frequency; RxWindow2Config.DownlinkDwellTime = LoRaMacParams.DownlinkDwellTime; RxWindow2Config.RepeaterSupport = _params.RepeaterSupport; RxWindow2Config.RxSlot = RX_SLOT_WIN_2; if( _params.LoRaMacDeviceClass != CLASS_C ) { RxWindow2Config.RxContinuous = false; } else { // Setup continuous listening for class c RxWindow2Config.RxContinuous = true; } if(lora_phy->rx_config(&RxWindow2Config, ( int8_t* )&McpsIndication.RxDatarate) == true ) { RxWindowSetup( RxWindow2Config.RxContinuous, LoRaMacParams.MaxRxWindow ); RxSlot = RX_SLOT_WIN_2; } } void LoRaMac::OnAckTimeoutTimerEvent( void ) { _lora_time.TimerStop( &_params.timers.AckTimeoutTimer ); if( _params.NodeAckRequested == true ) { _params.AckTimeoutRetry = true; _params.LoRaMacState &= ~LORAMAC_ACK_REQ; } if( _params.LoRaMacDeviceClass == CLASS_C ) { _params.LoRaMacFlags.Bits.MacDone = 1; } } void LoRaMac::RxWindowSetup( bool rxContinuous, uint32_t maxRxWindow ) { lora_phy->setup_rx_window(rxContinuous, maxRxWindow); } bool LoRaMac::ValidatePayloadLength( uint8_t lenN, int8_t datarate, uint8_t fOptsLen ) { GetPhyParams_t getPhy; PhyParam_t phyParam; uint16_t maxN = 0; uint16_t payloadSize = 0; // Setup PHY request getPhy.UplinkDwellTime = LoRaMacParams.UplinkDwellTime; getPhy.Datarate = datarate; getPhy.Attribute = PHY_MAX_PAYLOAD; // Get the maximum payload length if( _params.RepeaterSupport == true ) { getPhy.Attribute = PHY_MAX_PAYLOAD_REPEATER; } phyParam = lora_phy->get_phy_params(&getPhy); maxN = phyParam.Value; // Calculate the resulting payload size payloadSize = ( lenN + fOptsLen ); // Validation of the application payload size if( ( payloadSize <= maxN ) && ( payloadSize <= LORAMAC_PHY_MAXPAYLOAD ) ) { return true; } return false; } void LoRaMac::SetMlmeScheduleUplinkIndication( void ) { MlmeIndication.MlmeIndication = MLME_SCHEDULE_UPLINK; _params.LoRaMacFlags.Bits.MlmeInd = 1; } // This is not actual transmission. It just schedules a message in response // to MCPS request LoRaMacStatus_t LoRaMac::Send( LoRaMacHeader_t *macHdr, uint8_t fPort, void *fBuffer, uint16_t fBufferSize ) { LoRaMacFrameCtrl_t fCtrl; LoRaMacStatus_t status = LORAMAC_STATUS_PARAMETER_INVALID; fCtrl.Value = 0; fCtrl.Bits.FOptsLen = 0; fCtrl.Bits.FPending = 0; fCtrl.Bits.Ack = false; fCtrl.Bits.AdrAckReq = false; fCtrl.Bits.Adr = LoRaMacParams.AdrCtrlOn; // Prepare the frame status = PrepareFrame( macHdr, &fCtrl, fPort, fBuffer, fBufferSize ); // Validate status if( status != LORAMAC_STATUS_OK ) { return status; } // Reset confirm parameters McpsConfirm.NbRetries = 0; McpsConfirm.AckReceived = false; McpsConfirm.UpLinkCounter = _params.UpLinkCounter; status = ScheduleTx( ); return status; } LoRaMacStatus_t LoRaMac::ScheduleTx( void ) { TimerTime_t dutyCycleTimeOff = 0; NextChanParams_t nextChan; // Check if the device is off if( LoRaMacParams.MaxDCycle == 255 ) { return LORAMAC_STATUS_DEVICE_OFF; } if( LoRaMacParams.MaxDCycle == 0 ) { _params.timers.AggregatedTimeOff = 0; } // Update Backoff CalculateBackOff( _params.LastTxChannel ); nextChan.AggrTimeOff = _params.timers.AggregatedTimeOff; nextChan.Datarate = LoRaMacParams.ChannelsDatarate; _params.DutyCycleOn = LORAWAN_DUTYCYCLE_ON; nextChan.DutyCycleEnabled = _params.DutyCycleOn; nextChan.Joined = _params.IsLoRaMacNetworkJoined; nextChan.LastAggrTx = _params.timers.AggregatedLastTxDoneTime; // Select channel while( lora_phy->set_next_channel(&nextChan, &_params.Channel, &dutyCycleTimeOff, &_params.timers.AggregatedTimeOff ) == false ) { // Set the default datarate LoRaMacParams.ChannelsDatarate = LoRaMacParamsDefaults.ChannelsDatarate; // Update datarate in the function parameters nextChan.Datarate = LoRaMacParams.ChannelsDatarate; } tr_debug("Next Channel Idx=%d, DR=%d", _params.Channel, nextChan.Datarate); // Compute Rx1 windows parameters uint8_t dr_offset = lora_phy->apply_DR_offset(LoRaMacParams.DownlinkDwellTime, LoRaMacParams.ChannelsDatarate, LoRaMacParams.Rx1DrOffset); lora_phy->compute_rx_win_params(dr_offset, LoRaMacParams.MinRxSymbols, LoRaMacParams.SystemMaxRxError, &RxWindow1Config ); // Compute Rx2 windows parameters lora_phy->compute_rx_win_params(LoRaMacParams.Rx2Channel.Datarate, LoRaMacParams.MinRxSymbols, LoRaMacParams.SystemMaxRxError, &RxWindow2Config ); if( _params.IsLoRaMacNetworkJoined == false ) { RxWindow1Delay = LoRaMacParams.JoinAcceptDelay1 + RxWindow1Config.WindowOffset; RxWindow2Delay = LoRaMacParams.JoinAcceptDelay2 + RxWindow2Config.WindowOffset; } else { if( ValidatePayloadLength( _params.LoRaMacTxPayloadLen, LoRaMacParams.ChannelsDatarate, mac_commands.GetLength() ) == false ) { return LORAMAC_STATUS_LENGTH_ERROR; } RxWindow1Delay = LoRaMacParams.ReceiveDelay1 + RxWindow1Config.WindowOffset; RxWindow2Delay = LoRaMacParams.ReceiveDelay2 + RxWindow2Config.WindowOffset; } // Schedule transmission of frame if( dutyCycleTimeOff == 0 ) { // Try to send now return SendFrameOnChannel( _params.Channel ); } else { // Send later - prepare timer _params.LoRaMacState |= LORAMAC_TX_DELAYED; tr_debug("Next Transmission in %lu ms", dutyCycleTimeOff); _lora_time.TimerSetValue( &_params.timers.TxDelayedTimer, dutyCycleTimeOff ); _lora_time.TimerStart( &_params.timers.TxDelayedTimer ); return LORAMAC_STATUS_OK; } } void