/* nsapi_dns.cpp * Original work Copyright (c) 2013 Henry Leinen (henry[dot]leinen [at] online [dot] de) * Modified work Copyright (c) 2015 ARM Limited * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /* Declare __STDC_LIMIT_MACROS so stdint.h defines INT32_MAX when using C++ */ #define __STDC_LIMIT_MACROS #include "nsapi_dns.h" #include "netsocket/UDPSocket.h" #include #include #include #include "mbed_shared_queues.h" #include "EventQueue.h" #include "OnboardNetworkStack.h" #include "Kernel.h" #include "PlatformMutex.h" #include "SingletonPtr.h" #define CLASS_IN 1 #define RR_A 1 #define RR_AAAA 28 // DNS options #define DNS_BUFFER_SIZE 512 #define DNS_SERVERS_SIZE 5 #define DNS_RESPONSE_MIN_SIZE 12 #define DNS_STACK_SERVERS_NUM 5 #define DNS_QUERY_QUEUE_SIZE 5 #define DNS_HOST_NAME_MAX_LEN 255 #define DNS_TIMER_TIMEOUT 100 struct DNS_CACHE { nsapi_addr_t address; char *host; uint64_t expires; /*!< time to live in milliseconds */ uint64_t accessed; /*!< last accessed */ }; struct SOCKET_CB_DATA { call_in_callback_cb_t call_in_cb; NetworkStack *stack; }; enum dns_state { DNS_CREATED, /*!< created, not yet making query to network */ DNS_INITIATED, /*!< making query to network */ DNS_CANCELLED /*!< cancelled, callback will not be called */ }; struct DNS_QUERY { int unique_id; nsapi_error_t status; NetworkStack *stack; char *host; NetworkStack::hostbyname_cb_t callback; call_in_callback_cb_t call_in_cb; nsapi_size_t addr_count; nsapi_version_t version; UDPSocket *socket; SOCKET_CB_DATA *socket_cb_data; nsapi_addr_t *addrs; uint32_t ttl; uint32_t total_timeout; uint32_t socket_timeout; uint16_t dns_message_id; uint8_t dns_server; uint8_t retries; uint8_t total_attempts; uint8_t send_success; uint8_t count; dns_state state; }; static void nsapi_dns_cache_add(const char *host, nsapi_addr_t *address, uint32_t ttl); static nsapi_size_or_error_t nsapi_dns_cache_find(const char *host, nsapi_version_t version, nsapi_addr_t *address); static nsapi_error_t nsapi_dns_get_server_addr(NetworkStack *stack, uint8_t *index, uint8_t *total_attempts, uint8_t *send_success, SocketAddress *dns_addr); static void nsapi_dns_query_async_create(void *ptr); static nsapi_error_t nsapi_dns_query_async_delete(int unique_id); static void nsapi_dns_query_async_send(void *ptr); static void nsapi_dns_query_async_timeout(void); static void nsapi_dns_query_async_resp(DNS_QUERY *query, nsapi_error_t status, SocketAddress *address); static void nsapi_dns_query_async_socket_callback(void *ptr); static void nsapi_dns_query_async_socket_callback_handle(NetworkStack *stack); static void nsapi_dns_query_async_response(void *ptr); static void nsapi_dns_query_async_initiate_next(void); static nsapi_addr_t dns_servers[DNS_SERVERS_SIZE] = { {NSAPI_IPv4, {8, 8, 8, 8}}, // Google {NSAPI_IPv4, {209, 244, 0, 3}}, // Level 3 {NSAPI_IPv4, {84, 200, 69, 80}}, // DNS.WATCH {NSAPI_IPv6, {0x20,0x01, 0x48,0x60, 0x48,0x60, 0,0, // Google 0,0, 0,0, 0,0, 0x88,0x88}}, {NSAPI_IPv6, {0x20,0x01, 0x16,0x08, 0,0x10, 0,0x25, // DNS.WATCH 0,0, 0,0, 0x1c,0x04, 0xb1,0x2f}}, }; #if (MBED_CONF_NSAPI_DNS_CACHE_SIZE > 0) static DNS_CACHE *dns_cache[MBED_CONF_NSAPI_DNS_CACHE_SIZE]; // Protects cache shared between blocking and asynchronous calls static SingletonPtr dns_cache_mutex; #endif static uint16_t