/******************************************************************************* * Copyright (C) 2016 Maxim Integrated Products, Inc., All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL MAXIM INTEGRATED BE LIABLE FOR ANY CLAIM, DAMAGES * OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Except as contained in this notice, the name of Maxim Integrated * Products, Inc. shall not be used except as stated in the Maxim Integrated * Products, Inc. Branding Policy. * * The mere transfer of this software does not imply any licenses * of trade secrets, proprietary technology, copyrights, patents, * trademarks, maskwork rights, or any other form of intellectual * property whatsoever. Maxim Integrated Products, Inc. retains all * ownership rights. ******************************************************************************* */ #include #include "mbed_assert.h" #include "cmsis.h" #include "serial_api.h" #include "uart_regs.h" #include "ioman_regs.h" #include "gpio_api.h" #include "clkman_regs.h" #include "PeripheralPins.h" #define DEFAULT_BAUD 9600 #define DEFAULT_STOP 1 #define DEFAULT_PARITY ParityNone #define UART_ERRORS (MXC_F_UART_INTFL_RX_FRAMING_ERR | \ MXC_F_UART_INTFL_RX_PARITY_ERR | \ MXC_F_UART_INTFL_RX_FIFO_OVERFLOW) // Variables for managing the stdio UART int stdio_uart_inited; serial_t stdio_uart; // Variables for interrupt driven static uart_irq_handler irq_handler; static uint32_t serial_irq_ids[MXC_CFG_UART_INSTANCES]; //****************************************************************************** void serial_init(serial_t *obj, PinName tx, PinName rx) { // Determine which uart is associated with each pin UARTName uart_tx = (UARTName)pinmap_peripheral(tx, PinMap_UART_TX); UARTName uart_rx = (UARTName)pinmap_peripheral(rx, PinMap_UART_RX); UARTName uart = (UARTName)pinmap_merge(uart_tx, uart_rx); // Make sure that both pins are pointing to the same uart MBED_ASSERT(uart != (UARTName)NC); // Ensure that the UART clock is enabled switch (uart) { case UART_0: MXC_CLKMAN->clk_gate_ctrl1 |= MXC_F_CLKMAN_CLK_GATE_CTRL1_UART0_CLK_GATER; break; case UART_1: MXC_CLKMAN->clk_gate_ctrl1 |= MXC_F_CLKMAN_CLK_GATE_CTRL1_UART1_CLK_GATER; break; case UART_2: MXC_CLKMAN->clk_gate_ctrl1 |= MXC_F_CLKMAN_CLK_GATE_CTRL1_UART2_CLK_GATER; break; case UART_3: MXC_CLKMAN->clk_gate_ctrl1 |= MXC_F_CLKMAN_CLK_GATE_CTRL1_UART3_CLK_GATER; break; default: break; } // Ensure that the UART clock is enabled // But don't override the scaler // // To support the most common baud rates, 9600 and 115200, we need to // scale down the uart input clock. if (!(MXC_CLKMAN->sys_clk_ctrl_8_uart & MXC_F_CLKMAN_SYS_CLK_CTRL_8_UART_UART_CLK_SCALE)) { switch (SystemCoreClock) { case RO_FREQ: MXC_CLKMAN->sys_clk_ctrl_8_uart = MXC_S_CLKMAN_CLK_SCALE_DIV_4; break; case (RO_FREQ / 2): MXC_CLKMAN->sys_clk_ctrl_8_uart = MXC_S_CLKMAN_CLK_SCALE_DIV_2; break; default: MXC_CLKMAN->sys_clk_ctrl_8_uart = MXC_S_CLKMAN_CLK_SCALE_DIV_4; break; } } // Set the obj pointer to the proper uart obj->uart = (mxc_uart_regs_t*)uart; // Set the uart index obj->index = MXC_UART_GET_IDX(obj->uart); obj->fifo = (mxc_uart_fifo_regs_t*)MXC_UART_GET_BASE_FIFO(obj->index); // Configure the pins pinmap_pinout(tx, PinMap_UART_TX); pinmap_pinout(rx, PinMap_UART_RX); // Flush the RX and TX FIFOs, clear the settings obj->uart->ctrl &= ~(MXC_F_UART_CTRL_RX_FIFO_EN | MXC_F_UART_CTRL_TX_FIFO_EN); obj->uart->ctrl |= (MXC_F_UART_CTRL_RX_FIFO_EN | MXC_F_UART_CTRL_TX_FIFO_EN); // Disable interrupts obj->uart->inten = 0; obj->uart->intfl = obj->uart->intfl; // Configure to default settings serial_baud(obj, DEFAULT_BAUD); serial_format(obj, 8, ParityNone, 1); // Manage stdio UART if (uart == STDIO_UART) { stdio_uart_inited = 1; memcpy(&stdio_uart, obj, sizeof(serial_t)); } // Enable UART obj->uart->ctrl |= MXC_F_UART_CTRL_UART_EN; } //****************************************************************************** void serial_baud(serial_t *obj, int baudrate) { uint32_t baud_setting = 0; MBED_ASSERT(MXC_CLKMAN->sys_clk_ctrl_8_uart > MXC_S_CLKMAN_CLK_SCALE_DISABLED); // Calculate the integer and decimal portions baud_setting = SystemCoreClock / (1<<(MXC_CLKMAN->sys_clk_ctrl_8_uart-1)); baud_setting = baud_setting / (baudrate * 16); // If the result doesn't fit in the register MBED_ASSERT(baud_setting <= UINT8_MAX); obj->uart->baud = baud_setting; } //****************************************************************************** void serial_format(serial_t *obj, int data_bits, SerialParity parity, int stop_bits) { // Check the validity of the inputs MBED_ASSERT((data_bits > 4) && (data_bits < 9)); MBED_ASSERT((parity == ParityNone) || (parity == ParityOdd) || (parity == ParityEven) || (parity == ParityForced1) || (parity == ParityForced0)); MBED_ASSERT((stop_bits == 1) || (stop_bits == 2)); // Adjust the stop and data bits stop_bits -= 1; data_bits -= 5; // Adjust the parity setting int mode = 0; switch (parity) { case ParityNone: mode = 0; break; case ParityOdd : mode = 1; break; case ParityEven: mode = 2; break; case ParityForced1: // Hardware does not support forced parity MBED_ASSERT(0); break; case ParityForced0: // Hardware does not support forced parity MBED_ASSERT(0); break; default: mode = 0; break; } int temp = obj->uart->ctrl; temp &= ~(MXC_F_UART_CTRL_DATA_SIZE | MXC_F_UART_CTRL_EXTRA_STOP | MXC_F_UART_CTRL_PARITY); temp |= (data_bits << MXC_F_UART_CTRL_DATA_SIZE_POS); temp |= (stop_bits << MXC_F_UART_CTRL_EXTRA_STOP_POS); temp |= (mode << MXC_F_UART_CTRL_PARITY_POS); obj->uart->ctrl = temp; } //****************************************************************************** void uart_handler(mxc_uart_regs_t* uart, int id) { // Check for errors or RX Threshold if (uart->intfl & (MXC_F_UART_INTFL_RX_FIFO_NOT_EMPTY | UART_ERRORS)) { if (serial_irq_ids[id]) { irq_handler(serial_irq_ids[id], RxIrq); } uart->intfl = (MXC_F_UART_INTFL_RX_FIFO_NOT_EMPTY | UART_ERRORS); } // Check for TX Threshold if (uart->intfl & MXC_F_UART_INTFL_TX_FIFO_AE) { if (serial_irq_ids[id]) { irq_handler(serial_irq_ids[id], TxIrq); } uart->intfl = MXC_F_UART_INTFL_TX_FIFO_AE; } } void uart0_handler(void) { uart_handler(MXC_UART0, 0); } void uart1_handler(void) { uart_handler(MXC_UART1, 1); } void uart2_handler(void) { uart_handler(MXC_UART2, 2); } void uart3_handler(void) { uart_handler(MXC_UART3, 3); } //****************************************************************************** void serial_irq_handler(serial_t *obj, uart_irq_handler handler, uint32_t id) { irq_handler = handler; serial_irq_ids[obj->index] = id; } //****************************************************************************** void serial_irq_set(serial_t *obj, SerialIrq irq, uint32_t enable) { switch (obj->index) { case 0: NVIC_SetVector(UART0_IRQn, (uint32_t)uart0_handler); NVIC_EnableIRQ(UART0_IRQn); break; case 1: NVIC_SetVector(UART1_IRQn, (uint32_t)uart1_handler); NVIC_EnableIRQ(UART1_IRQn); break; case 2: NVIC_SetVector(UART2_IRQn, (uint32_t)uart2_handler); NVIC_EnableIRQ(UART2_IRQn); break; case 3: NVIC_SetVector(UART3_IRQn, (uint32_t)uart3_handler); NVIC_EnableIRQ(UART3_IRQn); break; default: MBED_ASSERT(0); } if (irq == RxIrq) { // Enable RX FIFO Threshold Interrupt if (enable) { // Clear pending interrupts obj->uart->intfl = obj->uart->intfl; obj->uart->inten |= (MXC_F_UART_INTFL_RX_FIFO_NOT_EMPTY | UART_ERRORS); } else { // Clear pending interrupts obj->uart->intfl = obj->uart->intfl; obj->uart->inten &= ~(MXC_F_UART_INTFL_RX_FIFO_NOT_EMPTY | UART_ERRORS); } } else if (irq == TxIrq) { // Set TX Almost Empty level to interrupt when empty MXC_SET_FIELD(&obj->uart->tx_fifo_ctrl, MXC_F_UART_RX_FIFO_CTRL_FIFO_AF_LVL, (MXC_UART_FIFO_DEPTH - 1) << MXC_F_UART_TX_FIFO_CTRL_FIFO_AE_LVL_POS); // Enable TX Almost Empty Interrupt if (enable) { // Clear pending interrupts obj->uart->intfl = obj->uart->intfl; obj->uart->inten |= MXC_F_UART_INTFL_TX_FIFO_AE; } else { // Clear pending interrupts obj->uart->intfl = obj->uart->intfl; obj->uart->inten &= ~MXC_F_UART_INTFL_TX_FIFO_AE; } } else { MBED_ASSERT(0); } } //****************************************************************************** int serial_getc(serial_t *obj) { int c; // Wait for data to be available while ((obj->uart->rx_fifo_ctrl & MXC_F_UART_RX_FIFO_CTRL_FIFO_ENTRY) == 0); c = *obj->fifo->rx_8; return c; } //****************************************************************************** void serial_putc(serial_t *obj, int c) { // Wait for TXFIFO to not be full while ( ((obj->uart->tx_fifo_ctrl & MXC_F_UART_TX_FIFO_CTRL_FIFO_ENTRY) >> MXC_F_UART_TX_FIFO_CTRL_FIFO_ENTRY_POS) >= MXC_UART_FIFO_DEPTH ); // Must clear before every write to the buffer to know that the fifo // is empty when the TX DONE bit is set obj->uart->intfl = MXC_F_UART_INTFL_TX_DONE; *obj->fifo->tx_8 = (uint8_t)c; } //****************************************************************************** int serial_readable(serial_t *obj) { return (obj->uart->rx_fifo_ctrl & MXC_F_UART_RX_FIFO_CTRL_FIFO_ENTRY); } //****************************************************************************** int serial_writable(serial_t *obj) { return ( ((obj->uart->tx_fifo_ctrl & MXC_F_UART_TX_FIFO_CTRL_FIFO_ENTRY) >> MXC_F_UART_TX_FIFO_CTRL_FIFO_ENTRY_POS) < MXC_UART_FIFO_DEPTH ); } //****************************************************************************** void serial_clear(serial_t *obj) { // Clear the rx and tx fifos obj->uart->ctrl &= ~(MXC_F_UART_CTRL_RX_FIFO_EN | MXC_F_UART_CTRL_TX_FIFO_EN); obj->uart->ctrl |= (MXC_F_UART_CTRL_RX_FIFO_EN | MXC_F_UART_CTRL_TX_FIFO_EN); } //****************************************************************************** void serial_break_set(serial_t *obj) { // Make sure that nothing is being sent while ( ((obj->uart->tx_fifo_ctrl & MXC_F_UART_TX_FIFO_CTRL_FIFO_ENTRY) >> MXC_F_UART_TX_FIFO_CTRL_FIFO_ENTRY_POS) > 0); while (!