LoRaMac::CalculateBackOff( uint8_t channel ) { CalcBackOffParams_t calcBackOff; calcBackOff.Joined = _params.IsLoRaMacNetworkJoined; _params.DutyCycleOn = LORAWAN_DUTYCYCLE_ON; calcBackOff.DutyCycleEnabled = _params.DutyCycleOn; calcBackOff.Channel = channel; calcBackOff.ElapsedTime = _lora_time.TimerGetElapsedTime( _params.timers.LoRaMacInitializationTime ); calcBackOff.TxTimeOnAir = _params.timers.TxTimeOnAir; calcBackOff.LastTxIsJoinRequest = _params.LastTxIsJoinRequest; // Update regional back-off lora_phy->calculate_backoff(&calcBackOff); // Update aggregated time-off _params.timers.AggregatedTimeOff = _params.timers.AggregatedTimeOff + ( _params.timers.TxTimeOnAir * LoRaMacParams.AggregatedDCycle - _params.timers.TxTimeOnAir ); } void LoRaMac::ResetMacParameters( void ) { _params.IsLoRaMacNetworkJoined = false; // Counters _params.UpLinkCounter = 0; _params.DownLinkCounter = 0; _params.AdrAckCounter = 0; _params.ChannelsNbRepCounter = 0; _params.AckTimeoutRetries = 1; _params.AckTimeoutRetriesCounter = 1; _params.AckTimeoutRetry = false; LoRaMacParams.MaxDCycle = 0; LoRaMacParams.AggregatedDCycle = 1; mac_commands.ClearCommandBuffer(); mac_commands.ClearRepeatBuffer(); mac_commands.ClearMacCommandsInNextTx(); _params.IsRxWindowsEnabled = true; LoRaMacParams.ChannelsTxPower = LoRaMacParamsDefaults.ChannelsTxPower; LoRaMacParams.ChannelsDatarate = LoRaMacParamsDefaults.ChannelsDatarate; LoRaMacParams.Rx1DrOffset = LoRaMacParamsDefaults.Rx1DrOffset; LoRaMacParams.Rx2Channel = LoRaMacParamsDefaults.Rx2Channel; LoRaMacParams.UplinkDwellTime = LoRaMacParamsDefaults.UplinkDwellTime; LoRaMacParams.DownlinkDwellTime = LoRaMacParamsDefaults.DownlinkDwellTime; LoRaMacParams.MaxEirp = LoRaMacParamsDefaults.MaxEirp; LoRaMacParams.AntennaGain = LoRaMacParamsDefaults.AntennaGain; _params.NodeAckRequested = false; _params.SrvAckRequested = false; // Reset Multicast downlink counters MulticastParams_t *cur = MulticastChannels; while( cur != NULL ) { cur->DownLinkCounter = 0; cur = cur->Next; } // Initialize channel index. _params.Channel = 0; _params.LastTxChannel = _params.Channel; } bool LoRaMac::IsFPortAllowed( uint8_t fPort ) { if( ( fPort == 0 ) || ( fPort > 224 ) ) { return false; } return true; } void LoRaMac::OpenContinuousRx2Window( void ) { handle_rx2_timer_event( ); RxSlot = RX_SLOT_WIN_CLASS_C; } static void memcpy_convert_endianess( uint8_t *dst, const uint8_t *src, uint16_t size ) { dst = dst + ( size - 1 ); while( size-- ) { *dst-- = *src++; } } LoRaMacStatus_t LoRaMac::PrepareFrame( LoRaMacHeader_t *macHdr, LoRaMacFrameCtrl_t *fCtrl, uint8_t fPort, void *fBuffer, uint16_t fBufferSize ) { AdrNextParams_t adrNext; uint16_t i; uint8_t pktHeaderLen = 0; uint32_t mic = 0; const void* payload = fBuffer; uint8_t framePort = fPort; LoRaMacStatus_t status = LORAMAC_STATUS_OK; _params.LoRaMacBufferPktLen = 0; _params.NodeAckRequested = false; if( fBuffer == NULL ) { fBufferSize = 0; } _params.LoRaMacTxPayloadLen = fBufferSize; _params.LoRaMacBuffer[pktHeaderLen++] = macHdr->Value; switch( macHdr->Bits.MType ) { case FRAME_TYPE_JOIN_REQ: _params.LoRaMacBufferPktLen = pktHeaderLen; memcpy_convert_endianess( _params.LoRaMacBuffer + _params.LoRaMacBufferPktLen, _params.keys.LoRaMacAppEui, 8 ); _params.LoRaMacBufferPktLen += 8; memcpy_convert_endianess( _params.LoRaMacBuffer + _params.LoRaMacBufferPktLen, _params.keys.LoRaMacDevEui, 8 ); _params.LoRaMacBufferPktLen += 8; _params.LoRaMacDevNonce = lora_phy->get_radio_rng(); _params.LoRaMacBuffer[_params.LoRaMacBufferPktLen++] = _params.LoRaMacDevNonce & 0xFF; _params.LoRaMacBuffer[_params.LoRaMacBufferPktLen++] = ( _params.LoRaMacDevNonce >> 8 ) & 0xFF; if (0 != LoRaMacJoinComputeMic( _params.LoRaMacBuffer, _params.LoRaMacBufferPktLen & 0xFF, _params.keys.LoRaMacAppKey, &mic )) { return LORAMAC_STATUS_CRYPTO_FAIL; } _params.LoRaMacBuffer[_params.LoRaMacBufferPktLen++] = mic & 0xFF; _params.LoRaMacBuffer[_params.LoRaMacBufferPktLen++] = ( mic >> 8 ) & 0xFF; _params. LoRaMacBuffer[_params.LoRaMacBufferPktLen++] = ( mic >> 16 ) & 0xFF; _params.LoRaMacBuffer[_params.LoRaMacBufferPktLen++] = ( mic >> 24 ) & 0xFF; break; case FRAME_TYPE_DATA_CONFIRMED_UP: _params.NodeAckRequested = true; //Intentional fallthrough case FRAME_TYPE_DATA_UNCONFIRMED_UP: { if( _params.IsLoRaMacNetworkJoined == false ) { return LORAMAC_STATUS_NO_NETWORK_JOINED; // No network has been joined yet } // Adr next request adrNext.UpdateChanMask = true; adrNext.AdrEnabled = fCtrl->Bits.Adr; adrNext.AdrAckCounter = _params.AdrAckCounter; adrNext.Datarate = LoRaMacParams.ChannelsDatarate; adrNext.TxPower = LoRaMacParams.ChannelsTxPower; adrNext.UplinkDwellTime = LoRaMacParams.UplinkDwellTime; fCtrl->Bits.AdrAckReq = lora_phy->get_next_ADR(&adrNext, &LoRaMacParams.ChannelsDatarate, &LoRaMacParams.ChannelsTxPower, &_params.AdrAckCounter); if( _params.SrvAckRequested == true ) { _params.SrvAckRequested = false; fCtrl->Bits.Ack = 1; } _params.LoRaMacBuffer[pktHeaderLen++] = ( _params.LoRaMacDevAddr ) & 0xFF; _params.LoRaMacBuffer[pktHeaderLen++] = ( _params.LoRaMacDevAddr >> 8 ) & 0xFF; _params.LoRaMacBuffer[pktHeaderLen++] = ( _params.LoRaMacDevAddr >> 16 ) & 0xFF; _params.LoRaMacBuffer[pktHeaderLen++] = ( _params.LoRaMacDevAddr >> 24 ) & 0xFF; _params.LoRaMacBuffer[pktHeaderLen++] = fCtrl->Value; _params.LoRaMacBuffer[pktHeaderLen++] = _params.UpLinkCounter & 0xFF; _params.LoRaMacBuffer[pktHeaderLen++] = ( _params.UpLinkCounter >> 8 ) & 0xFF; // Copy the MAC commands which must be re-send into the MAC command buffer mac_commands.CopyRepeatCommandsToBuffer(); const uint8_t mac_commands_len = mac_commands.GetLength(); if( ( payload != NULL ) && ( _params.LoRaMacTxPayloadLen > 0 ) ) { if( mac_commands.IsMacCommandsInNextTx() == true ) { if( mac_commands_len <= LORA_MAC_COMMAND_MAX_FOPTS_LENGTH ) { fCtrl->Bits.FOptsLen += mac_commands_len; // Update FCtrl field with new value of OptionsLength _params.LoRaMacBuffer[0x05] = fCtrl->Value; const uint8_t *buffer = mac_commands.GetMacCommandsBuffer(); for( i = 0; i < mac_commands_len; i++ ) { _params.LoRaMacBuffer[pktHeaderLen++] = buffer[i]; } } else { _params.LoRaMacTxPayloadLen = mac_commands_len; payload = mac_commands.GetMacCommandsBuffer(); framePort = 0; } } } else { if( ( mac_commands_len > 0 ) && ( mac_commands.IsMacCommandsInNextTx() == true ) ) { _params.LoRaMacTxPayloadLen = mac_commands_len; payload = mac_commands.GetMacCommandsBuffer(); framePort = 0; } } // Store MAC commands which must be re-send in case the device does not receive a downlink anymore mac_commands.ParseMacCommandsToRepeat(); if( ( payload != NULL ) && ( _params.LoRaMacTxPayloadLen > 0 ) ) { _params.LoRaMacBuffer[pktHeaderLen++] = framePort; if( framePort == 0 ) { // Reset buffer index as the mac commands are being sent on port 0 mac_commands.ClearCommandBuffer(); if (0 != LoRaMacPayloadEncrypt( (uint8_t* ) payload, _params.LoRaMacTxPayloadLen, _params.keys.LoRaMacNwkSKey, _params.LoRaMacDevAddr, UP_LINK, _params.UpLinkCounter, &_params.LoRaMacBuffer[pktHeaderLen] )) { status = LORAMAC_STATUS_CRYPTO_FAIL; } } else { if (0 != LoRaMacPayloadEncrypt( (uint8_t* ) payload, _params.LoRaMacTxPayloadLen, _params.keys.LoRaMacAppSKey, _params.LoRaMacDevAddr, UP_LINK, _params.UpLinkCounter, &_params.LoRaMacBuffer[pktHeaderLen] )) { status = LORAMAC_STATUS_CRYPTO_FAIL; } } } _params.LoRaMacBufferPktLen = pktHeaderLen + _params.LoRaMacTxPayloadLen; if (0 != LoRaMacComputeMic( _params.LoRaMacBuffer, _params.LoRaMacBufferPktLen, _params.keys.LoRaMacNwkSKey, _params.LoRaMacDevAddr, UP_LINK, _params.UpLinkCounter, &mic )) { status = LORAMAC_STATUS_CRYPTO_FAIL; } _params.LoRaMacBuffer[_params.LoRaMacBufferPktLen + 0] = mic & 0xFF; _params.LoRaMacBuffer[_params.LoRaMacBufferPktLen + 1] = ( mic >> 8 ) & 0xFF; _params.LoRaMacBuffer[_params.LoRaMacBufferPktLen + 2] = ( mic >> 16 ) & 0xFF; _params.LoRaMacBuffer[_params.LoRaMacBufferPktLen + 3] = ( mic >> 24 ) & 0xFF; _params.LoRaMacBufferPktLen += LORAMAC_MFR_LEN; } break; case FRAME_TYPE_PROPRIETARY: if( ( fBuffer != NULL ) && (_params.LoRaMacTxPayloadLen > 0 ) ) { memcpy( _params.LoRaMacBuffer + pktHeaderLen, ( uint8_t* ) fBuffer, _params.LoRaMacTxPayloadLen ); _params.LoRaMacBufferPktLen = pktHeaderLen + _params.LoRaMacTxPayloadLen; } break; default: status = LORAMAC_STATUS_SERVICE_UNKNOWN; } return status; } LoRaMacStatus_t LoRaMac::SendFrameOnChannel( uint8_t channel ) { TxConfigParams_t txConfig; int8_t txPower = 0; txConfig.Channel = channel; txConfig.Datarate = LoRaMacParams.ChannelsDatarate; txConfig.TxPower = LoRaMacParams.ChannelsTxPower; txConfig.MaxEirp = LoRaMacParams.MaxEirp; txConfig.AntennaGain = LoRaMacParams.AntennaGain; txConfig.PktLen = _params.LoRaMacBufferPktLen; lora_phy->tx_config(&txConfig, &txPower, &_params.timers.TxTimeOnAir); MlmeConfirm.Status = LORAMAC_EVENT_INFO_STATUS_ERROR; McpsConfirm.Status = LORAMAC_EVENT_INFO_STATUS_ERROR; McpsConfirm.Datarate = LoRaMacParams.ChannelsDatarate; McpsConfirm.TxPower = txPower; // Store the time on air McpsConfirm.TxTimeOnAir = _params.timers.TxTimeOnAir; MlmeConfirm.TxTimeOnAir = _params.timers.TxTimeOnAir; // Starts the MAC layer status check timer _lora_time.TimerSetValue( &_params.timers.MacStateCheckTimer, MAC_STATE_CHECK_TIMEOUT ); _lora_time.TimerStart( &_params.timers.MacStateCheckTimer ); if( _params.IsLoRaMacNetworkJoined == false ) { _params.JoinRequestTrials++; } // Send now lora_phy->handle_send(_params.LoRaMacBuffer, _params.LoRaMacBufferPktLen); _params.LoRaMacState |= LORAMAC_TX_RUNNING; return LORAMAC_STATUS_OK; } LoRaMacStatus_t LoRaMac::SetTxContinuousWave( uint16_t timeout ) { ContinuousWaveParams_t continuousWave; continuousWave.Channel = _params.Channel; continuousWave.Datarate = LoRaMacParams.ChannelsDatarate; continuousWave.TxPower = LoRaMacParams.ChannelsTxPower; continuousWave.MaxEirp = LoRaMacParams.MaxEirp; continuousWave.AntennaGain = LoRaMacParams.AntennaGain; continuousWave.Timeout = timeout; lora_phy->set_tx_cont_mode(&continuousWave); // Starts the MAC layer status check timer _lora_time.TimerSetValue( &_params.timers.MacStateCheckTimer, MAC_STATE_CHECK_TIMEOUT ); _lora_time.TimerStart( &_params.timers.MacStateCheckTimer ); _params.LoRaMacState |= LORAMAC_TX_RUNNING; return LORAMAC_STATUS_OK; } LoRaMacStatus_t LoRaMac::SetTxContinuousWave1( uint16_t timeout, uint32_t frequency, uint8_t power ) { lora_phy->setup_tx_cont_wave_mode(frequency, power, timeout); // Starts