/* * Copyright (c) 2017, Arm Limited and affiliates. * SPDX-License-Identifier: Apache-2.0 * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "CellularUtil.h" #include "AT_CellularDevice.h" #include "AT_CellularInformation.h" #include "AT_CellularNetwork.h" #include "AT_CellularSMS.h" #include "AT_CellularContext.h" #include "AT_CellularStack.h" #include "CellularLog.h" #include "ATHandler.h" #if (DEVICE_SERIAL && DEVICE_INTERRUPTIN) || defined(DOXYGEN_ONLY) #include "UARTSerial.h" #endif // #if DEVICE_SERIAL #include "FileHandle.h" #include using namespace mbed_cellular_util; using namespace events; using namespace mbed; #define DEFAULT_AT_TIMEOUT 1000 // at default timeout in milliseconds const int MAX_SIM_RESPONSE_LENGTH = 16; AT_CellularDevice::AT_CellularDevice(FileHandle *fh) : CellularDevice(fh), _network(0), _sms(0), _information(0), _context_list(0), _default_timeout(DEFAULT_AT_TIMEOUT), _modem_debug_on(false) { MBED_ASSERT(fh); _at = get_at_handler(fh); MBED_ASSERT(_at); if (AT_CellularBase::get_property(AT_CellularBase::PROPERTY_AT_CGEREP)) { _at->set_urc_handler("+CGEV: NW DEACT", callback(this, &AT_CellularDevice::urc_nw_deact)); _at->set_urc_handler("+CGEV: ME DEACT", callback(this, &AT_CellularDevice::urc_nw_deact)); _at->set_urc_handler("+CGEV: NW PDN D", callback(this, &AT_CellularDevice::urc_pdn_deact)); _at->set_urc_handler("+CGEV: ME PDN D", callback(this, &AT_CellularDevice::urc_pdn_deact)); } } AT_CellularDevice::~AT_CellularDevice() { if (AT_CellularBase::get_property(AT_CellularBase::PROPERTY_AT_CGEREP)) { _at->set_urc_handler("+CGEV: NW DEACT", 0); _at->set_urc_handler("+CGEV: ME DEACT", 0); _at->set_urc_handler("+CGEV: NW PDN D", 0); _at->set_urc_handler("+CGEV: ME PDN D", 0); } // make sure that all is deleted even if somewhere close was not called and reference counting is messed up. _network_ref_count = 1; _sms_ref_count = 1; _info_ref_count = 1; close_network(); close_sms(); close_information(); AT_CellularContext *curr = _context_list; AT_CellularContext *next; while (curr) { next = (AT_CellularContext *)curr->_next; ATHandler *at = &curr->get_at_handler(); delete curr; curr = next; release_at_handler(at); } release_at_handler(_at); } void AT_CellularDevice::urc_nw_deact() { // The network has forced a context deactivation char buf[10]; _at->read_string(buf, 10); int cid; if (isalpha(buf[0])) { // this is +CGEV: NW DEACT , , [] // or +CGEV: ME DEACT , , [] _at->skip_param(); // skip cid = _at->read_int(); } else { // this is +CGEV: NW DEACT , , [,] // or +CGEV: ME DEACT , , read_int(); } send_disconnect_to_context(cid); } void AT_CellularDevice::urc_pdn_deact() { // The network has deactivated a context // The mobile termination has deactivated a context. // +CGEV: NW PDN DEACT [,] // +CGEV: ME PDN DEACT _at->set_delimiter(' '); _at->skip_param(); _at->set_delimiter(','); int cid = _at->read_int(); send_disconnect_to_context(cid); } void AT_CellularDevice::send_disconnect_to_context(int cid) { tr_debug("send_disconnect_to_context, cid: %d", cid); AT_CellularContext *curr = _context_list; while (curr) { if (cid >= 0) { if (curr->get_cid() == cid) { CellularDevice::cellular_callback(NSAPI_EVENT_CONNECTION_STATUS_CHANGE, NSAPI_STATUS_DISCONNECTED, curr); break; } } else { CellularDevice::cellular_callback(NSAPI_EVENT_CONNECTION_STATUS_CHANGE, NSAPI_STATUS_DISCONNECTED); } curr = (AT_CellularContext *)curr->_next; } } nsapi_error_t AT_CellularDevice::hard_power_on() { return NSAPI_ERROR_OK; } nsapi_error_t AT_CellularDevice::hard_power_off() { return NSAPI_ERROR_OK; } nsapi_error_t AT_CellularDevice::soft_power_on() { return NSAPI_ERROR_OK; } nsapi_error_t AT_CellularDevice::soft_power_off() { return NSAPI_ERROR_OK; } // each parser is