(obj->uart->intfl & MXC_F_UART_INTFL_TX_DONE)); // Configure the GPIO to output 0 gpio_t tx_gpio; switch (((UARTName)(obj->uart))) { case UART_0: gpio_init_out(&tx_gpio, UART0_TX); break; case UART_1: gpio_init_out(&tx_gpio, UART1_TX); break; case UART_2: gpio_init_out(&tx_gpio, UART2_TX); break; case UART_3: gpio_init_out(&tx_gpio, UART3_TX); break; default: gpio_init_out(&tx_gpio, (PinName)NC); break; } gpio_write(&tx_gpio, 0); // GPIO is setup now, but we need to map GPIO to the pin switch (((UARTName)(obj->uart))) { case UART_0: MXC_IOMAN->uart0_req &= ~MXC_F_IOMAN_UART_REQ_IO_REQ; MBED_ASSERT((MXC_IOMAN->uart0_ack & (MXC_F_IOMAN_UART_ACK_IO_MAP | MXC_F_IOMAN_UART_ACK_IO_ACK)) == 0); break; case UART_1: MXC_IOMAN->uart1_req &= ~MXC_F_IOMAN_UART_REQ_IO_REQ; MBED_ASSERT((MXC_IOMAN->uart1_ack & (MXC_F_IOMAN_UART_ACK_IO_MAP | MXC_F_IOMAN_UART_ACK_IO_ACK)) == 0); break; case UART_2: MXC_IOMAN->uart2_req &= ~MXC_F_IOMAN_UART_REQ_IO_REQ; MBED_ASSERT((MXC_IOMAN->uart2_ack & (MXC_F_IOMAN_UART_ACK_IO_MAP | MXC_F_IOMAN_UART_ACK_IO_ACK)) == 0); break; case UART_3: MXC_IOMAN->uart3_req &= ~MXC_F_IOMAN_UART_REQ_IO_REQ; MBED_ASSERT((MXC_IOMAN->uart3_ack & (MXC_F_IOMAN_UART_ACK_IO_MAP | MXC_F_IOMAN_UART_ACK_IO_ACK)) == 0); break; default: break; } } //****************************************************************************** void serial_break_clear(serial_t *obj) { // Configure the GPIO to output 1 gpio_t tx_gpio; switch (((UARTName)(obj->uart))) { case UART_0: gpio_init_out(&tx_gpio, UART0_TX); break; case UART_1: gpio_init_out(&tx_gpio, UART1_TX); break; case UART_2: gpio_init_out(&tx_gpio, UART2_TX); break; case UART_3: gpio_init_out(&tx_gpio, UART3_TX); break; default: gpio_init_out(&tx_gpio, (PinName)NC); break; } gpio_write(&tx_gpio, 1); // Renable UART switch (((UARTName)(obj->uart))) { case UART_0: serial_pinout_tx(UART0_TX); break; case UART_1: serial_pinout_tx(UART1_TX); break; case UART_2: serial_pinout_tx(UART2_TX); break; case UART_3: serial_pinout_tx(UART3_TX); break; default: serial_pinout_tx((PinName)NC); break; } } //****************************************************************************** void serial_pinout_tx(PinName tx) { pinmap_pinout(tx, PinMap_UART_TX); } //****************************************************************************** void serial_set_flow_control(serial_t *obj, FlowControl type, PinName rxflow, PinName txflow) { uint32_t ctrl = obj->uart->ctrl; // Disable hardware flow control ctrl &= ~(MXC_F_UART_CTRL_RTS_EN | MXC_F_UART_CTRL_CTS_EN); if (FlowControlNone != type) { // Check to see if we can use HW flow control UARTName uart_cts = (UARTName)pinmap_peripheral(txflow, PinMap_UART_CTS); UARTName uart_rts = (UARTName)pinmap_peripheral(rxflow, PinMap_UART_RTS); UARTName uart = (UARTName)pinmap_merge(uart_cts, uart_rts); // Make sure that the pins are pointing to the same UART MBED_ASSERT(uart != (UARTName)NC); if ((FlowControlCTS == type) || (FlowControlRTSCTS == type)) { // Make sure pin is in the PinMap MBED_ASSERT(uart_cts != (UARTName)NC); // Enable the pin for CTS function pinmap_pinout(txflow, PinMap_UART_CTS); // Enable active-low hardware flow control ctrl |= (MXC_F_UART_CTRL_CTS_EN | MXC_F_UART_CTRL_CTS_POLARITY); } if ((FlowControlRTS == type) || (FlowControlRTSCTS == type)) { // Make sure pin is in the PinMap MBED_ASSERT(uart_rts != (UARTName)NC); // Enable the pin for RTS function pinmap_pinout(rxflow, PinMap_UART_RTS); // Enable active-low hardware flow control ctrl |= (MXC_F_UART_CTRL_RTS_EN | MXC_F_UART_CTRL_RTS_POLARITY); } } obj->uart->ctrl = ctrl; }