- This is internal change, no functionality has been changed
- LoRaWanInterface cleaned up and code moved to LoRaMacStack
- Compliance code in LoRaMacStack moved to EOF
- Green tea tests have been run manually
- Doxygen updated accordingly
LoRA: reorder class members
This API can be used to runtime change device class.
Please note that only class A and C are supported at the moment.
Trying to set class B will return LORAWAN_STATUS_UNSUPPORTED.
Fix set_device_class documentation
fix documentation
- Internal changes only
- reset function is created to LoRaPHY to reset LoRaMAC parameters with default values
- Doxygen updates for newly created functions
- This is internal logic only and there are no functionality changes
- Some compliance test stuff have been moved to end of files
- Some internal data structures removed as useless after refactor
This commit also introduces API change for disconnect(). disconnect() will
now return LORAWAN_STATUS_DEVICE_OFF for successfull disconnect.
* LoRaWANStack::handle_tx() can be called with NULL buffer when length is 0.
This commit fixes the case where user has provided NULL buffer and length
is > max_possible_size.
handle_tx() now always returns LORAWAN_STATUS_PARAMETER_INVALID if given
buffer is NULL pointer and length > 0.
General error checking is added and some asserts are added for events.
Baseline is changed to use a single set of data structures that simplifies the
code in the LoRaWANStack and Mac layer. We are now following certian rules for naming
data structures.
- All structures visible outside their domain are prefixed as 'lorawan_'
- All mac structures are prefixed as 'loramac_'
- All subsystem or module strucutures carry their name in prefix, like 'mcps_'
PHY layer still have legacy camel case data structures which will be entertained
later while we will be simplifying PHY layer.
Test cases are also updated with the new data structure naming conventions.
One major difference from the previous baseline is the removal of static buffer
from mcps indication. And we do not copy data from stack buffer to rx_msg buffer.
This saves at least 512 bytes.
It may look like now that if we have received something but the user have not read
from the buffer, then the buffer will be overwritten and we will lose previous frame.
Yes, we will. But the same will happen even if we would have copied the buffer into rx_msg
because then the rx_msg gets overwritten. So we decide to abandon copying the buffer at
multiple locations. We inform the user about reception, if the user doesn't read and
the data gets overwritten, then so be it.
LoRaWANTimer is now called as LoRaWANTimeHandler class as this class handles both
current time and timer functionalities.
Some refactoring on how LoRa objects are created was needed:
- LoRaWANTimeHandler object is created by LoRaWANStack and shares with LoRaMac and PHY.
- LoRaPHY object is now member of LoRaWANStack class instead of static variable in source file.
MAC layer is now a class rather than being a blob.
In addition to that Mac commands are now being handled in
a seperate subsystem (a class of its own). In future we
will do the same with othe sublayers of MAC like MLME, MCPS etc.
The drive behind this exercise is to make MAC and supporting layers
into an object oriented system.
Major bug fixes include:
- last join time inclusion in band parameters
- disabling rx2 window if we missed the slot already
- MLME uplink schdule hook
- nbRep according to spec
- maintaining datarate after successful joining
- suppressing MLME requests if MAC is in TX_DELAYED state
- Uplink dwell time verification
Some missing features are implemented. Details are as follows.
Support for LinkCheckRequet:
An application API is added, add_link_check_request() to delegate a
request for Link Check Request MAC command.
* Application provides a callback function that needs to be called on reception of
link check response.
* Mac command is piggybacked with data frames.
This API makes the sticky MAC command stick with the application payloads until/unless
the application un-sticks the said mac command using remove_link_check_request() API.
Handling fPending bit:
If in the Downlink, we get the fPending bit set in fctrl octet,
we attempt to send an empty message back to Network Server to
open additional Receive windows. This operation is independent
of the application. An RX_DONE event is queued bedore generating
the said empty message. Specification does not mention what can be the
type of that empty message. We have decided it to be of CONFIRMED
type as it gives us an added benefit of retries if the corresponding
RX slots are missed.
Radio event callbacks as Mbed callbacks:
radio_events_t structure has been carrying C-style callbacks which was
inherited from the legacy code. These callbacks has now been changed to
Mbed Callbacks that makes sure that we can be object oriented from now
on.
All compliance test related codes are now inside LORAWAN_COMPLIANCE_TEST
build flag. This will reduce memory usage in when compliance test codes
are not needed.
TxNextPacketTimer callback was being used for testing only (compliance testing to be precise).
Now there are independent methods and direct calls to automatic timers for the
compliance testing so there is no particular need for this timer anymore.
Application should be able to add some optional callbacks if it needs to.
Ofcourse there is a penalty of 8-12 bytes per callback, but there can be
certain needs of the application that needs to be met for example setting
up a link check request etc.
We have introduced a structure that contains callbacks for the application use.
- 'events' callback is mandatory, user must assign it. Because this callback brings
state changes for the application. We cannot segregate this into individual handlers
because of RAM penalty.
- Other calbacks (none of them are implemented yet are optional).
Example of using the API is provided with doxygen
Receive API should return the length of data written to the user buffer
as the Posix APIs suggest rather than sending the pending length of data
back.
That has actually been a typo mistake which actually wnt in even with doicumentation :)
The EventQueue thread in LoRaMac.cpp is disbanded and the LoRaWAN
protocol is redesigned to store a pointer for an application
provided EventQueue. It means that now the stack runs in the
same thread as application. Application provided EventQueue is used
to defer ISRs from radio driver and timer callbacks as well as the
application events are queued to the same event loop.
LoRaWANStack class is our controller layer on top of our
current MAC and PHY layer. It provides services to an implementation
of LoRaWANBase class.
It is a singleton class owing to the fact that the mac layer underneath
is not a class object. Instead, it uses the MAC via setting mib, mlme, mcps
requests and getting responses back from the mac layer using confirmations and
indications.
In essense this class is a special handle for
mac layer underneath which is predominantly reference design based.
In future we may refactor the LoRaMac.cpp code to make it object oriented
and cleaner.
At one end, it binds the application selected radio driver with the PHY layer
and at the other end it provides services to upper layers handling the mac via
well defined APIs.
For proper selection of a PHY layer, user must use Mbed config system.
For this purpose an mbed_lib.json is provided which can be overriden by the
user defined mbed_app.json. By default the EU868 band is selected as a PHY layer.
User must set relevant keys for the selected connection mechanism.