/* Copyright (c) 2019 ARM Limited * SPDX-License-Identifier: Apache-2.0 * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "gtest/gtest.h" #include "features/storage/blockdevice/ChainingBlockDevice.cpp" #include "stubs/BlockDevice_mock.h" using ::testing::_; using ::testing::Return; using ::testing::ReturnArg; using ::testing::SaveArg; using ::testing::SaveArgPointee; using ::testing::SetArrayArgument; using ::testing::SetArgPointee; using ::testing::SetArgReferee; using ::testing::DoAll; #define BLOCK_SIZE (512) #define SECTORS_NUM (8) #define DEVICE_SIZE (BLOCK_SIZE * SECTORS_NUM) class ChainingBlockModuleTest : public testing::Test { protected: BlockDeviceMock bd_mock1; BlockDeviceMock bd_mock2; BlockDevice *bds[2] = {&bd_mock1, &bd_mock2}; ChainingBlockDevice bd{bds, 2}; uint8_t *magic; uint8_t *buf; virtual void SetUp() { ON_CALL(bd_mock1, size()).WillByDefault(Return((SECTORS_NUM / 2)*BLOCK_SIZE)); ON_CALL(bd_mock2, size()).WillByDefault(Return((SECTORS_NUM )*BLOCK_SIZE)); ON_CALL(bd_mock1, get_erase_size(_)).WillByDefault(Return(BLOCK_SIZE)); ON_CALL(bd_mock2, get_erase_size(_)).WillByDefault(Return(2*BLOCK_SIZE)); ON_CALL(bd_mock1, get_erase_size()).WillByDefault(Return(BLOCK_SIZE)); ON_CALL(bd_mock2, get_erase_size()).WillByDefault(Return(2*BLOCK_SIZE)); EXPECT_CALL(bd_mock1, init()); EXPECT_CALL(bd_mock2, init()); // Init performs checks on the parameters of underlying BDs // the BDs used for this test have different parameters: // bd_mock1 has erase/program/read size of BLOCK_SIZE and total (SECTORS_NUM / 2)*BLOCK_SIZE size // bd_mock1 has erase/program/read size of 2*BLOCK_SIZE and total (SECTORS_NUM )*BLOCK_SIZE size EXPECT_CALL(bd_mock1, get_erase_value()).WillOnce(Return(0)); EXPECT_CALL(bd_mock1, get_read_size()).WillOnce(Return(BLOCK_SIZE)); EXPECT_CALL(bd_mock1, get_program_size()).WillOnce(Return(BLOCK_SIZE)); EXPECT_CALL(bd_mock2, get_erase_value()).WillOnce(Return(0)); EXPECT_CALL(bd_mock2, get_read_size()).WillOnce(Return(BLOCK_SIZE * 2)); EXPECT_CALL(bd_mock2, get_program_size()).WillOnce(Return(BLOCK_SIZE * 2)); ASSERT_EQ(bd.init(), 0); magic = new uint8_t[BLOCK_SIZE * 4]; buf = new uint8_t[BLOCK_SIZE * 4]; // Generate simple pattern to verify against for (int i = 0; i < BLOCK_SIZE * 4; i++) { magic[i] = 0xaa + i; } } virtual void TearDown() { EXPECT_CALL(bd_mock1, deinit()); EXPECT_CALL(bd_mock2, deinit()); ASSERT_EQ(bd.deinit(), 0); delete[] magic; delete[] buf; } }; TEST_F(ChainingBlockModuleTest, init) { ChainingBlockDevice b(this->bds, 2); EXPECT_EQ(b.get_erase_size(), 0); EXPECT_EQ(b.get_erase_size(0), 0); EXPECT_EQ(b.get_erase_value(), -1); EXPECT_EQ(b.size(), 