/* mbed Microcontroller Library * Copyright (c) 2006-2013 ARM Limited * SPDX-License-Identifier: Apache-2.0 * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "drivers/SerialBase.h" #include "platform/mbed_wait_api.h" #include "platform/mbed_critical.h" #include "platform/mbed_power_mgmt.h" #if DEVICE_SERIAL namespace mbed { SerialBase::SerialBase(PinName tx, PinName rx, int baud) : #if DEVICE_SERIAL_ASYNCH _thunk_irq(this), _tx_usage(DMA_USAGE_NEVER), _rx_usage(DMA_USAGE_NEVER), _tx_callback(NULL), _rx_callback(NULL), _tx_asynch_set(false), _rx_asynch_set(false), #endif _serial(), _baud(baud) { // No lock needed in the constructor for (size_t i = 0; i < sizeof _irq / sizeof _irq[0]; i++) { _irq[i] = NULL; } serial_init(&_serial, tx, rx); serial_baud(&_serial, _baud); serial_irq_handler(&_serial, SerialBase::_irq_handler, (uint32_t)this); } void SerialBase::baud(int baudrate) { lock(); serial_baud(&_serial, baudrate); _baud = baudrate; unlock(); } void SerialBase::format(int bits, Parity parity, int stop_bits) { lock(); serial_format(&_serial, bits, (SerialParity)parity, stop_bits); unlock(); } int SerialBase::readable() { lock(); int ret = serial_readable(&_serial); unlock(); return ret; } int SerialBase::writeable() { lock(); int ret = serial_writable(&_serial); unlock(); return ret; } void SerialBase::attach(Callback func, IrqType type) { lock(); // Disable interrupts when attaching interrupt handler core_util_critical_section_enter(); if (func) { // lock deep sleep only the first time if (!_irq[type]) { sleep_manager_lock_deep_sleep(); } _irq[type] = func; serial_irq_set(&_serial, (SerialIrq)type, 1); } else { // unlock deep sleep only the first time if (_irq[type]) { sleep_manager_unlock_deep_sleep(); } _irq[type] = NULL; serial_irq_set(&_serial, (SerialIrq)type, 0); } core_util_critical_section_exit(); unlock(); } void SerialBase::_irq_handler(uint32_t id, SerialIrq irq_type) { SerialBase *handler = (SerialBase *)id; if (handler->_irq[irq_type]) { handler->_irq[irq_type](); } } int SerialBase::_base_getc() { // Mutex is already held return serial_getc(&_serial); } int SerialBase::_base_putc(int c) { // Mutex is already held serial_putc(&_serial, c); return c; } void SerialBase::set_break() { lock(); serial_break_set(&_serial); unlock(); } void SerialBase::clear_break() { lock(); serial_break_clear(&_serial); unlock(); } void SerialBase::send_break() { lock(); // Wait for 1.5 frames before clearing the break condition // This will have different effects on our platforms, but should // ensure that we keep the break active for at least one frame. // We consider a full frame (1 start bit + 8 data bits bits + // 1 parity bit + 2 stop bits = 12 bits) for computation. // One bit time (in us) = 1000000/_baud // Twelve bits: 12000000/baud delay // 1.5 frames: 18000000/baud delay serial_break_set(&_serial); wait_us(18000000 / _baud); serial_break_clear(&_serial); unlock(); } void SerialBase::lock() { // Stub } void SerialBase:: unlock() { // Stub } SerialBase::~SerialBase() { // No lock needed in destructor // Detaching interrupts releases the sleep lock if it was locked for (int irq = 0; irq < IrqCnt; irq++) { attach(NULL, (IrqType)irq); } } #if DEVICE_SERIAL_FC void SerialBase::set_flow_control(Flow type, PinName flow1, PinName flow2) { lock(); FlowControl flow_type = (FlowControl)type; switch (type) { case RTS: serial_set_flow_control(&_serial, flow_type, flow1, NC); break; case CTS: serial_set_flow_control(&_serial, flow_type, NC, flow1); break; case RTSCTS: case Disabled: serial_set_flow_control(&_serial, flow_type, flow1, flow2); break; default: break; } unlock(); } #endif #if DEVICE_SERIAL_ASYNCH int SerialBase::write(const uint8_t *buffer, int length, const event_callback_t &callback, int event) { int result = 0; lock(); if (!serial_tx_active(&_serial) && !