/* ESP8266 implementation of NetworkInterfaceAPI * Copyright (c) 2015 ARM Limited * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #if DEVICE_SERIAL && defined(MBED_CONF_EVENTS_PRESENT) && defined(MBED_CONF_NSAPI_PRESENT) && defined(MBED_CONF_RTOS_PRESENT) #include #include #include "ESP8266.h" #include "ESP8266Interface.h" #include "events/EventQueue.h" #include "events/mbed_shared_queues.h" #include "features/netsocket/nsapi_types.h" #include "mbed_trace.h" #include "platform/Callback.h" #include "platform/mbed_critical.h" #include "platform/mbed_debug.h" #include "platform/mbed_wait_api.h" #ifndef MBED_CONF_ESP8266_DEBUG #define MBED_CONF_ESP8266_DEBUG false #endif #ifndef MBED_CONF_ESP8266_RTS #define MBED_CONF_ESP8266_RTS NC #endif #ifndef MBED_CONF_ESP8266_CTS #define MBED_CONF_ESP8266_CTS NC #endif #ifndef MBED_CONF_ESP8266_RST #define MBED_CONF_ESP8266_RST NC #endif #define TRACE_GROUP "ESPI" // ESP8266 Interface using namespace mbed; #if defined MBED_CONF_ESP8266_TX && defined MBED_CONF_ESP8266_RX ESP8266Interface::ESP8266Interface() : _esp(MBED_CONF_ESP8266_TX, MBED_CONF_ESP8266_RX, MBED_CONF_ESP8266_DEBUG, MBED_CONF_ESP8266_RTS, MBED_CONF_ESP8266_CTS), _rst_pin(MBED_CONF_ESP8266_RST), // Notice that Pin7 CH_EN cannot be left floating if used as reset _ap_sec(NSAPI_SECURITY_UNKNOWN), _if_blocking(true), _if_connected(_cmutex), _initialized(false), _connect_retval(NSAPI_ERROR_OK), _conn_stat(NSAPI_STATUS_DISCONNECTED), _conn_stat_cb(NULL), _global_event_queue(NULL), _oob_event_id(0), _connect_event_id(0) { memset(_cbs, 0, sizeof(_cbs)); memset(ap_ssid, 0, sizeof(ap_ssid)); memset(ap_pass, 0, sizeof(ap_pass)); _esp.sigio(this, &ESP8266Interface::event); _esp.set_timeout(); _esp.attach(this, &ESP8266Interface::refresh_conn_state_cb); for (int i = 0; i < ESP8266_SOCKET_COUNT; i++) { _sock_i[i].open = false; _sock_i[i].sport = 0; } _oob2global_event_queue(); } #endif // ESP8266Interface implementation ESP8266Interface::ESP8266Interface(PinName tx, PinName rx, bool debug, PinName rts, PinName cts, PinName rst) : _esp(tx, rx, debug, rts, cts), _rst_pin(rst), _ap_sec(NSAPI_SECURITY_UNKNOWN), _if_blocking(true), _if_connected(_cmutex), _initialized(false), _conn_stat(NSAPI_STATUS_DISCONNECTED), _conn_stat_cb(NULL), _global_event_queue(NULL), _oob_event_id(0), _connect_event_id(0) { memset(_cbs, 0, sizeof(_cbs)); memset(ap_ssid, 0, sizeof(ap_ssid)); memset(ap_pass, 0, sizeof(ap_pass)); _esp.sigio(this, &ESP8266Interface::event); _esp.set_timeout(); _esp.attach(this, &ESP8266Interface::refresh_conn_state_cb); for (int i = 0; i < ESP8266_SOCKET_COUNT; i++) { _sock_i[i].open = false; _sock_i[i].sport = 0; } _oob2global_event_queue(); } ESP8266Interface::~ESP8266Interface() { if (_oob_event_id) { _global_event_queue->cancel(_oob_event_id); } _cmutex.lock(); if (_connect_event_id) { _global_event_queue->cancel(_connect_event_id); } _cmutex.unlock(); // Power down the modem _rst_pin.rst_assert(); } ESP8266Interface::ResetPin::ResetPin(PinName rst_pin) : _rst_pin(mbed::DigitalOut(rst_pin, 1)) { } void ESP8266Interface::ResetPin::rst_assert() { if (_rst_pin.is_connected()) { _rst_pin = 0; tr_debug("HW reset asserted"); } } void