Keep the RTC code if either DEVICE_RTC or DEVICE_LOWPOWERTIMER is
defined on the devices which use the RTC for both the rtc api and the
low power timer api. This allows DEVICE_LOWPOWERTIMER to be enabled while
DEVICE_RTC is turned off.
- Disable microsecond ticker interrupt on reinitialization
- Skip us_ticker_set_interrupt() if timestamp is already past
- Eliminate tmr2Config since tmrConfig is adequate for all timer config
1. Enable LPTICKER for K22, K24, K64, K66, K82, KL82F, KW24D
2. Change the implementation to only use the LPTMR which reduces
the amount of interrupts generated which is required for tickless
operation
Signed-off-by: Mahesh Mahadevan <mahesh.mahadevan@nxp.com>
I decided to move these files to the targets/TARGET_NORDIC/TARGET_NRF5x/TARGET_NRF51 since us_ticker.h is for sure specific for NRF51_DK and common_rtc.c might be valid also for NRF52, but this needs to be checked while porting NRF52_DK board.
Provide the following modifications for lp ticker driver:
- According to NRF51_DK reference manual rtc interrupt cannot be controlled by rtc event. In the previous implementation interrupts were enabled permanently and specific interrupt was enabled/disabled by enabling/disabling the specific event. If event is enabled, then event signal is provided to Programmable Peripheral Interconnect (PPI). If interrupt is enabled, then interrupt signal is provided to Nested Vector Interrupt Controller (NVIC). Disable all events permanently. Enable lp ticker overflow interrupt permanently(needed for RTC), disable lp ticker capture/compare interrupt on init (lp_ticker_init) , enable lp ticker interrupt when lp ticker interrupt is set (lp_ticker_set_interrupt), disable lp ticker interrupt on disable request(lp_ticker_disable_interrupt).
- Provide lp ticker data for higher level (freq: 32kHz / len: 24 bits),
- Add the following features to init routine: disable lp ticker interrupt.
- Make ticker driver to operate on ticks instead of us.
- Simplify lp ticker read and set interrupt routines (upper layers handle conversion to us and interrupt scheduling).
According to new ticker standards the following requirements for us ticker are not met on RRF5 boards:
- has a frequency between 250KHz and 8MHz (currently is driven by 32kHz clock)
- ticker increments by 1 each tick (currently is scaled to 1 MHz by incrementing counter by ~31)
Since BLE softdevice uses TIMER0 the proposition is to use high speed TIMER1 for us ticker configured as follows:
- TIMER counter width: 16 bits (max)
- TIMER frequency: 1MHz
This solution also uses Timer's capture/compare register 0 to specify interrupt time and Timer's capture/compare register 1 to read current timer value.
I implemented USTICKER feature.
The mainly changing is here.
- I added a macro to mbed_drv_cfg.h for commonalizing code for GR-PEACH and GR-LYCHEE with different clock frequencies, and referenced it's macro at us_ticker.c.
- ticker_init()
Currently, ticker_init() keep counting, disables the ticker interrupt, and is safe to call repeatedly.
Therefore, in order to satisfy specifications, I removed GIC_EnableIRQ at end of function and added GIC_DisableIRQ at begin of function.
When an interrupt is required, it will be set with ticker_set_interrupt().
If executing the following, the counter has been initialized. So it will not call after executing the first time.
OSTM1TT = 0x01; /* Stop the counter and clears the OSTM1TE bit. */
OSTM1TS = 0x1; /* Start the counter and sets the OSTM0TE bit. */
- ticker_free()
this function stops the counting and powerdown the us_ticker.
To satisfy the mbed specificationm, I implemented free() function.
- ticker_read()
Currently, Mbed spec's frequeny is between 250KHz and 8MHz, but the frequency that is used at my ticker is 33MHz.
Therefore, in order to satisfy specifications, I changed the process to return the timer counter value divided by 32(33MHz / 32).
Since the calcurate function by using 64 bit is no longer necessay, I removed it.
- ticker_set_interrupt()
Same as the above read(),
In order to satisfy specifications, I changed the process to set the value multiplied by 32.
- ticker_fire_interrupt()
In order to satisfy specifications, I implemented fire_interrupt() function.
Also I added GIC_EnableIRQ for allowing the interrupt at end of function.
- ticker_get_info()
To satisfy the mbed specificationm, I implemented ticker_get_info() function. The value of freq includes rounding off.
The new HAL allows to share the timer bit width and frequency,
the actual handling of mapping 16 bits counter up to 32 bits or
64 bits is now managed by mbed common layer.