_tx_asynch_set) { start_write((void *)buffer, length, 8, callback, event); } else { result = -1; // transaction ongoing } unlock(); return result; } int SerialBase::write(const uint16_t *buffer, int length, const event_callback_t &callback, int event) { int result = 0; lock(); if (!serial_tx_active(&_serial) && !_tx_asynch_set) { start_write((void *)buffer, length, 16, callback, event); } else { result = -1; // transaction ongoing } unlock(); return result; } void SerialBase::start_write(const void *buffer, int buffer_size, char buffer_width, const event_callback_t &callback, int event) { _tx_asynch_set = true; _tx_callback = callback; _thunk_irq.callback(&SerialBase::interrupt_handler_asynch); sleep_manager_lock_deep_sleep(); serial_tx_asynch(&_serial, buffer, buffer_size, buffer_width, _thunk_irq.entry(), event, _tx_usage); } void SerialBase::abort_write(void) { lock(); core_util_critical_section_enter(); if (_tx_asynch_set) { _tx_callback = NULL; _tx_asynch_set = false; serial_tx_abort_asynch(&_serial); sleep_manager_unlock_deep_sleep(); } core_util_critical_section_exit(); unlock(); } void SerialBase::abort_read(void) { lock(); core_util_critical_section_enter(); if (_rx_asynch_set) { _rx_callback = NULL; _rx_asynch_set = false; serial_rx_abort_asynch(&_serial); sleep_manager_unlock_deep_sleep(); } core_util_critical_section_exit(); unlock(); } int SerialBase::set_dma_usage_tx(DMAUsage usage) { if (serial_tx_active(&_serial)) { return -1; } _tx_usage = usage; return 0; } int SerialBase::set_dma_usage_rx(DMAUsage usage) { if (serial_tx_active(&_serial)) { return -1; } _rx_usage = usage; return 0; } int SerialBase::read(uint8_t *buffer, int length, const event_callback_t &callback, int event, unsigned char char_match) { int result = 0; lock(); if (!serial_rx_active(&_serial) && !_rx_asynch_set) { start_read((void *)buffer, length, 8, callback, event, char_match); } else { result = -1; // transaction ongoing } unlock(); return result; } int SerialBase::read(uint16_t *buffer, int length, const event_callback_t &callback, int event, unsigned char char_match) { int result = 0; lock(); if (!serial_rx_active(&_serial) && !_rx_asynch_set) { start_read((void *)buffer, length, 16, callback, event, char_match); } else { result = -1; // transaction ongoing } unlock(); return result; } void SerialBase::start_read(void *buffer, int buffer_size, char buffer_width, const event_callback_t &callback, int event, unsigned char char_match) { _rx_asynch_set = true; _rx_callback = callback; _thunk_irq.callback(&SerialBase::interrupt_handler_asynch); sleep_manager_lock_deep_sleep(); serial_rx_asynch(&_serial, buffer, buffer_size, buffer_width, _thunk_irq.entry(), event, char_match, _rx_usage); } void SerialBase::interrupt_handler_asynch(void) { int event = serial_irq_handler_asynch(&_serial); int rx_event = event & SERIAL_EVENT_RX_MASK; if (_rx_asynch_set && rx_event) { event_callback_t cb = _rx_callback; _rx_asynch_set = false; _rx_callback = NULL; if (cb) { cb.call(rx_event); } sleep_manager_unlock_deep_sleep(); } int tx_event = event & SERIAL_EVENT_TX_MASK; if (_tx_asynch_set && tx_event) { event_callback_t cb = _tx_callback; _tx_asynch_set = false; _tx_callback = NULL; if (cb) { cb.call(tx_event); } sleep_manager_unlock_deep_sleep(); } } #endif } // namespace mbed #endif