/* mbed Microcontroller Library * Copyright (c) 2017 ARM Limited * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include #include #include #include "FlashIAP.h" #include "platform/mbed_assert.h" #include "platform/ScopedRamExecutionLock.h" #include "platform/ScopedRomWriteLock.h" #if DEVICE_FLASH namespace mbed { const unsigned int num_write_retries = 16; SingletonPtr FlashIAP::_mutex; static inline bool is_aligned(uint32_t number, uint32_t alignment) { if ((number % alignment) != 0) { return false; } else { return true; } } FlashIAP::FlashIAP() { } FlashIAP::~FlashIAP() { } int FlashIAP::init() { int ret = 0; _mutex->lock(); { ScopedRamExecutionLock make_ram_executable; ScopedRomWriteLock make_rom_writable; if (flash_init(&_flash)) { ret = -1; } } uint32_t page_size = get_page_size(); _page_buf = new uint8_t[page_size]; _mutex->unlock(); return ret; } int FlashIAP::deinit() { int ret = 0; _mutex->lock(); { ScopedRamExecutionLock make_ram_executable; ScopedRomWriteLock make_rom_writable; if (flash_free(&_flash)) { ret = -1; } } delete[] _page_buf; _mutex->unlock(); return ret; } int FlashIAP::read(void *buffer, uint32_t addr, uint32_t size) { int32_t ret = -1; _mutex->lock(); { ScopedRamExecutionLock make_ram_executable; ScopedRomWriteLock make_rom_writable; ret = flash_read(&_flash, addr, (uint8_t *) buffer, size); } _mutex->unlock(); return ret; } int FlashIAP::program(const void *buffer, uint32_t addr, uint32_t size) { uint32_t page_size = get_page_size(); uint32_t flash_size = flash_get_size(&_flash); uint32_t flash_start_addr = flash_get_start_address(&_flash); uint32_t chunk, prog_size; const uint8_t *buf = (uint8_t *) buffer; const uint8_t *prog_buf; // addr should be aligned to page size if (!is_aligned(addr, page_size) || (!buffer) || ((addr + size) > (flash_start_addr + flash_size))) { return -1; } int ret = 0; _mutex->lock(); while (size && !ret) { uint32_t current_sector_size = flash_get_sector_size(&_flash, addr); bool unaligned_src = (((size_t) buf / sizeof(uint32_t) * sizeof(uint32_t)) != (size_t) buf); chunk = std::min(current_sector_size - (addr % current_sector_size), size); // Need to use the internal page buffer in any of these two cases: // 1. Size is not page aligned // 2. Source buffer is not aligned to uint32_t. This is not supported by many targets (although // the pointer they accept is of uint8_t). if (unaligned_src || (chunk < page_size)) { chunk = std::min(chunk, page_size); memcpy(_page_buf, buf, chunk); if (chunk < page_size) { memset(_page_buf + chunk, 0xFF, page_size - chunk); } prog_buf = _page_buf; prog_size = page_size; } else { chunk = chunk / page_size * page_size; prog_buf = buf; prog_size = chunk; } { // Few boards may fail the write actions due to HW limitations (like critical drivers that // disable flash operations). Just retry a few times until success. for (unsigned int retry = 0; retry < num_write_retries; retry++) { ScopedRamExecutionLock make_ram_executable; ScopedRomWriteLock make_rom_writable; ret = flash_program_page(&_flash, addr, prog_buf, prog_size); if (ret) { ret = -1; } else { break; } } } size -= chunk; addr += chunk; buf += chunk; } _mutex->unlock(); return ret; } bool FlashIAP::is_aligned_to_sector(uint32_t addr, uint32_t size) { uint32_t current_sector_size = flash_get_sector_size(&_flash, addr); if (!is_aligned(size, current_sector_size) || !is_aligned(addr, current_sector_size)) { return false; } else { return true; } } int FlashIAP::erase(uint32_t addr, uint32_t size) { uint32_t current_sector_size; uint32_t flash_size = flash_get_size(&_flash); uint32_t flash_start_addr = flash_get_start_address(&_flash); uint32_t flash_end_addr = flash_start_addr + flash_size; uint32_t erase_end_addr = addr + size; if (erase_end_addr > flash_end_addr) { return -1; } else if (erase_end_addr < flash_end_addr) { uint32_t following_sector_size = flash_get_sector_size(&_flash, erase_end_addr); if (!is_aligned(erase_end_addr, following_sector_size)) { return -1; } } int32_t ret = 0; _mutex->lock(); while (size && !ret) { // Few boards may fail the erase actions due to HW limitations (like critical drivers that // disable flash operations). Just retry a few times until success. for (unsigned int retry = 0; retry < num_write_retries; retry++) { ScopedRamExecutionLock make_ram_executable; ScopedRomWriteLock make_rom_writable; ret = flash_erase_sector(&_flash, addr); if (ret) { ret = -1; } else { break; } } current_sector_size = flash_get_sector_size(&_flash, addr); size -= current_sector_size; addr += current_sector_size; } _mutex->unlock(); return ret; } uint32_t FlashIAP::get_page_size() const { return flash_get_page_size(&_flash); } uint32_t FlashIAP::get_sector_size(uint32_t addr) const { return flash_get_sector_size(&_flash, addr); } uint32_t FlashIAP::get_flash_start() const { return flash_get_start_address(&_flash); } uint32_t FlashIAP::get_flash_size() const { return flash_get_size(&_flash); } uint8_t FlashIAP::get_erase_value() const { return flash_get_erase_value(&_flash); } } #endif