Merge branch 'nordic_sdk_integration' of https://github.com/ARMmbed/mbed-nordic into hal_improvements

# Conflicts:
#	hal/targets.json
pull/2234/head
Głąbek, Andrzej 2016-07-01 13:23:08 +02:00
commit fce8a300d1
7 changed files with 1455 additions and 47 deletions

View File

@ -1773,6 +1773,6 @@
"NRF52_PAN_62",
"NRF52_PAN_63"
],
"device_has": ["ERROR_PATTERN", "I2C", "I2C_ASYNCH", "INTERRUPTIN", "PORTIN", "PORTINOUT", "PORTOUT", "RTC", "SERIAL", "SERIAL_ASYNCH", "SLEEP", "SPI", "SPI_ASYNCH", "SPISLAVE"]
"device_has": ["ANALOGIN", "ERROR_PATTERN", "I2C", "I2C_ASYNCH", "INTERRUPTIN", "PORTIN", "PORTINOUT", "PORTOUT", "RTC", "SERIAL", "SERIAL_ASYNCH", "SLEEP", "SPI", "SPI_ASYNCH", "SPISLAVE"]
}
}

View File

@ -53,7 +53,7 @@ void analogin_init(analogin_t *obj, PinName pin)
ret_code_t ret_code;
// p_config, event_handler
ret_code = nrf_drv_adc_init(NULL , NULL); // select blocking mode
MBED_ASSERT(ret_code == NRF_SUCCESS);
MBED_ASSERT((ret_code == NRF_SUCCESS) || (ret_code == NRF_ERROR_INVALID_STATE)); //NRF_ERROR_INVALID_STATE expected for multiple channels used.
}
uint16_t analogin_read_u16(analogin_t *obj)

View File

@ -13,68 +13,69 @@
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "mbed_assert.h"
#include "analogin_api.h"
#include "cmsis.h"
#include "pinmap.h"
#include "app_util_platform.h"
#include "nrf_drv_saadc.h"
#ifdef DEVICE_ANALOGIN
#define ANALOGIN_MEDIAN_FILTER 1
#define ADC_10BIT_RANGE 0x3FF
#define ADC_RANGE ADC_10BIT_RANGE
#define ADC_12BIT_RANGE 0xFFF
#define ADC_RANGE ADC_12BIT_RANGE
static const PinMap PinMap_ADC[] = {
{p1, ADC0_0, 4},
{p2, ADC0_0, 8},
{p3, ADC0_0, 16},
{p4, ADC0_0, 32},
{p5, ADC0_0, 64},
{p6, ADC0_0, 128},
{NC, NC, 0}
static void analog_in_event_handler(nrf_drv_saadc_evt_t const *p_event)// type of nrf_drv_saadc_event_handler_t
{
(void) p_event;
}
static const nrf_drv_saadc_config_t saadc_config =
{
.resolution = NRF_SAADC_RESOLUTION_12BIT,
.oversample = NRF_SAADC_OVERSAMPLE_DISABLED,
.interrupt_priority = APP_IRQ_PRIORITY_LOW
};
void analogin_init(analogin_t *obj, PinName pin)
{
// TODO: usage on nrf52 ?
#if 0
int analogInputPin = 0;
const PinMap *map = PinMap_ADC;
obj->adc = (ADCName)pinmap_peripheral(pin, PinMap_ADC); //(NRF_ADC_Type *)
MBED_ASSERT(obj->adc != (ADCName)NC);
while (map->pin != NC) {
if (map->pin == pin) {
analogInputPin = map->function;
break;
}
map++;
}
obj->adc_pin = (uint8_t)analogInputPin;
NRF_ADC->ENABLE = ADC_ENABLE_ENABLE_Enabled;
NRF_ADC->CONFIG = (ADC_CONFIG_RES_10bit << ADC_CONFIG_RES_Pos) |
(ADC_CONFIG_INPSEL_AnalogInputOneThirdPrescaling << ADC_CONFIG_INPSEL_Pos) |
(ADC_CONFIG_REFSEL_SupplyOneThirdPrescaling << ADC_CONFIG_REFSEL_Pos) |
(analogInputPin << ADC_CONFIG_PSEL_Pos) |
(ADC_CONFIG_EXTREFSEL_None << ADC_CONFIG_EXTREFSEL_Pos);
#endif
ret_code_t ret_code;
ret_code = nrf_drv_saadc_init(&saadc_config, analog_in_event_handler);
MBED_ASSERT(((ret_code == NRF_SUCCESS) || (ret_code == NRF_ERROR_INVALID_STATE))); //NRF_ERROR_INVALID_STATE expected for multiple channels used.
uint8_t saadcIn = nrf_drv_saadc_gpio_to_ain(pin);
MBED_ASSERT(saadcIn != NRF_SAADC_INPUT_DISABLED);
obj->adc = ADC0_0; // only one instance of ADC in nRF52 SoC
obj->adc_pin = saadcIn - 1;
nrf_saadc_channel_config_t channel_config =
NRF_DRV_SAADC_DEFAULT_CHANNEL_CONFIG_SE(saadcIn); //Single ended, negative input to ADC shorted to GND.
ret_code = nrf_drv_saadc_channel_init(obj->adc_pin, &channel_config);
MBED_ASSERT(ret_code == NRF_SUCCESS);
}
uint16_t analogin_read_u16(analogin_t *obj)
{
// TODO: usage on nrf52 ?
#if 0
NRF_ADC->CONFIG &= ~ADC_CONFIG_PSEL_Msk;
NRF_ADC->CONFIG |= obj->adc_pin << ADC_CONFIG_PSEL_Pos;
NRF_ADC->TASKS_START = 1;
while (((NRF_ADC->BUSY & ADC_BUSY_BUSY_Msk) >> ADC_BUSY_BUSY_Pos) == ADC_BUSY_BUSY_Busy) {
int16_t adc_value;
ret_code_t ret_code;
ret_code = nrf_drv_saadc_sample_convert(obj->adc_pin, &adc_value);
MBED_ASSERT(ret_code == NRF_SUCCESS);
if (adc_value < 0)
{
// Even in the single ended mode measured value can be {-0}. Saturation for avoid casting to a big integer.
return 0;
}
else
{
return (uint16_t) adc_value;
}
return (uint16_t)NRF_ADC->RESULT; // 10 bit
#endif
return 0;
}
float analogin_read(analogin_t *obj)

