[NUC472/M453/M487/NANO130] Rework us_ticker and lp_ticker

The rework includes the following:
1. Remove ticker overflow handling because upper layer (mbed_ticker_api.c) has done with it.
   This makes us_ticker/lp_ticker implementation more succinct and avoids potential error.
2. Refine timer register access with low-power clock source
pull/6048/head
ccli8 2018-01-24 10:07:55 +08:00
parent f0273ecb28
commit fae160fb9f
8 changed files with 1045 additions and 774 deletions

View File

@ -13,37 +13,38 @@
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "lp_ticker_api.h"
#if DEVICE_LOWPOWERTIMER
#include "sleep_api.h"
#include "mbed_wait_api.h"
#include "mbed_assert.h"
#include "nu_modutil.h"
#include "nu_miscutil.h"
#include "mbed_critical.h"
// lp_ticker tick = us = timestamp
#define US_PER_TICK (1)
#define US_PER_SEC (1000 * 1000)
#define US_PER_TMR2_INT (US_PER_SEC * 10)
#define TMR2_CLK_PER_SEC (__LXT)
#define TMR2_CLK_PER_TMR2_INT ((uint32_t) ((uint64_t) US_PER_TMR2_INT * TMR2_CLK_PER_SEC / US_PER_SEC))
#define TMR3_CLK_PER_SEC (__LXT)
/* Micro seconds per second */
#define NU_US_PER_SEC 1000000
/* Timer clock per lp_ticker tick */
#define NU_TMRCLK_PER_TICK 1
/* Timer clock per second */
#define NU_TMRCLK_PER_SEC (__LXT)
/* Timer max counter bit size */
#define NU_TMR_MAXCNT_BITSIZE 24
/* Timer max counter */
#define NU_TMR_MAXCNT ((1 << NU_TMR_MAXCNT_BITSIZE) - 1)
static void tmr2_vec(void);
static void tmr3_vec(void);
static void lp_ticker_arm_cd(void);
/* Configure scheduled alarm */
static void arm_alarm(uint32_t cd_clk);
static int lp_ticker_inited = 0;
static volatile uint32_t counter_major = 0;
static volatile uint32_t cd_major_minor_clks = 0;
static volatile uint32_t cd_minor_clks = 0;
static volatile uint32_t wakeup_tick = (uint32_t) -1;
static int ticker_inited = 0;
static uint32_t ticker_last_read_clk = 0;
// NOTE: To wake the system from power down mode, timer clock source must be ether LXT or LIRC.
// NOTE: TIMER_2 for normal counting and TIMER_3 for scheduled wakeup
/* NOTE: To wake the system from power down mode, timer clock source must be ether LXT or LIRC. */
/* NOTE: TIMER_2 for normal counting and TIMER_3 for scheduled alarm */
static const struct nu_modinit_s timer2_modinit = {TIMER_2, TMR2_MODULE, CLK_CLKSEL1_TMR2SEL_LXT, 0, TMR2_RST, TMR2_IRQn, (void *) tmr2_vec};
static const struct nu_modinit_s timer3_modinit = {TIMER_3, TMR3_MODULE, CLK_CLKSEL1_TMR3SEL_LXT, 0, TMR3_RST, TMR3_IRQn, (void *) tmr3_vec};
@ -52,20 +53,17 @@ static const struct nu_modinit_s timer3_modinit = {TIMER_3, TMR3_MODULE, CLK_CLK
void lp_ticker_init(void)
{
if (lp_ticker_inited) {
if (ticker_inited) {
return;
}
lp_ticker_inited = 1;
counter_major = 0;
cd_major_minor_clks = 0;
cd_minor_clks = 0;
wakeup_tick = (uint32_t) -1;
ticker_inited = 1;
ticker_last_read_clk = 0;
// Reset module
SYS_ResetModule(timer2_modinit.rsetidx);
SYS_ResetModule(timer3_modinit.rsetidx);
// Select IP clock source
CLK_SetModuleClock(timer2_modinit.clkidx, timer2_modinit.clksrc, timer2_modinit.clkdiv);
CLK_SetModuleClock(timer3_modinit.clkidx, timer3_modinit.clksrc, timer3_modinit.clkdiv);
@ -75,93 +73,114 @@ void lp_ticker_init(void)
// Configure clock
uint32_t clk_timer2 = TIMER_GetModuleClock((TIMER_T *) NU_MODBASE(timer2_modinit.modname));
uint32_t prescale_timer2 = clk_timer2 / TMR2_CLK_PER_SEC - 1;
