/* mbed Microcontroller Library * Copyright (c) 2017 ARM Limited * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "mbed.h" #include "greentea-client/test_env.h" #include "unity.h" #include "utest.h" #include "HeapBlockDevice.h" #include "FATFileSystem.h" #include "MBRBlockDevice.h" #include "LittleFileSystem.h" #include #include "mbed_retarget.h" using namespace utest::v1; #ifndef MBED_EXTENDED_TESTS #error [NOT_SUPPORTED] Filesystem tests not supported by default #else static const int mem_alloc_threshold = 32 * 1024; // Test block device #define BLOCK_SIZE 512 #define BLOCK_COUNT 512 HeapBlockDevice *bd = 0; // Test formatting and partitioning void test_format() { uint8_t *dummy = new (std::nothrow) uint8_t[mem_alloc_threshold]; TEST_SKIP_UNLESS_MESSAGE(dummy, "Not enough heap memory to run test. Test skipped."); delete[] dummy; bd = new (std::nothrow) HeapBlockDevice(BLOCK_COUNT * BLOCK_SIZE, BLOCK_SIZE); TEST_SKIP_UNLESS_MESSAGE(bd, "Not enough heap memory to run test. Test skipped."); // Create two partitions splitting device in ~half int err = MBRBlockDevice::partition(bd, 1, 0x83, 0, (BLOCK_COUNT / 2) * BLOCK_SIZE); TEST_ASSERT_EQUAL(0, err); err = MBRBlockDevice::partition(bd, 2, 0x83, -(BLOCK_COUNT / 2) * BLOCK_SIZE); TEST_ASSERT_EQUAL(0, err); // Load both partitions MBRBlockDevice part1(bd, 1); err = part1.init(); TEST_ASSERT_EQUAL(0, err); MBRBlockDevice part2(bd, 2); err = part2.init(); TEST_ASSERT_EQUAL(0, err); // Format both partitions err = FATFileSystem::format(&part1); TEST_ASSERT_EQUAL(0, err); err = FATFileSystem::format(&part2); TEST_ASSERT_EQUAL(0, err); // Unload the partitions err = part1.deinit(); TEST_ASSERT_EQUAL(0, err); err = part2.deinit(); TEST_ASSERT_EQUAL(0, err); } // Simple multipartition test for reading/writing files template void test_read_write() { TEST_SKIP_UNLESS_MESSAGE(bd, "Not enough heap memory to run test. Test skipped."); // Load both partitions MBRBlockDevice part1(bd, 1); int err = part1.init(); TEST_ASSERT_EQUAL(0, err); MBRBlockDevice part2(bd, 2); err = part2.init(); TEST_ASSERT_EQUAL(0, err); // Create fat filesystems on both partitions FATFileSystem fs1("fat1"); FATFileSystem fs2("fat2"); err = fs1.mount(&part1); TEST_ASSERT_EQUAL(0, err); err = fs2.mount(&part2); TEST_ASSERT_EQUAL(0, err); uint8_t *buffer1 = new (std::nothrow) uint8_t[TEST_SIZE]; TEST_SKIP_UNLESS_MESSAGE(buffer1, "Not enough heap memory to run test. Test skipped."); uint8_t *buffer2 = new (std::nothrow) uint8_t[TEST_SIZE]; TEST_SKIP_UNLESS_MESSAGE(buffer2, "Not enough heap memory to run test. Test skipped."); // Fill with random sequence srand(1); for (int i = 0; i < TEST_SIZE; i++) { buffer1[i] = 0xff & rand(); } for (int i = 0; i < TEST_SIZE; i++) { buffer2[i] = 0xff & rand(); } // write and read files on both partitions File file; err = file.open(&fs1, "test_read_write.dat", O_WRONLY | O_CREAT); TEST_ASSERT_EQUAL(0, err); ssize_t size = file.write(buffer1, TEST_SIZE); TEST_ASSERT_EQUAL(TEST_SIZE, size); err = file.close(); TEST_ASSERT_EQUAL(0, err); err = file.open(&fs2, "test_read_write.dat", O_WRONLY | O_CREAT); TEST_ASSERT_EQUAL(0, err); size = file.write(buffer2, TEST_SIZE); TEST_ASSERT_EQUAL(TEST_SIZE, size); err = file.close(); TEST_ASSERT_EQUAL(0, err); err = file.open(&fs1, "test_read_write.dat", O_RDONLY); TEST_ASSERT_EQUAL(0, err); size = file.read(buffer1, TEST_SIZE); TEST_ASSERT_EQUAL(TEST_SIZE, size); err = file.close(); TEST_ASSERT_EQUAL(0, err); err = file.open(&fs2, "test_read_write.dat", O_RDONLY); TEST_ASSERT_EQUAL(0, err); size = file.read(buffer2, TEST_SIZE); TEST_ASSERT_EQUAL(TEST_SIZE, size); err = file.close(); TEST_ASSERT_EQUAL(0, err); // Check that the data was unmodified srand(1); for (int i = 0; i < TEST_SIZE; i++) { TEST_ASSERT_EQUAL(0xff & rand(), buffer1[i]); } for (int i = 0; i < TEST_SIZE; i++) { TEST_ASSERT_EQUAL(0xff & rand(), buffer2[i]); } err = fs1.unmount(); TEST_ASSERT_EQUAL(0, err); err = fs2.unmount(); TEST_ASSERT_EQUAL(0, err); err = part1.deinit(); TEST_ASSERT_EQUAL(0, err); err = part2.deinit(); TEST_ASSERT_EQUAL(0, err); delete[] buffer1; delete[] buffer2; } void test_single_mbr() { TEST_SKIP_UNLESS_MESSAGE(bd, "Not enough heap memory to run test. Test skipped."); int err = bd->init(); TEST_ASSERT_EQUAL(0, err); const bd_addr_t MBR_OFFSET = 0; const bd_addr_t FAT1_OFFSET = 1; const bd_addr_t FAT2_OFFSET = BLOCK_COUNT / 2; uint8_t *buffer = new (std::nothrow) uint8_t[BLOCK_SIZE]; TEST_SKIP_UNLESS_MESSAGE(buffer, "Not enough heap memory to run test. Test skipped."); // Check that all three header blocks have the 0x55aa signature err = bd->read(buffer, MBR_OFFSET * BLOCK_SIZE, BLOCK_SIZE); TEST_ASSERT_EQUAL(0, err); TEST_ASSERT(memcmp(&buffer[BLOCK_SIZE - 2], "\x55\xaa", 2) == 0); err = bd->read(buffer, FAT1_OFFSET * BLOCK_SIZE, BLOCK_SIZE); TEST_ASSERT_EQUAL(0, err); TEST_ASSERT(memcmp(&buffer[BLOCK_SIZE - 2], "\x55\xaa", 2) == 0); err = bd->read(buffer, FAT2_OFFSET * BLOCK_SIZE, BLOCK_SIZE); TEST_ASSERT_EQUAL(0, err); TEST_ASSERT(memcmp(&buffer[BLOCK_SIZE - 2], "\x55\xaa", 2) == 0); // Check that the headers for both filesystems contain a jump code // indicating they are actual FAT superblocks and not an extra MBR err = bd->read(buffer, FAT1_OFFSET * BLOCK_SIZE, BLOCK_SIZE); TEST_ASSERT_EQUAL(0, err); TEST_ASSERT(buffer[0] == 0xe9 || buffer[0] == 0xeb || buffer[0] == 0xe8); err = bd->read(buffer, FAT2_OFFSET * BLOCK_SIZE, BLOCK_SIZE); TEST_ASSERT_EQUAL(0, err); TEST_ASSERT(buffer[0] == 0xe9 || buffer[0] == 0xeb || buffer[0] == 0xe8); delete[] buffer; bd->deinit(); TEST_ASSERT_EQUAL(0, err); delete bd; } void test_with_other_fs() { TEST_SKIP_UNLESS_MESSAGE(bd, "Not enough heap memory to run test. Test skipped."); // Stage 0 - LittleFS // Stage 1 - FatFS with MBR // Stage 2 - LittleFS // Make sure that at no stage we are able to mount the current file system after using the // previous one // start from scratch in this test bd = new (std::nothrow) HeapBlockDevice(BLOCK_COUNT * BLOCK_SIZE, BLOCK_SIZE); TEST_SKIP_UNLESS_MESSAGE(bd, "Not enough heap memory to run test. Test skipped."); int err; for (int stage = 0; stage < 3; stage++) { BlockDevice *part; FileSystem *fs; if (stage == 1) { printf("Stage %d: FAT FS\n", stage + 1); err = MBRBlockDevice::partition(bd, 1, 0x83, 0, BLOCK_COUNT * BLOCK_SIZE); TEST_ASSERT_EQUAL(0, err); part = new (std::nothrow) MBRBlockDevice(bd, 1); TEST_SKIP_UNLESS_MESSAGE(part, "Not enough heap memory to run test. Test skipped."); err = part->init(); TEST_ASSERT_EQUAL(0, err); fs = new FATFileSystem("fat"); } else { printf("Stage %d: Little FS\n", stage + 1); part = bd; fs = new LittleFileSystem("lfs"); } TEST_SKIP_UNLESS_MESSAGE(fs, "Not enough heap memory to run test. Test skipped."); err = fs->mount(part); TEST_ASSERT_NOT_EQUAL(0, err); err = fs->reformat(part); TEST_ASSERT_EQUAL(0, err); err = fs->unmount(); TEST_ASSERT_EQUAL(0, err); delete fs; if (stage == 1) { delete part; } } delete bd; bd = 0; } // Test setup utest::v1::status_t test_setup(const size_t number_of_cases) { GREENTEA_SETUP(10, "default_auto"); return verbose_test_setup_handler(number_of_cases); } Case cases[] = { Case("Testing formating", test_format), Case("Testing read write < block", test_read_write < BLOCK_SIZE / 2 >), Case("Testing read write > block", test_read_write<2 * BLOCK_SIZE>), Case("Testing for no extra MBRs", test_single_mbr), Case("Testing with other file system", test_with_other_fs), }; Specification specification(test_setup, cases); int main() { return !Harness::run(specification); } #endif // MBED_EXTENDED_TESTS