ESP8266Interface::ResetPin::rst_deassert() { if (_rst_pin.is_connected()) { // Notice that Pin7 CH_EN cannot be left floating if used as reset _rst_pin = 1; tr_debug("HW reset deasserted"); } } bool ESP8266Interface::ResetPin::is_connected() { return _rst_pin.is_connected(); } int ESP8266Interface::connect(const char *ssid, const char *pass, nsapi_security_t security, uint8_t channel) { if (channel != 0) { return NSAPI_ERROR_UNSUPPORTED; } int err = set_credentials(ssid, pass, security); if (err) { return err; } return connect(); } void ESP8266Interface::_oob2global_event_queue() { _global_event_queue = mbed_event_queue(); _oob_event_id = _global_event_queue->call_every(ESP8266_RECV_TIMEOUT, callback(this, &ESP8266Interface::proc_oob_evnt)); if (!_oob_event_id) { MBED_ERROR(MBED_MAKE_ERROR(MBED_MODULE_DRIVER, MBED_ERROR_CODE_ENOMEM), \ "ESP8266::_oob2geq: unable to allocate OOB event"); } } void ESP8266Interface::_connect_async() { _cmutex.lock(); if (!_connect_event_id) { tr_debug("_connect_async(): cancelled"); _cmutex.unlock(); return; } _connect_retval = _esp.connect(ap_ssid, ap_pass); if (_connect_retval == NSAPI_ERROR_OK || _connect_retval == NSAPI_ERROR_AUTH_FAILURE || _connect_retval == NSAPI_ERROR_NO_SSID) { _connect_event_id = 0; _if_connected.notify_all(); } else { // Postpone to give other stuff time to run _connect_event_id = _global_event_queue->call_in(ESP8266_CONNECT_TIMEOUT, callback(this, &ESP8266Interface::_connect_async)); if (!_connect_event_id) { MBED_ERROR(MBED_MAKE_ERROR(MBED_MODULE_DRIVER, MBED_ERROR_CODE_ENOMEM), \ "_connect_async(): unable to add event to queue"); } } _cmutex.unlock(); } int ESP8266Interface::connect() { nsapi_error_t status = _conn_status_to_error(); if (status != NSAPI_ERROR_NO_CONNECTION) { return status; } if (strlen(ap_ssid) == 0) { return NSAPI_ERROR_NO_SSID; } if (_ap_sec != NSAPI_SECURITY_NONE) { if (strlen(ap_pass) < ESP8266_PASSPHRASE_MIN_LENGTH) { return NSAPI_ERROR_PARAMETER; } } status = _init(); if (status != NSAPI_ERROR_OK) { return status; } if (get_ip_address()) { return NSAPI_ERROR_IS_CONNECTED; } if (!_esp.dhcp(true, 1)) { return NSAPI_ERROR_DHCP_FAILURE; } _cmutex.lock(); _connect_retval = NSAPI_ERROR_NO_CONNECTION; MBED_ASSERT(!_connect_event_id); _connect_event_id = _global_event_queue->call(callback(this, &ESP8266Interface::_connect_async)); if (!_connect_event_id) { MBED_ERROR(MBED_MAKE_ERROR(MBED_MODULE_DRIVER, MBED_ERROR_CODE_ENOMEM), \ "connect(): unable to add event to queue"); } while (_if_blocking && (_conn_status_to_error() != NSAPI_ERROR_IS_CONNECTED) && (_connect_retval == NSAPI_ERROR_NO_CONNECTION)) { _if_connected.wait(); } _cmutex.unlock(); return _connect_retval; } int ESP8266Interface::set_credentials(const char *ssid, const char *pass, nsapi_security_t security) { nsapi_error_t status = _conn_status_to_error(); if (status != NSAPI_ERROR_NO_CONNECTION) { return status; } _ap_sec = security; if (!ssid) { return NSAPI_ERROR_PARAMETER; } int ssid_length = strlen(ssid); if (ssid_length > 0 && ssid_length <= ESP8266_SSID_MAX_LENGTH) { memset(ap_ssid, 0, sizeof(ap_ssid)); strncpy(ap_ssid, ssid, sizeof(ap_ssid)); } else { return NSAPI_ERROR_PARAMETER; } if (_ap_sec != NSAPI_SECURITY_NONE) { if (!pass) { return NSAPI_ERROR_PARAMETER; } int pass_length = strlen(pass); if (pass_length >= ESP8266_PASSPHRASE_MIN_LENGTH && pass_length <= ESP8266_PASSPHRASE_MAX_LENGTH) { memset(ap_pass, 0, sizeof(ap_pass)); strncpy(ap_pass, pass, sizeof(ap_pass)); } else { return NSAPI_ERROR_PARAMETER; } } else { memset(ap_pass, 0, sizeof(ap_pass)); } return NSAPI_ERROR_OK; } int ESP8266Interface::set_channel(uint8_t channel) { return NSAPI_ERROR_UNSUPPORTED; } int ESP8266Interface::disconnect() { _cmutex.lock(); if (_connect_event_id) { _global_event_queue->cancel(_connect_event_id); _connect_event_id = 0; // cancel asynchronous connection attempt if one is ongoing } _cmutex.unlock(); _initialized = false; nsapi_error_t status = _conn_status_to_error(); if (status == NSAPI_ERROR_NO_CONNECTION || !get_ip_address()) { return NSAPI_ERROR_NO_CONNECTION; } int ret = _esp.disconnect() ? NSAPI_ERROR_OK : NSAPI_ERROR_DEVICE_ERROR; if (ret == NSAPI_ERROR_OK) { // Try to lure the nw status update from ESP8266, might come later _esp.bg_process_oob(ESP8266_RECV_TIMEOUT, true); // In case the status update arrives later inform upper layers manually if (_conn_stat != NSAPI_STATUS_DISCONNECTED) { _conn_stat = NSAPI_STATUS_DISCONNECTED; if (_conn_stat_cb) { _conn_stat_cb(NSAPI_EVENT_CONNECTION_STATUS_CHANGE, _conn_stat); } } } // Power down the modem _rst_pin.rst_assert(); return ret; } const char *ESP8266Interface::get_ip_address() { const char *ip_buff = _esp.ip_addr(); if (!ip_buff || strcmp(ip_buff, "0.0.0.0") == 0) { return NULL; } return ip_buff; } const char *ESP8266Interface::get_mac_address() { return _esp.mac_addr(); } const char *ESP8266Interface::get_gateway() { return _conn_stat != NSAPI_STATUS_DISCONNECTED ? _esp.gateway() : NULL; } const char *ESP8266Interface::get_netmask() { return _conn_stat != NSAPI_STATUS_DISCONNECTED ? _esp.netmask() : NULL; } int8_t ESP8266Interface::get_rssi() { return _esp.rssi(); } int ESP8266Interface::scan(WiFiAccessPoint *res, unsigned count) { nsapi_error_t status; status = _init(); if (status != NSAPI_ERROR_OK) { return status; } return _esp.scan(res, count); } bool ESP8266Interface::_get_firmware_ok() { ESP8266::fw_at_version at_v = _esp.at_version(); if (at_v.major < ESP8266_AT_VERSION_MAJOR) { debug("ESP8266: ERROR: AT Firmware v%d incompatible with this driver.", at_v.major); debug("Update at least to v%d - https://developer.mbed.org/teams/ESP8266/wiki/Firmware-Update\n", ESP8266_AT_VERSION_MAJOR); MBED_ERROR(MBED_MAKE_ERROR(MBED_MODULE_DRIVER, MBED_ERROR_UNSUPPORTED), "Too old AT firmware"); } ESP8266::fw_sdk_version sdk_v = _esp.sdk_version(); if (sdk_v.major < ESP8266_SDK_VERSION_MAJOR) { debug("ESP8266: ERROR: Firmware v%d incompatible with this driver.", sdk_v.major); debug("Update at least to v%d - https://developer.mbed.org/teams/ESP8266/wiki/Firmware-Update\n", ESP8266_SDK_VERSION_MAJOR); MBED_ERROR(MBED_MAKE_ERROR(MBED_MODULE_DRIVER, MBED_ERROR_UNSUPPORTED), "Too old SDK firmware"); } return true; } nsapi_error_t ESP8266Interface::_init(void) { if (!_initialized) { _hw_reset(); if (!_esp.at_available()) { return NSAPI_ERROR_DEVICE_ERROR; } if (!