/* * Copyright (c) 2014-2018 ARM Limited. All rights reserved. * SPDX-License-Identifier: Apache-2.0 * Licensed under the Apache License, Version 2.0 (the License); you may * not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an AS IS BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include "nsdynmemLIB.h" #include "platform/arm_hal_interrupt.h" #include #include "ns_list.h" #ifndef STANDARD_MALLOC typedef enum mem_stat_update_t { DEV_HEAP_ALLOC_OK, DEV_HEAP_ALLOC_FAIL, DEV_HEAP_FREE, } mem_stat_update_t; typedef struct { ns_list_link_t link; } hole_t; typedef int ns_mem_word_size_t; // internal signed heap block size type /* struct for book keeping variables */ struct ns_mem_book { ns_mem_word_size_t *heap_main; ns_mem_word_size_t *heap_main_end; mem_stat_t *mem_stat_info_ptr; void (*heap_failure_callback)(heap_fail_t); NS_LIST_HEAD(hole_t, link) holes_list; ns_mem_heap_size_t heap_size; ns_mem_heap_size_t temporary_alloc_heap_limit; /* Amount of reserved heap temporary alloc can't exceed */ }; static ns_mem_book_t *default_book; // heap pointer for original "ns_" API use // size of a hole_t in our word units #define HOLE_T_SIZE ((ns_mem_word_size_t) ((sizeof(hole_t) + sizeof(ns_mem_word_size_t) - 1) / sizeof(ns_mem_word_size_t))) #define TEMPORARY_ALLOC_FREE_HEAP_THRESHOLD 5 /* temporary allocations must leave 5% of the heap free */ static NS_INLINE hole_t *hole_from_block_start(ns_mem_word_size_t *start) { return (hole_t *)(start + 1); } static NS_INLINE ns_mem_word_size_t *block_start_from_hole(hole_t *start) { return ((ns_mem_word_size_t *)start) - 1; } static void heap_failure(ns_mem_book_t *book, heap_fail_t reason) { if (book->heap_failure_callback) { book->heap_failure_callback(reason); } } #endif void ns_dyn_mem_init(void *heap, ns_mem_heap_size_t h_size, void (*passed_fptr)(heap_fail_t), mem_stat_t *info_ptr) { default_book = ns_mem_init(heap, h_size, passed_fptr, info_ptr); } const mem_stat_t *ns_dyn_mem_get_mem_stat(void) { #ifndef STANDARD_MALLOC return ns_mem_get_mem_stat(default_book); #else return NULL; #endif } ns_mem_book_t *ns_mem_init(void *heap, ns_mem_heap_size_t h_size, void (*passed_fptr)(heap_fail_t), mem_stat_t *info_ptr) { #ifndef STANDARD_MALLOC ns_mem_book_t *book; ns_mem_word_size_t *ptr; ns_mem_word_size_t temp_int; /* Do memory alignment */ temp_int = ((uintptr_t)heap % sizeof(ns_mem_word_size_t)); if (temp_int) { heap = (uint8_t *) heap + (sizeof(ns_mem_word_size_t) - temp_int); h_size -= (sizeof(ns_mem_word_size_t) - temp_int); } /* Make correction for total length also */ temp_int = (h_size % sizeof(ns_mem_word_size_t)); if (temp_int) { h_size -= (sizeof(ns_mem_word_size_t) - temp_int); } book = heap; book->heap_main = (ns_mem_word_size_t *) & (book[1]); // SET Heap Pointer book->heap_size = h_size - sizeof(ns_mem_book_t); //Set Heap Size temp_int = (book->heap_size / sizeof(ns_mem_word_size_t)); temp_int -= 2; ptr = book->heap_main; *ptr = -(temp_int); ptr += (temp_int + 1); *ptr = -(temp_int); book->heap_main_end = ptr; ns_list_init(&book->holes_list); ns_list_add_to_start(&book->holes_list, hole_from_block_start(book->heap_main)); book->mem_stat_info_ptr = info_ptr; //RESET Memory by Hea Len if (info_ptr) { memset(book->mem_stat_info_ptr, 0, sizeof(mem_stat_t)); book->mem_stat_info_ptr->heap_sector_size = book->heap_size; } book->temporary_alloc_heap_limit = book->heap_size / 100 * (100 - TEMPORARY_ALLOC_FREE_HEAP_THRESHOLD); #endif //There really is no support to standard malloc in this library anymore book->heap_failure_callback = passed_fptr; return book; } const mem_stat_t *ns_mem_get_mem_stat(ns_mem_book_t *heap) { #ifndef STANDARD_MALLOC return heap->mem_stat_info_ptr; #else return NULL; #endif } int ns_mem_set_temporary_alloc_free_heap_threshold(ns_mem_book_t *book, uint8_t free_heap_percentage, ns_mem_heap_size_t free_heap_amount) { #ifndef STANDARD_MALLOC ns_mem_heap_size_t heap_limit = 0; if (!book || !book->mem_stat_info_ptr) { // no book or mem_stats return -1; } if (free_heap_amount && free_heap_amount < book->heap_size / 2) { heap_limit = book->heap_size - free_heap_amount; } if (!free_heap_amount && free_heap_percentage && free_heap_percentage < 50) { heap_limit = book->heap_size / 100 * (100 - free_heap_percentage); } if (free_heap_amount == 0 && free_heap_percentage == 0) { // feature disabled, allow whole heap to be reserved by temporary allo heap_limit = book->heap_size; } if (heap_limit == 0) { // illegal heap parameters return -2; } book->temporary_alloc_heap_limit = heap_limit; return 0; #else return -3; #endif } extern int ns_dyn_mem_set_temporary_alloc_free_heap_threshold(uint8_t free_heap_percentage, ns_mem_heap_size_t free_heap_amount) { return ns_mem_set_temporary_alloc_free_heap_threshold(default_book, free_heap_percentage, free_heap_amount); } #ifndef STANDARD_MALLOC static void dev_stat_update(mem_stat_t *mem_stat_info_ptr, mem_stat_update_t type, ns_mem_block_size_t size) { if (mem_stat_info_ptr) { switch (type) { case DEV_HEAP_ALLOC_OK: mem_stat_info_ptr->heap_sector_alloc_cnt++; mem_stat_info_ptr->heap_sector_allocated_bytes += size; if (mem_stat_info_ptr->heap_sector_allocated_bytes_max < mem_stat_info_ptr->heap_sector_allocated_bytes) { mem_stat_info_ptr->heap_sector_allocated_bytes_max = mem_stat_info_ptr->heap_sector_allocated_bytes; } mem_stat_info_ptr->heap_alloc_total_bytes += size; break; case DEV_HEAP_ALLOC_FAIL: mem_stat_info_ptr->heap_alloc_fail_cnt++; break; case DEV_HEAP_FREE: mem_stat_info_ptr->heap_sector_alloc_cnt--; mem_stat_info_ptr->heap_sector_allocated_bytes -= size; break; } } } static ns_mem_word_size_t convert_allocation_size(ns_mem_book_t *book, ns_mem_block_size_t requested_bytes) { if (book->heap_main == 0) { heap_failure(book, NS_DYN_MEM_HEAP_SECTOR_UNITIALIZED); } else if (requested_bytes < 1) { heap_failure(book, NS_DYN_MEM_ALLOCATE_SIZE_NOT_VALID); } else if (requested_bytes > (book->heap_size - 2 * sizeof(ns_mem_word_size_t))) { heap_failure(book, NS_DYN_MEM_ALLOCATE_SIZE_NOT_VALID); } return (requested_bytes + sizeof(ns_mem_word_size_t) - 1) / sizeof(ns_mem_word_size_t); } // Checks that block length indicators are valid // Block has format: Size of data area [1 word] | data area [abs(size) words]| Size of data area [1 word] // If Size is negative it means area is unallocated static int8_t ns_mem_block_validate(ns_mem_word_size_t *block_start) { int8_t ret_val = -1; ns_mem_word_size_t *end = block_start; ns_mem_word_size_t size_start = *end; end += (1 + abs(size_start)); if (size_start != 0 && size_start == *end) { ret_val = 0; } return ret_val; } #endif // For direction, use 1 for direction up and -1 for down static void *ns_mem_internal_alloc(ns_mem_book_t *book, const ns_mem_block_size_t alloc_size, int direction) { #ifndef STANDARD_MALLOC if (!book) { /* We can not do anything except return NULL because we can't find book keeping block */ return NULL; } if (book->mem_stat_info_ptr && direction == 1) { if (book->mem_stat_info_ptr->heap_sector_allocated_bytes > book->temporary_alloc_heap_limit) { /* Not enough heap for temporary