View File

@ -0,0 +1,509 @@
/* Copyright (c) 2015 Nordic Semiconductor. All Rights Reserved.
*
* The information contained herein is property of Nordic Semiconductor ASA.
* Terms and conditions of usage are described in detail in NORDIC
* SEMICONDUCTOR STANDARD SOFTWARE LICENSE AGREEMENT.
*
* Licensees are granted free, non-transferable use of the information. NO
* WARRANTY of ANY KIND is provided. This heading must NOT be removed from
* the file.
*
*/
#include "nrf_drv_saadc.h"
#include "nrf_assert.h"
#include "nordic_common.h"
#include "nrf_drv_common.h"
#include "app_util_platform.h"
typedef enum
{
NRF_SAADC_STATE_IDLE = 0,
NRF_SAADC_STATE_BUSY = 1
} nrf_saadc_state_t;
typedef struct
{
nrf_saadc_input_t pselp;
nrf_saadc_input_t pseln;
} nrf_saadc_psel_buffer;
static const nrf_drv_saadc_config_t m_default_config = NRF_DRV_SAADC_DEFAULT_CONFIG;
/** @brief SAADC control block.*/
typedef struct
{
nrf_drv_saadc_event_handler_t event_handler; ///< Event handler function pointer.
volatile nrf_saadc_value_t * p_buffer; ///< Sample buffer.
volatile uint16_t buffer_size; ///< Size of the sample buffer.
#ifdef NRF52_PAN_28
volatile uint16_t buffer_pos; ///< Current sample buffer position.
#endif
volatile nrf_saadc_value_t * p_secondary_buffer; ///< Secondary sample buffer.
uint32_t limits_enabled_flags; ///< Enabled limits flags.
uint16_t secondary_buffer_size; ///< Size of the secondary buffer.
nrf_saadc_psel_buffer psel[NRF_SAADC_CHANNEL_COUNT]; ///< Pin configurations of SAADC channels.
nrf_drv_state_t state; ///< Driver initialization state.
nrf_saadc_state_t adc_state; ///< State of the SAADC.
#ifdef NRF52_PAN_28
uint8_t scan_pos; ///< Current channel scanning position.
#endif
uint8_t active_channels; ///< Number of enabled SAADC channels.
} nrf_drv_saadc_cb_t;
static nrf_drv_saadc_cb_t m_cb;
#define LOW_LIMIT_TO_FLAG(channel) ((2*channel+1))
#define HIGH_LIMIT_TO_FLAG(channel) ((2*channel))
#define FLAG_IDX_TO_EVENT(idx) ((nrf_saadc_event_t)((uint32_t)NRF_SAADC_EVENT_CH0_LIMITH+4*idx))
#define LIMIT_EVENT_TO_CHANNEL(event)(uint8_t)(((uint32_t)event-(uint32_t)NRF_SAADC_EVENT_CH0_LIMITH)/8)
#define LIMIT_EVENT_TO_LIMIT_TYPE(event)((((uint32_t)event-(uint32_t)NRF_SAADC_EVENT_CH0_LIMITH) & 4) ? \
NRF_SAADC_LIMIT_LOW : NRF_SAADC_LIMIT_HIGH)
#define HW_TIMEOUT 10000
void SAADC_IRQHandler(void)
{
if (nrf_saadc_event_check(NRF_SAADC_EVENT_END))
{
nrf_saadc_event_clear(NRF_SAADC_EVENT_END);
#ifdef NRF52_PAN_28
if (m_cb.active_channels == 1)
{
#endif
nrf_drv_saadc_evt_t evt;
evt.type = NRF_DRV_SAADC_EVT_DONE;
evt.data.done.p_buffer = (nrf_saadc_value_t *)m_cb.p_buffer;
evt.data.done.size = nrf_saadc_amount_get();
if (m_cb.p_secondary_buffer == NULL)
{
m_cb.adc_state = NRF_SAADC_STATE_IDLE;
}
else
{
m_cb.p_buffer = m_cb.p_secondary_buffer;
m_cb.buffer_size = m_cb.secondary_buffer_size;
m_cb.p_secondary_buffer = NULL;
nrf_saadc_task_trigger(NRF_SAADC_TASK_START);
}
m_cb.event_handler(&evt);
#ifdef NRF52_PAN_28
}
else
{
//PAN-28: scan mode is not working correctly, emulated by interrupts
++(m_cb.buffer_pos);
uint16_t buffer_pos = m_cb.buffer_pos;
if (buffer_pos == m_cb.buffer_size)
{
nrf_drv_saadc_evt_t evt;
evt.type = NRF_DRV_SAADC_EVT_DONE;
evt.data.done.p_buffer = (nrf_saadc_value_t *)(m_cb.p_buffer);
evt.data.done.size = m_cb.buffer_size;
m_cb.adc_state = NRF_SAADC_STATE_IDLE;
if (m_cb.p_secondary_buffer == NULL)
{
m_cb.adc_state = NRF_SAADC_STATE_IDLE;
}
else
{
(void)nrf_drv_saadc_buffer_convert((nrf_saadc_value_t *)m_cb.p_secondary_buffer, (uint16_t)m_cb.secondary_buffer_size);
}
m_cb.event_handler(&evt);
}
else
{
uint8_t current_scan_pos = m_cb.scan_pos;
nrf_saadc_channel_input_set(current_scan_pos,
NRF_SAADC_INPUT_DISABLED, NRF_SAADC_INPUT_DISABLED);
nrf_saadc_buffer_init((nrf_saadc_value_t *)(m_cb.p_buffer + m_cb.buffer_pos), 1);
// Find the next enabled channel.
for (++m_cb.scan_pos; m_cb.scan_pos < NRF_SAADC_CHANNEL_COUNT; ++m_cb.scan_pos)
{
if (m_cb.psel[m_cb.scan_pos].pselp)
{
nrf_saadc_channel_input_set(m_cb.scan_pos,
m_cb.psel[m_cb.scan_pos].pselp, m_cb.psel[m_cb.scan_pos].pseln);
nrf_saadc_task_trigger(NRF_SAADC_TASK_START);
nrf_saadc_task_trigger(NRF_SAADC_TASK_SAMPLE);
return;
}
}
//if scanning is done prepare for next round.
for (uint8_t i = 0; i < NRF_SAADC_CHANNEL_COUNT; ++i)
{
if (m_cb.psel[i].pselp)
{
m_cb.scan_pos = i;
break;
}
}
nrf_saadc_channel_input_set(m_cb.scan_pos,
m_cb.psel[m_cb.scan_pos].pselp, m_cb.psel[m_cb.scan_pos].pseln);
nrf_saadc_task_trigger(NRF_SAADC_TASK_START);
}
}
#endif
}
if (nrf_saadc_event_check(NRF_SAADC_EVENT_STOPPED))
{
nrf_saadc_event_clear(NRF_SAADC_EVENT_STOPPED);
m_cb.adc_state = NRF_SAADC_STATE_IDLE;
}
else
{
uint32_t limit_flags = m_cb.limits_enabled_flags;
uint32_t flag_idx;
nrf_saadc_event_t event;
while (limit_flags)
{
flag_idx = __CLZ(limit_flags);
limit_flags &= ~((1UL<<31) >> flag_idx);
event = FLAG_IDX_TO_EVENT(flag_idx);
if (nrf_saadc_event_check(event))
{
nrf_saadc_event_clear(event);
nrf_drv_saadc_evt_t evt;
evt.type = NRF_DRV_SAADC_EVT_LIMIT;
evt.data.limit.channel = LIMIT_EVENT_TO_CHANNEL(event);
evt.data.limit.limit_type = LIMIT_EVENT_TO_LIMIT_TYPE(event);
m_cb.event_handler(&evt);
}
}
}
}
ret_code_t nrf_drv_saadc_init(nrf_drv_saadc_config_t const * p_config,
nrf_drv_saadc_event_handler_t event_handler)
{
if (m_cb.state != NRF_DRV_STATE_UNINITIALIZED)
{
return NRF_ERROR_INVALID_STATE;
}
if (event_handler == NULL)
{
return NRF_ERROR_INVALID_PARAM;
}
if (p_config == NULL)
{
p_config = &m_default_config;
}
m_cb.event_handler = event_handler;
nrf_saadc_resolution_set(p_config->resolution);
nrf_saadc_oversample_set(p_config->oversample);
m_cb.state = NRF_DRV_STATE_INITIALIZED;
m_cb.adc_state = NRF_SAADC_STATE_IDLE;
m_cb.active_channels = 0;
m_cb.limits_enabled_flags = 0;
#ifdef NRF52_PAN_28
m_cb.buffer_pos = 0;
#endif
nrf_saadc_int_disable(NRF_SAADC_INT_ALL);
nrf_saadc_event_clear(NRF_SAADC_EVENT_END);
nrf_drv_common_irq_enable(SAADC_IRQn, p_config->interrupt_priority);
nrf_saadc_int_enable(NRF_SAADC_INT_END);
nrf_saadc_enable();
return NRF_SUCCESS;
}
void nrf_drv_saadc_uninit(void)
{
ASSERT(m_cb.state != NRF_DRV_STATE_UNINITIALIZED);
nrf_drv_common_irq_disable(SAADC_IRQn);
nrf_saadc_task_trigger(NRF_SAADC_TASK_STOP);
// Wait for ADC being stopped.
uint32_t timeout = HW_TIMEOUT;
while (nrf_saadc_event_check(NRF_SAADC_EVENT_STOPPED) == 0 && timeout > 0)
{
--timeout;
}
ASSERT(timeout > 0);
nrf_saadc_disable();
nrf_saadc_int_disable(NRF_SAADC_INT_ALL);
m_cb.adc_state = NRF_SAADC_STATE_IDLE;
for (uint8_t channel = 0; channel < NRF_SAADC_CHANNEL_COUNT; ++channel)
