/* mbed Microcontroller Library * Copyright (c) 2015 ARM Limited * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ // math.h required for floating point operations for baud rate calculation #include #include #include #include #include "serial_api.h" #include "cmsis.h" #include "pinmap.h" #include "PinNames.h" #include "mbed_error.h" #include "gpio_api.h" /****************************************************************************** * INITIALIZATION ******************************************************************************/ static const PinMap PinMap_UART_TX[] = { {UART_TX0, UART_0, 0}, {UART_TX1, UART_1, 0}, {NC, NC, 0} }; static const PinMap PinMap_UART_RX[] = { {UART_RX0, UART_0, 0}, {UART_RX1, UART_1, 0}, {NC, NC, 0} }; #define UART_NUM 2 static uart_irq_handler irq_handler; int stdio_uart_inited = 0; serial_t stdio_uart; struct serial_global_data_s { uint32_t serial_irq_id; gpio_t sw_rts, sw_cts; uint8_t count, rx_irq_set_flow, rx_irq_set_api; }; static struct serial_global_data_s uart_data[UART_NUM]; void serial_init(serial_t *obj, PinName tx, PinName rx) { int is_stdio_uart = 0; // determine the UART to use UARTName uart_tx = (UARTName)pinmap_peripheral(tx, PinMap_UART_TX); UARTName uart_rx = (UARTName)pinmap_peripheral(rx, PinMap_UART_RX); UARTName uart = (UARTName)pinmap_merge(uart_tx, uart_rx); if ((int)uart == NC) { error("Serial pinout mapping failed"); } obj->uart = (CMSDK_UART_TypeDef *)uart; //set baud rate and enable Uart in normarl mode (RX and TX enabled) switch (uart) { case UART_0: { CMSDK_UART0->CTRL = 0; // Disable UART when changing configuration if ((int)tx != NC) { CMSDK_UART0->CTRL = 0x1; // TX enable } if ((int)rx != NC) { CMSDK_UART0->CTRL |= 0x2; // RX enable } } break; case UART_1: { CMSDK_UART1->CTRL = 0; // Disable UART when changing configuration if((int)tx != NC) { CMSDK_UART1->CTRL = 0x1; // TX enable } if((int)rx != NC) { CMSDK_UART1->CTRL |= 0x2; // RX enable } } break; } // set default baud rate and format serial_baud(obj, 9600); // pinout the chosen uart pinmap_pinout(tx, PinMap_UART_TX); pinmap_pinout(rx, PinMap_UART_RX); switch (uart) { case UART_0: obj->index = 0; break; case UART_1: obj->index = 1; break; } uart_data[obj->index].sw_rts.pin = NC; uart_data[obj->index].sw_cts.pin = NC; serial_set_flow_control(obj, FlowControlNone, NC, NC); is_stdio_uart = (uart == STDIO_UART) ? (1) : (0); if (is_stdio_uart) { stdio_uart_inited = 1; memcpy(&stdio_uart, obj, sizeof(serial_t)); } } void serial_free(serial_t *obj) { uart_data[obj->index].serial_irq_id = 0; } // serial_baud // set the baud rate, taking in to account the current SystemFrequency void serial_baud(serial_t *obj, int baudrate) { // BEETLE has a simple divider to control the baud rate. The formula is: // // Baudrate = PCLK / BAUDDIV // // PCLK = SystemCoreClock // so for a desired baud rate of 9600 // SystemCoreClock / 9600 // //check to see if minimum baud value entered int baudrate_div = 0; baudrate_div = SystemCoreClock / baudrate; if (baudrate >= 16) { switch ((int)obj->uart) { case UART_0: CMSDK_UART0->BAUDDIV = baudrate_div; break; case UART_1: CMSDK_UART1->BAUDDIV = baudrate_div; break; default: error("serial_baud"); break; } } else { error("serial_baud"); } } void serial_format(serial_t *obj, int data_bits, SerialParity parity, int stop_bits) { } /****************************************************************************** * INTERRUPTS HANDLING ******************************************************************************/ static inline void uart_irq(uint32_t