Remove HAL_Init and related code from SystemInit and move it to
mbed_sdk_init. The function SystemInit is called early in the boot
sequence before RAM is initialized or the VTOR is setup, so it should
not be used to perform the HAL initialization.
This fixes crashes due the vector table being used before it has been
relocated.
Note that this could have side effects on the application as it would
not be aware that data has been missed. This may be later solved by
adding an error management parameter to the Serial API in mbed.
The advantage is that the serial link can work again.
As reported in issue #4214, there are seen issues seen first on
NUCLEO_F103RB in case of successive Reads of 1 byte at a time.
This issue is due to a wrong state management in the end of read sequence.
Also F1 i2c driver was not fully aligned to others, which is updated here.
For STM32 targets using a 32-bit timer for the microsecond ticker, the
driver did not properly handle timestamps that are in the past. It
would just blindly set the compare register to the requested timestamp,
resulting in the interrupt being serviced up to 4295 seconds late
(i.e. after the 32-bit timer counts all the way around to hit the
timestamp again).
This problem can easily be reproduced by creating a Timeout object
then calling the timeout's attach_us() member function to attach a
callback with a timeout of 0 us. The callback will not get called for
over 2147 seconds, and possibly up to 4295 seconds late if no other
microsecond ticker events are getting scheduled in the meantime.
Now, after the compare register has been set, the timestamp is checked
against the current time to see if the timestamp is in the past, and
if so, the compare event is manually set.
NOTE: By checking if the timestamp is in the past after configuring the
capture register, we ensure proper handling in the case where the timer
updates past the timestamp while setting the capture register.
Reworked the serial_format() function for STM32F0x
devices to take the format in the form:
data_bits - parity - stop_bits
E.g. 8 - N - 1
where data_bits exclude the parity bit.
Added a case for 7 bits data as at least the chips
STM32F0x1/STM32F0x2/STM32F0x8 support 7 bits data.
Consolidated serial_format() and uart_init()
functions into a general TARGET_STM serial_api.c
file since the functions are common to all STM targets.
Fixes#4189
When we want to activate USE_FULL_ASSERT macro in STM32 CUBE, there is a
need to have the assert map to MBED.
The easiest way to have this definition in a single place for all STM32
HAL and LL files using it, is to add a specific header file where the
porting to MBED is done.
Revert HRM1017 file source deletion
Added in small comment next to additions
Added mapping to BTN-labelled switches
Added mapping to USER_BUTTON-labelled switches
Undo incorrect mapping to SWIO pin in NORDIC target
Before this patch, many warnings like below were generated
during compilation with ArmCC
[Warning] lwip_ethernet.h@57,0: #3135-D: attribute does not apply to any entity
This happens here as ``--gnu`` option of ArmCC is being used, which
enables the GNU compiler extensions that the ARM compiler supports.
This is solve by adding a extra check on __CCARM .
The pwmout driver is very similar for each STM32 family.
The only family specific part is defined in pwmout_device.h file.
It mainly contains few specific information:
- The mapping of PWM/TIMERS to APB1 or APB2 so that we can get the clock
- The clock calculation uses the right APB clock, which was sometimes
not the case before and could have lead to errors in case dividers were
enabled on APB clock settings. This case is now covered.
- Inactivation of inverted support on feaw families
this first makes pinmap.c a common file
then rework it with several goals:
- avoid gpio / irq / pin management extra dependencies
- improve performances when switching between pin modes
This change is based on LL layer to access to registers level
instead of using HAL higher level API.
The family specific functions are implemented in pin_device.h
of each family. Mostly this is F1 family that is differnt
from other ones.
Instead of using HAL_GPIO_Init / Deinit which makes a lot of registers
being written and re-written, and which creates extra gpio / pin / irq
dependencies, we directly set the IRQ related registers thanks for the
STM32 LL layers which provides APIs to modify registers.
Only one point of attention:
STM_MODE_ANALOG_ADC_CONTROL is a specific mode that is only supported on L4.
So STM_MODE_ANALOG_ADC_CONTROL was moved to index 13 (last entry)
of gpio_mode table so that all the other modes are common and only the last
one is specific.
Let's make the code more common for gpios.
The only difference between STM32 families is that BRR register may
not be available. In case BRR is not available, we use the 16 left bits
of BSRR instead. We could always use BSRR, but BRR saves one left-shift
operation, so let's use it when available.
By default we will consider using BRR, except for platforms that define
GPIO_IP_WITHOUT_BRR.
- RCC init: unused clock was enabled without any init parameters
- RCC init: one PLL parameter was missing
- ADC: a parameter setting was missing to init clock
- GPIO: mode was not allowed by ST HAL API
- ll_utils: compilation issue
Even when HSE is used, it is possible to get a 32MHz system clock
8MHz x PLLMUL=12 % PLLDIV=2 = 32MHz
And we still get 48MHz USB clock:
8MHz x PLLMUL=12 % 2 = 48MHz
This allows to take full benefit of the CPU capability.
Since most of the code in i2c_api.c is now relying on STM32 HAL, there
is now a possibility to make a common usage of this code accross families.
The IP version definition is introduced per family, to allow a switch of
functionnalities, especially the frequency management which differs.
BTw, we fix the F0 frequency settings at the same time.
F1 is managed for now as an exception as the HAL API for sequential transmit
/receive is not yet available (coming soon)
This applies the same fix as was done for F4 to solve issue #2638.
The fix applies ell to all other families excpet STM32F1.
Basically, to avoid over-writing the pull-up/-down settings, we read the
current state from HW.
the SPI_ASYNCH feature has been already activated for STM32F4.
This patchset makes it supported on all STM32 families by:
- moving spi_s structure at family level instead of board level
- using the F4 spi_api.c reference implementation and making it a common
stm_spi_api.c file which makes maintenance a lot easier.
- the only part that needs to be implemented for each family is the computation
of the clock frequency input to the spi peripheral which is not the same
accross families. So this is what remains in the spi_api.c of each family.
Because of the introduction of the common file, all the above modifications
needs to be done at once.
Supported toolchains initialization steps have been modified to make sure
that mbed_sdk_initi is called _after_ RAM initialization and _before_ C++
objects creation.
since this was done, there is no need to redundant SystemCoreClockUpdates
in the drivers
Various toolchains supported in MBED don't follow the same initialization
steps. This can have impacts on platform behavior.
For STM32, it is needed to call the HAL_Init() _after_ the RAM has been
initialized (sdata from flash / zero initialized data) and _before_ the C++
objects are being created, especially if those objects require support
of tickers for instance.
In GCC, this is easily done because SystemInit is called after the ram
initialisation, so HAL_Init does not need to called from mbed_sdk_init.
this is covered by the changes in mbed_overrides.c files.
This series should solve issue reported here:
STM32 (At least F401) breaks if Tickers are activated in a global object #2115