associated with one filehandle (that is UART) ATHandler *AT_CellularDevice::get_at_handler(FileHandle *fileHandle) { if (!fileHandle) { fileHandle = _fh; } return ATHandler::get_instance(fileHandle, _queue, _default_timeout, "\r", get_send_delay(), _modem_debug_on); } ATHandler *AT_CellularDevice::get_at_handler() { return get_at_handler(NULL); } nsapi_error_t AT_CellularDevice::release_at_handler(ATHandler *at_handler) { if (at_handler) { return at_handler->close(); } else { return NSAPI_ERROR_PARAMETER; } } nsapi_error_t AT_CellularDevice::get_sim_state(SimState &state) { char simstr[MAX_SIM_RESPONSE_LENGTH]; _at->lock(); _at->flush(); _at->cmd_start("AT+CPIN?"); _at->cmd_stop(); _at->resp_start("+CPIN:"); ssize_t len = _at->read_string(simstr, sizeof(simstr)); if (len != -1) { if (len >= 5 && memcmp(simstr, "READY", 5) == 0) { state = SimStateReady; } else if (len >= 7 && memcmp(simstr, "SIM PIN", 7) == 0) { state = SimStatePinNeeded; } else if (len >= 7 && memcmp(simstr, "SIM PUK", 7) == 0) { state = SimStatePukNeeded; } else { simstr[len] = '\0'; tr_error("Unknown SIM state %s", simstr); state = SimStateUnknown; } } else { tr_warn("SIM not readable."); state = SimStateUnknown; // SIM may not be ready yet or +CPIN may be unsupported command } _at->resp_stop(); nsapi_error_t error = _at->get_last_error(); _at->unlock(); #if MBED_CONF_MBED_TRACE_ENABLE switch (state) { case SimStatePinNeeded: tr_info("SIM PIN required"); break; case SimStatePukNeeded: tr_error("SIM PUK required"); break; case SimStateUnknown: tr_warn("SIM state unknown"); break; default: tr_info("SIM is ready"); break; } #endif return error; } nsapi_error_t AT_CellularDevice::set_pin(const char *sim_pin) { // if SIM is already in ready state then settings the PIN // will return error so let's check the state before settings the pin. SimState state; if (get_sim_state(state) == NSAPI_ERROR_OK && state == SimStateReady) { return NSAPI_ERROR_OK; } if (sim_pin == NULL) { return NSAPI_ERROR_PARAMETER; } _at->lock(); _at->cmd_start("AT+CPIN="); const bool stored_debug_state = _at->get_debug(); _at->set_debug(false); _at->write_string(sim_pin); _at->set_debug(stored_debug_state); _at->cmd_stop_read_resp(); return _at->unlock_return_error(); } CellularContext *AT_CellularDevice::get_context_list() const { return _context_list; } #if (DEVICE_SERIAL && DEVICE_INTERRUPTIN) || defined(DOXYGEN_ONLY) CellularContext *AT_CellularDevice::create_context(UARTSerial *serial, const char *const apn, PinName dcd_pin, bool active_high, bool cp_req, bool nonip_req) { // Call FileHandle base version - explict upcast to avoid recursing into ourselves CellularContext *ctx = create_context(static_cast(serial), apn, cp_req, nonip_req); if (serial) { ctx->set_file_handle(serial, dcd_pin, active_high); } return ctx; } #endif // #if DEVICE_SERIAL CellularContext *AT_CellularDevice::create_context(FileHandle *fh, const char *apn, bool cp_req, bool nonip_req) { AT_CellularContext *ctx = create_context_impl(*get_at_handler(fh), apn, cp_req, nonip_req); AT_CellularContext *curr = _context_list; if (_context_list == NULL) { _context_list = ctx; return ctx; } AT_CellularContext *prev = NULL; while (curr) { prev = curr; curr = (AT_CellularContext *)curr->_next; } prev->_next = ctx; return ctx; } AT_CellularContext *AT_CellularDevice::create_context_impl(ATHandler &at, const char *apn, bool cp_req, bool nonip_req) { if (cp_req) { } return new AT_CellularContext(at, this, apn, cp_req, nonip_req); } void AT_CellularDevice::delete_context(CellularContext *context) { AT_CellularContext *curr = _context_list; AT_CellularContext *prev = NULL; while (curr) { if (curr == context) { if (prev == NULL) { _context_list = (AT_CellularContext *)curr->_next; } else { prev->_next = curr->_next; } } prev = curr; curr = (AT_CellularContext *)curr->_next; } curr = (AT_CellularContext *)context; ATHandler *at = NULL; if (curr) { at = &curr->get_at_handler(); } delete (AT_CellularContext *)context; release_at_handler(at); } CellularNetwork *AT_CellularDevice::open_network(FileHandle *fh) { if (!