This makes this ticker layer very similar to 32bits one and much
easier than before.
Re-implemented both us_ticker and lp_ticker to match the new API and specifications.
Details:
* On EFM32GG, EFM32WG, EFM32LG, EFM32HG, EFM32ZG: Use the RTC peripheral to back lp_ticker, and a TIMER to back us_ticker.
* On EFM32PG, EFR32MG, EFM32PG12, EFR32MG12: Use the RTCC peripheral to back lp_ticker (dual-purpose, also used to back RTC), and a TIMER to back us_ticker.
mbed RTC specifications now dictate that the RTC needs to retain and keep on counting through reset. On Silicon Labs parts, this means the RTC API can not be backed by the Silicon Labs RTC peripheral, since that doesn't provide retention functionality.
Therefore:
* On EFM32GG, EFM32WG, EFM32LG: mbed RTC API is now backed by BURTC.
* On EFM32PG, EFR32MG, EFM32PG12, EFR32MG12: mbed RTC API is now backed by RTCC.
* On EFM32ZG, EFM32HG: mbed RTC API is sadly no longer supported, since these chips don't have retained memory.
# Conflicts:
# targets/TARGET_Silicon_Labs/TARGET_EFM32/lp_ticker.c
# targets/TARGET_Silicon_Labs/TARGET_EFM32/rtc_api.c
# targets/targets.json
Low power ticker time counter is created based on RTC which is driven by 32KHz clock. Additional low power timer is used to generate interrupts.
We need to adapt driver to operate on ticks instead of us.
Perform the following updates:
- provide lp ticker configuration: 32KHz/32 bit counter.
- lp_ticker_init() routine disables lp ticker interrupts .
- adapt the driver functions to operate on ticks instead us.
- adapt comments.
- add us_ticker_free() routine.
I implemented the SLEEP feature for Rnesas mbed boards.
The mainly changing is here.
- hal_sleep()
To satisfy the mbed specificationm, I implemented this function newly by using "sleep" that is one of low power mode that is incorporated in our hardware(RZ_A1).
In the "sleep", peripheral and memory state are maintained, and the peripherals continue to work and can generate interrupts.
- hal_deepsleep()
To satisfy the mbed specificationm, I implemented this function newly by combined using "sleep" and "module standby" that is the low power mode that is incorporated in our hardware(RZ_A1).
The "module standby" is peripheral module's powerdown.
Also in case of our "module standby", it need to read register as dummy when access to each register.
These boards will be re-enabled when sleep driver for them is ready.
Note:
This operation is done by removing "SLEEP" feature from target's "device_has" list (in targets.json config file).
For NRF52_DK removing of "SLEEP" feature causes some timing issues which have influence on tests. In order to successfully disable this board we need to disable also related features like "USTICKER", "LOWPOERTIMER" and slightly modify ticker tests, so they will not be executed if usticker support is not available (by default all targets support us ticker).
Sleep - within 10us
Deepsleep - within 10ms
Note about mbed boards with interface, moved to lpc176x, as they are target related,
should be documented in the target documentation.
The tests will come as separate PR, to conform to this updates to sleep API.
Patch to LPC546XX SDK code - write the low Ethernet MAC address
register last, as that synchronises the update.
Without this change, the ENET_SetMacAddr call only seems to work prior
to MAC initialisation, causing problems for the new mbed OS EMAC system,
which expects it to be changable later.
Updated emac greentea tests #6851.
Implementation of unified EMAC driver for Renesas mbed boards
Based on the driver so far, Renesas implemented the emac driver for GR-PEACH and VK-RZ/A1H.
The mainly changes is below.
- Add the connection part with LWIP according to the unified emac specification.
- Add three new multicast functions(add, remove, set_all).
The Greentea test netsocket and emac test passed.
Just checking "does the chip have an EMAC" doesn't work - there are
targets using those chips which do not have an Ethernet connector and
don't provide the necessary surrounding infrastructure (eg DISCO_F429ZI,
not providing the board emac config call, and HEXIWEAR not providing PHY
info).
Make the targets that actually do want EMAC define their own local
Freescale_EMAC and STM_EMAC labels, and move the drivers into
the corresponding TARGET_ directories, removing the #ifdefs.
