/* mbed Microcontroller Library * Copyright (c) 2017 ARM Limited * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "mbed.h" #include "greentea-client/test_env.h" #include "unity.h" #include "utest.h" #include "HeapBlockDevice.h" #include "MBRBlockDevice.h" #include using namespace utest::v1; // TODO HACK, replace with available ram/heap property #if defined(TARGET_MTB_MTS_XDOT) #error [NOT_SUPPORTED] Insufficient heap for heap block device tests #endif #define BLOCK_COUNT 16 #define BLOCK_SIZE 512 HeapBlockDevice bd(BLOCK_COUNT *BLOCK_SIZE, BLOCK_SIZE); // Testing formatting of master boot record void test_mbr_format() { uint8_t *dummy = new (std::nothrow) uint8_t[BLOCK_COUNT * BLOCK_SIZE]; TEST_SKIP_UNLESS_MESSAGE(dummy, "Not enough memory for test"); delete[] dummy; // Create two partitions splitting device in ~half int err = MBRBlockDevice::partition(&bd, 1, 0x83, 0, (BLOCK_COUNT / 2) * BLOCK_SIZE); TEST_ASSERT_EQUAL(0, err); err = MBRBlockDevice::partition(&bd, 2, 0x83, -(BLOCK_COUNT / 2) * BLOCK_SIZE); TEST_ASSERT_EQUAL(0, err); // Load both partitions, as well as a third to check for invalid partitions MBRBlockDevice part1(&bd, 1); err = part1.init(); TEST_ASSERT_EQUAL(0, err); MBRBlockDevice part2(&bd, 2); err = part2.init(); TEST_ASSERT_EQUAL(0, err); MBRBlockDevice part3(&bd, 3); err = part3.init(); TEST_ASSERT_EQUAL(BD_ERROR_INVALID_PARTITION, err); // Deinit partitions err = part1.deinit(); TEST_ASSERT_EQUAL(0, err); err = part2.deinit(); TEST_ASSERT_EQUAL(0, err); } // Testing mbr attributes void test_mbr_attr() { uint8_t *dummy = new (std::nothrow) uint8_t[BLOCK_COUNT * BLOCK_SIZE]; TEST_SKIP_UNLESS_MESSAGE(dummy, "Not enough memory for test"); delete[] dummy; // Load partitions MBRBlockDevice part1(&bd, 1); int err = part1.init(); TEST_ASSERT_EQUAL(0, err); MBRBlockDevice part2(&bd, 2); err = part2.init(); TEST_ASSERT_EQUAL(0, err); // Test attributes on partitions printf("partition 1 partition number: %d\n", part1.get_partition_number()); printf("partition 1 partition start: 0x%llx\n", part1.get_partition_start()); printf("partition 1 partition stop: 0x%llx\n", part1.get_partition_stop()); printf("partition 1 partition type: 0x%02x\n", part1.get_partition_type()); printf("partition 1 read size: %llu bytes\n", part1.get_read_size()); printf("partition 1 program size: %llu bytes\n", part1.get_program_size()); printf("partition 1 erase size: %llu bytes\n", part1.get_erase_size()); printf("partition 1 size: %llu bytes\n", part1.size()); TEST_ASSERT_EQUAL(1, part1.get_partition_number()); TEST_ASSERT_EQUAL(1 * BLOCK_SIZE, part1.get_partition_start()); TEST_ASSERT_EQUAL((BLOCK_COUNT / 2)*BLOCK_SIZE, part1.get_partition_stop()); TEST_ASSERT_EQUAL(0x83, part1.get_partition_type()); TEST_ASSERT_EQUAL(BLOCK_SIZE, part1.get_read_size()); TEST_ASSERT_EQUAL(BLOCK_SIZE, part1.get_program_size()); TEST_ASSERT_EQUAL(BLOCK_SIZE, part1.get_erase_size()); TEST_ASSERT_EQUAL(((BLOCK_COUNT / 2) - 1)*BLOCK_SIZE, part1.size()); printf("partition 2 partition number: %d\n", part2.get_partition_number()); printf("partition 2 partition start: 0x%llx\n", part2.get_partition_start()); printf("partition 2 partition stop: 0x%llx\n", part2.get_partition_stop()); printf("partition 2 partition type: 0x%02x\n", part2.get_partition_type()); printf("partition 2 read size: %llu bytes\n", part2.get_read_size()); printf("partition 2 program size: %llu bytes\n", part2.get_program_size()); printf("partition 2 erase size: %llu