/* mbed Microcontroller Library * Copyright (c) 2006-2018 ARM Limited * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ // math.h required for floating point operations for baud rate calculation #include "mbed_assert.h" #include #include #include #include "serial_api.h" #include "cmsis.h" #include "pinmap.h" #include "gpio_api.h" /****************************************************************************** * INITIALIZATION ******************************************************************************/ #define UART_NUM 2 #define UART_CLKGATE_REG (RDA_SCU->CLKGATE0) #define UART1_CLKEN_MASK (0x01UL << 21) #define RXFIFO_EMPTY_MASK (0x01UL << 0) #define TXFIFO_FULL_MASK (0x01UL << 19) #define AFCE_MASK (0x01UL << 5) static const PinMap PinMap_UART_TX[] = { {PA_1, UART_0, 0}, {PB_2, UART_1, 5}, {PD_3, UART_1, 2}, {NC , NC , 0} }; static const PinMap PinMap_UART_RX[] = { {PA_0, UART_0, 0}, {PB_1, UART_1, 5}, {PD_2, UART_1, 2}, {NC , NC , 0} }; static const PinMap PinMap_UART_RTS[] = { {PD_1, UART_1, 2}, {NC, NC, 0} }; static const PinMap PinMap_UART_CTS[] = { {PD_0, UART_1, 2}, {NC, NC, 0} }; static uart_irq_handler irq_handler[UART_NUM]; int stdio_uart_inited = 0; serial_t stdio_uart; struct serial_global_data_s { uint32_t serial_irq_id; gpio_t sw_rts, sw_cts; uint8_t count, rx_irq_set_flow, rx_irq_set_api; }; static struct serial_global_data_s uart_data[UART_NUM]; void serial_init(serial_t *obj, PinName tx, PinName rx) { int is_stdio_uart = 0; // determine the UART to use UARTName uart_tx = (UARTName)pinmap_peripheral(tx, PinMap_UART_TX); UARTName uart_rx = (UARTName)pinmap_peripheral(rx, PinMap_UART_RX); UARTName uart = (UARTName)pinmap_merge(uart_tx, uart_rx); MBED_ASSERT((int)uart != NC); switch (uart) { case UART_0: obj->index = 0; break; case UART_1: obj->index = 1; /* Enable clock-gating */ UART_CLKGATE_REG |= UART1_CLKEN_MASK; break; } obj->uart = (RDA_UART_TypeDef *)uart; // enable fifos and default rx trigger level obj->uart->FCR = 0 << 0 //FIFO Enable - 0 = Disables, 1 = Enabled | 0 << 1 // Rx Fifo Reset | 0 << 2 // Tx Fifo Reset | 0 << 6; // Rx irq trigger level - 0 = 1 char, 1 = 4 chars, 2 = 8 chars, 3 = 14 chars // disable irqs obj->uart->IER = 0 << 0 // Rx Data available irq enable | 0 << 1 // Tx Fifo empty irq enable | 0 << 2; // Rx Line Status irq enable obj->uart->MCR = 1 << 8; //select clock obj->uart->FRR = 0x2001; //tx_trigger = 0x10, rx_trigger = 0x01 serial_format(obj, 8, ParityNone, 1); // pinout the chosen uart pinmap_pinout(tx, PinMap_UART_TX); pinmap_pinout(rx, PinMap_UART_RX); // set rx/tx pins in PullUp mode if (tx != NC) { pin_mode(tx, PullUp); } if (rx != NC) { pin_mode(rx, PullUp); } if ((rx != NC) && (tx != NC)) { obj->uart->FCR |= 1 << 0; //enable fifo } uart_data[obj->index].sw_rts.pin = NC; uart_data[obj->index].sw_cts.pin = NC; serial_set_flow_control(obj, FlowControlNone, NC, NC); is_stdio_uart = (uart == STDIO_UART) ? (1) : (0); if (is_stdio_uart) { stdio_uart_inited = 1; memcpy(&stdio_uart, obj, sizeof(serial_t)); } serial_clear(obj); } void serial_free(serial_t *obj) { uart_data[obj->index].serial_irq_id = 0; } // serial_baud // set the baud rate, taking in to account the current SystemFrequency void serial_baud(serial_t *obj, int baudrate) { MBED_ASSERT((int)obj->uart <= UART_1); uint32_t baud_divisor; uint32_t baud_mod; baud_divisor = (AHBBusClock / baudrate) >> 4; baud_mod = (AHBBusClock / baudrate) & 0x0F; obj->uart->LCR |= (1 << 7); //enable load devisor register obj->uart->DLL = (baud_divisor >> 0) & 0xFF; obj->uart->DLH = (baud_divisor >> 8) & 0xFF; obj->uart->DL2 = (baud_mod>>1) + ((baud_mod - (baud_mod>>1))<<4); obj->uart->LCR &= ~(1 << 7);// after loading, disable load devisor register } void serial_format(serial_t *obj, int data_bits, SerialParity parity, int stop_bits) { MBED_ASSERT((stop_bits == 1) || (stop_bits == 2)); // 0: 1 stop bits, 1: 2 stop bits MBED_ASSERT((data_bits > 4) && (data_bits < 9)); // 0: 5 data bits ... 3: 8 data bits MBED_ASSERT((parity == ParityNone) || (parity == ParityOdd) || (parity == ParityEven) || (parity == ParityForced1) || (parity == ParityForced0)); stop_bits -= 1; data_bits -= 5; int parity_enable, parity_select; switch (parity) { case ParityNone: parity_enable = 0; parity_select = 0; break; case ParityOdd: parity_enable = 1; parity_select = 0; break; case ParityEven: parity_enable = 1; parity_select = 1; break; case ParityForced1: parity_enable = 1; parity_select = 2; break; case ParityForced0: parity_enable = 1; parity_select = 3; break; default: parity_enable = 0; parity_select = 0; break; } obj->uart->LCR = (obj->uart->LCR) & ((~0x3FUL) | (data_bits << 0) | (stop_bits << 2) | (parity_enable << 3) | (parity_select << 4)); } /****************************************************************************** * INTERRUPTS HANDLING ******************************************************************************/ static inline void uart_irq(uint32_t iir, uint32_t index, RDA_UART_TypeDef *puart) { SerialIrq irq_type; switch (iir) { case 0x02UL: irq_type = TxIrq; break; case 0x04UL: irq_type = RxIrq; break; case 0x00UL: iir = puart->MSR; default: return; } if ((RxIrq == irq_type) && ((NC != uart_data[index].sw_rts.pin) && ((puart->MCR & AFCE_MASK) == 0x00UL))) { gpio_write(&uart_data[index].sw_rts, 1); // Disable interrupt if it wasn't enabled by other part of the application if (!uart_data[index].rx_irq_set_api) puart->IER &= ~(1 << RxIrq); } if (uart_data[index].serial_irq_id != 0) if ((irq_type != RxIrq) || (uart_data[index].rx_irq_set_api)) (irq_handler[index])(uart_data[index].serial_irq_id, irq_type); } void uart0_irq(void) { uart_irq((RDA_UART0->IIR & 0x0FUL), 0, (RDA_UART_TypeDef*)RDA_UART0); } void uart1_irq(void) { uart_irq((RDA_UART1->IIR & 0x0FUL), 1, (RDA_UART_TypeDef*)RDA_UART1); } void serial_irq_handler(serial_t *obj, uart_irq_handler handler, uint32_t id) { irq_handler[obj->index] = handler; uart_data[obj->index].serial_irq_id = id; } static void serial_irq_set_internal(serial_t *obj, SerialIrq irq, uint32_t enable) { IRQn_Type irq_n = (IRQn_Type)0; uint32_t vector = 0; switch ((int)obj->uart) { case UART_0: irq_n=UART0_IRQn; vector = (uint32_t)&uart0_irq; break; case UART_1: irq_n=UART1_IRQn; vector = (uint32_t)&uart1_irq; break; default: break; } if (enable) { obj->uart->IER |= 1 << irq; NVIC_SetVector(irq_n, vector); NVIC_SetPriority(irq_n, 0x1FUL); NVIC_EnableIRQ(irq_n); } else if ((TxIrq == irq) || (uart_data[obj->index].rx_irq_set_api + uart_data[obj->index].rx_irq_set_flow == 0)) { // disable int all_disabled = 0; SerialIrq other_irq = (irq == RxIrq) ? (TxIrq) : (RxIrq); obj->uart->IER &= ~(1 << irq); all_disabled = (obj->uart->IER & (1 << other_irq)) == 0; if (all_disabled) NVIC_DisableIRQ(irq_n); } } void serial_irq_set(serial_t *obj, SerialIrq