ARM Compiler 6.13 testing revealed linker errors pointing out
conflicting use of `__user_setup_stackheap` and
`__user_initial_stackheap` in some targets. Remove the unwanted
`__user_initial_stackheap` from the targets - the setup is
centralised in the common platform code.
Looking into this, a number of other issues were highlighted
* Almost all targets had `__initial_sp` hardcoded in assembler,
rather than getting it from the scatter file. This was behind
issue #11313. Fix this generally.
* A few targets' `__initial_sp` values did not match the scatter
file layout, in some cases meaning they were overlapping heap
space. They now all use the area reserved in the scatter file.
If any problems are seen, then there is an error in the
scatter file.
* A number of targets were reserving unneeded space for heap and
stack in their startup assembler, on top of the space reserved in
the scatter file, so wasting a few K. A couple were using that
space for the stack, rather than the space in the scatter file.
To clarify expected behaviour:
* Each scatter file contains empty regions `ARM_LIB_HEAP` and
`ARM_LIB_STACK` to reserve space. `ARM_LIB_STACK` is sized
by the macro `MBED_BOOT_STACK_SIZE`, which is set by the tools.
`ARM_LIB_HEAP` is generally the space left over after static
RAM and stack.
* The address of the end of `ARM_LIB_STACK` is written into the
vector table and on reset the CPU sets MSP to that address.
* The common platform code in Mbed OS provides `__user_setup_stackheap`
for the ARM library. The ARM library calls this during startup, and
it calls `__mbed_user_setup_stackheap`.
* The default weak definition of `__mbed_user_setup_stackheap` does not
modify SP, so we remain on the boot stack, and the heap is set to
the region described by `ARM_LIB_HEAP`. If `ARM_LIB_HEAP` doesn't
exist, then the heap is the space from the end of the used data in
`RW_IRAM1` to the start of `ARM_LIB_STACK`.
* Targets can override `__mbed_user_setup_stackheap` if they want.
Currently only Renesas (ARMv7-A class) devices do.
* If microlib is in use, then it doesn't call `__user_setup_stackheap`.
Instead it just finds and uses `ARM_LIB_STACK` and `ARM_LIB_HEAP`
itself.
Instead of user defined symbols in assembly files or C files,
use linker scripts to add heap and stack - this is inconsistent
with ARM std linker scripts
--legacyalign, --no_legacyalign are deprecated from ARMC6 compiler, in order to
remove deprecated flags all linker files (GCC and IAR as well to have uniformity)
should strictly align to 8-byte boundary
fire_interrupt function should be used for events in the past. As we have now
64bit timestamp, we can figure out what is in the past, and ask a target to invoke
an interrupt immediately. The previous attemps in the target HAL tickers were not ideal, as it can wrap around easily (16 or 32 bit counters). This new
functionality should solve this problem.
set_interrupt for tickers in HAL code should not handle anything but the next match interrupt. If it was in the past is handled by the upper layer.
It is possible that we are setting next event to the close future, so once it is set it is already in the past. Therefore we add a check after set interrupt to verify it is in future.
If it is not, we fire interrupt immediately. This results in
two events - first one immediate, correct one. The second one might be scheduled in far future (almost entire ticker range),
that should be discarded.
The specification for the fire_interrupts are:
- should set pending bit for the ticker interrupt (as soon as possible),
the event we are scheduling is already in the past, and we do not want to skip
any events
- no arguments are provided, neither return value, not needed
- ticker should be initialized prior calling this function (no need to check if it is already initialized)
All our targets provide this new functionality, removing old misleading if (timestamp is in the past) checks.
There is an easy default implementation of spi_master_block_write that
just calls spi_master_write in a loop, so the default implementation
of spi_master_block_write has been added to all targets.
Add sleep/deepsleep functions to platform layer which are replacing HAL
functions with the same name, rename existing symbols in HAL layer
to hal_sleep/hal_deepsleep. This way sleep functions
are always available, even if target doesn't implement them, which makes
the code using sleep clearer. It also enables us to make decision on in
which builds (debug/release) the sleep will be enabled.