_esp.reset()) { return NSAPI_ERROR_DEVICE_ERROR; } if (!_esp.echo_off()) { return NSAPI_ERROR_DEVICE_ERROR; } if (!_esp.start_uart_hw_flow_ctrl()) { return NSAPI_ERROR_DEVICE_ERROR; } if (!_get_firmware_ok()) { return NSAPI_ERROR_DEVICE_ERROR; } if (!_esp.set_default_wifi_mode(ESP8266::WIFIMODE_STATION)) { return NSAPI_ERROR_DEVICE_ERROR; } if (!_esp.cond_enable_tcp_passive_mode()) { return NSAPI_ERROR_DEVICE_ERROR; } if (!_esp.startup(ESP8266::WIFIMODE_STATION)) { return NSAPI_ERROR_DEVICE_ERROR; } _initialized = true; } return NSAPI_ERROR_OK; } void ESP8266Interface::_hw_reset() { if (_rst_pin.is_connected()) { _rst_pin.rst_assert(); // If you happen to use Pin7 CH_EN as reset pin, not needed otherwise // https://www.espressif.com/sites/default/files/documentation/esp8266_hardware_design_guidelines_en.pdf wait_ms(2); // Documentation says 200 us should have been enough, but experimentation shows that 1ms was not enough _esp.flush(); _rst_pin.rst_deassert(); } } struct esp8266_socket { int id; nsapi_protocol_t proto; bool connected; SocketAddress addr; int keepalive; // TCP }; int ESP8266Interface::socket_open(void **handle, nsapi_protocol_t proto) { // Look for an unused socket int id = -1; for (int i = 0; i < ESP8266_SOCKET_COUNT; i++) { if (!_sock_i[i].open) { id = i; _sock_i[i].open = true; break; } } if (id == -1) { return NSAPI_ERROR_NO_SOCKET; } struct esp8266_socket *socket = new struct esp8266_socket; if (!socket) { return NSAPI_ERROR_NO_SOCKET; } socket->id = id; socket->proto = proto; socket->connected = false; socket->keepalive = 0; *handle = socket; return 0; } int ESP8266Interface::socket_close(void *handle) { struct esp8266_socket *socket = (struct esp8266_socket *)handle; int err = 0; if (!socket) { return NSAPI_ERROR_NO_SOCKET; } if (socket->connected && !_esp.close(socket->id)) { err = NSAPI_ERROR_DEVICE_ERROR; } _cbs[socket->id].callback = NULL; _cbs[socket->id].data = NULL; core_util_atomic_store_u8(&_cbs[socket->id].deferred, false); socket->connected = false; _sock_i[socket->id].open = false; _sock_i[socket->id].sport = 0; delete socket; return err; } int ESP8266Interface::socket_bind(void *handle, const SocketAddress &address) { struct esp8266_socket *socket = (struct esp8266_socket *)handle; if (!socket) { return NSAPI_ERROR_NO_SOCKET; } if (socket->proto == NSAPI_UDP) { if (address.get_addr().version != NSAPI_UNSPEC) { return NSAPI_ERROR_UNSUPPORTED; } for (int id = 0; id < ESP8266_SOCKET_COUNT; id++) { if (_sock_i[id].sport == address.get_port() && id != socket->id) { // Port already reserved by another socket return NSAPI_ERROR_PARAMETER; } else if (id == socket->id && socket->connected) { return NSAPI_ERROR_PARAMETER; } } _sock_i[socket->id].sport = address.get_port(); return 0; } return NSAPI_ERROR_UNSUPPORTED; } int ESP8266Interface::socket_listen(void *handle, int backlog) { return NSAPI_ERROR_UNSUPPORTED; } int ESP8266Interface::socket_connect(void *handle, const SocketAddress &addr) { struct esp8266_socket *socket = (struct esp8266_socket *)handle; nsapi_error_t ret; if (!socket) { return NSAPI_ERROR_NO_SOCKET; } if (socket->proto == NSAPI_UDP) { ret = _esp.open_udp(socket->id, addr.get_ip_address(), addr.get_port(), _sock_i[socket->id].sport); } else { ret = _esp.open_tcp(socket->id, addr.get_ip_address(), addr.get_port(), socket->keepalive); } socket->connected = (ret == NSAPI_ERROR_OK) ? true : false; return ret; } int ESP8266Interface::socket_accept(void *server, void **socket, SocketAddress *addr) { return NSAPI_ERROR_UNSUPPORTED; } int ESP8266Interface::socket_send(void *handle, const void *data, unsigned size) { nsapi_error_t status; struct esp8266_socket *socket = (struct esp8266_socket *)handle; uint8_t expect_false = false; if (!socket) { return NSAPI_ERROR_NO_SOCKET; } if (!_sock_i[socket->id].open) { return NSAPI_ERROR_CONNECTION_LOST; } if (!size) { // Firmware limitation return socket->proto == NSAPI_TCP ? 0 : NSAPI_ERROR_UNSUPPORTED; } status = _esp.send(socket->id, data, size); if (status == NSAPI_ERROR_WOULD_BLOCK && socket->proto == NSAPI_TCP && core_util_atomic_cas_u8(&_cbs[socket->id].deferred, &expect_false, true)) { tr_debug("Postponing SIGIO from the device"); _global_event_queue->call_in(50, callback(this, &ESP8266Interface::event_deferred)); } else if (status == NSAPI_ERROR_WOULD_BLOCK && socket->proto == NSAPI_UDP) { status = NSAPI_ERROR_DEVICE_ERROR; } return status != NSAPI_ERROR_OK ? status : size; } int ESP8266Interface::socket_recv(void *handle, void *data, unsigned size) { struct esp8266_socket *socket = (struct esp8266_socket *)handle; if (!socket) { return NSAPI_ERROR_NO_SOCKET; } if (!_sock_i[socket->id].open) { return NSAPI_ERROR_CONNECTION_LOST; } int32_t recv; if (socket->proto == NSAPI_TCP) { recv = _esp.recv_tcp(socket->id, data, size); if (recv <= 0 && recv != NSAPI_ERROR_WOULD_BLOCK) { socket->connected = false; } } else { recv = _esp.recv_udp(socket->id, data, size); } return recv; } int ESP8266Interface::socket_sendto(void *handle, const SocketAddress &addr, const void *data, unsigned size) { struct esp8266_socket *socket = (struct esp8266_socket *)handle; if (!socket) { return NSAPI_ERROR_NO_SOCKET; } if ((strcmp(addr.get_ip_address(), "0.0.0.0") == 0) || !addr.get_port()) { return NSAPI_ERROR_DNS_FAILURE; } if (socket->connected && socket->addr != addr) { if (!_esp.close(socket->id)) { return NSAPI_ERROR_DEVICE_ERROR; } socket->connected = false; } if (!socket->connected) { int err = socket_connect(socket, addr); if (err < 0) { return err; } socket->addr = addr; } return socket_send(socket, data, size); } int ESP8266Interface::socket_recvfrom(void *handle, SocketAddress *addr, void *data, unsigned size) { struct esp8266_socket *socket = (struct esp8266_socket *)handle; if (!socket) { return NSAPI_ERROR_NO_SOCKET; } int ret = socket_recv(socket, data, size); if (ret >= 0 && addr) { *addr = socket->addr; } return ret; } void ESP8266Interface::socket_attach(void *handle, void (*callback)(void *), void *data) { struct esp8266_socket *socket = (struct esp8266_socket *)handle; _cbs[socket->id].callback = callback; _cbs[socket->id].data = data; } nsapi_error_t ESP8266Interface::setsockopt(nsapi_socket_t handle, int level, int optname, const void *optval, unsigned optlen) { struct esp8266_socket *socket = (struct esp8266_socket *)handle; if (!optlen) { return NSAPI_ERROR_PARAMETER; } else if (!socket) { return