--legacyalign, --no_legacyalign are deprecated from ARMC6 compiler, in order to
remove deprecated flags all linker files should strictly align to 8-byte boundary
As suggested by Russ Butler in mbed-os issue #7328, and until there is an
implementation of mbed-os issue #4408, we are implementing a workaround
at HAL level to check if there is any ongoing serial transfer (which happens
if HW FIFO is not yet empty).
In case a transfer is ongoing, we're not entering deep sleep and
return immediately.
In serial_tx_active and serial_rx_active functions,
we check the internal state value with
HAL_UART_STATE_BUSY_TX = 0x21U,
HAL_UART_STATE_BUSY_RX = 0x22U,
It seems that value can also be :
HAL_UART_STATE_BUSY_TX_RX = 0x23U,
Compile: stm32f7xx_hal_pcd.c
../targets/TARGET_STM/TARGET_STM32F7/device/stm32f7xx_hal_pcd.c: In function 'PCD_WriteEmptyTxFifo':
../targets/TARGET_STM/TARGET_STM32F7/device/stm32f7xx_hal_pcd.c:1310:11: warning: comparison between signed and unsigned integer expressions [-Wsign-compare]
if (len > ep->maxpacket)
^
../targets/TARGET_STM/TARGET_STM32F7/device/stm32f7xx_hal_pcd.c:1325:13: warning: comparison between signed and unsigned integer expressions [-Wsign-compare]
if (len > ep->maxpacket)
^
Pending official update from STM, add memory barriers to the Ethernet
HAL code for the STM32F7xx family.
Cortex-M7 has a merging write buffer that is not automatically flushed
by accesses to devices, so without these DMBs, we sometimes lose synch
with the transmitter.
The DMBs are architecturally needed in every version of this HAL, but
adding just to the STM32F7 version for now to clear test, as the
problem has only been observed on Cortex-M7-based devices.
Fixes#5622.
CAN_2 and CAN_3 are enum and not #define and this causes compilation error with GCC_ARM
Instead put back the test of CAN_NUM (which are defined in can_device.h).
- serial_init, serial_free and serial_baud function moved from serial_device.c (specific to each STM32 family) to serial_api.c (common STM32 file)
- default baudrate value was hardcoded to 9600
- Value is set now to MBED_CONF_PLATFORM_STDIO_BAUD_RATE for STDIO
- Value is set now to MBED_CONF_PLATFORM_DEFAULT_SERIAL_BAUD_RATE for other use
- UART init will not be stopped before calling serial_baud function
Rather than Unlocking flash during flash object creation, and leaving
the flash possibly continuously unlocked a(s object might bever be freed),
we decide to Unlock then Lock again at each erase or program call.
After reset the MCR register content needs to be restored so we're
introducing the can_registers_init function to be called at the first
init stage, but also after reset. We also store the can frequency to
go through the initialisation phase again.
Instead of a static object, this will make driver
instantiation more robust and allow to re-use init
configuration on a need basis.
The CANName struct member is actually the CAN registers base address,
which is now available in the CanHandle.Instance field, so we don't need
CANName anymore.
Adding flash API support to STM32F7 family. The code is derived from
F4 family one. The memory topology is described in flash_data.h files
and the flash_api.c implementation manages the 2 possible memory types (1
or 2 banks).
- default value is the same as before patch
- system_stm32f7xx.c file is copied to family level with all other ST cube files
- specific clock configuration is now in a new file: system_clock.c (target level)
In this commit, the analogin_s structure is moved to commonn_objects.h file
to limit the duplicaion.
The ADC handle is moved from a global variable to a struct member of the
analogin object. This allows multiple ADC instances to work correctly.
Note that State needs to be explicitely set to HAL_ADC_STATE_RESET
because the object is not zero initialized.
TXE indicates that a byte can be written to UART register for sending,
while TC indicates that last byte was completely sent. So the TXE flag
can be used in case of interrupt based Serial communication, to allow
faster and efficient application buffer emptying.
Also TXE flag will be erased from the interrupt when writing to register.
In case there is nothing to write in the register, the application is
expected to disable the interrupt.
The RXNE flag is getting cleared when reading Data Register so it should
not be cleared here. Especially in case of high data rate, another byte of
data could have received during irq_handler call and clearing the flag
would read and discard this data which would be lost for application.
Depending on families, different HAL macros are defined to check the
state of serial interrupts. In several cases, we can find only 1 macro:
__HAL_UART_GET_IT_SOURCE
Checks whether the specified UART interrupt has occurred or not
But in F0, F3, F7, L0, L4 there are 2 different macros
__HAL_UART_GET_IT
Checks whether the specified UART interrupt has occurred or not
__HAL_UART_GET_IT_SOURCE
Checks whether the specified UART interrupt source is enabled.
In the later case, __HAL_UART_GET_IT_SOURCE was being used so far,
but actually needs to be replaced by __HAL_UART_GET_IT. Using the right
macro, we also check the proper flags accordingly.