the MAC layer status check timer _lora_time.TimerSetValue( &_params.timers.MacStateCheckTimer, MAC_STATE_CHECK_TIMEOUT ); _lora_time.TimerStart( &_params.timers.MacStateCheckTimer ); _params.LoRaMacState |= LORAMAC_TX_RUNNING; return LORAMAC_STATUS_OK; } LoRaMacStatus_t LoRaMac::LoRaMacInitialization(LoRaMacPrimitives_t *primitives, LoRaMacCallback_t *callbacks, LoRaPHY *phy, EventQueue *queue) { GetPhyParams_t getPhy; PhyParam_t phyParam; //store event queue pointer ev_queue = queue; if(!primitives || !callbacks) { return LORAMAC_STATUS_PARAMETER_INVALID; } lora_phy = phy; LoRaMacPrimitives = primitives; LoRaMacCallbacks = callbacks; _params.LoRaMacFlags.Value = 0; _params.LoRaMacDeviceClass = CLASS_A; _params.LoRaMacState = LORAMAC_IDLE; _params.JoinRequestTrials = 0; _params.MaxJoinRequestTrials = 1; _params.RepeaterSupport = false; // Reset duty cycle times _params.timers.AggregatedLastTxDoneTime = 0; _params.timers.AggregatedTimeOff = 0; // Reset to defaults getPhy.Attribute = PHY_DUTY_CYCLE; phyParam = lora_phy->get_phy_params(&getPhy); // load default at this moment. Later can be changed using json _params.DutyCycleOn = ( bool ) phyParam.Value; getPhy.Attribute = PHY_DEF_TX_POWER; phyParam = lora_phy->get_phy_params( &getPhy ); LoRaMacParamsDefaults.ChannelsTxPower = phyParam.Value; getPhy.Attribute = PHY_DEF_TX_DR; phyParam = lora_phy->get_phy_params( &getPhy ); LoRaMacParamsDefaults.ChannelsDatarate = phyParam.Value; getPhy.Attribute = PHY_MAX_RX_WINDOW; phyParam = lora_phy->get_phy_params( &getPhy ); LoRaMacParamsDefaults.MaxRxWindow = phyParam.Value; getPhy.Attribute = PHY_RECEIVE_DELAY1; phyParam = lora_phy->get_phy_params( &getPhy ); LoRaMacParamsDefaults.ReceiveDelay1 = phyParam.Value; getPhy.Attribute = PHY_RECEIVE_DELAY2; phyParam = lora_phy->get_phy_params( &getPhy ); LoRaMacParamsDefaults.ReceiveDelay2 = phyParam.Value; getPhy.Attribute = PHY_JOIN_ACCEPT_DELAY1; phyParam = lora_phy->get_phy_params( &getPhy ); LoRaMacParamsDefaults.JoinAcceptDelay1 = phyParam.Value; getPhy.Attribute = PHY_JOIN_ACCEPT_DELAY2; phyParam = lora_phy->get_phy_params( &getPhy ); LoRaMacParamsDefaults.JoinAcceptDelay2 = phyParam.Value; getPhy.Attribute = PHY_DEF_DR1_OFFSET; phyParam = lora_phy->get_phy_params( &getPhy ); LoRaMacParamsDefaults.Rx1DrOffset = phyParam.Value; getPhy.Attribute = PHY_DEF_RX2_FREQUENCY; phyParam = lora_phy->get_phy_params( &getPhy ); LoRaMacParamsDefaults.Rx2Channel.Frequency = phyParam.Value; getPhy.Attribute = PHY_DEF_RX2_DR; phyParam = lora_phy->get_phy_params( &getPhy ); LoRaMacParamsDefaults.Rx2Channel.Datarate = phyParam.Value; getPhy.Attribute = PHY_DEF_UPLINK_DWELL_TIME; phyParam = lora_phy->get_phy_params( &getPhy ); LoRaMacParamsDefaults.UplinkDwellTime = phyParam.Value; getPhy.Attribute = PHY_DEF_DOWNLINK_DWELL_TIME; phyParam = lora_phy->get_phy_params( &getPhy ); LoRaMacParamsDefaults.DownlinkDwellTime = phyParam.Value; getPhy.Attribute = PHY_DEF_MAX_EIRP; phyParam = lora_phy->get_phy_params( &getPhy ); LoRaMacParamsDefaults.MaxEirp = phyParam.fValue; getPhy.Attribute = PHY_DEF_ANTENNA_GAIN; phyParam = lora_phy->get_phy_params( &getPhy ); LoRaMacParamsDefaults.AntennaGain = phyParam.fValue; lora_phy->load_defaults(INIT_TYPE_INIT); // Init parameters which are not set in function ResetMacParameters LoRaMacParamsDefaults.ChannelsNbRep = 1; LoRaMacParamsDefaults.SystemMaxRxError = 10; LoRaMacParamsDefaults.MinRxSymbols = 6; LoRaMacParams.SystemMaxRxError = LoRaMacParamsDefaults.SystemMaxRxError; LoRaMacParams.MinRxSymbols = LoRaMacParamsDefaults.MinRxSymbols; LoRaMacParams.MaxRxWindow = LoRaMacParamsDefaults.MaxRxWindow; LoRaMacParams.ReceiveDelay1 = LoRaMacParamsDefaults.ReceiveDelay1; LoRaMacParams.ReceiveDelay2 = LoRaMacParamsDefaults.ReceiveDelay2; LoRaMacParams.JoinAcceptDelay1 = LoRaMacParamsDefaults.JoinAcceptDelay1; LoRaMacParams.JoinAcceptDelay2 = LoRaMacParamsDefaults.JoinAcceptDelay2; LoRaMacParams.ChannelsNbRep = LoRaMacParamsDefaults.ChannelsNbRep; ResetMacParameters( ); // Random seed initialization srand(lora_phy->get_radio_rng()); _params.PublicNetwork = LORAWAN_PUBLIC_NETWORK; lora_phy->setup_public_network_mode(_params.PublicNetwork); lora_phy->put_radio_to_sleep(); // Initialize timers _lora_time.TimerInit(&_params.timers.MacStateCheckTimer, mbed::callback(this, &LoRaMac::handle_mac_state_check_timer_event)); _lora_time.TimerSetValue(&_params.timers.MacStateCheckTimer, MAC_STATE_CHECK_TIMEOUT); _lora_time.TimerInit(&_params.timers.TxDelayedTimer, mbed::callback(this, &LoRaMac::handle_delayed_tx_timer_event)); _lora_time.TimerInit(&_params.timers.RxWindowTimer1, mbed::callback(this, &LoRaMac::handle_rx1_timer_event)); _lora_time.TimerInit(&_params.timers.RxWindowTimer2, mbed::callback(this, &LoRaMac::handle_rx2_timer_event)); _lora_time.TimerInit(&_params.timers.AckTimeoutTimer, mbed::callback(this, &LoRaMac::handle_ack_timeout)); // Store the current initialization time _params.timers.LoRaMacInitializationTime = _lora_time.TimerGetCurrentTime(); return LORAMAC_STATUS_OK; } LoRaMacStatus_t LoRaMac::LoRaMacQueryTxPossible( uint8_t size, LoRaMacTxInfo_t* txInfo ) { AdrNextParams_t adrNext; GetPhyParams_t getPhy; PhyParam_t phyParam; int8_t datarate = LoRaMacParamsDefaults.ChannelsDatarate; int8_t txPower = LoRaMacParamsDefaults.ChannelsTxPower; uint8_t fOptLen = mac_commands.GetLength() + mac_commands.GetRepeatLength(); if( txInfo == NULL ) { return LORAMAC_STATUS_PARAMETER_INVALID; } // Setup ADR request adrNext.UpdateChanMask = false; adrNext.AdrEnabled = LoRaMacParams.AdrCtrlOn; adrNext.AdrAckCounter = _params.AdrAckCounter; adrNext.Datarate = LoRaMacParams.ChannelsDatarate; adrNext.TxPower = LoRaMacParams.ChannelsTxPower; adrNext.UplinkDwellTime = LoRaMacParams.UplinkDwellTime; // We call the function for information purposes only. We don't want to // apply the datarate, the tx power and the ADR ack counter. lora_phy->get_next_ADR(&adrNext, &datarate, &txPower, &_params.AdrAckCounter); // Setup PHY request getPhy.UplinkDwellTime = LoRaMacParams.UplinkDwellTime; getPhy.Datarate = datarate; getPhy.Attribute = PHY_MAX_PAYLOAD; // Change request in case repeater is supported if( _params.RepeaterSupport == true ) { getPhy.Attribute = PHY_MAX_PAYLOAD_REPEATER; } phyParam = lora_phy->get_phy_params( &getPhy ); txInfo->CurrentPayloadSize = phyParam.Value; // Verify if the fOpts fit into the maximum payload if( txInfo->CurrentPayloadSize >= fOptLen ) { txInfo->MaxPossiblePayload = txInfo->CurrentPayloadSize - fOptLen; } else { txInfo->MaxPossiblePayload = txInfo->CurrentPayloadSize; // The fOpts don't fit into the maximum payload. Omit the MAC commands to // ensure that another uplink is possible. fOptLen = 0; mac_commands.ClearCommandBuffer(); mac_commands.ClearRepeatBuffer(); } // Verify if the fOpts and the payload fit into the maximum payload if( ValidatePayloadLength( size, datarate, fOptLen ) == false ) { return LORAMAC_STATUS_LENGTH_ERROR; } return LORAMAC_STATUS_OK; } LoRaMacStatus_t LoRaMac::LoRaMacMibGetRequestConfirm( MibRequestConfirm_t *mibGet ) { LoRaMacStatus_t status = LORAMAC_STATUS_OK; GetPhyParams_t getPhy; PhyParam_t phyParam; if( mibGet == NULL ) { return LORAMAC_STATUS_PARAMETER_INVALID; } switch( mibGet->Type ) { case MIB_DEVICE_CLASS: { mibGet->Param.Class = _params.LoRaMacDeviceClass; break; } case MIB_NETWORK_JOINED: { mibGet->Param.IsNetworkJoined = _params.IsLoRaMacNetworkJoined; break; } case MIB_ADR: { mibGet->Param.AdrEnable = LoRaMacParams.AdrCtrlOn; break; } case MIB_NET_ID: { mibGet->Param.NetID = _params.LoRaMacNetID; break; } case MIB_DEV_ADDR: { mibGet->Param.DevAddr = _params.LoRaMacDevAddr; break; } case MIB_NWK_SKEY: { mibGet->Param.NwkSKey =_params.keys.LoRaMacNwkSKey; break; } case MIB_APP_SKEY: { mibGet->Param.AppSKey = _params.keys.LoRaMacAppSKey; break; } case MIB_PUBLIC_NETWORK: { mibGet->Param.EnablePublicNetwork = _params.PublicNetwork; break; } case MIB_REPEATER_SUPPORT: { mibGet->Param.EnableRepeaterSupport = _params.RepeaterSupport; break; } case MIB_CHANNELS: { getPhy.Attribute = PHY_CHANNELS; phyParam = lora_phy->get_phy_params( &getPhy ); mibGet->Param.ChannelList = phyParam.Channels; break; } case MIB_RX2_CHANNEL: { mibGet->Param.Rx2Channel = LoRaMacParams.Rx2Channel; break; } case MIB_RX2_DEFAULT_CHANNEL: { mibGet->Param.Rx2Channel = LoRaMacParamsDefaults.Rx2Channel; break; } case MIB_CHANNELS_DEFAULT_MASK: { getPhy.Attribute = PHY_CHANNELS_DEFAULT_MASK; phyParam = lora_phy->get_phy_params( &getPhy ); mibGet->Param.ChannelsDefaultMask = phyParam.ChannelsMask; break; } case MIB_CHANNELS_MASK: { getPhy.Attribute = PHY_CHANNELS_MASK; phyParam = lora_phy->get_phy_params( &getPhy ); mibGet->Param.ChannelsMask = phyParam.ChannelsMask; break; } case MIB_CHANNELS_NB_REP: { mibGet->Param.ChannelNbRep = LoRaMacParams.ChannelsNbRep; break; } case MIB_MAX_RX_WINDOW_DURATION: { mibGet->Param.MaxRxWindow = LoRaMacParams.MaxRxWindow; break; } case MIB_RECEIVE_DELAY_1: { mibGet->Param.ReceiveDelay1 = LoRaMacParams.ReceiveDelay1; break; } case MIB_RECEIVE_DELAY_2: { mibGet->Param.ReceiveDelay2 = LoRaMacParams.ReceiveDelay2; break; } case MIB_JOIN_ACCEPT_DELAY_1: { mibGet->Param.JoinAcceptDelay1 = LoRaMacParams.JoinAcceptDelay1; break; } case MIB_JOIN_ACCEPT_DELAY_2: { mibGet->Param.JoinAcceptDelay2 = LoRaMacParams.JoinAcceptDelay2; break; } case MIB_CHANNELS_DEFAULT_DATARATE: { mibGet->Param.ChannelsDefaultDatarate = LoRaMacParamsDefaults.ChannelsDatarate; break; } case MIB_CHANNELS_DATARATE: { mibGet->Param.ChannelsDatarate = LoRaMacParams.ChannelsDatarate; break; } case MIB_CHANNELS_DEFAULT_TX_POWER: { mibGet->Param.ChannelsDefaultTxPower = LoRaMacParamsDefaults.ChannelsTxPower; break; } case MIB_CHANNELS_TX_POWER: { mibGet->Param.ChannelsTxPower = LoRaMacParams.ChannelsTxPower; break; } case MIB_UPLINK_COUNTER: { mibGet->Param.UpLinkCounter = _params.UpLinkCounter; break; } case MIB_DOWNLINK_COUNTER: { mibGet->Param.DownLinkCounter = _params.DownLinkCounter; break; } case MIB_MULTICAST_CHANNEL: { mibGet->Param.MulticastList = MulticastChannels; break; } case MIB_SYSTEM_MAX_RX_ERROR: { mibGet->Param.SystemMaxRxError = LoRaMacParams.SystemMaxRxError; break; } case MIB_MIN_RX_SYMBOLS: { mibGet->Param.MinRxSymbols = LoRaMacParams.MinRxSymbols; break; } case MIB_ANTENNA_GAIN: { mibGet->Param.AntennaGain = LoRaMacParams.AntennaGain; break; } default: status = LORAMAC_STATUS_SERVICE_UNKNOWN; break; } return status; } LoRaMacStatus_t