{
if (m_cb.psel[channel].pselp != NRF_SAADC_INPUT_DISABLED)
{
(void)nrf_drv_saadc_channel_uninit(channel);
}
}
m_cb.state = NRF_DRV_STATE_UNINITIALIZED;
}
ret_code_t nrf_drv_saadc_channel_init(uint8_t channel,
nrf_saadc_channel_config_t const * const p_config)
{
ASSERT(m_cb.state != NRF_DRV_STATE_UNINITIALIZED);
ASSERT(channel < NRF_SAADC_CHANNEL_COUNT);
//Oversampling can be used only with one channel.
ASSERT((nrf_saadc_oversample_get()==NRF_SAADC_OVERSAMPLE_DISABLED) || (m_cb.active_channels == 0));
ASSERT((p_config->pin_p <= NRF_SAADC_INPUT_VDD) && (p_config->pin_p > NRF_SAADC_INPUT_DISABLED));
ASSERT(p_config->pin_n <= NRF_SAADC_INPUT_VDD);
// A channel can only be initialized if the driver is in the idle state.
if (m_cb.adc_state == NRF_SAADC_STATE_BUSY)
{
return NRF_ERROR_BUSY;
}
if (!m_cb.psel[channel].pselp)
{
++m_cb.active_channels;
}
m_cb.psel[channel].pselp = p_config->pin_p;
m_cb.psel[channel].pseln = p_config->pin_n;
nrf_saadc_channel_init(channel, p_config);
#ifdef NRF52_PAN_28
nrf_saadc_channel_input_set(channel, NRF_SAADC_INPUT_DISABLED, NRF_SAADC_INPUT_DISABLED);
#else
nrf_saadc_channel_input_set(channel, p_config->pin_p, p_config->pin_n);
#endif
return NRF_SUCCESS;
}
ret_code_t nrf_drv_saadc_channel_uninit(uint8_t channel)
{
ASSERT(channel <= NRF_SAADC_CHANNEL_COUNT)
ASSERT(m_cb.state != NRF_DRV_STATE_UNINITIALIZED);
// A channel can only be uninitialized if the driver is in the idle state.
if (m_cb.adc_state == NRF_SAADC_STATE_BUSY)
{
return NRF_ERROR_BUSY;
}
if (m_cb.psel[channel].pselp)
{
--m_cb.active_channels;
}
m_cb.psel[channel].pselp = NRF_SAADC_INPUT_DISABLED;
m_cb.psel[channel].pseln = NRF_SAADC_INPUT_DISABLED;
nrf_saadc_channel_input_set(channel, NRF_SAADC_INPUT_DISABLED, NRF_SAADC_INPUT_DISABLED);
nrf_drv_saadc_limits_set(channel, NRF_DRV_SAADC_LIMITL_DISABLED, NRF_DRV_SAADC_LIMITH_DISABLED);
return NRF_SUCCESS;
}
ret_code_t nrf_drv_saadc_sample_convert(uint8_t channel, nrf_saadc_value_t * p_value)
{
if (m_cb.adc_state != NRF_SAADC_STATE_IDLE)
{
return NRF_ERROR_BUSY;
}
m_cb.adc_state = NRF_SAADC_STATE_BUSY;
nrf_saadc_int_disable(NRF_SAADC_INT_END);
nrf_saadc_buffer_init(p_value, 1);
#ifndef NRF52_PAN_28
if (m_cb.active_channels > 1)
{
for (uint8_t i = 0; i < NRF_SAADC_CHANNEL_COUNT; ++i)
{
nrf_saadc_channel_input_set(i, NRF_SAADC_INPUT_DISABLED, NRF_SAADC_INPUT_DISABLED);
}
}
#endif
nrf_saadc_channel_input_set(channel,
m_cb.psel[channel].pselp, m_cb.psel[channel].pseln);
nrf_saadc_task_trigger(NRF_SAADC_TASK_START);
nrf_saadc_task_trigger(NRF_SAADC_TASK_SAMPLE);
uint32_t timeout = HW_TIMEOUT;
while (0 == nrf_saadc_event_check(NRF_SAADC_EVENT_END) && timeout > 0)
{
timeout--;
}
nrf_saadc_event_clear(NRF_SAADC_EVENT_END);
#ifdef NRF52_PAN_28
nrf_saadc_channel_input_set(channel, NRF_SAADC_INPUT_DISABLED, NRF_SAADC_INPUT_DISABLED);
#else
if (m_cb.active_channels > 1)
{
for (uint8_t i = 0; i < NRF_SAADC_CHANNEL_COUNT; ++i)
{
nrf_saadc_channel_input_set(i, m_cb.psel[i].pselp, m_cb.psel[i].pseln);
}
}
#endif
nrf_saadc_int_enable(NRF_SAADC_INT_END);
m_cb.adc_state = NRF_SAADC_STATE_IDLE;
return NRF_SUCCESS;
}
ret_code_t nrf_drv_saadc_buffer_convert(nrf_saadc_value_t * p_buffer, uint16_t size)
{
ASSERT(m_cb.state != NRF_DRV_STATE_UNINITIALIZED);
nrf_saadc_int_disable(NRF_SAADC_INT_END);
if (m_cb.adc_state == NRF_SAADC_STATE_BUSY)
{
if ( m_cb.p_secondary_buffer)
{
nrf_saadc_int_enable(NRF_SAADC_INT_END);
return NRF_ERROR_BUSY;
}
else
{
m_cb.p_secondary_buffer = p_buffer;
m_cb.secondary_buffer_size = size;
#ifdef NRF52_PAN_28
if (m_cb.active_channels == 1)
#endif
{
while (nrf_saadc_event_check(NRF_SAADC_EVENT_STARTED) == 0);
nrf_saadc_event_clear(NRF_SAADC_EVENT_STARTED);
nrf_saadc_buffer_init(p_buffer, size);
}
nrf_saadc_int_enable(NRF_SAADC_INT_END);
return NRF_SUCCESS;
}
}
nrf_saadc_int_enable(NRF_SAADC_INT_END);
m_cb.adc_state = NRF_SAADC_STATE_BUSY;
#ifdef NRF52_PAN_28
m_cb.scan_pos = NRF_SAADC_CHANNEL_COUNT;
for (uint8_t i = 0; i < NRF_SAADC_CHANNEL_COUNT; ++i)
{
if (m_cb.psel[i].pselp)
{
m_cb.scan_pos = i;
break;
}
}
// Find the first enabled channel.
if (m_cb.scan_pos >= NRF_SAADC_CHANNEL_COUNT)
{
return NRF_ERROR_INVALID_STATE;
}
m_cb.buffer_pos = 0;
#endif
m_cb.p_buffer = p_buffer;
m_cb.buffer_size = size;
m_cb.p_secondary_buffer = NULL;
#ifdef NRF52_PAN_28
nrf_saadc_channel_input_set(m_cb.scan_pos,
m_cb.psel[m_cb.scan_pos].pselp, m_cb.psel[m_cb.scan_pos].pseln);
if (m_cb.active_channels == 1)
{
nrf_saadc_buffer_init(p_buffer, size);
}
else
{
nrf_saadc_buffer_init(p_buffer, 1);
}
#else
nrf_saadc_buffer_init(p_buffer, size);
#endif
nrf_saadc_event_clear(NRF_SAADC_EVENT_STARTED);
nrf_saadc_task_trigger(NRF_SAADC_TASK_START);
return NRF_SUCCESS;
}
ret_code_t nrf_drv_saadc_sample()
{
ASSERT(m_cb.state != NRF_DRV_STATE_UNINITIALIZED);
ret_code_t err_code = NRF_SUCCESS;
if (m_cb.adc_state == NRF_SAADC_STATE_IDLE)
{
err_code = NRF_ERROR_BUSY;
}
else
{
nrf_saadc_task_trigger(NRF_SAADC_TASK_SAMPLE);
}
return err_code;
}
bool nrf_drv_saadc_is_busy(void)
{
return (m_cb.adc_state == NRF_SAADC_STATE_BUSY);
}
void nrf_drv_saadc_abort(void)
{
if (nrf_drv_saadc_is_busy())
{
nrf_saadc_event_clear(NRF_SAADC_EVENT_STOPPED);
nrf_saadc_task_trigger(NRF_SAADC_TASK_STOP);
// Wait for ADC being stopped.
uint32_t timeout = HW_TIMEOUT;
while ((m_cb.adc_state != NRF_SAADC_STATE_IDLE) && (timeout > 0))
{
--timeout;
}
ASSERT(timeout > 0);
m_cb.p_buffer = 0;
m_cb.p_secondary_buffer = 0;
}
}
void nrf_drv_saadc_limits_set(uint8_t channel, int16_t limit_low, int16_t limit_high)
{
ASSERT(m_cb.state != NRF_DRV_STATE_UNINITIALIZED);
ASSERT(m_cb.event_handler); // only non blocking mode supported
ASSERT(limit_low>=NRF_DRV_SAADC_LIMITL_DISABLED);
ASSERT(limit_high<=NRF_DRV_SAADC_LIMITH_DISABLED);
ASSERT(limit_low<limit_high);
nrf_saadc_channel_limits_set(channel, limit_low, limit_high);
uint32_t int_mask = nrf_saadc_limit_int_get(channel, NRF_SAADC_LIMIT_LOW);
if (limit_low == NRF_DRV_SAADC_LIMITL_DISABLED)
{
m_cb.limits_enabled_flags &= ~(0x80000000 >> LOW_LIMIT_TO_FLAG(channel));
nrf_saadc_int_disable(int_mask);
}
else
{
m_cb.limits_enabled_flags |= (0x80000000 >> LOW_LIMIT_TO_FLAG(channel));
nrf_saadc_int_enable(int_mask);
}
int_mask = nrf_saadc_limit_int_get(channel, NRF_SAADC_LIMIT_HIGH);
if (limit_high == NRF_DRV_SAADC_LIMITH_DISABLED)
{
m_cb.limits_enabled_flags &= ~(0x80000000 >> HIGH_LIMIT_TO_FLAG(channel));
nrf_saadc_int_disable(int_mask);
}
else
{
m_cb.limits_enabled_flags |= (0x80000000 >> HIGH_LIMIT_TO_FLAG(channel));
nrf_saadc_int_enable(int_mask);
}
}