_network) { _network = open_network_impl(*get_at_handler(fh)); } _network_ref_count++; return _network; } CellularSMS *AT_CellularDevice::open_sms(FileHandle *fh) { if (!_sms) { _sms = open_sms_impl(*get_at_handler(fh)); } _sms_ref_count++; return _sms; } CellularInformation *AT_CellularDevice::open_information(FileHandle *fh) { if (!_information) { _information = open_information_impl(*get_at_handler(fh)); } _info_ref_count++; return _information; } AT_CellularNetwork *AT_CellularDevice::open_network_impl(ATHandler &at) { return new AT_CellularNetwork(at); } AT_CellularSMS *AT_CellularDevice::open_sms_impl(ATHandler &at) { return new AT_CellularSMS(at); } AT_CellularInformation *AT_CellularDevice::open_information_impl(ATHandler &at) { return new AT_CellularInformation(at); } void AT_CellularDevice::close_network() { if (_network) { _network_ref_count--; if (_network_ref_count == 0) { ATHandler *atHandler = &_network->get_at_handler(); delete _network; _network = NULL; release_at_handler(atHandler); } } } void AT_CellularDevice::close_sms() { if (_sms) { _sms_ref_count--; if (_sms_ref_count == 0) { ATHandler *atHandler = &_sms->get_at_handler(); delete _sms; _sms = NULL; release_at_handler(atHandler); } } } void AT_CellularDevice::close_information() { if (_information) { _info_ref_count--; if (_info_ref_count == 0) { ATHandler *atHandler = &_information->get_at_handler(); delete _information; _information = NULL; release_at_handler(atHandler); } } } void AT_CellularDevice::set_timeout(int timeout) { _default_timeout = timeout; ATHandler::set_at_timeout_list(_default_timeout, true); if (_state_machine) { _state_machine->set_timeout(_default_timeout); } } uint16_t AT_CellularDevice::get_send_delay() const { return 0; } void AT_CellularDevice::modem_debug_on(bool on) { _modem_debug_on = on; ATHandler::set_debug_list(_modem_debug_on); } nsapi_error_t AT_CellularDevice::init() { _at->lock(); _at->flush(); _at->cmd_start("ATE0"); // echo off _at->cmd_stop_read_resp(); _at->cmd_start("AT+CMEE=1"); // verbose responses _at->cmd_stop_read_resp(); _at->cmd_start("AT+CFUN=1"); // set full functionality _at->cmd_stop_read_resp(); return _at->unlock_return_error(); } nsapi_error_t AT_CellularDevice::shutdown() { _at->lock(); if (_state_machine) { _state_machine->reset(); } CellularDevice::shutdown(); _at->cmd_start("AT+CFUN=0");// set to minimum functionality _at->cmd_stop_read_resp(); return _at->unlock_return_error(); } nsapi_error_t AT_CellularDevice::is_ready() { _at->lock(); _at->cmd_start("AT"); _at->cmd_stop_read_resp(); // we need to do this twice because for example after data mode the first 'AT' command will give modem a // stimulus that we are back to command mode. _at->clear_error(); _at->cmd_start("AT"); _at->cmd_stop_read_resp(); return _at->unlock_return_error(); } void AT_CellularDevice::set_ready_cb(Callback callback) { } nsapi_error_t AT_CellularDevice::set_power_save_mode(int periodic_time, int active_time) { _at->lock(); if (periodic_time == 0 && active_time == 0) { // disable PSM _at->cmd_start("AT+CPSMS="); _at->write_int(0); _at->cmd_stop_read_resp(); } else { const int PSMTimerBits = 5; /** Table 10.5.163a/3GPP TS 24.008: GPRS Timer 3 information element Bits 5 to 1 represent the binary coded timer value. Bits 6 to 8 defines the timer value unit for the GPRS timer as follows: 8 7 6 0 0 0 value is incremented in multiples