As per discussion with Nicolas Sornin, any device time synchronization
value must be handled as is (monotonically increasing GPS epoch time guaranteed to be monotonic with granularity 1 second).
Once we receive a response to DevTimeReq (i.e., DevTimeAns is received)
we immediately set our local gps time stamp and take a snapshot of our
local monotonic (ticker or equivalent) clock. This is achieved by
calling 'set_gps_time(...)' API in the LoRaWANTimer module.
After that an event is generated to let the application know that a
device time has been synched.
LoRaWANTimer class is responsible for providing time base for the
LoRaWAN stack in Mbed OS. It derives its core monotonic clock from the
EventQueue which is essentially a millisecond ticker or equivalent (in
tickless mode). LoRaWAN network can assist the device for device level
time synchronization using ClockSynchronization protocol (for v1.0.2) or
by replying to DevTimeReq MAC command (for v1.0.3 and above). The time
base used for device synchronization using above methods is purely
based on GPS epoch and needs no conversion to UTC or TAI etc (no
adjustment for leap seconds either).
Therefore we have extended the LoRaWANTimer APIs to account for GPS time
base if assisted by the network.
get_gps_time() is the API to use to acquire GPS time base from the
stack. If the network never assisted the device with a time stamp, a
value of zero is returned which means GPS time base is not available.
set_gps_time(time) API is used to set a given GPS time-stamp when the
network sends it.
These APIs are hooked via LoRaMAC to LoRaWANInterface which exposes the
access to the application.
The application can use add_device_time_request() API to attach
DeviceTimeRequest mac command for the next outgoing packet.
It is a non-stick mac command, so if there is no response, the app can
retry. The API indicates if the mac command was queued successfully or
not. The actual indication of successful time and date update will come
through an event 'DEVICE_TIME_SYNCHED'.
Rejoin requests and presence/absence of CFlist demand different
handling.
If a Rejoin request was sent we shall use RJCountX (0,1) instead of dev
nonce for key derivation.
If a Rejoin request is not of type 2, we reset mac, phy parameters
alongwith frame counters. However, if it is type 2, we reset frame
counters only.
If cflist i present, we shall always apply it as it is.
If it's not and rejoin type is not type 2, we restore default channels.
Otherwise the local channels do not change.
LoRaWAN specification 1.1.0 is incorrect in handling of FOpts encrytpion.
A CR was made by STMicroelectronics which correctly addresses the issue.
We have taken that CR and implemented in our code base.
Although we always add a port field for Uplink traffic, the spec allows
for fport field to be excluded. So there can be network server instances
which would exclude fport field from downlinks. We are now adding
handling for such situations.
BE to LE fixes, missing MLME types added
LoRaWAN 1.1 Features added (Some LoRaPhy impl missing still + some TODOs in code)
- MLME confirm handling refactored
- Rejoin handling missing
- new CF_LIST mechanism missing (+resets involved)
- NVM handling missing
Rejoin logic added
Adding group identidier so that LoRaWANInterface class goes to the class
hierarchy section rather than data-structures.
Adding missing documentation for a couple of public functions.
Adding \code and \endcode modifiers for the example code in the
documentation.
Adding compile time NO_DOXYGEN flag for the implementations of the
LoRaPHY Class.
Adding documentation for some of the private structures.
LinkADRReq mac command can be used by the network server to set a
certain level of QOS using NbTrans field which is applicable to
Unconfirmed traffic only for 1.0.2 spec.
This commit introduces mechanisms to facilitate this QOS. It means to
repeat an outgoing unconfirmed message NbTrans times without changing
its frame counter.
For class C, we have retired the ack_expiry_timer_for_class_c and have
replaced it with another timer which mimics the RX2 closure as in Class
A but doesn't actually close RX2 window. It's just a mechanism by which
the state machine is informed that the you can proceed forward, we have
not received anything in RX2 window either. This is needed as RX2
doesn't timeout in class C (i.e., the radio remains in continuous mode).
In addition to that we need to close any pending timers for Receive
windows after the MIC has passed and the Duplicate counter check has
also been passed.
If the packet is already handed over to the PHY layer, we shouldn't be
able to cancel that particular transmission. In addition to that if the
backoff timer is either not applied or has been deactivated, should end
up in no-op rather than having normal termination. A new error code has
been introduced to cover no-op cases. This error code replaces the
compliance test related error code which is no longer relevant.
clear_tx_pipe() does nothing if:
- The stack cannot cancel TX (already handed over to PHY)
- The backoff timer is not active at all
- The event is disaptched to schedule
stop_sending() will only post process ongoin TX if the pipe was
definitely cleared.
While performing compliance tests with an industry tester, we realized
that there was no need for any extra handling code for the compliance
tests. The tests would run fine, if we only have a handling application.
However, in normal operation we wouldn't like the network to send us any
traffic on compliance testing port. To mitigate that, on the reception
path we filter out any traffic on compliance testing port if compliance
testing is not underway. User should define LORAWAN_COMPLIANCE_TEST macro
in mbed_app.json to enable traffic on compliance test port.
Some LoRaMac methods were defined as public even though there were used only
internally.
Also removed definition of some methods which were not even implemented nor used.
In release builds where MBED_ASSERT macro is syphoned off, we were hitting
an unused variable warning. To mitigate that we could direct the variable
used in MBED_ASSERT to void.