dns_message_id = 1; static int dns_unique_id = 1; static DNS_QUERY *dns_query_queue[DNS_QUERY_QUEUE_SIZE]; // Protects from several threads running asynchronous DNS static SingletonPtr dns_mutex; static SingletonPtr dns_call_in; static bool dns_timer_running = false; // DNS server configuration extern "C" nsapi_error_t nsapi_dns_add_server(nsapi_addr_t addr) { memmove(&dns_servers[1], &dns_servers[0], (DNS_SERVERS_SIZE-1)*sizeof(nsapi_addr_t)); dns_servers[0] = addr; return NSAPI_ERROR_OK; } // DNS packet parsing static void dns_append_byte(uint8_t **p, uint8_t byte) { *(*p)++ = byte; } static void dns_append_word(uint8_t **p, uint16_t word) { dns_append_byte(p, 0xff & (word >> 8)); dns_append_byte(p, 0xff & (word >> 0)); } static void dns_append_name(uint8_t **p, const char *name, uint8_t len) { dns_append_byte(p, len); memcpy(*p, name, len); *p += len; } static uint8_t dns_scan_byte(const uint8_t **p) { return *(*p)++; } static uint16_t dns_scan_word(const uint8_t **p) { uint16_t a = dns_scan_byte(p); uint16_t b = dns_scan_byte(p); return (a << 8) | b; } static uint32_t dns_scan_word32(const uint8_t **p) { uint32_t value = dns_scan_byte(p) << 24; value |= dns_scan_byte(p) << 16; value |= dns_scan_byte(p) << 8; value |= dns_scan_byte(p); return value; } static int dns_append_question(uint8_t *ptr, uint16_t id, const char *host, nsapi_version_t version) { uint8_t *s_ptr = ptr; uint8_t **p = &ptr; // fill the header dns_append_word(p, id); // id = 1 dns_append_word(p, 0x0100); // flags = recursion required dns_append_word(p, 1); // qdcount = 1 dns_append_word(p, 0); // ancount = 0 dns_append_word(p, 0); // nscount = 0 dns_append_word(p, 0); // arcount = 0 // fill out the question names while (host[0]) { size_t label_len = strcspn(host, "."); dns_append_name(p, host, label_len); host += label_len + (host[label_len] == '.'); } dns_append_byte(p, 0); // fill out question footer if (version != NSAPI_IPv6) { dns_append_word(p, RR_A); // qtype = ipv4 } else { dns_append_word(p, RR_AAAA); // qtype = ipv6 } dns_append_word(p, CLASS_IN); return *p - s_ptr; } static int dns_scan_response(const uint8_t *ptr, uint16_t exp_id, uint32_t *ttl, nsapi_addr_t *addr, unsigned addr_count) { const uint8_t **p = &ptr; // scan header uint16_t id = dns_scan_word(p); uint16_t flags = dns_scan_word(p); bool qr = 0x1 & (flags >> 15); uint8_t opcode = 0xf & (flags >> 11); uint8_t rcode = 0xf & (flags >> 0); uint16_t qdcount = dns_scan_word(p); // qdcount uint16_t ancount = dns_scan_word(p); // ancount dns_scan_word(p); // nscount dns_scan_word(p); // arcount // verify header is response to query if (!(id == exp_id && qr && opcode == 0)) { return -1; } if (rcode != 0) { return 0; } // skip questions for (int i = 0; i < qdcount; i++) { while (true) { uint8_t len = dns_scan_byte(p); if (len == 0) { break; } *p += len; } dns_scan_word(p); // qtype dns_scan_word(p); // qclass } // scan each response unsigned count = 0; for (int i = 0; i < ancount && count < addr_count; i++) { while (true) { uint8_t len = dns_scan_byte(p); if (len == 0) { break; } else if (len & 0xc0) { // this is link dns_scan_byte(p); break; } *p += len; } uint16_t rtype = dns_scan_word(p); // rtype uint16_t rclass = dns_scan_word(p); // rclass uint32_t ttl_val = dns_scan_word32(p); // ttl uint16_t rdlength = dns_scan_word(p); // rdlength if (i == 0) { // Is interested only on first address that is stored to cache if (ttl_val > INT32_MAX) { ttl_val = INT32_MAX; } *ttl = ttl_val; } if (rtype == RR_A && rclass == CLASS_IN && rdlength == NSAPI_IPv4_BYTES) { // accept A record addr->version = NSAPI_IPv4; for (int i = 0; i < NSAPI_IPv4_BYTES; i++) { addr->bytes[i] = dns_scan_byte(p); } addr += 1; count += 1; } else if (rtype == RR_AAAA && rclass == CLASS_IN && rdlength == NSAPI_IPv6_BYTES) { // accept AAAA record addr->version = NSAPI_IPv6; for (int i = 0; i < NSAPI_IPv6_BYTES; i++) { addr->bytes[i] = dns_scan_byte(p); } addr += 1; count += 1; } else { // skip unrecognized records *p += rdlength; } } return count; } static void nsapi_dns_cache_add(const char *host, nsapi_addr_t *address, uint32_t ttl) { #if (MBED_CONF_NSAPI_DNS_CACHE_SIZE > 0) // RFC 1034: if TTL is zero, entry is not added to cache if (ttl == 0) { return; } // Checks if already cached if (nsapi_dns_cache_find(host, address->version, NULL) == NSAPI_ERROR_OK) { return; } dns_cache_mutex->lock(); int index = -1; uint64_t accessed = UINT64_MAX; // Finds free or last accessed entry for (int i = 0; i < MBED_CONF_NSAPI_DNS_CACHE_SIZE; i++) { if (!dns_cache[i]) { index = i; break; } else if (dns_cache[i]->accessed <= accessed) { accessed = dns_cache[i]->accessed; index = i; } } if (index < 0) { dns_cache_mutex->unlock(); return; } // Allocates in case entry is free, otherwise reuses if (!dns_cache[index]) { dns_cache[index] = new (std::nothrow) DNS_CACHE; } else { delete dns_cache[index]->host; } if (dns_cache[index]) { dns_cache[index]->address = *address; dns_cache[index]->host = new (std::nothrow) char[strlen(host) + 1]; strcpy(dns_cache[index]->host, host); uint64_t ms_count = rtos::Kernel::get_ms_count(); dns_cache[index]->expires = ms_count + (uint64_t) ttl * 1000; dns_cache[index]->accessed = ms_count; } dns_cache_mutex->unlock(); #endif } static nsapi_error_t nsapi_dns_cache_find(const char *host, nsapi_version_t version, nsapi_addr_t *address) { nsapi_error_t ret_val = NSAPI_ERROR_NO_ADDRESS; #if (MBED_CONF_NSAPI_DNS_CACHE_SIZE > 0) dns_cache_mutex->lock(); for (int i = 0; i < MBED_CONF_NSAPI_DNS_CACHE_SIZE; i++) { if (dns_cache[i]) { uint64_t ms_count = rtos::Kernel::get_ms_count(); // Checks all entries for expired entries if (ms_count > dns_cache[i]->expires) { delete dns_cache[i]->host; delete dns_cache[i]; dns_cache[i] = NULL; } else if ((version == NSAPI_UNSPEC || version == dns_cache[i]->address.version) && strcmp(dns_cache[i]->host, host) == 0) { if (address) { *address = dns_cache[i]->address; } dns_cache[i]->accessed = ms_count; ret_val = NSAPI_ERROR_OK; } } } dns_cache_mutex->unlock(); #endif return ret_val; } static nsapi_error_t nsapi_dns_get_server_addr(NetworkStack *stack, uint8_t *index, uint8_t *total_attempts, uint8_t *send_success, SocketAddress *dns_addr) { bool dns_addr_set = false; if (*total_attempts == 0) { return NSAPI_ERROR_NO_ADDRESS; } if (*index >= DNS_SERVERS_SIZE + DNS_STACK_SERVERS_NUM) { // If there are total attempts left and send to has been successful at least once on this round if (*total_attempts && *send_success) { *index = 0; *send_success = 0; } else { return NSAPI_ERROR_NO_ADDRESS; } } if (*index < DNS_STACK_SERVERS_NUM) { nsapi_error_t ret = stack->get_dns_server(*index, dns_addr); if (ret < 0) { *index = DNS_STACK_SERVERS_NUM; } else { dns_addr_set = true; } } if (!dns_addr_set) { dns_addr->set_addr(dns_servers[*index - DNS_STACK_SERVERS_NUM]); } dns_addr->set_port(53); return NSAPI_ERROR_OK; } // core query function static nsapi_size_or_error_t nsapi_dns_query_multiple(NetworkStack *stack, const char *host, nsapi_addr_t *addr, unsigned addr_count, nsapi_version_t version) { // check for valid host name int host_len = host ? strlen(host) : 0; if (host_len > DNS_HOST_NAME_MAX_LEN || host_len == 0) { return NSAPI_ERROR_PARAMETER; } // check cache if (nsapi_dns_cache_find(host, version, addr) == NSAPI_ERROR_OK) { return 1; } // create a udp socket UDPSocket socket; int err = socket.open(stack); if (err) { return err; } socket.set_timeout(MBED_CONF_NSAPI_DNS_RESPONSE_WAIT_TIME); // create network packet uint8_t * const packet = (uint8_t *)malloc(DNS_BUFFER_SIZE); if (!packet) { return NSAPI_ERROR_NO_MEMORY; } nsapi_size_or_error_t result = NSAPI_ERROR_DNS_FAILURE; uint8_t retries = MBED_CONF_NSAPI_DNS_RETRIES; uint8_t index = 0; uint8_t total_attempts = MBED_CONF_NSAPI_DNS_TOTAL_ATTEMPTS; uint8_t send_success = 0; // check against each dns server while (true) { SocketAddress dns_addr; err = nsapi_dns_get_server_addr(stack, &index, &total_attempts, &send_success, &dns_addr); if (err != NSAPI_ERROR_OK) { break; } // send the question int len = dns_append_question(packet, 1, host, version); err = socket.sendto(dns_addr, packet, len); // send may fail for various reasons, including wrong address type - move on if (err < 0) { // goes to next dns server retries = MBED_CONF_NSAPI_DNS_RETRIES; index++; continue; } send_success++; if (total_attempts) { total_attempts--; } // recv the response err = socket.recvfrom(NULL, packet, DNS_BUFFER_SIZE); if (err == NSAPI_ERROR_WOULD_BLOCK) { if (retries) { // retries retries--; } else { // goes to next dns server retries = MBED_CONF_NSAPI_DNS_RETRIES; index++; } continue; } else if (err < 0) { result = err; break; } const uint8_t *response = packet; uint32_t ttl; int resp = dns_scan_response(response, 1, &ttl, addr, addr_count); if (resp > 0) { nsapi_dns_cache_add(host, addr, ttl); result = resp; } else if (resp < 0) { continue; } /* The DNS response is final, no need to check other servers */ break; } // clean up packet free(packet); // clean up udp err = socket.close(); if (err) { return err; } // return result return result; } // convenience functions for other forms of queries extern "C" nsapi_size_or_error_t nsapi_dns_query_multiple(nsapi_stack_t *stack, const char *host, nsapi_addr_t *addr, nsapi_size_t addr_count, nsapi_version_t version) { NetworkStack *nstack = nsapi_create_stack(stack); return nsapi_dns_query_multiple(nstack, host, addr, addr_count, version); } nsapi_size_or_error_t nsapi_dns_query_multiple(NetworkStack *stack, const char *host, SocketAddress *addresses, nsapi_size_t addr_count, nsapi_version_t version) { nsapi_addr_t *addrs = new (std::nothrow) nsapi_addr_t[addr_count]; nsapi_size_or_error_t result = nsapi_dns_query_multiple(stack, host, addrs, addr_count, version); if (result > 0) { for (int i = 0; i < result; i++) { addresses[i].set_addr(addrs[i]); } } delete[] addrs; return result; } extern "C" nsapi_error_t nsapi_dns_query(nsapi_stack_t *stack, const char *host, nsapi_addr_t *addr, nsapi_version_t version) { NetworkStack *nstack = nsapi_create_stack(stack); nsapi_size_or_error_t result = nsapi_dns_query_multiple(nstack, host, addr, 1, version); return (nsapi_error_t)((result > 0) ? 