NSAPI_ERROR_NO_SOCKET; } if (level == NSAPI_SOCKET && socket->proto == NSAPI_TCP) { switch (optname) { case NSAPI_KEEPALIVE: { if (socket->connected) { // ESP8266 limitation, keepalive needs to be given before connecting return NSAPI_ERROR_UNSUPPORTED; } if (optlen == sizeof(int)) { int secs = *(int *)optval; if (secs >= 0 && secs <= 7200) { socket->keepalive = secs; return NSAPI_ERROR_OK; } } return NSAPI_ERROR_PARAMETER; } } } return NSAPI_ERROR_UNSUPPORTED; } nsapi_error_t ESP8266Interface::getsockopt(nsapi_socket_t handle, int level, int optname, void *optval, unsigned *optlen) { struct esp8266_socket *socket = (struct esp8266_socket *)handle; if (!optval || !optlen) { return NSAPI_ERROR_PARAMETER; } else if (!socket) { return NSAPI_ERROR_NO_SOCKET; } if (level == NSAPI_SOCKET && socket->proto == NSAPI_TCP) { switch (optname) { case NSAPI_KEEPALIVE: { if (*optlen > sizeof(int)) { *optlen = sizeof(int); } memcpy(optval, &(socket->keepalive), *optlen); return NSAPI_ERROR_OK; } } } return NSAPI_ERROR_UNSUPPORTED; } void ESP8266Interface::event() { for (int i = 0; i < ESP8266_SOCKET_COUNT; i++) { if (_cbs[i].callback) { _cbs[i].callback(_cbs[i].data); } } } void ESP8266Interface::event_deferred() { for (int i = 0; i < ESP8266_SOCKET_COUNT; i++) { uint8_t expect_true = true; if (core_util_atomic_cas_u8(&_cbs[i].deferred, &expect_true, false) && _cbs[i].callback) { _cbs[i].callback(_cbs[i].data); } } } void ESP8266Interface::attach(Callback status_cb) { _conn_stat_cb = status_cb; } nsapi_connection_status_t ESP8266Interface::get_connection_status() const { return _conn_stat; } #if MBED_CONF_ESP8266_PROVIDE_DEFAULT WiFiInterface *WiFiInterface::get_default_instance() { static ESP8266Interface esp; return &esp; } #endif void ESP8266Interface::refresh_conn_state_cb() { nsapi_connection_status_t prev_stat = _conn_stat; _conn_stat = _esp.connection_status(); switch (_conn_stat) { // Doesn't require changes case NSAPI_STATUS_CONNECTING: case NSAPI_STATUS_GLOBAL_UP: break; // Start from scratch if connection drops/is dropped case NSAPI_STATUS_DISCONNECTED: break; // Handled on AT layer case NSAPI_STATUS_LOCAL_UP: case NSAPI_STATUS_ERROR_UNSUPPORTED: default: _initialized = false; _conn_stat = NSAPI_STATUS_DISCONNECTED; for (int i = 0; i < ESP8266_SOCKET_COUNT; i++) { _sock_i[i].open = false; _sock_i[i].sport = 0; } } if (prev_stat == _conn_stat) { return; } tr_debug("refresh_conn_state_cb(): changed to %d", _conn_stat); // Inform upper layers if (_conn_stat_cb) { _conn_stat_cb(NSAPI_EVENT_CONNECTION_STATUS_CHANGE, _conn_stat); } } void ESP8266Interface::proc_oob_evnt() { _esp.bg_process_oob(ESP8266_RECV_TIMEOUT, true); } nsapi_error_t ESP8266Interface::_conn_status_to_error() { nsapi_error_t ret; _esp.bg_process_oob(ESP8266_RECV_TIMEOUT, true); switch (_conn_stat) { case NSAPI_STATUS_DISCONNECTED: ret = NSAPI_ERROR_NO_CONNECTION; break; case NSAPI_STATUS_CONNECTING: ret = NSAPI_ERROR_ALREADY; break; case NSAPI_STATUS_GLOBAL_UP: ret = NSAPI_ERROR_IS_CONNECTED; break; default: ret = NSAPI_ERROR_DEVICE_ERROR; } return ret; } nsapi_error_t ESP8266Interface::set_blocking(bool blocking) { _if_blocking = blocking; return NSAPI_ERROR_OK; } #endif