* Since mbed does not overwrite itself, make the flashing routines run out of flash by default
* Report a writeable size of 4 bytes (previously erroneously reported a full eraseable page as the minimum write size)
* IRQ handling got updated previously to a non-functional state when both callbacks were registered (it'd fire a fall callback for both rise and fall events). With this update, that faulty behaviour is corrected. Due to delays between the detection of the edge and the handling of the interrupt (and the fact that information about which edge you received on the pin is not stored anywhere), there is no way to be absolutely sure which edge got triggered on the pin. Therefore, we make a best-guess effort by looking at the pin state at the time of IRQ handling, and fire a callback as if that was the end state of the event. This will usually work out fine, except in cases were the signal is toggling faster than the IRQ handler's response time. In that case, a user won't get both callbacks (as expected for a pulse), but only the last event.
* Stripped some dead code.
Initial work by Bartek Szatkowski in https://github.com/ARMmbed/mbed-os/pull/4079,
reworked following review of https://github.com/ARMmbed/mbed-os/pull/5202 to
transform the entire system into C++, retaining the basic functionality.
Bartek's summary:
* Porting ethernet to EMAC
* Updating EMAC to enable multiple interfaces
* Untangling networking classes, making the abstractions a bit clearer to follow, etc
* General refactoring
* Removal of DEVICE_EMAC flag and introducing DEVICE_ETH and DEVICE_WIFI
Revisions since initial branch:
* Remove lwip depencies
* Correct doxygen warnings
* Remove emac_api.h, replace with C++ EMAC abstract class.
* Create OnboardNetworkInterface, and LWIP implementation.
* Mappings since #4079
lwip-interface/nsapi_stack_lwip.c -> LWIPStack.cpp
lwip-interface/ipstack_lwip.c -> LWIPInterface.cpp
netsocket/mbed_ipstack.h -> OnboardNetworkStack.h
hal/emac_api.h -> EMAC.h
* Reinstate use of EthInterface abstraction
* Correct and clarify HW address EMAC ops
* Restore MBED_MAC_ADDR implementation
* Integrate PPP support with LWIP::Interface.
* Convert K64F lwIP driver to K64F_EMAC.
To do:
* Convert emac_stack_mem.h to follow this pattern.
* Figure out DEVICE_ETH/EMAC
* Update all drivers to use EMAC
New directory structure:
* TARGET_SOFTDEVICE_COMMON
* TARGET_SOFTDEVICE_S112
* TARGET_SOFTDEVICE_S132_FULL (MBR + SoftDevice, default)
* TARGET_SOFTDEVICE_S132_OTA (SoftDevice only, for firmware updates)
* TARGET_SOFTDEVICE_S132_MBR (MBR only, for bootloader builds)
* TARGET_SOFTDEVICE_S140_FULL (MBR + SoftDevice, default)
* TARGET_SOFTDEVICE_S140_OTA (SoftDevice only, for firmware updates)
* TARGET_SOFTDEVICE_S140_MBR (MBR only, for bootloader builds)
* TARGET_SOFTDEVICE_NONE
The X_OTA and X_MBR binaries are obtained from the original x_FULL SoftDevice
by splitting it in an MBR part and a SoftDevice part. The MBR is needed for
the bootloader and the SoftDevice for firmware updates.
Build application without SoftDevice:
"target_overrides": {
"*": {
"target.extra_labels_remove": ["SOFTDEVICE_COMMON", "SOFTDEVICE_X_FULL"],
"target.extra_labels_add": ["SOFTDEVICE_NONE"]
}
}
Build application for firmware update using SoftDevice X:
"target_overrides": {
"*": {
"target.extra_labels_remove": ["SOFTDEVICE_X_FULL"],
"target.extra_labels_add": ["SOFTDEVICE_X_OTA"]
}
}
Build bootloader without SoftDevice X:
"target_overrides": {
"*": {
"target.extra_labels_remove": ["SOFTDEVICE_COMMON", "SOFTDEVICE_X_FULL"],
"target.extra_labels_add": ["SOFTDEVICE_X_MBR"]
}
}
After rebase, the build target NRF52840_DK is using TARGET_NRF5x,
instead of TARGET_NRF5. Moved Cryptocell TRNG related code from
`targets/TARGET_NORDIC/TARGET_NRF5/` to `targets/TARGET_NORDIC/TARGET_NRF5x/`
In current implementation `rtc_read` function returns number of elapsed us and `rtc_write` function sets RTC time to specified value in us.
Mbed HAL API expects that these functions operate on seconds.
Since lp ticker is also based on RTC provide mechanism to trace elapsed seconds without modifying RTC registers.
The unified NRF51 target and feature BLE directories have been
reorganized to follow the naming and directory structure of the
NRF52 implementation.
This reorganization does not include TARGET_MCU_NRF51822 and
derived targets.