of 10 minutes 0 0 1 value is incremented in multiples of 1 hour 0 1 0 value is incremented in multiples of 10 hours 0 1 1 value is incremented in multiples of 2 seconds 1 0 0 value is incremented in multiples of 30 seconds 1 0 1 value is incremented in multiples of 1 minute 1 1 0 value is incremented in multiples of 320 hours (NOTE 1) 1 1 1 value indicates that the timer is deactivated (NOTE 2). */ char pt[8 + 1]; // timer value encoded as 3GPP IE const int ie_value_max = 0x1f; uint32_t periodic_timer = 0; if (periodic_time <= 2 * ie_value_max) { // multiples of 2 seconds periodic_timer = periodic_time / 2; strcpy(pt, "01100000"); } else { if (periodic_time <= 30 * ie_value_max) { // multiples of 30 seconds periodic_timer = periodic_time / 30; strcpy(pt, "10000000"); } else { if (periodic_time <= 60 * ie_value_max) { // multiples of 1 minute periodic_timer = periodic_time / 60; strcpy(pt, "10100000"); } else { if (periodic_time <= 10 * 60 * ie_value_max) { // multiples of 10 minutes periodic_timer = periodic_time / (10 * 60); strcpy(pt, "00000000"); } else { if (periodic_time <= 60 * 60 * ie_value_max) { // multiples of 1 hour periodic_timer = periodic_time / (60 * 60); strcpy(pt, "00100000"); } else { if (periodic_time <= 10 * 60 * 60 * ie_value_max) { // multiples of 10 hours periodic_timer = periodic_time / (10 * 60 * 60); strcpy(pt, "01000000"); } else { // multiples of 320 hours int t = periodic_time / (320 * 60 * 60); if (t > ie_value_max) { t = ie_value_max; } periodic_timer = t; strcpy(pt, "11000000"); } } } } } } uint_to_binary_str(periodic_timer, &pt[3], sizeof(pt) - 3, PSMTimerBits); pt[8] = '\0'; /** Table 10.5.172/3GPP TS 24.008: GPRS Timer information element Bits 5 to 1 represent the binary coded timer value. Bits 6 to 8 defines the timer value unit for the GPRS timer as follows: 8 7 6 0 0 0 value is incremented in multiples of 2 seconds 0 0 1 value is incremented in multiples of 1 minute 0 1 0 value is incremented in multiples of decihours 1 1 1 value indicates that the timer is deactivated. Other values shall be interpreted as multiples of 1 minute in this version of the protocol. */ char at[8 + 1]; uint32_t active_timer; // timer value encoded as 3GPP IE if (active_time <= 2 * ie_value_max) { // multiples of 2 seconds active_timer = active_time / 2; strcpy(at, "00000000"); } else { if (active_time <= 60 * ie_value_max) { // multiples of 1 minute active_timer = (1 << 5) | (active_time / 60); strcpy(at, "00100000"); } else { // multiples of decihours int t = active_time / (6 * 60); if (t > ie_value_max) { t = ie_value_max; } active_timer = t; strcpy(at, "01000000"); } } uint_to_binary_str(active_timer, &at[3], sizeof(at) - 3, PSMTimerBits); at[8] = '\0'; // request for both GPRS and LTE _at->cmd_start("AT+CPSMS="); _at->write_int(1); _at->write_string(pt); _at->write_string(at); _at->write_string(pt); _at->write_string(at); _at->cmd_stop_read_resp(); if (_at->get_last_error() != NSAPI_ERROR_OK) { tr_warn("Power save mode not enabled!"); } else { // network may not agree with power save options but // that should be fine as timeout is not longer than requested } } return _at->unlock_return_error(); } void AT_CellularDevice::cellular_callback(nsapi_event_t ev, intptr_t ptr, CellularContext *ctx) { if (ev >= NSAPI_EVENT_CELLULAR_STATUS_BASE && ev <= NSAPI_EVENT_CELLULAR_STATUS_END) { cellular_connection_status_t cell_ev = (cellular_connection_status_t)ev; if (cell_ev == CellularDeviceTimeout) { cell_callback_data_t *data = (cell_callback_data_t *)ptr; int timeout = *(int *)data->data; if (_default_timeout != timeout) { _default_timeout = timeout; ATHandler::set_at_timeout_list(_default_timeout, true); } } } CellularDevice::cellular_callback(ev, ptr, ctx); }