View File

@ -0,0 +1,303 @@
/* Copyright (c) 2015 Nordic Semiconductor. All Rights Reserved.
*
* The information contained herein is property of Nordic Semiconductor ASA.
* Terms and conditions of usage are described in detail in NORDIC
* SEMICONDUCTOR STANDARD SOFTWARE LICENSE AGREEMENT.
*
* Licensees are granted free, non-transferable use of the information. NO
* WARRANTY of ANY KIND is provided. This heading must NOT be removed from
* the file.
*
*/
/**
* @addtogroup nrf_saadc SAADC HAL and driver
* @ingroup nrf_drivers
* @brief @tagAPI52 Successive Approximation Analog-to-Digital Converter (SAADC) APIs.
* @details The SAADC HAL provides basic APIs for accessing the registers of the SAADC peripheral.
* The SAADC driver provides APIs on a higher level.
*
* @defgroup nrf_drv_saadc SAADC driver
* @{
* @ingroup nrf_saadc
*
* @brief @tagAPI52 Successive Approximation Analog-to-Digital Converter (SAADC) driver.
*/
#ifndef NRF_DRV_SAADC_H__
#define NRF_DRV_SAADC_H__
#include "nrf_drv_config.h"
#include "nrf_saadc.h"
#include "sdk_errors.h"
/**
* @brief Value that should be set as high limit to disable limit detection.
*/
#define NRF_DRV_SAADC_LIMITH_DISABLED (2047)
/**
* @brief Value that should be set as low limit to disable limit detection.
*/
#define NRF_DRV_SAADC_LIMITL_DISABLED (-2048)
/**
* @brief Macro for setting @ref nrf_drv_saadc_config_t to default settings.
*/
#define NRF_DRV_SAADC_DEFAULT_CONFIG \
{ \
.resolution = SAADC_CONFIG_RESOLUTION, \
.oversample = SAADC_CONFIG_OVERSAMPLE, \
.interrupt_priority = SAADC_CONFIG_IRQ_PRIORITY \
}
/**
* @brief Macro for setting @ref nrf_saadc_channel_config_t to default settings
* in single ended mode.
*
* @param PIN_P Analog input.
*/
#define NRF_DRV_SAADC_DEFAULT_CHANNEL_CONFIG_SE(PIN_P) \
{ \
.resistor_p = NRF_SAADC_RESISTOR_DISABLED, \
.resistor_n = NRF_SAADC_RESISTOR_DISABLED, \
.gain = NRF_SAADC_GAIN1_6, \
.reference = NRF_SAADC_REFERENCE_INTERNAL, \
.acq_time = NRF_SAADC_ACQTIME_10US, \
.mode = NRF_SAADC_MODE_SINGLE_ENDED, \
.pin_p = (nrf_saadc_input_t)(PIN_P), \
.pin_n = NRF_SAADC_INPUT_DISABLED \
}
/**
* @brief Macro for setting @ref nrf_saadc_channel_config_t to default settings
* in differential mode.
*
* @param PIN_P Positive analog input.
* @param PIN_N Negative analog input.
*/
#define NRF_DRV_SAADC_DEFAULT_CHANNEL_CONFIG_DIFFERENTIAL(PIN_P, PIN_N) \
{ \
.resistor_p = NRF_SAADC_RESISTOR_DISABLED, \
.resistor_n = NRF_SAADC_RESISTOR_DISABLED, \
.gain = NRF_SAADC_GAIN1_6, \
.reference = NRF_SAADC_REFERENCE_INTERNAL, \
.acq_time = NRF_SAADC_ACQTIME_10US, \
.mode = NRF_SAADC_MODE_DIFFERENTIAL, \
.pin_p = (nrf_saadc_input_t)(PIN_P), \
.pin_n = (nrf_saadc_input_t)(PIN_N) \
}
/**
* @brief Analog-to-digital converter driver configuration structure.
*/
typedef struct
{
nrf_saadc_resolution_t resolution; ///< Resolution configuration.
nrf_saadc_oversample_t oversample; ///< Oversampling configuration.
uint8_t interrupt_priority; ///< Interrupt priority.
} nrf_drv_saadc_config_t;
/**
* @brief Driver event types.
*/
typedef enum
{
NRF_DRV_SAADC_EVT_DONE, ///< Event generated when the buffer is filled with samples.
NRF_DRV_SAADC_EVT_LIMIT, ///< Event generated after one of the limits is reached.
} nrf_drv_saadc_evt_type_t;
/**
* @brief Analog-to-digital converter driver done event data.
*/
typedef struct
{
nrf_saadc_value_t * p_buffer; ///< Pointer to buffer with converted samples.
uint16_t size; ///< Number of samples in the buffer.
} nrf_drv_saadc_done_evt_t;
/**
* @brief Analog-to-digital converter driver limit event data.
*/
typedef struct
{
uint8_t channel; ///< Channel on which the limit was detected.
nrf_saadc_limit_t limit_type; ///< Type of limit detected.
} nrf_drv_saadc_limit_evt_t;
/**
* @brief Analog-to-digital converter driver event structure.
*/
typedef struct
{
nrf_drv_saadc_evt_type_t type; ///< Event type.
union
{
nrf_drv_saadc_done_evt_t done; ///< Data for @ref NRF_DRV_SAADC_EVT_DONE event.
nrf_drv_saadc_limit_evt_t limit;///< Data for @ref NRF_DRV_SAADC_EVT_LIMIT event.
} data;
} nrf_drv_saadc_evt_t;
/**
* @brief ADC event handler.
*
* @param[in] p_event Pointer to an ADC event. The event structure is allocated on
* the stack, so it is valid only within the context of
* the event handler.
*/
typedef void (*nrf_drv_saadc_event_handler_t)(nrf_drv_saadc_evt_t const * p_event);
/**
* @brief Function for initializing the SAADC.
*
* @param[in] p_config Pointer to a configuration structure. If NULL, the default one is used.
* @param[in] event_handler Event handler provided by the user.
*
* @retval NRF_SUCCESS If initialization was successful.
* @retval NRF_ERROR_INVALID_STATE If the driver is already initialized.
* @retval NRF_ERROR_INVALID_PARAM If event_handler is NULL.
*/
ret_code_t nrf_drv_saadc_init(nrf_drv_saadc_config_t const * p_config,
nrf_drv_saadc_event_handler_t event_handler);
/**
* @brief Function for uninitializing the SAADC.
*
* This function stops all ongoing conversions and disables all channels.
*/
void nrf_drv_saadc_uninit(void);
/**
* @brief Function for getting the address of a SAMPLE SAADC task.
*
* @return Task address.
*/
__STATIC_INLINE uint32_t nrf_drv_saadc_sample_task_get(void)
{
return nrf_saadc_task_address_get(NRF_SAADC_TASK_SAMPLE);
}
/**
* @brief Function for initializing an SAADC channel.
*
* This function configures and enables the channel.
*
* @retval NRF_SUCCESS If initialization was successful.
* @retval NRF_ERROR_INVALID_STATE If the ADC was not initialized.
* @retval NRF_ERROR_NO_MEM If the specified channel was already allocated.
*/
ret_code_t nrf_drv_saadc_channel_init(uint8_t channel,
nrf_saadc_channel_config_t const * const p_config);
/**
* @brief Function for uninitializing an SAADC channel.
*
* @retval NRF_SUCCESS If uninitialization was successful.
* @retval NRF_ERROR_BUSY If the ADC is busy.
*/
ret_code_t nrf_drv_saadc_channel_uninit(uint8_t channel);
/**
* @brief Function for starting SAADC sampling.
*
* @retval NRF_SUCCESS If ADC sampling was triggered.
* @retval NRF_ERROR_BUSY If ADC is in idle state.
*/
ret_code_t nrf_drv_saadc_sample(void);
/**
* @brief Blocking function for executing a single ADC conversion.
*
* This function selects the desired input, starts a single conversion,
* waits for it to finish, and returns the result.
*
* The function will fail if ADC is busy.
*
* @param[in] channel Channel.
* @param[out] p_value Pointer to the location where the result should be placed.
*
* @retval NRF_SUCCESS If conversion was successful.
* @retval NRF_ERROR_BUSY If the ADC driver is busy.
*/
ret_code_t nrf_drv_saadc_sample_convert(uint8_t channel, nrf_saadc_value_t * p_value);
/**
* @brief Function for issuing conversion of data to the buffer.
*
* This function is non-blocking. The application is notified about filling the buffer by the event handler.
* Conversion will be done on all enabled channels. If the ADC is in idle state, the function will set up Easy
* DMA for the conversion. The ADC will be ready for sampling and wait for the SAMPLE task. It can be
* triggered manually by the @ref nrf_drv_saadc_sample function or by PPI using the @ref NRF_SAADC_TASK_SAMPLE
* task. If one buffer is already set and the conversion is ongoing, calling this function will
* result in queuing the given buffer. The driver will start filling the issued buffer when the first one is
* completed. If the function is called again before the first buffer is filled, it will return with error.
*
* @param[in] buffer Result buffer.
* @param[in] size Buffer size in words.
*
* @retval NRF_SUCCESS If conversion was successful.
* @retval NRF_ERROR_BUSY If the driver already has two buffers set.
*/
ret_code_t nrf_drv_saadc_buffer_convert(nrf_saadc_value_t * buffer, uint16_t size);
/**
* @brief Function for retrieving the SAADC state.
*
* @retval true If the ADC is busy.
* @retval false If the ADC is ready.
*/
bool nrf_drv_saadc_is_busy(void);
/**
* @brief Function for aborting ongoing and buffered conversions.
* @note @ref NRF_DRV_SAADC_EVT_DONE event will be generated if there is a conversion in progress.
* Event will contain number of words in the sample buffer.
*/
void nrf_drv_saadc_abort(void);
/**
* @brief Function for setting the SAADC channel limits.
* When limits are enabled and the result exceeds the defined bounds, the limit handler function is called.
*
* @param[in] channel SAADC channel number.
* @param[in] limit_low Lower limit (valid values from @ref NRF_DRV_SAADC_LIMITL_DISABLED to
* @ref NRF_DRV_SAADC_LIMITH_DISABLED). Conversion results below this value will trigger
* the handler function. Set to @ref NRF_DRV_SAADC_LIMITL_DISABLED to disable this limit.
* @param[in] limit_high Upper limit (valid values from @ref NRF_DRV_SAADC_LIMITL_DISABLED to
* @ref NRF_DRV_SAADC_LIMITH_DISABLED). Conversion results above this value will trigger
* the handler function. Set to @ref NRF_DRV_SAADC_LIMITH_DISABLED to disable this limit.
*/
void nrf_drv_saadc_limits_set(uint8_t channel, int16_t limit_low, int16_t limit_high);
/**
* @brief Function for converting a GPIO pin number to an analog input pin number used in the channel
* configuration.
*
* @param[in] pin GPIO pin.
*
* @return Value representing an analog input pin. The function returns @ref NRF_SAADC_INPUT_DISABLED
* if the specified pin is not an analog input.
*/
__STATIC_INLINE nrf_saadc_input_t nrf_drv_saadc_gpio_to_ain(uint32_t pin)
{
// AIN0 - AIN3
if (pin >= 2 && pin <= 5)
{
//0 means "not connected", hence this "+ 1"
return (nrf_saadc_input_t)(pin - 2 + 1);
}
// AIN4 - AIN7
else if (pin >= 28 && pin <= 31)
{
return (nrf_saadc_input_t)(pin - 24 + 1);
}
else
{
return NRF_SAADC_INPUT_DISABLED;
}
}
#endif // NRF_DRV_SAADC_H__
/** @} */