irq, uint32_t enable) { if (RxIrq == irq) uart_data[obj->index].rx_irq_set_api = enable; serial_irq_set_internal(obj, irq, enable); } static void serial_flow_irq_set(serial_t *obj, uint32_t enable) { uart_data[obj->index].rx_irq_set_flow = enable; serial_irq_set_internal(obj, RxIrq, enable); } /****************************************************************************** * READ/WRITE ******************************************************************************/ int serial_getc(serial_t *obj) { int data = 0; while (!serial_readable(obj)); data = (int)(obj->uart->RBR & 0x00FFUL); if (((obj->uart->MCR & AFCE_MASK) == 0x00UL) && (NC != uart_data[obj->index].sw_rts.pin)) { //enable flow control rx gpio_write(&uart_data[obj->index].sw_rts, 0); obj->uart->IER |= 1 << RxIrq; } return data; } void serial_putc(serial_t *obj, int c) { while (!serial_writable(obj)); obj->uart->THR = c; } int serial_readable(serial_t *obj) { return (obj->uart->LSR & RXFIFO_EMPTY_MASK); } int serial_writable(serial_t *obj) { int isWritable = 1; if (obj->index == 0) { return !(obj->uart->FSR & TXFIFO_FULL_MASK); // uart0 not have flow control } else { if (((obj->uart->MCR & AFCE_MASK) == 0x00UL) && (NC != uart_data[obj->index].sw_cts.pin)) //If flow control: writable if CTS low + UART done isWritable = (gpio_read(&uart_data[obj->index].sw_cts) == 0) && !(obj->uart->FSR & TXFIFO_FULL_MASK); else isWritable = !(obj->uart->FSR & TXFIFO_FULL_MASK); return isWritable; } } void serial_clear(serial_t *obj) { obj->uart->FCR = 1 << 0 // FIFO Enable - 0 = Disables, 1 = Enabled | 1 << 1 // rx FIFO reset | 1 << 2; // tx FIFO reset } void serial_pinout_tx(PinName tx) { pinmap_pinout(tx, PinMap_UART_TX); } void serial_break_set(serial_t *obj) { obj->uart->LCR |= (1 << 6); } void serial_break_clear(serial_t *obj) { obj->uart->LCR &= ~(1 << 6); } void serial_set_flow_control(serial_t *obj, FlowControl type, PinName rxflow, PinName txflow) { // Only UART1 has hardware flow control on RDA5991H MBED_ASSERT((rxflow != UART0_RX) && (txflow != UART0_TX)); RDA_UART_TypeDef *uart1 = (uint32_t)obj->uart == (uint32_t)RDA_UART1 ? RDA_UART1 : NULL; int index = obj->index; // First, disable flow control completely uart_data[index].sw_rts.pin = uart_data[index].sw_cts.pin = NC; serial_flow_irq_set(obj, 0); if (FlowControlNone == type) { RDA_GPIO->IFCTRL &= ~(0x01UL << 2); //disable flow control return; } // Check type(s) of flow control to use UARTName uart_rts = (UARTName)pinmap_find_peripheral(rxflow, PinMap_UART_RTS); UARTName uart_cts = (UARTName)pinmap_find_peripheral(txflow, PinMap_UART_CTS); if ((UART_1 == uart_cts) && (NULL != uart1)) { pinmap_pinout(txflow, PinMap_UART_CTS); gpio_init_in(&uart_data[index].sw_cts, txflow); } if ((UART_1 == uart_rts) && (NULL != uart1)) { pinmap_pinout(rxflow, PinMap_UART_RTS); gpio_init_out(&uart_data[index].sw_rts, rxflow); serial_flow_irq_set(obj, 1); } uart1->MCR = uart1->MCR | AFCE_MASK; //enable auto flow control, in this case we don't have to read and write sw_cts & sw_rts uart1->FRR = (0x3EUL << 0) | (0x3EUL << 9); //rts/cts fifo trigger RDA_GPIO->IFCTRL |= 0x01UL << 2; //enable flow control } const PinMap *serial_tx_pinmap() { return PinMap_UART_TX; } const PinMap *serial_rx_pinmap() { return PinMap_UART_RX; } const PinMap *serial_cts_pinmap() { return PinMap_UART_CTS; } const PinMap *serial_rts_pinmap() { return PinMap_UART_RTS; }