intstatus, uint32_t index, CMSDK_UART_TypeDef *puart) { SerialIrq irq_type; switch (intstatus) { case 1: { irq_type = TxIrq; } break; case 2: { irq_type = RxIrq; } break; default: return; } /* End of Switch */ if ((irq_type == RxIrq) && (NC != uart_data[index].sw_rts.pin)) { gpio_write(&uart_data[index].sw_rts, 1); // Disable interrupt if it wasn't enabled by other part of the application if (!uart_data[index].rx_irq_set_api) { // puart->CTRL &= ~(1 << RxIrq); /* Disable Rx interrupt */ puart->CTRL &= ~(CMSDK_UART_CTRL_RXIRQEN_Msk); } } if (uart_data[index].serial_irq_id != 0) { if ((irq_type != RxIrq) || (uart_data[index].rx_irq_set_api)) { irq_handler(uart_data[index].serial_irq_id, irq_type); } } if( irq_type == TxIrq ) { /* Clear the TX interrupt Flag */ puart->INTCLEAR |= 0x01; } else { /* Clear the Rx interupt Flag */ puart->INTCLEAR |= 0x02; } } void uart0_irq() { uart_irq(CMSDK_UART0->INTSTATUS & 0x3, 0, (CMSDK_UART_TypeDef*)CMSDK_UART0); } void uart1_irq() { uart_irq(CMSDK_UART1->INTSTATUS & 0x3, 1, (CMSDK_UART_TypeDef*)CMSDK_UART1); } void serial_irq_handler(serial_t *obj, uart_irq_handler handler, uint32_t id) { irq_handler = handler; uart_data[obj->index].serial_irq_id = id; } static void serial_irq_set_internal(serial_t *obj, SerialIrq irq, uint32_t enable) { /* Declare a variable of type IRQn, initialise to 0 */ IRQn_Type irq_n = (IRQn_Type)0; uint32_t vector = 0; switch ((int)obj->uart) { /********************************************************************* * BEETLE SOC BOARD * *********************************************************************/ case UART_0: { irq_n = UART0_IRQn; vector = (uint32_t)&uart0_irq; } break; case UART_1: { irq_n = UART1_IRQn; vector = (uint32_t)&uart1_irq; } break; } if (enable) { if(irq == TxIrq) { /* Transmit IRQ, set appripriate enable */ /* set TX interrupt enable in CTRL REG */ obj->uart->CTRL |= CMSDK_UART_CTRL_TXIRQEN_Msk; } else { /* set Rx interrupt on in CTRL REG */ obj->uart->CTRL |= CMSDK_UART_CTRL_RXIRQEN_Msk; } NVIC_SetVector(irq_n, vector); NVIC_EnableIRQ(irq_n); } else if ((irq == TxIrq) || (uart_data[obj->index].rx_irq_set_api + uart_data[obj->index].rx_irq_set_flow == 0)) { /* Disable IRQ */ int all_disabled = 0; SerialIrq other_irq = (irq == RxIrq) ? (TxIrq) : (RxIrq); obj->uart->CTRL &= ~(1 << (irq + 2)); all_disabled = (obj->uart->CTRL & (1 << (other_irq + 2))) == 0; if (all_disabled) { NVIC_DisableIRQ(irq_n); } } } void serial_irq_set(serial_t *obj, SerialIrq irq, uint32_t enable) { if (RxIrq == irq) uart_data[obj->index].rx_irq_set_api = enable; serial_irq_set_internal(obj, irq, enable); } /****************************************************************************** * READ/WRITE ******************************************************************************/ int serial_getc(serial_t *obj) { while (serial_readable(obj) == 0); int data = obj->uart->DATA; return data; } void serial_putc(serial_t *obj, int c) { #ifdef SERIAL_TEST // Add CR to LF if (c == 0x0A) { while (serial_writable(obj)); obj->uart->DATA = 0x0D; } #endif while (serial_writable(obj)); obj->uart->DATA = c; } int serial_readable(serial_t *obj) { return obj->uart->STATE & 2; } int serial_writable(serial_t *obj) { return obj->uart->STATE & 1; } void serial_clear(serial_t *obj) { obj->uart->DATA = 0x00; } void serial_pinout_tx(PinName tx) { pinmap_pinout(tx, PinMap_UART_TX); } void serial_break_set(serial_t *obj) { } void serial_break_clear(serial_t *obj) { } void serial_set_flow_control(serial_t *obj, FlowControl type, PinName rxflow, PinName txflow) { }