View File

@ -0,0 +1,35 @@
/* Copyright (c) 2015 Nordic Semiconductor. All Rights Reserved.
*
* The information contained herein is property of Nordic Semiconductor ASA.
* Terms and conditions of usage are described in detail in NORDIC
* SEMICONDUCTOR STANDARD SOFTWARE LICENSE AGREEMENT.
*
* Licensees are granted free, non-transferable use of the information. NO
* WARRANTY of ANY KIND is provided. This heading must NOT be removed from
* the file.
*
*/
#ifdef NRF52
/**
* @file
* @brief SAADC HAL implementation
*/
#include "nrf_saadc.h"
void nrf_saadc_channel_init(uint8_t channel, nrf_saadc_channel_config_t const * const config)
{
NRF_SAADC->CH[channel].CONFIG =
((config->resistor_p << SAADC_CH_CONFIG_RESP_Pos) & SAADC_CH_CONFIG_RESP_Msk)
| ((config->resistor_n << SAADC_CH_CONFIG_RESN_Pos) & SAADC_CH_CONFIG_RESN_Msk)
| ((config->gain << SAADC_CH_CONFIG_GAIN_Pos) & SAADC_CH_CONFIG_GAIN_Msk)
| ((config->reference << SAADC_CH_CONFIG_REFSEL_Pos) & SAADC_CH_CONFIG_REFSEL_Msk)
| ((config->acq_time << SAADC_CH_CONFIG_TACQ_Pos) & SAADC_CH_CONFIG_TACQ_Msk)
| ((config->mode << SAADC_CH_CONFIG_MODE_Pos) & SAADC_CH_CONFIG_MODE_Msk);
nrf_saadc_channel_input_set(channel, config->pin_p, config->pin_n);
return;
}
#endif //NRF52