memory allocation */ dev_stat_update(book->mem_stat_info_ptr, DEV_HEAP_ALLOC_FAIL, 0); return NULL; } } ns_mem_word_size_t *block_ptr = NULL; platform_enter_critical(); ns_mem_word_size_t data_size = convert_allocation_size(book, alloc_size); if (!data_size) { goto done; } // ns_list_foreach, either forwards or backwards, result to ptr for (hole_t *cur_hole = direction > 0 ? ns_list_get_first(&book->holes_list) : ns_list_get_last(&book->holes_list); cur_hole; cur_hole = direction > 0 ? ns_list_get_next(&book->holes_list, cur_hole) : ns_list_get_previous(&book->holes_list, cur_hole) ) { ns_mem_word_size_t *p = block_start_from_hole(cur_hole); if (ns_mem_block_validate(p) != 0 || *p >= 0) { //Validation failed, or this supposed hole has positive (allocated) size heap_failure(book, NS_DYN_MEM_HEAP_SECTOR_CORRUPTED); break; } if (-*p >= data_size) { // Found a big enough block block_ptr = p; break; } } if (!block_ptr) { goto done; } // Separate declaration from initialization to keep IAR happy as the gotos skip this block. ns_mem_word_size_t block_data_size; block_data_size = -*block_ptr; if (block_data_size >= (data_size + 2 + HOLE_T_SIZE)) { ns_mem_word_size_t hole_size = block_data_size - data_size - 2; ns_mem_word_size_t *hole_ptr; //There is enough room for a new hole so create it first if (direction > 0) { hole_ptr = block_ptr + 1 + data_size + 1; // Hole will be left at end of area. // Would like to just replace this block_ptr with new descriptor, but // they could overlap, so ns_list_replace might fail //ns_list_replace(&holes_list, block_ptr, hole_from_block_start(hole_ptr)); hole_t *before = ns_list_get_previous(&book->holes_list, hole_from_block_start(block_ptr)); ns_list_remove(&book->holes_list, hole_from_block_start(block_ptr)); if (before) { ns_list_add_after(&book->holes_list, before, hole_from_block_start(hole_ptr)); } else { ns_list_add_to_start(&book->holes_list, hole_from_block_start(hole_ptr)); } } else { hole_ptr = block_ptr; // Hole remains at start of area - keep existing descriptor in place. block_ptr += 1 + hole_size + 1; } hole_ptr[0] = -hole_size; hole_ptr[1 + hole_size] = -hole_size; } else { // Not enough room for a left-over hole, so use the whole block data_size = block_data_size; ns_list_remove(&book->holes_list, hole_from_block_start(block_ptr)); } block_ptr[0] = data_size; block_ptr[1 + data_size] = data_size; done: if (book->mem_stat_info_ptr) { if (block_ptr) { //Update Allocate OK dev_stat_update(book->mem_stat_info_ptr, DEV_HEAP_ALLOC_OK, (data_size + 2) * sizeof(ns_mem_word_size_t)); } else { //Update Allocate Fail, second parameter is used for stats dev_stat_update(book->mem_stat_info_ptr, DEV_HEAP_ALLOC_FAIL, 0); } } platform_exit_critical(); return block_ptr ? block_ptr + 1 : NULL; #else void *retval = NULL; if (alloc_size) { platform_enter_critical(); retval = malloc(alloc_size); platform_exit_critical(); } return retval; #endif } void *ns_mem_alloc(ns_mem_book_t *heap, ns_mem_block_size_t alloc_size) { return ns_mem_internal_alloc(heap, alloc_size, -1); } void *ns_mem_temporary_alloc(ns_mem_book_t *heap, ns_mem_block_size_t alloc_size) { return ns_mem_internal_alloc(heap, alloc_size, 1); } void *ns_dyn_mem_alloc(ns_mem_block_size_t alloc_size) { return ns_mem_alloc(default_book, alloc_size); } void *ns_dyn_mem_temporary_alloc(ns_mem_block_size_t alloc_size) { return ns_mem_temporary_alloc(default_book, alloc_size); } #ifndef STANDARD_MALLOC static void ns_mem_free_and_merge_with_adjacent_blocks(ns_mem_book_t *book, ns_mem_word_size_t *cur_block, ns_mem_word_size_t data_size) { // Theory of operation: Block is always in form | Len | Data | Len | // So we need to check length of previous (if current not heap start) // and next (if current not heap end) blocks. Negative length means // free memory so we can merge freed block with those. hole_t *existing_start = NULL; hole_t *existing_end = NULL; ns_mem_word_size_t *start = cur_block; ns_mem_word_size_t *end = cur_block + data_size + 1; //invalidate current block *start = -data_size; *end = -data_size; ns_mem_word_size_t merged_data_size = data_size; if (start != book->heap_main) { if (*(start - 1) < 0) { ns_mem_word_size_t *block_end = start - 1; ns_mem_word_size_t block_size = 1 + (-*block_end) + 1; merged_data_size += block_size; start -= block_size; if (*start != *block_end) { heap_failure(book, NS_DYN_MEM_HEAP_SECTOR_CORRUPTED); } if (block_size >= 1 + HOLE_T_SIZE + 1) { existing_start = hole_from_block_start(start); } } } if (end != book->heap_main_end) { if (*(end + 1) < 0) { ns_mem_word_size_t *block_start = end + 1; ns_mem_word_size_t block_size = 1 + (-*block_start) + 1; merged_data_size += block_size; end += block_size; if (*end != *block_start) { heap_failure(book, NS_DYN_MEM_HEAP_SECTOR_CORRUPTED); } if (block_size >= 1 + HOLE_T_SIZE + 1) { existing_end = hole_from_block_start(block_start); } } } hole_t *to_add = hole_from_block_start(start); hole_t *before = NULL; if (existing_end) { // Extending hole described by "existing_end" downwards. // Will replace with descriptor at bottom of merged block. // (Can't use ns_list_replace, because of danger of overlap) // Optimisation - note our position for insertion below. before = ns_list_get_next(&book->holes_list, existing_end); ns_list_remove(&book->holes_list, existing_end); } if (existing_start) { // Extending hole described by "existing_start" upwards. // No need to modify that descriptor - it remains at the bottom // of the merged block to describe it. } else { // Didn't find adjacent descriptors, but may still // be merging with small blocks without descriptors. if (merged_data_size >= HOLE_T_SIZE) { // Locate hole position in list, if we don't already know // from merging with the block above. if (!existing_end) { ns_list_foreach(hole_t, ptr, &book->holes_list) { if (ptr > to_add) { before = ptr; break; } } } if (before) { ns_list_add_before(&book->holes_list, before, to_add); } else { ns_list_add_to_end(&book->holes_list, to_add); } } } *start = -merged_data_size; *end = -merged_data_size; } #endif void ns_mem_free(ns_mem_book_t *book, void *block) { #ifndef STANDARD_MALLOC if (!block) { return; } ns_mem_word_size_t *ptr = block; ns_mem_word_size_t size; platform_enter_critical(); ptr --; //Read Current Size size = *ptr; if (ptr < book->heap_main || ptr >= book->heap_main_end) { heap_failure(book, NS_DYN_MEM_POINTER_NOT_VALID); } else if ((ptr + size) >= book->heap_main_end) { heap_failure(book, NS_DYN_MEM_POINTER_NOT_VALID); } else if (size < 0) { heap_failure(book, NS_DYN_MEM_DOUBLE_FREE); } else { if (ns_mem_block_validate(ptr) != 0) { heap_failure(book, NS_DYN_MEM_HEAP_SECTOR_CORRUPTED); } else { ns_mem_free_and_merge_with_adjacent_blocks(book, ptr, size); if (book->mem_stat_info_ptr) { //Update Free Counter dev_stat_update(book->mem_stat_info_ptr, DEV_HEAP_FREE, (size + 2) * sizeof(ns_mem_word_size_t)); } } } platform_exit_critical(); #else platform_enter_critical(); free(block); platform_exit_critical(); #endif } void ns_dyn_mem_free(void *block) { ns_mem_free(default_book, block); }