0); EXPECT_EQ(b.program(magic, 0, BLOCK_SIZE), BD_ERROR_DEVICE_ERROR); EXPECT_EQ(b.read(buf, 0, BLOCK_SIZE), BD_ERROR_DEVICE_ERROR); // EXPECT_EQ(b.deinit(), BD_ERROR_OK); EXPECT_EQ(b.sync(), BD_ERROR_DEVICE_ERROR); EXPECT_EQ(b.get_type(), "CHAINING"); EXPECT_CALL(bd_mock1, init()); EXPECT_CALL(bd_mock1, size()).WillOnce(Return((SECTORS_NUM / 2)*BLOCK_SIZE)); EXPECT_CALL(bd_mock1, get_erase_size()).WillOnce(Return(BLOCK_SIZE)); EXPECT_CALL(bd_mock1, get_read_size()).WillOnce(Return(BLOCK_SIZE)); EXPECT_CALL(bd_mock1, get_program_size()).WillOnce(Return(BLOCK_SIZE)); EXPECT_CALL(bd_mock1, get_erase_value()).WillOnce(Return(2)); EXPECT_CALL(bd_mock2, init()); EXPECT_CALL(bd_mock2, size()).WillOnce(Return((SECTORS_NUM )*BLOCK_SIZE)); EXPECT_CALL(bd_mock2, get_erase_size()).WillOnce(Return(BLOCK_SIZE * 2)); EXPECT_CALL(bd_mock2, get_read_size()).WillOnce(Return(BLOCK_SIZE * 2)); EXPECT_CALL(bd_mock2, get_program_size()).WillOnce(Return(BLOCK_SIZE * 2)); EXPECT_CALL(bd_mock2, get_erase_value()).WillOnce(Return(3)); EXPECT_EQ(b.init(), 0); EXPECT_EQ(b.get_program_size(), BLOCK_SIZE * 2); EXPECT_EQ(b.get_read_size(), BLOCK_SIZE * 2); EXPECT_EQ(b.get_erase_size(), BLOCK_SIZE * 2); EXPECT_EQ(b.get_erase_value(), -1); } TEST_F(ChainingBlockModuleTest, memory_overlap) { // program // Half of the data should go into bd_mock1 EXPECT_CALL(bd_mock1, program(ByteBufferMatcher(magic, BLOCK_SIZE*2), (SECTORS_NUM / 2 - 2) * BLOCK_SIZE, 2 * BLOCK_SIZE)) .Times(1) .WillOnce(Return(BD_ERROR_OK)); // Another half should go to bd_mock2 EXPECT_CALL(bd_mock2, program(ByteBufferMatcher(magic+BLOCK_SIZE*2, BLOCK_SIZE*2), 0, 2 * BLOCK_SIZE)) .Times(1) .WillOnce(Return(BD_ERROR_OK)); EXPECT_EQ(bd.program(magic, (SECTORS_NUM / 2 - 2) * BLOCK_SIZE, 4 * BLOCK_SIZE), BD_ERROR_OK); // read // On read half of the data will be read out from bd_mock1 EXPECT_CALL(bd_mock1, read(_, (SECTORS_NUM / 2 - 2) * BLOCK_SIZE, 2 * BLOCK_SIZE)) .Times(1) .WillOnce(DoAll(SetArg0ToCharPtr(magic, 2*BLOCK_SIZE), Return(BD_ERROR_OK))); EXPECT_CALL(bd_mock2, read(_, 0, 2 * BLOCK_SIZE)) .Times(1) .WillOnce(DoAll(SetArg0ToCharPtr(magic+2*BLOCK_SIZE, 2*BLOCK_SIZE), Return(BD_ERROR_OK))); EXPECT_EQ(bd.read(buf, (SECTORS_NUM / 2 - 2) * BLOCK_SIZE, 4 * BLOCK_SIZE), BD_ERROR_OK); EXPECT_EQ(memcmp(magic, buf, BLOCK_SIZE * 4), 0); // erase EXPECT_CALL(bd_mock1, erase((SECTORS_NUM / 2 - 2) * BLOCK_SIZE, 2 * BLOCK_SIZE)) .Times(1) .WillOnce(Return(BD_ERROR_OK)); EXPECT_CALL(bd_mock2, erase(0, 2 * BLOCK_SIZE)) .Times(1) .WillOnce(Return(BD_ERROR_OK)); EXPECT_EQ(bd.erase((SECTORS_NUM / 2 - 2) * BLOCK_SIZE, 4 * BLOCK_SIZE), BD_ERROR_OK); }