View File

@ -0,0 +1,560 @@
/* Copyright (c) 2015 Nordic Semiconductor. All Rights Reserved.
*
* The information contained herein is property of Nordic Semiconductor ASA.
* Terms and conditions of usage are described in detail in NORDIC
* SEMICONDUCTOR STANDARD SOFTWARE LICENSE AGREEMENT.
*
* Licensees are granted free, non-transferable use of the information. NO
* WARRANTY of ANY KIND is provided. This heading must NOT be removed from
* the file.
*
*/
#ifndef NRF_SAADC_H_
#define NRF_SAADC_H_
#ifdef NRF52
/**
* @defgroup nrf_saadc_hal SAADC HAL
* @{
* @ingroup nrf_saadc
*
* @brief @tagAPI52 Hardware access layer for accessing the SAADC peripheral.
*/
#include <stdbool.h>
#include <stddef.h>
#include "nrf.h"
#include "nrf_assert.h"
#define NRF_SAADC_CHANNEL_COUNT 8
/**
* @brief Resolution of the analog-to-digital converter.
*/
typedef enum
{
NRF_SAADC_RESOLUTION_8BIT = SAADC_RESOLUTION_VAL_8bit, ///< 8 bit resolution.
NRF_SAADC_RESOLUTION_10BIT = SAADC_RESOLUTION_VAL_10bit, ///< 10 bit resolution.
NRF_SAADC_RESOLUTION_12BIT = SAADC_RESOLUTION_VAL_12bit, ///< 12 bit resolution.
NRF_SAADC_RESOLUTION_14BIT = SAADC_RESOLUTION_VAL_14bit ///< 14 bit resolution.
} nrf_saadc_resolution_t;
/**
* @brief Input selection for the analog-to-digital converter.
*/
typedef enum
{
NRF_SAADC_INPUT_DISABLED = SAADC_CH_PSELP_PSELP_NC, ///< Not connected.
NRF_SAADC_INPUT_AIN0 = SAADC_CH_PSELP_PSELP_AnalogInput0, ///< Analog input 0 (AIN0).
NRF_SAADC_INPUT_AIN1 = SAADC_CH_PSELP_PSELP_AnalogInput1, ///< Analog input 1 (AIN1).
NRF_SAADC_INPUT_AIN2 = SAADC_CH_PSELP_PSELP_AnalogInput2, ///< Analog input 2 (AIN2).
NRF_SAADC_INPUT_AIN3 = SAADC_CH_PSELP_PSELP_AnalogInput3, ///< Analog input 3 (AIN3).
NRF_SAADC_INPUT_AIN4 = SAADC_CH_PSELP_PSELP_AnalogInput4, ///< Analog input 4 (AIN4).
NRF_SAADC_INPUT_AIN5 = SAADC_CH_PSELP_PSELP_AnalogInput5, ///< Analog input 5 (AIN5).
NRF_SAADC_INPUT_AIN6 = SAADC_CH_PSELP_PSELP_AnalogInput6, ///< Analog input 6 (AIN6).
NRF_SAADC_INPUT_AIN7 = SAADC_CH_PSELP_PSELP_AnalogInput7, ///< Analog input 7 (AIN7).
NRF_SAADC_INPUT_VDD = SAADC_CH_PSELP_PSELP_VDD ///< VDD as input.
} nrf_saadc_input_t;
/**
* @brief Analog-to-digital converter oversampling mode.
*/
typedef enum
{
NRF_SAADC_OVERSAMPLE_DISABLED = SAADC_OVERSAMPLE_OVERSAMPLE_Bypass, ///< No oversampling.
NRF_SAADC_OVERSAMPLE_2X = SAADC_OVERSAMPLE_OVERSAMPLE_Over2x, ///< Oversample 2x.
NRF_SAADC_OVERSAMPLE_4X = SAADC_OVERSAMPLE_OVERSAMPLE_Over4x, ///< Oversample 4x.
NRF_SAADC_OVERSAMPLE_8X = SAADC_OVERSAMPLE_OVERSAMPLE_Over8x, ///< Oversample 8x.
NRF_SAADC_OVERSAMPLE_16X = SAADC_OVERSAMPLE_OVERSAMPLE_Over16x, ///< Oversample 16x.
NRF_SAADC_OVERSAMPLE_32X = SAADC_OVERSAMPLE_OVERSAMPLE_Over32x, ///< Oversample 32x.
NRF_SAADC_OVERSAMPLE_64X = SAADC_OVERSAMPLE_OVERSAMPLE_Over64x, ///< Oversample 64x.
NRF_SAADC_OVERSAMPLE_128X = SAADC_OVERSAMPLE_OVERSAMPLE_Over128x, ///< Oversample 128x.
NRF_SAADC_OVERSAMPLE_256X = SAADC_OVERSAMPLE_OVERSAMPLE_Over256x ///< Oversample 256x.
} nrf_saadc_oversample_t;
/**
* @brief Analog-to-digital converter channel resistor control.
*/
typedef enum
{
NRF_SAADC_RESISTOR_DISABLED = SAADC_CH_CONFIG_RESP_Bypass, ///< Bypass resistor ladder.
NRF_SAADC_RESISTOR_PULLDOWN = SAADC_CH_CONFIG_RESP_Pulldown, ///< Pull-down to GND.
NRF_SAADC_RESISTOR_PULLUP = SAADC_CH_CONFIG_RESP_Pullup, ///< Pull-up to VDD.
NRF_SAADC_RESISTOR_VDD1_2 = SAADC_CH_CONFIG_RESP_VDD1_2 ///< Set input at VDD/2.
} nrf_saadc_resistor_t;
/**
* @brief Gain factor of the analog-to-digital converter input.
*/
typedef enum
{
NRF_SAADC_GAIN1_6 = SAADC_CH_CONFIG_GAIN_Gain1_6, ///< Gain factor 1/6.
NRF_SAADC_GAIN1_5 = SAADC_CH_CONFIG_GAIN_Gain1_5, ///< Gain factor 1/5.
NRF_SAADC_GAIN1_4 = SAADC_CH_CONFIG_GAIN_Gain1_4, ///< Gain factor 1/4.
NRF_SAADC_GAIN1_3 = SAADC_CH_CONFIG_GAIN_Gain1_3, ///< Gain factor 1/3.
NRF_SAADC_GAIN1_2 = SAADC_CH_CONFIG_GAIN_Gain1_2, ///< Gain factor 1/2.
NRF_SAADC_GAIN1 = SAADC_CH_CONFIG_GAIN_Gain1, ///< Gain factor 1.
NRF_SAADC_GAIN2 = SAADC_CH_CONFIG_GAIN_Gain2, ///< Gain factor 2.
NRF_SAADC_GAIN4 = SAADC_CH_CONFIG_GAIN_Gain4, ///< Gain factor 4.
} nrf_saadc_gain_t;
/**
* @brief Reference selection for the analog-to-digital converter.
*/
typedef enum
{
NRF_SAADC_REFERENCE_INTERNAL = SAADC_CH_CONFIG_REFSEL_Internal, ///< Internal reference (0.6 V).
NRF_SAADC_REFERENCE_VDD4 = SAADC_CH_CONFIG_REFSEL_VDD1_4 ///< VDD/4 as reference.
} nrf_saadc_reference_t;
/**
* @brief Analog-to-digital converter acquisition time.
*/
typedef enum
{
NRF_SAADC_ACQTIME_3US = SAADC_CH_CONFIG_TACQ_3us, ///< 3 us.
NRF_SAADC_ACQTIME_5US = SAADC_CH_CONFIG_TACQ_5us, ///< 5 us.
NRF_SAADC_ACQTIME_10US = SAADC_CH_CONFIG_TACQ_10us, ///< 10 us.
NRF_SAADC_ACQTIME_15US = SAADC_CH_CONFIG_TACQ_15us, ///< 15 us.
NRF_SAADC_ACQTIME_20US = SAADC_CH_CONFIG_TACQ_20us, ///< 20 us.
NRF_SAADC_ACQTIME_40US = SAADC_CH_CONFIG_TACQ_40us ///< 40 us.
} nrf_saadc_acqtime_t;
/**
* @brief Analog-to-digital converter channel mode.
*/
typedef enum
{
NRF_SAADC_MODE_SINGLE_ENDED = SAADC_CH_CONFIG_MODE_SE, ///< Single ended, PSELN will be ignored, negative input to ADC shorted to GND.
NRF_SAADC_MODE_DIFFERENTIAL = SAADC_CH_CONFIG_MODE_Diff ///< Differential mode.
} nrf_saadc_mode_t;
/**
* @brief Analog-to-digital converter tasks.
*/
typedef enum /*lint -save -e30 -esym(628,__INTADDR__) */
{
NRF_SAADC_TASK_START = offsetof(NRF_SAADC_Type, TASKS_START), ///< Start the ADC and prepare the result buffer in RAM.
NRF_SAADC_TASK_SAMPLE = offsetof(NRF_SAADC_Type, TASKS_SAMPLE), ///< Take one ADC sample. If scan is enabled, all channels are sampled.
NRF_SAADC_TASK_STOP = offsetof(NRF_SAADC_Type, TASKS_STOP), ///< Stop the ADC and terminate any on-going conversion.
NRF_SAADC_TASK_CALIBRATEOFFSET = offsetof(NRF_SAADC_Type, TASKS_CALIBRATEOFFSET), ///< Starts offset auto-calibration.
} nrf_saadc_task_t;
/**
* @brief Analog-to-digital converter events.
*/
typedef enum /*lint -save -e30 -esym(628,__INTADDR__) */
{
NRF_SAADC_EVENT_STARTED = offsetof(NRF_SAADC_Type, EVENTS_STARTED), ///< The ADC has started.
NRF_SAADC_EVENT_END = offsetof(NRF_SAADC_Type, EVENTS_END), ///< The ADC has filled up the result buffer.
NRF_SAADC_EVENT_CALIBRATEDONE = offsetof(NRF_SAADC_Type, EVENTS_CALIBRATEDONE), ///< Calibration is complete.
NRF_SAADC_EVENT_STOPPED = offsetof(NRF_SAADC_Type, EVENTS_STOPPED), ///< The ADC has stopped.