bytes\n", part2.get_erase_size()); printf("partition 2 size: %llu bytes\n", part2.size()); TEST_ASSERT_EQUAL(2, part2.get_partition_number()); TEST_ASSERT_EQUAL((BLOCK_COUNT / 2)*BLOCK_SIZE, part2.get_partition_start()); TEST_ASSERT_EQUAL(BLOCK_COUNT * BLOCK_SIZE, part2.get_partition_stop()); TEST_ASSERT_EQUAL(0x83, part2.get_partition_type()); TEST_ASSERT_EQUAL(BLOCK_SIZE, part2.get_read_size()); TEST_ASSERT_EQUAL(BLOCK_SIZE, part2.get_program_size()); TEST_ASSERT_EQUAL(BLOCK_SIZE, part2.get_erase_size()); TEST_ASSERT_EQUAL((BLOCK_COUNT / 2)*BLOCK_SIZE, part2.size()); // Deinit partitions err = part1.deinit(); TEST_ASSERT_EQUAL(0, err); err = part2.deinit(); TEST_ASSERT_EQUAL(0, err); } // Testing mbr read write void test_mbr_read_write() { uint8_t *dummy = new (std::nothrow) uint8_t[BLOCK_COUNT * BLOCK_SIZE]; TEST_SKIP_UNLESS_MESSAGE(dummy, "Not enough memory for test"); delete[] dummy; int err; // Load partitions MBRBlockDevice part1(&bd, 1); err = part1.init(); TEST_ASSERT_EQUAL(0, err); MBRBlockDevice part2(&bd, 2); err = part2.init(); TEST_ASSERT_EQUAL(0, err); // Test reading/writing the partitions uint8_t *write_block = new (std::nothrow) uint8_t[BLOCK_SIZE]; uint8_t *read_block = new (std::nothrow) uint8_t[BLOCK_SIZE]; if (!write_block || !read_block) { printf("Not enough memory for test"); goto end; } // Fill with random sequence srand(1); for (int i = 0; i < BLOCK_SIZE; i++) { write_block[i] = 0xff & rand(); } // Write, sync, and read the block err = part1.erase(0, BLOCK_SIZE); TEST_ASSERT_EQUAL(0, err); err = part1.program(write_block, 0, BLOCK_SIZE); TEST_ASSERT_EQUAL(0, err); err = part1.read(read_block, 0, BLOCK_SIZE); TEST_ASSERT_EQUAL(0, err); // Check that the data was unmodified srand(1); for (int i = 0; i < BLOCK_SIZE; i++) { TEST_ASSERT_EQUAL(0xff & rand(), read_block[i]); } // Check with original block device err = bd.read(read_block, 1 * BLOCK_SIZE, BLOCK_SIZE); TEST_ASSERT_EQUAL(0, err); // Check that the data was unmodified srand(1); for (int i = 0; i < BLOCK_SIZE; i++) { TEST_ASSERT_EQUAL(0xff & rand(), read_block[i]); } // Test with second slice of block device srand(1); for (int i = 0; i < BLOCK_SIZE; i++) { write_block[i] = 0xff & rand(); } // Write, sync, and read the block err = part2.erase(0, BLOCK_SIZE); TEST_ASSERT_EQUAL(0, err); err = part2.program(write_block, 0, BLOCK_SIZE); TEST_ASSERT_EQUAL(0, err); err = part2.read(read_block, 0, BLOCK_SIZE); TEST_ASSERT_EQUAL(0, err); // Check that the data was unmodified srand(1); for (int i = 0; i < BLOCK_SIZE; i++) { TEST_ASSERT_EQUAL(0xff & rand(), read_block[i]); } // Check with original block device err = bd.read(read_block, (BLOCK_COUNT / 2) * BLOCK_SIZE, BLOCK_SIZE); TEST_ASSERT_EQUAL(0, err); // Check that the data was unmodified srand(1); for (int i = 0; i < BLOCK_SIZE; i++) { TEST_ASSERT_EQUAL(0xff & rand(), read_block[i]); } err = part1.deinit(); TEST_ASSERT_EQUAL(0, err); err = part2.deinit(); TEST_ASSERT_EQUAL(0, err); end: // Clean up delete[] write_block; delete[] read_block; } // Test setup utest::v1::status_t test_setup(const size_t number_of_cases) { GREENTEA_SETUP(10, "default_auto"); return verbose_test_setup_handler(number_of_cases); } Case cases[] = { Case("Testing formatting of master boot record", test_mbr_format), Case("Testing mbr attributes", test_mbr_attr), Case("Testing mbr read write", test_mbr_read_write), }; Specification specification(test_setup, cases); int main() { return !Harness::run(specification); }