LoRaMac::LoRaMacMibSetRequestConfirm( MibRequestConfirm_t *mibSet ) { LoRaMacStatus_t status = LORAMAC_STATUS_OK; ChanMaskSetParams_t chanMaskSet; VerifyParams_t verify; if( mibSet == NULL ) { return LORAMAC_STATUS_PARAMETER_INVALID; } switch( mibSet->Type ) { case MIB_DEVICE_CLASS: { _params.LoRaMacDeviceClass = mibSet->Param.Class; switch( _params.LoRaMacDeviceClass ) { case CLASS_A: { // Set the radio into sleep to setup a defined state lora_phy->put_radio_to_sleep(); break; } case CLASS_B: { break; } case CLASS_C: { // Set the NodeAckRequested indicator to default _params.NodeAckRequested = false; // Set the radio into sleep mode in case we are still in RX mode lora_phy->put_radio_to_sleep(); // Compute Rx2 windows parameters in case the RX2 datarate has changed lora_phy->compute_rx_win_params( LoRaMacParams.Rx2Channel.Datarate, LoRaMacParams.MinRxSymbols, LoRaMacParams.SystemMaxRxError, &RxWindow2Config ); OpenContinuousRx2Window( ); break; } } break; } case MIB_NETWORK_JOINED: { _params.IsLoRaMacNetworkJoined = mibSet->Param.IsNetworkJoined; break; } case MIB_ADR: { LoRaMacParams.AdrCtrlOn = mibSet->Param.AdrEnable; break; } case MIB_NET_ID: { _params.LoRaMacNetID = mibSet->Param.NetID; break; } case MIB_DEV_ADDR: { _params.LoRaMacDevAddr = mibSet->Param.DevAddr; break; } case MIB_NWK_SKEY: { if( mibSet->Param.NwkSKey != NULL ) { memcpy( _params.keys.LoRaMacNwkSKey, mibSet->Param.NwkSKey, sizeof( _params.keys.LoRaMacNwkSKey ) ); } else { status = LORAMAC_STATUS_PARAMETER_INVALID; } break; } case MIB_APP_SKEY: { if( mibSet->Param.AppSKey != NULL ) { memcpy( _params.keys.LoRaMacAppSKey, mibSet->Param.AppSKey, sizeof( _params.keys.LoRaMacAppSKey ) ); } else { status = LORAMAC_STATUS_PARAMETER_INVALID; } break; } case MIB_PUBLIC_NETWORK: { _params.PublicNetwork = mibSet->Param.EnablePublicNetwork; lora_phy->setup_public_network_mode(_params.PublicNetwork); break; } case MIB_REPEATER_SUPPORT: { _params.RepeaterSupport = mibSet->Param.EnableRepeaterSupport; break; } case MIB_RX2_CHANNEL: { verify.DatarateParams.Datarate = mibSet->Param.Rx2Channel.Datarate; verify.DatarateParams.DownlinkDwellTime = LoRaMacParams.DownlinkDwellTime; if( lora_phy->verify(&verify, PHY_RX_DR) == true ) { LoRaMacParams.Rx2Channel = mibSet->Param.Rx2Channel; if( ( _params.LoRaMacDeviceClass == CLASS_C ) && ( _params.IsLoRaMacNetworkJoined == true ) ) { // We can only compute the RX window parameters directly, if we are already // in class c mode and joined. We cannot setup an RX window in case of any other // class type. // Set the radio into sleep mode in case we are still in RX mode lora_phy->put_radio_to_sleep(); // Compute Rx2 windows parameters lora_phy->compute_rx_win_params(LoRaMacParams.Rx2Channel.Datarate, LoRaMacParams.MinRxSymbols, LoRaMacParams.SystemMaxRxError, &RxWindow2Config); OpenContinuousRx2Window( ); } } else { status = LORAMAC_STATUS_PARAMETER_INVALID; } break; } case MIB_RX2_DEFAULT_CHANNEL: { verify.DatarateParams.Datarate = mibSet->Param.Rx2Channel.Datarate; verify.DatarateParams.DownlinkDwellTime = LoRaMacParams.DownlinkDwellTime; if( lora_phy->verify(&verify, PHY_RX_DR) == true ) { LoRaMacParamsDefaults.Rx2Channel = mibSet->Param.Rx2DefaultChannel; } else { status = LORAMAC_STATUS_PARAMETER_INVALID; } break; } case MIB_CHANNELS_DEFAULT_MASK: { chanMaskSet.ChannelsMaskIn = mibSet->Param.ChannelsMask; chanMaskSet.ChannelsMaskType = CHANNELS_DEFAULT_MASK; if(lora_phy->set_channel_mask(&chanMaskSet) == false ) { status = LORAMAC_STATUS_PARAMETER_INVALID; } break; } case MIB_CHANNELS_MASK: { chanMaskSet.ChannelsMaskIn = mibSet->Param.ChannelsMask; chanMaskSet.ChannelsMaskType = CHANNELS_MASK; if(lora_phy->set_channel_mask(&chanMaskSet) == false ) { status = LORAMAC_STATUS_PARAMETER_INVALID; } break; } case MIB_CHANNELS_NB_REP: { if( ( mibSet->Param.ChannelNbRep >= 1 ) && ( mibSet->Param.ChannelNbRep <= 15 ) ) { LoRaMacParams.ChannelsNbRep = mibSet->Param.ChannelNbRep; } else { status = LORAMAC_STATUS_PARAMETER_INVALID; } break; } case MIB_MAX_RX_WINDOW_DURATION: { LoRaMacParams.MaxRxWindow = mibSet->Param.MaxRxWindow; break; } case MIB_RECEIVE_DELAY_1: { LoRaMacParams.ReceiveDelay1 = mibSet->Param.ReceiveDelay1; break; } case MIB_RECEIVE_DELAY_2: { LoRaMacParams.ReceiveDelay2 = mibSet->Param.ReceiveDelay2; break; } case MIB_JOIN_ACCEPT_DELAY_1: { LoRaMacParams.JoinAcceptDelay1 = mibSet->Param.JoinAcceptDelay1; break; } case MIB_JOIN_ACCEPT_DELAY_2: { LoRaMacParams.JoinAcceptDelay2 = mibSet->Param.JoinAcceptDelay2; break; } case MIB_CHANNELS_DEFAULT_DATARATE: { verify.DatarateParams.Datarate = mibSet->Param.ChannelsDefaultDatarate; if(lora_phy->verify(&verify, PHY_DEF_TX_DR) == true) { LoRaMacParamsDefaults.ChannelsDatarate = verify.DatarateParams.Datarate; } else { status = LORAMAC_STATUS_PARAMETER_INVALID; } break; } case MIB_CHANNELS_DATARATE: { verify.DatarateParams.Datarate = mibSet->Param.ChannelsDatarate; verify.DatarateParams.UplinkDwellTime = LoRaMacParams.UplinkDwellTime; if(lora_phy->verify(&verify, PHY_TX_DR) == true) { LoRaMacParams.ChannelsDatarate = verify.DatarateParams.Datarate; } else { status = LORAMAC_STATUS_PARAMETER_INVALID; } break; } case MIB_CHANNELS_DEFAULT_TX_POWER: { verify.TxPower = mibSet->Param.ChannelsDefaultTxPower; if(lora_phy->verify(&verify, PHY_DEF_TX_POWER) == true) { LoRaMacParamsDefaults.ChannelsTxPower = verify.TxPower; } else { status = LORAMAC_STATUS_PARAMETER_INVALID; } break; } case MIB_CHANNELS_TX_POWER: { verify.TxPower = mibSet->Param.ChannelsTxPower; if(lora_phy->verify(&verify, PHY_TX_POWER) == true) { LoRaMacParams.ChannelsTxPower = verify.TxPower; } else { status = LORAMAC_STATUS_PARAMETER_INVALID; } break; } case MIB_UPLINK_COUNTER: { _params.UpLinkCounter = mibSet->Param.UpLinkCounter; break; } case MIB_DOWNLINK_COUNTER: { _params.DownLinkCounter = mibSet->Param.DownLinkCounter; break; } case MIB_SYSTEM_MAX_RX_ERROR: { LoRaMacParams.SystemMaxRxError = LoRaMacParamsDefaults.SystemMaxRxError = mibSet->Param.SystemMaxRxError; break; } case MIB_MIN_RX_SYMBOLS: { LoRaMacParams.MinRxSymbols = LoRaMacParamsDefaults.MinRxSymbols = mibSet->Param.MinRxSymbols; break; } case MIB_ANTENNA_GAIN: { LoRaMacParams.AntennaGain = mibSet->Param.AntennaGain; break; } default: status = LORAMAC_STATUS_SERVICE_UNKNOWN; break; } return status; } LoRaMacStatus_t LoRaMac::LoRaMacChannelAdd( uint8_t id, ChannelParams_t params ) { ChannelAddParams_t channelAdd; // Validate if the MAC is in a correct state if( ( _params.LoRaMacState & LORAMAC_TX_RUNNING ) == LORAMAC_TX_RUNNING ) { if( ( _params.LoRaMacState & LORAMAC_TX_CONFIG ) != LORAMAC_TX_CONFIG ) { return LORAMAC_STATUS_BUSY; } } channelAdd.NewChannel = ¶ms; channelAdd.ChannelId = id; return lora_phy->add_channel(&channelAdd); } LoRaMacStatus_t LoRaMac::LoRaMacChannelRemove( uint8_t id ) { ChannelRemoveParams_t channelRemove; if( ( _params.LoRaMacState & LORAMAC_TX_RUNNING ) == LORAMAC_TX_RUNNING ) { if( ( _params.LoRaMacState & LORAMAC_TX_CONFIG ) != LORAMAC_TX_CONFIG ) { return LORAMAC_STATUS_BUSY; } } channelRemove.ChannelId = id; if(lora_phy->remove_channel(&channelRemove) == false) { return LORAMAC_STATUS_PARAMETER_INVALID; } lora_phy->put_radio_to_sleep(); return LORAMAC_STATUS_OK; } LoRaMacStatus_t LoRaMac::LoRaMacMulticastChannelLink( MulticastParams_t *channelParam ) { if( channelParam == NULL ) { return LORAMAC_STATUS_PARAMETER_INVALID; } if( ( _params.LoRaMacState & LORAMAC_TX_RUNNING ) == LORAMAC_TX_RUNNING ) { return LORAMAC_STATUS_BUSY; } // Reset downlink counter channelParam->DownLinkCounter = 0; if( MulticastChannels == NULL ) { // New node is the fist element MulticastChannels = channelParam; } else { MulticastParams_t *cur = MulticastChannels; // Search the last node in the list while( cur->Next != NULL ) { cur = cur->Next; } // This function always finds the last node cur->Next = channelParam; } return LORAMAC_STATUS_OK; } LoRaMacStatus_t LoRaMac::LoRaMacMulticastChannelUnlink( MulticastParams_t *channelParam ) { if( channelParam == NULL ) { return LORAMAC_STATUS_PARAMETER_INVALID; } if( ( _params.LoRaMacState & LORAMAC_TX_RUNNING ) == LORAMAC_TX_RUNNING ) { return LORAMAC_STATUS_BUSY; } if( MulticastChannels != NULL ) { if( MulticastChannels == channelParam ) { // First element MulticastChannels = channelParam->Next; } else { MulticastParams_t *cur = MulticastChannels; // Search the node in the list while( cur->Next && cur->Next != channelParam ) { cur = cur->Next; } // If we found the node, remove it if( cur->Next ) { cur->Next = channelParam->Next; } } channelParam->Next = NULL; } return LORAMAC_STATUS_OK; } LoRaMacStatus_t LoRaMac::LoRaMacMlmeRequest( MlmeReq_t *mlmeRequest ) { LoRaMacStatus_t status = LORAMAC_STATUS_SERVICE_UNKNOWN; LoRaMacHeader_t macHdr; AlternateDrParams_t altDr; VerifyParams_t verify; GetPhyParams_t getPhy; PhyParam_t phyParam; if( mlmeRequest == NULL ) { return LORAMAC_STATUS_PARAMETER_INVALID; } if( _params.LoRaMacState != LORAMAC_IDLE ) { return LORAMAC_STATUS_BUSY; } memset( ( uint8_t* ) &MlmeConfirm, 0, sizeof( MlmeConfirm ) ); MlmeConfirm.Status = LORAMAC_EVENT_INFO_STATUS_ERROR; switch( mlmeRequest->Type ) { case MLME_JOIN: { if( (_params. LoRaMacState & LORAMAC_TX_DELAYED ) == LORAMAC_TX_DELAYED ) { return LORAMAC_STATUS_BUSY; } if( ( mlmeRequest->Req.Join.DevEui == NULL ) || ( mlmeRequest->Req.Join.AppEui == NULL ) || ( mlmeRequest->Req.Join.AppKey == NULL ) || ( mlmeRequest->Req.Join.NbTrials == 0 ) ) { return LORAMAC_STATUS_PARAMETER_INVALID; } // Verify the parameter NbTrials for the join procedure verify.NbJoinTrials = mlmeRequest->Req.Join.NbTrials; if(lora_phy->verify(&verify, PHY_NB_JOIN_TRIALS) == false) { // Value not supported, get default getPhy.Attribute = PHY_DEF_NB_JOIN_TRIALS; phyParam = lora_phy->get_phy_params( &getPhy ); mlmeRequest->Req.Join.NbTrials = ( uint8_t ) phyParam.Value; } _params.LoRaMacFlags.Bits.MlmeReq = 1; MlmeConfirm.MlmeRequest = mlmeRequest->Type; _params.keys.LoRaMacDevEui = mlmeRequest->Req.Join.DevEui; _params.keys.LoRaMacAppEui = mlmeRequest->Req.Join.AppEui; _params.keys.LoRaMacAppKey = mlmeRequest->Req.Join.AppKey; _params.MaxJoinRequestTrials = mlmeRequest->Req.Join.NbTrials; // Reset variable JoinRequestTrials _params.JoinRequestTrials = 0; // Setup header information macHdr.Value = 0; macHdr.Bits.MType = FRAME_TYPE_JOIN_REQ; ResetMacParameters( ); altDr.NbTrials = _params.JoinRequestTrials + 1; LoRaMacParams.ChannelsDatarate = lora_phy->get_alternate_DR(&altDr); status = Send( &macHdr, 0, NULL, 0 ); break; } case MLME_LINK_CHECK: { _params.LoRaMacFlags.Bits.MlmeReq = 1; // LoRaMac will send this command piggy-backed MlmeConfirm.MlmeRequest = mlmeRequest->Type; status = mac_commands.AddMacCommand( MOTE_MAC_LINK_CHECK_REQ, 0, 0 ); break; } case MLME_TXCW: { MlmeConfirm.MlmeRequest = mlmeRequest->Type; _params.LoRaMacFlags.Bits.MlmeReq = 1; status = SetTxContinuousWave( mlmeRequest->Req.TxCw.Timeout ); break; } case MLME_TXCW_1: { MlmeConfirm.MlmeRequest = mlmeRequest->Type; _params.LoRaMacFlags.Bits.MlmeReq = 1; status = SetTxContinuousWave1( mlmeRequest->Req.TxCw.Timeout, mlmeRequest->Req.TxCw.Frequency, mlmeRequest->Req.TxCw.Power ); break; } default: break; } if( status != LORAMAC_STATUS_OK ) { _params.NodeAckRequested = false; _params.LoRaMacFlags.Bits.MlmeReq = 0; } return status; } LoRaMacStatus_t LoRaMac::LoRaMacMcpsRequest( McpsReq_t *mcpsRequest ) { GetPhyParams_t getPhy; PhyParam_t phyParam; LoRaMacStatus_t status = LORAMAC_STATUS_SERVICE_UNKNOWN; LoRaMacHeader_t macHdr; VerifyParams_t verify; uint8_t fPort = 0; void *fBuffer; uint16_t fBufferSize; int8_t datarate = DR_0; bool readyToSend = false; if( mcpsRequest == NULL ) { return LORAMAC_STATUS_PARAMETER_INVALID; } if( _params.LoRaMacState != LORAMAC_IDLE ) { return LORAMAC_STATUS_BUSY; } macHdr.Value = 0; memset ( ( uint8_t* ) &McpsConfirm, 0, sizeof( McpsConfirm ) ); McpsConfirm.Status = LORAMAC_EVENT_INFO_STATUS_ERROR; // AckTimeoutRetriesCounter must be reset every time a new request (unconfirmed or confirmed) is performed. _params.AckTimeoutRetriesCounter = 1; switch( mcpsRequest->Type ) { case MCPS_UNCONFIRMED: { readyToSend = true; _params.AckTimeoutRetries = 1; macHdr.Bits.MType = FRAME_TYPE_DATA_UNCONFIRMED_UP; fPort = mcpsRequest->Req.Unconfirmed.fPort; fBuffer = mcpsRequest->Req.Unconfirmed.fBuffer; fBufferSize = mcpsRequest->Req.Unconfirmed.fBufferSize; datarate = mcpsRequest->Req.Unconfirmed.Datarate; break; } case MCPS_CONFIRMED: { readyToSend = true; _params.AckTimeoutRetries = mcpsRequest->Req.Confirmed.NbTrials; macHdr.Bits.MType = FRAME_TYPE_DATA_CONFIRMED_UP; fPort = mcpsRequest->Req.Confirmed.fPort; fBuffer = mcpsRequest->Req.Confirmed.fBuffer; fBufferSize = mcpsRequest->Req.Confirmed.fBufferSize; datarate = mcpsRequest->Req.Confirmed.Datarate; break; } case MCPS_PROPRIETARY: { readyToSend = true; _params.AckTimeoutRetries = 1; macHdr.Bits.MType = FRAME_TYPE_PROPRIETARY; fBuffer = mcpsRequest->Req.Proprietary.fBuffer; fBufferSize = mcpsRequest->Req.Proprietary.fBufferSize; datarate = mcpsRequest->Req.Proprietary.Datarate; break; } default: break; } // Filter fPorts // TODO: Does not work with PROPRIETARY messages // if( IsFPortAllowed( fPort ) == false ) // { // return LORAMAC_STATUS_PARAMETER_INVALID; // } // Get the minimum possible datarate getPhy.Attribute = PHY_MIN_TX_DR; getPhy.UplinkDwellTime = LoRaMacParams.UplinkDwellTime; phyParam = lora_phy->get_phy_params( &getPhy ); // Apply the minimum possible datarate. // Some regions have limitations for the minimum datarate. datarate = MAX( datarate, phyParam.Value ); if( readyToSend == true ) { if( LoRaMacParams.AdrCtrlOn == false ) { verify.DatarateParams.Datarate = datarate; verify.DatarateParams.UplinkDwellTime = LoRaMacParams.UplinkDwellTime; if(lora_phy->verify(&verify, PHY_TX_DR) == true) { LoRaMacParams.ChannelsDatarate = verify.DatarateParams.Datarate; } else { return LORAMAC_STATUS_PARAMETER_INVALID; } } status = Send( &macHdr, fPort, fBuffer, fBufferSize ); if( status == LORAMAC_STATUS_OK ) { McpsConfirm.McpsRequest = mcpsRequest->Type; _params.LoRaMacFlags.Bits.McpsReq = 1; } else { _params.NodeAckRequested = false; } } return status; } radio_events_t *LoRaMac::GetPhyEventHandlers() { RadioEvents.tx_done = mbed::callback(this, &LoRaMac::handle_tx_done); RadioEvents.rx_done = mbed::callback(this, &LoRaMac::handle_rx_done); RadioEvents.rx_error = mbed::callback(this, &LoRaMac::handle_rx_error); RadioEvents.tx_timeout = mbed::callback(this, &LoRaMac::handle_tx_timeout); RadioEvents.rx_timeout = mbed::callback(this, &LoRaMac::handle_rx_timeout); return &RadioEvents; } #if defined(LORAWAN_COMPLIANCE_TEST) /*************************************************************************** * Compliance testing * **************************************************************************/ LoRaMacStatus_t LoRaMac::LoRaMacSetTxTimer( uint32_t TxDutyCycleTime ) { _lora_time.TimerSetValue(&TxNextPacketTimer, TxDutyCycleTime); _lora_time.TimerStart(&TxNextPacketTimer); return LORAMAC_STATUS_OK; } LoRaMacStatus_t LoRaMac::LoRaMacStopTxTimer( ) { _lora_time.TimerStop(&TxNextPacketTimer); return LORAMAC_STATUS_OK; } void LoRaMac::LoRaMacTestRxWindowsOn( bool enable ) { _params.IsRxWindowsEnabled = enable; } void LoRaMac::LoRaMacTestSetMic( uint16_t txPacketCounter ) { _params.UpLinkCounter = txPacketCounter; _params.IsUpLinkCounterFixed = true; } void LoRaMac::LoRaMacTestSetDutyCycleOn( bool enable ) { VerifyParams_t verify; verify.DutyCycle = enable; if(lora_phy->verify(&verify, PHY_DUTY_CYCLE) == true) { _params.DutyCycleOn = enable; } } void LoRaMac::LoRaMacTestSetChannel( uint8_t channel ) { _params.Channel = channel; } #endif