0 : result); } nsapi_error_t nsapi_dns_query(NetworkStack *stack, const char *host, SocketAddress *address, nsapi_version_t version) { nsapi_addr_t addr; nsapi_size_or_error_t result = nsapi_dns_query_multiple(stack, host, &addr, 1, version); address->set_addr(addr); return (nsapi_error_t)((result > 0) ? 0 : result); } nsapi_value_or_error_t nsapi_dns_query_async(NetworkStack *stack, const char *host, NetworkStack::hostbyname_cb_t callback, call_in_callback_cb_t call_in_cb, nsapi_version_t version) { return nsapi_dns_query_multiple_async(stack, host, callback, 0, call_in_cb, version); } void nsapi_dns_call_in_set(call_in_callback_cb_t callback) { *dns_call_in.get() = callback; } nsapi_error_t nsapi_dns_call_in(call_in_callback_cb_t cb, int delay, mbed::Callback func) { if (*dns_call_in.get()) { dns_call_in->call(delay, func); } else { return cb(delay, func); } return NSAPI_ERROR_OK; } nsapi_value_or_error_t nsapi_dns_query_multiple_async(NetworkStack *stack, const char *host, NetworkStack::hostbyname_cb_t callback, nsapi_size_t addr_count, call_in_callback_cb_t call_in_cb, nsapi_version_t version) { dns_mutex->lock(); if (!stack) { return NSAPI_ERROR_PARAMETER; } // check for valid host name int host_len = host ? strlen(host) : 0; if (host_len > DNS_HOST_NAME_MAX_LEN || host_len == 0) { dns_mutex->unlock(); return NSAPI_ERROR_PARAMETER; } nsapi_addr address; if (nsapi_dns_cache_find(host, version, &address) == NSAPI_ERROR_OK) { SocketAddress addr(address); dns_mutex->unlock(); callback(NSAPI_ERROR_OK, &addr); return NSAPI_ERROR_OK; } int index = -1; for (int i = 0; i < DNS_QUERY_QUEUE_SIZE; i++) { if (!dns_query_queue[i]) { index = i; break; } } if (index < 0) { dns_mutex->unlock(); return NSAPI_ERROR_NO_MEMORY; } DNS_QUERY *query = new (std::nothrow) DNS_QUERY; if (!query) { dns_mutex->unlock(); return NSAPI_ERROR_NO_MEMORY; } query->host = new (std::nothrow) char[host_len + 1]; if (!query->host) { delete query; dns_mutex->unlock(); return NSAPI_ERROR_NO_MEMORY; } strcpy(query->host, host); query->status = NSAPI_ERROR_TIMEOUT; query->callback = callback; query->call_in_cb = call_in_cb; query->stack = stack; query->addr_count = addr_count; query->version = version; query->socket = NULL; query->socket_cb_data = NULL; query->addrs = NULL; query->dns_server = 0; query->retries = MBED_CONF_NSAPI_DNS_RETRIES + 1; query->total_attempts = MBED_CONF_NSAPI_DNS_TOTAL_ATTEMPTS; query->send_success = 0; query->dns_message_id = 0; query->socket_timeout = 0; query->total_timeout = MBED_CONF_NSAPI_DNS_TOTAL_ATTEMPTS * MBED_CONF_NSAPI_DNS_RESPONSE_WAIT_TIME + 500; query->count = 0; query->state = DNS_CREATED; query->unique_id = dns_unique_id++; if (query->unique_id > 0x7FFF) { query->unique_id = 1; } int ongoing_queries = 0; for (int i = 0; i < DNS_QUERY_QUEUE_SIZE; i++) { if (dns_query_queue[i]) { if (!query->socket && dns_query_queue[i]->socket && dns_query_queue[i]->stack == query->stack) { query->socket = dns_query_queue[i]->socket; query->socket_cb_data = dns_query_queue[i]->socket_cb_data; } ongoing_queries++; } } dns_query_queue[index] = query; // Add some overhead based on number of ongoing queries query->total_timeout += ongoing_queries * 500; if (!dns_timer_running) { if (nsapi_dns_call_in(query->call_in_cb, DNS_TIMER_TIMEOUT, mbed::callback(nsapi_dns_query_async_timeout)) != NSAPI_ERROR_OK) { delete query->host; delete query; dns_mutex->unlock(); return NSAPI_ERROR_NO_MEMORY; } dns_timer_running = true; } // Initiates query nsapi_dns_query_async_initiate_next(); dns_mutex->unlock(); return query->unique_id; } static void nsapi_dns_query_async_initiate_next(void) { int id = INT32_MAX; DNS_QUERY *query = NULL; // Trigger next query to start, find one that has been on queue longest for (int i = 0; i < DNS_QUERY_QUEUE_SIZE; i++) { if (dns_query_queue[i]) { if (dns_query_queue[i]->state == DNS_CREATED) { if (dns_query_queue[i]->unique_id <= id) { query = dns_query_queue[i]; id = dns_query_queue[i]->unique_id; } // If some query is already ongoing do not trigger } else if (dns_query_queue[i]->state == DNS_INITIATED) { query = NULL; break; } } } if (query) { query->state = DNS_INITIATED; nsapi_dns_call_in(query->call_in_cb, 0, mbed::callback(nsapi_dns_query_async_create, reinterpret_cast(query->unique_id))); } } static void nsapi_dns_query_async_timeout(void) { dns_mutex->lock(); DNS_QUERY *query = NULL; for (int i = 0; i < DNS_QUERY_QUEUE_SIZE; i++) { if (dns_query_queue[i]) { if (dns_query_queue[i]->state == DNS_CANCELLED) { // Delete cancelled nsapi_dns_query_async_delete(dns_query_queue[i]->unique_id); nsapi_dns_query_async_initiate_next(); continue; } if (dns_query_queue[i]->total_timeout > DNS_TIMER_TIMEOUT) { dns_query_queue[i]->total_timeout -= DNS_TIMER_TIMEOUT; } else { // If does not already have response, fails if (dns_query_queue[i]->status == NSAPI_ERROR_TIMEOUT) { dns_query_queue[i]->socket_timeout = 0; nsapi_dns_call_in(dns_query_queue[i]->call_in_cb, 0, mbed::callback(nsapi_dns_query_async_response, reinterpret_cast(dns_query_queue[i]->unique_id))); } } if (dns_query_queue[i]->socket_timeout > 0) { if (dns_query_queue[i]->socket_timeout > DNS_TIMER_TIMEOUT) { dns_query_queue[i]->socket_timeout -= DNS_TIMER_TIMEOUT; } else { // Retries dns_query_queue[i]->socket_timeout = 0; nsapi_dns_call_in(dns_query_queue[i]->call_in_cb, 0, mbed::callback(nsapi_dns_query_async_send, reinterpret_cast(dns_query_queue[i]->unique_id))); } } if (!query) { query = dns_query_queue[i]; } } } // Starts timer again if (query) { nsapi_dns_call_in(query->call_in_cb, DNS_TIMER_TIMEOUT, mbed::callback(nsapi_dns_query_async_timeout)); } else { dns_timer_running = false; } dns_mutex->unlock(); } nsapi_error_t nsapi_dns_query_async_cancel(int id) { dns_mutex->lock(); DNS_QUERY *query = NULL; for (int i = 0; i < DNS_QUERY_QUEUE_SIZE; i++) { if (dns_query_queue[i] && dns_query_queue[i]->unique_id == id) { query = dns_query_queue[i]; break; } } if (!query || query->state == DNS_CANCELLED) { dns_mutex->unlock(); return NSAPI_ERROR_PARAMETER; } // Mark the query as cancelled, deleted by timer handler query->state = DNS_CANCELLED; // Do not call callback query->callback = 0; dns_mutex->unlock(); return NSAPI_ERROR_OK; } static void nsapi_dns_query_async_create(void *ptr) { dns_mutex->lock(); int unique_id = reinterpret_cast(ptr); DNS_QUERY *query = NULL; for (int i = 0; i < DNS_QUERY_QUEUE_SIZE; i++) { if (dns_query_queue[i] && dns_query_queue[i]->unique_id == unique_id) { query = dns_query_queue[i]; break; } } if (!query || query->state == DNS_CANCELLED) { // Cancel has been called dns_mutex->unlock(); return; } for (int i = 0; i < DNS_QUERY_QUEUE_SIZE; i++) { if (dns_query_queue[i] && dns_query_queue[i] != query) { if (!query->socket && dns_query_queue[i]->socket && dns_query_queue[i]->stack == query->stack) { query->socket = dns_query_queue[i]->socket; query->socket_cb_data = dns_query_queue[i]->socket_cb_data; } } } UDPSocket *socket; if (query->socket) { socket = query->socket; } else { socket = new (std::nothrow) UDPSocket; if (!socket) { nsapi_dns_query_async_resp(query, NSAPI_ERROR_NO_MEMORY, NULL); return; } int err = socket->open(query->stack); if (err) { delete socket; nsapi_dns_query_async_resp(query, err, NULL); return; } socket->set_timeout(0); if (!query->socket_cb_data) { query->socket_cb_data = new SOCKET_CB_DATA; } query->socket_cb_data->call_in_cb = query->call_in_cb; query->socket_cb_data->stack = query->stack; socket->sigio(mbed::callback(nsapi_dns_query_async_socket_callback, query->socket_cb_data)); query->socket = socket; } dns_mutex->unlock(); nsapi_dns_query_async_send(reinterpret_cast(query->unique_id)); } static nsapi_error_t nsapi_dns_query_async_delete(int unique_id) { int index = -1; DNS_QUERY *query = NULL; for (int i = 0; i < DNS_QUERY_QUEUE_SIZE; i++) { if (dns_query_queue[i] && dns_query_queue[i]->unique_id == unique_id) { query = dns_query_queue[i]; index = i; break; } } if (!query) { return NSAPI_ERROR_PARAMETER; } bool close_socket = true; for (int i = 0; i < DNS_QUERY_QUEUE_SIZE; i++) { if (dns_query_queue[i] && dns_query_queue[i] != query && dns_query_queue[i]->socket && dns_query_queue[i]->stack == query->stack) { close_socket = false; } } if (close_socket && query->socket) { query->socket->close(); delete query->socket; delete query->socket_cb_data; } if (query->addrs) { delete[] query->addrs; } delete query->host; delete query; dns_query_queue[index] = NULL; return NSAPI_ERROR_OK; } static void nsapi_dns_query_async_resp(DNS_QUERY *query, nsapi_error_t status, SocketAddress *address) { NetworkStack::hostbyname_cb_t callback = query->callback; nsapi_dns_query_async_delete(query->unique_id); nsapi_dns_query_async_initiate_next(); dns_mutex->unlock(); if (callback) { callback(status, address); } } static void nsapi_dns_query_async_send(void *ptr) { dns_mutex->lock(); int unique_id = reinterpret_cast(ptr); DNS_QUERY *query = NULL; for (int i = 0; i < DNS_QUERY_QUEUE_SIZE; i++) { if (dns_query_queue[i] && dns_query_queue[i]->unique_id == unique_id) { query = dns_query_queue[i]; break; } } if (!query || query->state != DNS_INITIATED) { // Cancel has been called dns_mutex->unlock(); return; } if (query->retries) { query->retries--; } else { query->dns_server++; query->retries = MBED_CONF_NSAPI_DNS_RETRIES; } query->dns_message_id = dns_message_id++; if (dns_message_id == 0) { dns_message_id = 1; } // create network packet uint8_t *packet = (uint8_t *)malloc(DNS_BUFFER_SIZE); if (!packet) { nsapi_dns_query_async_resp(query, NSAPI_ERROR_NO_MEMORY, NULL); return; } // send the question int len = dns_append_question(packet, query->dns_message_id, query->host, query->version); while (true) { SocketAddress dns_addr; nsapi_size_or_error_t err = nsapi_dns_get_server_addr(query->stack, &(query->dns_server), &(query->total_attempts), &(query->send_success), &dns_addr); if (err != NSAPI_ERROR_OK) { nsapi_dns_query_async_resp(query, NSAPI_ERROR_TIMEOUT, NULL); free(packet); return; } err = query->socket->sendto(dns_addr, packet, len); if (err < 0) { query->dns_server++; } else { break; } } query->send_success++; if (query->total_attempts) { query->total_attempts--; } free(packet); query->socket_timeout = MBED_CONF_NSAPI_DNS_RESPONSE_WAIT_TIME; dns_mutex->unlock(); } static void nsapi_dns_query_async_socket_callback(void *ptr) { SOCKET_CB_DATA *cb_data = static_cast(ptr); if (cb_data) { nsapi_dns_call_in(cb_data->call_in_cb, 0, mbed::callback(nsapi_dns_query_async_socket_callback_handle, cb_data->stack)); } } static void nsapi_dns_query_async_socket_callback_handle(NetworkStack *stack) { UDPSocket *socket = NULL; dns_mutex->lock(); for (int i = 0; i < DNS_QUERY_QUEUE_SIZE; i++) { if (dns_query_queue[i] && dns_query_queue[i]->stack == stack) { socket = dns_query_queue[i]->socket; break; } } if (socket) { // create network packet uint8_t *packet = (uint8_t *)malloc(DNS_BUFFER_SIZE); if (!packet) { dns_mutex->unlock(); return; } while (true) { // recv the response nsapi_size_or_error_t size = socket->recvfrom(NULL, packet, DNS_BUFFER_SIZE); if (size < DNS_RESPONSE_MIN_SIZE) { break; } // gets id from response to associate with correct query uint16_t id = (packet[0] << 8) | packet[1]; DNS_QUERY *query = NULL; for (int i = 0; i < DNS_QUERY_QUEUE_SIZE; i++) { if (dns_query_queue[i] && dns_query_queue[i]->dns_message_id == id) { query = dns_query_queue[i]; break; } } if (!query || query->state != DNS_INITIATED) { continue; } int requested_count = 1; if (query->addr_count > 1) { requested_count = query->addr_count; } query->addrs = new (std::nothrow) nsapi_addr_t[requested_count]; int resp = dns_scan_response(packet, id, &(query->ttl), query->addrs, requested_count); // Ignore invalid responses if (resp < 0) { delete[] query->addrs; query->addrs = 0; } else { query->count = resp; query->status = NSAPI_ERROR_DNS_FAILURE; // Used in case failure, otherwise ok query->socket_timeout = 0; nsapi_dns_call_in(query->call_in_cb, 0, mbed::callback(nsapi_dns_query_async_response, reinterpret_cast(query->unique_id))); } } free(packet); } dns_mutex->unlock(); } static void nsapi_dns_query_async_response(void *ptr) { dns_mutex->lock(); int unique_id = reinterpret_cast(ptr); DNS_QUERY *query = NULL; for (int i = 0; i < DNS_QUERY_QUEUE_SIZE; i++) { if (dns_query_queue[i] && dns_query_queue[i]->unique_id == unique_id) { query = dns_query_queue[i]; break; } } if (query && query->state == DNS_INITIATED) { SocketAddress *addresses = NULL; nsapi_error_t status = query->status; if (query->count > 0) { addresses = new (std::nothrow) SocketAddress[query->count]; for (int i = 0; i < query->count; i++) { addresses[i].set_addr(query->addrs[i]); } // Adds address to cache nsapi_dns_cache_add(query->host, &(query->addrs[0]), query->ttl); status = NSAPI_ERROR_OK; if (query->addr_count > 0) { status = query->count; } } nsapi_dns_query_async_resp(query, status, addresses); delete[] addresses; } else { dns_mutex->unlock(); } }