It is quite possible that the user request for scheduling an uplink is deferred because of backoff or if it was a CONFIRMED message, a retry may take place on a different datarate and different channel.
We didn't have a hook for such deferred scheduling, telling the user whether the async rescheduling worked or not. This commit adds that capability and now we can tell the application if a scheduling failure took place after the original schedule request was accepted.
It was pointed out in #7432 and #7232 that the stack was comparing frame payload size
with the allowed payload size in a wrong manner in shcedule_tx().
We must strip the overhead from the frame before comparison.
We did have a similar check in prepare_ongoing_tx() API which would correctly analyse
the situation but a check was needed in schedule_tx() as well. The reason is that the
schedule_tx() API can be called automatically by the stack if the user intiated requested
was not promptly entertained because of duty cycle restriction. Now, the datarate can change
here (for CONFIRMED messages if the ack was not received after retries max out). That's why
a test for validity was needed.
We now perform a comparison using _ongoing_tx_message structure which contains the actual
FRMPayload size.
For proprietary type of messages only MHDR and Port field is used so we shouldn't add MAC commands
and other overhead into them.
In order to have consistent frame overhead, we have opted to always include Port field in the
frame.
RX1 and 2 delays needed to be more precise and aggregate tx time was
drifiting because of timing difference between actual tx interrupt and
our processing of that interrupt ever so slightly.
We now take a timestamp of the tx interrupt and take a time diff while
instantiating delay timers. The timestamp is then used to update the aggregate
tx time.
Two new methods are introduced in the LoRaMac class which provide current
timing and current receive slot. These functions are used by LoRaWANStack
for its processing.
Travis astyle check pointed out some of the style mismatches in the code.
Not all of them are worth changing as they make the code unreadable and
some of them are semantically wrong.
So in this commit, we have attempted to pick the most important style
mismatches and rectify.
General stability improvements are performed.
A flag is added if a Class C RX2 window is open.
We shouldn't open it again if its already opened.
TX_CRYPTO_ERROR is renamed to CRYPTO_ERROR.
Keeping TX_CRYPTO_ERROR for backwards compatibility.
In Class C, rx timeout does not take place for RX2 windows, so if we have
not received anything, we would be retrying but if the no. of retries are
maxed out, and we have not recieved anything yet, we need a mechanism to
tell the upper layer that this has happened.
rx_abort() was sort of dead code as it was doing essentially nothing.
It might have actually meddled with the state machine if it was hit by
invoking on_ack_timeout_timer_event().
State machine and corresponding processors now take care of the ack timeout,
retries and all other bits, so we don't need abort_rx().
Application can use cancel_sending() API to stop any outstanding, outgoing
transmission (a TX which is not already queued for transmission). This can
potentially enable use cases where the application could cancel a transmission
and go to sleep if the backoff period is long enough rather than waiting for
the transmission to happen.
This API enables the application to get hold of remaining time after which
the transmission will take place. User can query the backoff time whenever
there is a packet in the TX pipe. If the event for the backoff expiry is
already queued, the stack does not provide backoff metadata.
Application can give battery_level callback method what Lora stack
uses to query battery level for DevStatusReq MAC command response.
The problem was that this callback was never called.
This commit fixes this problem and if application does not set
battery_level callback at all, value 255 (= The end-device was not able to
measure the battery level.) will be returned to lora gateway.
If the frame length is not what we are expecting, it is
found to be a good practise to actually continue with what we
have received rather than aborting. As we have already demodulated
the packet and RX slots are used up, ther is not so much benefit in
dropping that packet.
There had been essentially two state machines running in our stack
which was too cumbersome and was not alligned in any symmetry.
In this work we make sure that:
* There are no callbacks from the MAC layer to Stack controller layer.
* Primitives are made local to the mac layer and are presented as
read-only to the stack controller layer.
* Interrupt handling and processing is moved to the stack controller layer.
* Reception is divided into smaller units, seperating handling of Join Accept
and normal data frames. MIC gets its own unit.
* Extraction of data and MAC commands from the payload is also being done now in
its own method.
* To ensure integrity of the stack, and sanctity of the radio payload, we copy the
radio payload buffer immediately in the rx interrupt and hoist a flag that prevents
another interrupt from happening for a short while when we are processing the previous
packet.
* If an automatic uplink is on going, we do not send a TX_DONE event to application
anymore as that is logically incorrect.
* state_controller() is the central engine for the state machine. To save code space and
memory, we are not handling each and every state in the state_controller(). Some of the states
which have no processing to be done, are explicitely set.
* For all the states who need special processing, seperate methods are added.
* Class A always run to completion to IDLE and CLass C always runs to completion as RECEIVING.
Making our LoRaWAN stack thread safe. If RTOS is not present, locks
don't do anything. ScopedLock is used to automate the lock release on
context expiry.
Fix compilation of compilance test and at the same time refactor compliance
test handler. Renamed mcps_request as test_request as it is only used for
compliance test. Also fixed a bug with null buffer in send_compliance_test_frame_to_mac.
- This is internal change, no functionality has been changed
- LoRaWanInterface cleaned up and code moved to LoRaMacStack
- Compliance code in LoRaMacStack moved to EOF
- Green tea tests have been run manually
- Doxygen updated accordingly
LoRA: reorder class members