NRF_SAADC_EVENT_CH0_LIMITH = offsetof(NRF_SAADC_Type, EVENTS_CH[0].LIMITH), ///< Last result is equal or above CH[0].LIMIT.HIGH.
NRF_SAADC_EVENT_CH0_LIMITL = offsetof(NRF_SAADC_Type, EVENTS_CH[0].LIMITL), ///< Last result is equal or below CH[0].LIMIT.LOW.
NRF_SAADC_EVENT_CH1_LIMITH = offsetof(NRF_SAADC_Type, EVENTS_CH[1].LIMITH), ///< Last result is equal or above CH[1].LIMIT.HIGH.
NRF_SAADC_EVENT_CH1_LIMITL = offsetof(NRF_SAADC_Type, EVENTS_CH[1].LIMITL), ///< Last result is equal or below CH[1].LIMIT.LOW.
NRF_SAADC_EVENT_CH2_LIMITH = offsetof(NRF_SAADC_Type, EVENTS_CH[2].LIMITH), ///< Last result is equal or above CH[2].LIMIT.HIGH.
NRF_SAADC_EVENT_CH2_LIMITL = offsetof(NRF_SAADC_Type, EVENTS_CH[2].LIMITL), ///< Last result is equal or below CH[2].LIMIT.LOW.
NRF_SAADC_EVENT_CH3_LIMITH = offsetof(NRF_SAADC_Type, EVENTS_CH[3].LIMITH), ///< Last result is equal or above CH[3].LIMIT.HIGH.
NRF_SAADC_EVENT_CH3_LIMITL = offsetof(NRF_SAADC_Type, EVENTS_CH[3].LIMITL), ///< Last result is equal or below CH[3].LIMIT.LOW.
NRF_SAADC_EVENT_CH4_LIMITH = offsetof(NRF_SAADC_Type, EVENTS_CH[4].LIMITH), ///< Last result is equal or above CH[4].LIMIT.HIGH.
NRF_SAADC_EVENT_CH4_LIMITL = offsetof(NRF_SAADC_Type, EVENTS_CH[4].LIMITL), ///< Last result is equal or below CH[4].LIMIT.LOW.
NRF_SAADC_EVENT_CH5_LIMITH = offsetof(NRF_SAADC_Type, EVENTS_CH[5].LIMITH), ///< Last result is equal or above CH[5].LIMIT.HIGH.
NRF_SAADC_EVENT_CH5_LIMITL = offsetof(NRF_SAADC_Type, EVENTS_CH[5].LIMITL), ///< Last result is equal or below CH[5].LIMIT.LOW.
NRF_SAADC_EVENT_CH6_LIMITH = offsetof(NRF_SAADC_Type, EVENTS_CH[6].LIMITH), ///< Last result is equal or above CH[6].LIMIT.HIGH.
NRF_SAADC_EVENT_CH6_LIMITL = offsetof(NRF_SAADC_Type, EVENTS_CH[6].LIMITL), ///< Last result is equal or below CH[6].LIMIT.LOW.
NRF_SAADC_EVENT_CH7_LIMITH = offsetof(NRF_SAADC_Type, EVENTS_CH[7].LIMITH), ///< Last result is equal or above CH[7].LIMIT.HIGH.
NRF_SAADC_EVENT_CH7_LIMITL = offsetof(NRF_SAADC_Type, EVENTS_CH[7].LIMITL) ///< Last result is equal or below CH[7].LIMIT.LOW.
} nrf_saadc_event_t;
/**
* @brief Analog-to-digital converter interrupt masks.
*/
typedef enum
{
NRF_SAADC_INT_STARTED = SAADC_INTENSET_STARTED_Msk, ///< Interrupt on EVENTS_STARTED event.
NRF_SAADC_INT_END = SAADC_INTENSET_END_Msk, ///< Interrupt on EVENTS_END event.
NRF_SAADC_INT_STOPPED = SAADC_INTENSET_STOPPED_Msk, ///< Interrupt on EVENTS_STOPPED event.
NRF_SAADC_INT_CH0LIMITH = SAADC_INTENSET_CH0LIMITH_Msk, ///< Interrupt on EVENTS_CH[0].LIMITH event.
NRF_SAADC_INT_CH0LIMITL = SAADC_INTENSET_CH0LIMITL_Msk, ///< Interrupt on EVENTS_CH[0].LIMITL event.
NRF_SAADC_INT_CH1LIMITH = SAADC_INTENSET_CH1LIMITH_Msk, ///< Interrupt on EVENTS_CH[1].LIMITH event.
NRF_SAADC_INT_CH1LIMITL = SAADC_INTENSET_CH1LIMITL_Msk, ///< Interrupt on EVENTS_CH[1].LIMITL event.
NRF_SAADC_INT_CH2LIMITH = SAADC_INTENSET_CH2LIMITH_Msk, ///< Interrupt on EVENTS_CH[2].LIMITH event.
NRF_SAADC_INT_CH2LIMITL = SAADC_INTENSET_CH2LIMITL_Msk, ///< Interrupt on EVENTS_CH[2].LIMITL event.
NRF_SAADC_INT_CH3LIMITH = SAADC_INTENSET_CH3LIMITH_Msk, ///< Interrupt on EVENTS_CH[3].LIMITH event.
NRF_SAADC_INT_CH3LIMITL = SAADC_INTENSET_CH3LIMITL_Msk, ///< Interrupt on EVENTS_CH[3].LIMITL event.
NRF_SAADC_INT_CH4LIMITH = SAADC_INTENSET_CH4LIMITH_Msk, ///< Interrupt on EVENTS_CH[4].LIMITH event.
NRF_SAADC_INT_CH4LIMITL = SAADC_INTENSET_CH4LIMITL_Msk, ///< Interrupt on EVENTS_CH[4].LIMITL event.
NRF_SAADC_INT_CH5LIMITH = SAADC_INTENSET_CH5LIMITH_Msk, ///< Interrupt on EVENTS_CH[5].LIMITH event.
NRF_SAADC_INT_CH5LIMITL = SAADC_INTENSET_CH5LIMITL_Msk, ///< Interrupt on EVENTS_CH[5].LIMITL event.
NRF_SAADC_INT_CH6LIMITH = SAADC_INTENSET_CH6LIMITH_Msk, ///< Interrupt on EVENTS_CH[6].LIMITH event.
NRF_SAADC_INT_CH6LIMITL = SAADC_INTENSET_CH6LIMITL_Msk, ///< Interrupt on EVENTS_CH[6].LIMITL event.
NRF_SAADC_INT_CH7LIMITH = SAADC_INTENSET_CH7LIMITH_Msk, ///< Interrupt on EVENTS_CH[7].LIMITH event.
NRF_SAADC_INT_CH7LIMITL = SAADC_INTENSET_CH7LIMITL_Msk, ///< Interrupt on EVENTS_CH[7].LIMITL event.
NRF_SAADC_INT_ALL = 0x7FFFFFFFUL ///< Mask of all interrupts.
} nrf_saadc_int_mask_t;
/**
* @brief Analog-to-digital converter value limit type.
*/
typedef enum
{
NRF_SAADC_LIMIT_LOW = 0,
NRF_SAADC_LIMIT_HIGH = 1
} nrf_saadc_limit_t;
typedef int16_t nrf_saadc_value_t; ///< Type of a single ADC conversion result.
/**
* @brief Analog-to-digital converter configuration structure.
*/
typedef struct
{
nrf_saadc_resolution_t resolution;
nrf_saadc_oversample_t oversample;
nrf_saadc_value_t * buffer;
uint32_t buffer_size;
} nrf_saadc_config_t;
/**
* @brief Analog-to-digital converter channel configuration structure.
*/
typedef struct
{
nrf_saadc_resistor_t resistor_p;
nrf_saadc_resistor_t resistor_n;
nrf_saadc_gain_t gain;
nrf_saadc_reference_t reference;
nrf_saadc_acqtime_t acq_time;
nrf_saadc_mode_t mode;
nrf_saadc_input_t pin_p;
nrf_saadc_input_t pin_n;
} nrf_saadc_channel_config_t;
/**
* @brief Function for triggering a specific SAADC task.
*
* @param[in] saadc_task SAADC task.
*/
__STATIC_INLINE void nrf_saadc_task_trigger(nrf_saadc_task_t saadc_task)
{
*((volatile uint32_t *)((uint8_t *)NRF_SAADC + (uint32_t)saadc_task)) = 0x1UL;
}
/**
* @brief Function for getting the address of a specific SAADC task register.
*
* @param[in] saadc_task SAADC task.
*
* @return Address of the specified SAADC task.
*/
__STATIC_INLINE uint32_t nrf_saadc_task_address_get(nrf_saadc_task_t saadc_task)
{
return (uint32_t)((uint8_t *)NRF_SAADC + (uint32_t)saadc_task);
}
/**
* @brief Function for getting the state of a specific SAADC event.
*
* @param[in] saadc_event SAADC event.
*
* @return State of the specified SAADC event.
*/
__STATIC_INLINE bool nrf_saadc_event_check(nrf_saadc_event_t saadc_event)
{
return (bool)*(volatile uint32_t *)((uint8_t *)NRF_SAADC + (uint32_t)saadc_event);
}
/**
* @brief Function for clearing the specific SAADC event.
*
* @param[in] saadc_event SAADC event.
*/
__STATIC_INLINE void nrf_saadc_event_clear(nrf_saadc_event_t saadc_event)
{
*((volatile uint32_t *)((uint8_t *)NRF_SAADC + (uint32_t)saadc_event)) = 0x0UL;
}
/**
* @brief Function for getting the address of a specific SAADC event register.
*
* @param[in] saadc_event SAADC event.
*
* @return Address of the specified SAADC event.
*/
__STATIC_INLINE volatile uint32_t * nrf_saadc_event_address_get(nrf_saadc_event_t saadc_event)
{
return (volatile uint32_t *)((uint8_t *)NRF_SAADC + (uint32_t)saadc_event);
}
/**
* @brief Function for getting the address of a specific SAADC limit event register.
*
* @param[in] channel Channel number.
* @param[in] limit_type Low limit or high limit.
*
* @return Address of the specified SAADC limit event.
*/
__STATIC_INLINE volatile uint32_t * nrf_saadc_event_limit_address_get(uint8_t channel, nrf_saadc_limit_t limit_type)
{
ASSERT(channel < NRF_SAADC_CHANNEL_COUNT);
if (limit_type == NRF_SAADC_LIMIT_HIGH)
{
return &NRF_SAADC->EVENTS_CH[channel].LIMITH;
}
else
{
return &NRF_SAADC->EVENTS_CH[channel].LIMITL;
}
}
/**
* @brief Function for getting the SAADC channel monitoring limit events.
*
* @param[in] channel Channel number.
* @param[in] limit_type Low limit or high limit.
*/
__STATIC_INLINE nrf_saadc_event_t nrf_saadc_event_limit_get(uint8_t channel, nrf_saadc_limit_t limit_type)
{
if (limit_type == NRF_SAADC_LIMIT_HIGH)
{
return (nrf_saadc_event_t)( (uint32_t) NRF_SAADC_EVENT_CH0_LIMITH +
(uint32_t) (NRF_SAADC_EVENT_CH1_LIMITH - NRF_SAADC_EVENT_CH0_LIMITH)
* (uint32_t) channel );
}
else
{
return (nrf_saadc_event_t)( (uint32_t) NRF_SAADC_EVENT_CH0_LIMITL +
(uint32_t) (NRF_SAADC_EVENT_CH1_LIMITL - NRF_SAADC_EVENT_CH0_LIMITL)
* (uint32_t) channel );
}
}
/**
* @brief Function for configuring the input pins for a specific SAADC channel.
*
* @param[in] channel Channel number.
* @param[in] pselp Positive input.
* @param[in] pseln Negative input. Set to NRF_SAADC_INPUT_DISABLED in single ended mode.
*/
__STATIC_INLINE void nrf_saadc_channel_input_set(uint8_t channel,
nrf_saadc_input_t pselp,
nrf_saadc_input_t pseln)
{
NRF_SAADC->CH[channel].PSELN = pseln;
NRF_SAADC->CH[channel].PSELP = pselp;
}
/**
* @brief Function for setting the SAADC channel monitoring limits.
*
* @param[in] channel Channel number.
* @param[in] low Low limit.
* @param[in] high High limit.
*/
__STATIC_INLINE void nrf_saadc_channel_limits_set(uint8_t channel, int16_t low, int16_t high)
{
NRF_SAADC->CH[channel].LIMIT = (
(((uint32_t) low << SAADC_CH_LIMIT_LOW_Pos) & SAADC_CH_LIMIT_LOW_Msk)
| (((uint32_t) high << SAADC_CH_LIMIT_HIGH_Pos) & SAADC_CH_LIMIT_HIGH_Msk));
}
/**
* @brief Function for enabling specified SAADC interrupts.
*
* @param[in] saadc_int_mask Interrupt(s) to enable.
*/
__STATIC_INLINE void nrf_saadc_int_enable(uint32_t saadc_int_mask)
{
NRF_SAADC->INTENSET = saadc_int_mask;
}
/**
* @brief Function for retrieving the state of specified SAADC interrupts.
*
* @param[in] saadc_int_mask Interrupt(s) to check.
*
* @retval true If all specified interrupts are enabled.
* @retval false If at least one of the given interrupts is not enabled.
*/
__STATIC_INLINE bool nrf_saadc_int_enable_check(uint32_t saadc_int_mask)
{
return (bool)(NRF_SAADC->INTENSET & saadc_int_mask);
}
/**
* @brief Function for disabling specified interrupts.
*
* @param saadc_int_mask Interrupt(s) to disable.
*/
__STATIC_INLINE void nrf_saadc_int_disable(uint32_t saadc_int_mask)
{
NRF_SAADC->INTENCLR = saadc_int_mask;
}
/**
* @brief Function for generating masks for SAADC channel limit interrupts.
*
* @param[in] channel SAADC channel number.
* @param[in] limit_type Limit type.
*
* @returns Interrupt mask.
*/
__STATIC_INLINE uint32_t nrf_saadc_limit_int_get(uint8_t channel, nrf_saadc_limit_t limit_type)
{
ASSERT(channel < NRF_SAADC_CHANNEL_COUNT);
uint32_t mask = (limit_type == NRF_SAADC_LIMIT_LOW) ? NRF_SAADC_INT_CH0LIMITL : NRF_SAADC_INT_CH0LIMITH;
return mask << (channel * 2);
}
/**
* @brief Function for checking whether the SAADC is busy.
*
* This function checks whether the analog-to-digital converter is busy with a conversion.
*
* @retval true If the SAADC is busy.
* @retval false If the SAADC is not busy.
*/
__STATIC_INLINE bool nrf_saadc_busy_check(void)
{
//return ((NRF_SAADC->STATUS & SAADC_STATUS_STATUS_Msk) == SAADC_STATUS_STATUS_Msk);
//simplified for performance
return NRF_SAADC->STATUS;
}
/**
* @brief Function for enabling the SAADC.
*
* The analog-to-digital converter must be enabled before use.
*/
__STATIC_INLINE void nrf_saadc_enable(void)
{
NRF_SAADC->ENABLE = (SAADC_ENABLE_ENABLE_Enabled << SAADC_ENABLE_ENABLE_Pos);
}
/**
* @brief Function for disabling the SAADC.
*/
__STATIC_INLINE void nrf_saadc_disable(void)
{
NRF_SAADC->ENABLE = (SAADC_ENABLE_ENABLE_Disabled << SAADC_ENABLE_ENABLE_Pos);
}
/**
* @brief Function for checking if the SAADC is enabled.
*
* @retval true If the SAADC is enabled.
* @retval false If the SAADC is not enabled.
*/
__STATIC_INLINE bool nrf_saadc_enable_check(void)
{
//simplified for performance
return NRF_SAADC->ENABLE;
}
/**
* @brief Function for initializing the SAADC result buffer.
*
* @param[in] buffer Pointer to the result buffer.
* @param[in] num Size of buffer in words.
*/
__STATIC_INLINE void nrf_saadc_buffer_init(nrf_saadc_value_t * buffer, uint32_t num)
{
NRF_SAADC->RESULT.PTR = (uint32_t)buffer;
NRF_SAADC->RESULT.MAXCNT = num;
}
/**
* @brief Function for getting the number of buffer words transferred since last START operation.
*
* @returns Number of words transferred.
*/
__STATIC_INLINE uint16_t nrf_saadc_amount_get(void)
{
return NRF_SAADC->RESULT.AMOUNT;
}
/**
* @brief Function for setting the SAADC sample resolution.
*
* @param[in] resolution Bit resolution.
*/
__STATIC_INLINE void nrf_saadc_resolution_set(nrf_saadc_resolution_t resolution)
{
NRF_SAADC->RESOLUTION = resolution;
}
/**
* @brief Function for configuring the oversampling feature.
*
* @param[in] oversample Oversampling mode.
*/
__STATIC_INLINE void nrf_saadc_oversample_set(nrf_saadc_oversample_t oversample)
{
NRF_SAADC->OVERSAMPLE = oversample;
}
/**
* @brief Function for getting the oversampling feature configuration.
*
* @return Oversampling configuration.
*/
__STATIC_INLINE nrf_saadc_oversample_t nrf_saadc_oversample_get(void)
{
return (nrf_saadc_oversample_t)NRF_SAADC->OVERSAMPLE;
}
/**
* @brief Function for initializing the SAADC channel.
*
* @param[in] channel Channel number.
* @param[in] config Pointer to the channel configuration structure.
*/
void nrf_saadc_channel_init(uint8_t channel, nrf_saadc_channel_config_t const * const config);
/**
*@}
**/
#endif // NRF52
#endif /* NRF_SAADC_H_ */