uint32_t prescale_timer2 = clk_timer2 / NU_TMRCLK_PER_SEC - 1;
MBED_ASSERT((prescale_timer2 != (uint32_t) -1) && prescale_timer2 <= 127);
MBED_ASSERT((clk_timer2 % TMR2_CLK_PER_SEC) == 0);
uint32_t cmp_timer2 = TMR2_CLK_PER_TMR2_INT;
MBED_ASSERT((clk_timer2 % NU_TMRCLK_PER_SEC) == 0);
uint32_t cmp_timer2 = TMR_CMP_MAX;
MBED_ASSERT(cmp_timer2 >= TMR_CMP_MIN && cmp_timer2 <= TMR_CMP_MAX);
// Continuous mode
// NOTE: TIMER_CTL_CNTDATEN_Msk exists in NUC472, but not in M451. In M451, TIMER_CNT is updated continuously by default.
((TIMER_T *) NU_MODBASE(timer2_modinit.modname))->CTL = TIMER_PERIODIC_MODE | prescale_timer2/* | TIMER_CTL_CNTDATEN_Msk*/;
((TIMER_T *) NU_MODBASE(timer2_modinit.modname))->CMP = cmp_timer2;
// Set vector
NVIC_SetVector(timer2_modinit.irq_n, (uint32_t) timer2_modinit.var);
NVIC_SetVector(timer3_modinit.irq_n, (uint32_t) timer3_modinit.var);
NVIC_EnableIRQ(timer2_modinit.irq_n);
NVIC_EnableIRQ(timer3_modinit.irq_n);
TIMER_EnableInt((TIMER_T *) NU_MODBASE(timer2_modinit.modname));
TIMER_EnableWakeup((TIMER_T *) NU_MODBASE(timer2_modinit.modname));
// NOTE: TIMER_Start() first and then lp_ticker_set_interrupt(); otherwise, we may get stuck in lp_ticker_read() because
// timer is not running.
// Start timer
/* NOTE: When engine is clocked by low power clock source (LXT/LIRC), we need to wait for 3 engine clocks. */
wait_us((NU_US_PER_SEC / NU_TMRCLK_PER_SEC) * 3);
TIMER_Start((TIMER_T *) NU_MODBASE(timer2_modinit.modname));
// Schedule wakeup to match semantics of lp_ticker_get_compare_match()
lp_ticker_set_interrupt(wakeup_tick);
}
timestamp_t lp_ticker_read()
{
if (! lp_ticker_inited) {
{
if (! ticker_inited) {
lp_ticker_init();
}
TIMER_T * timer2_base = (TIMER_T *) NU_MODBASE(timer2_modinit.modname);
do {
uint64_t major_minor_clks;
uint32_t minor_clks;
// NOTE: As TIMER_CNT = TIMER_CMP and counter_major has increased by one, TIMER_CNT doesn't change to 0 for one tick time.
// NOTE: As TIMER_CNT = TIMER_CMP or TIMER_CNT = 0, counter_major (ISR) may not sync with TIMER_CNT. So skip and fetch stable one at the cost of 1 clock delay on this read.
do {
core_util_critical_section_enter();
// NOTE: Order of reading minor_us/carry here is significant.
minor_clks = TIMER_GetCounter(timer2_base);
uint32_t carry = (timer2_base->INTSTS & TIMER_INTSTS_TIF_Msk) ? 1 : 0;
// When TIMER_CNT approaches TIMER_CMP and will wrap soon, we may get carry but TIMER_CNT not wrapped. Hanlde carefully carry == 1 && TIMER_CNT is near TIMER_CMP.
if (carry && minor_clks > (TMR2_CLK_PER_TMR2_INT / 2)) {
major_minor_clks = (counter_major + 1) * TMR2_CLK_PER_TMR2_INT;
}
else {
major_minor_clks = (counter_major + carry) * TMR2_CLK_PER_TMR2_INT + minor_clks;
}
core_util_critical_section_exit();
}
while (minor_clks == 0 || minor_clks == TMR2_CLK_PER_TMR2_INT);
// Add power-down compensation
return ((uint64_t) major_minor_clks * US_PER_SEC / TMR2_CLK_PER_SEC / US_PER_TICK);
}
while (0);
TIMER_T * timer2_base = (TIMER_T *) NU_MODBASE(timer2_modinit.modname);
ticker_last_read_clk = TIMER_GetCounter(timer2_base);
return (ticker_last_read_clk / NU_TMRCLK_PER_TICK);
}
void lp_ticker_set_interrupt(timestamp_t timestamp)
{
uint32_t delta = timestamp - lp_ticker_read();
wakeup_tick = timestamp;
TIMER_Stop((TIMER_T *) NU_MODBASE(timer3_modinit.modname));
cd_major_minor_clks = (uint64_t) delta * US_PER_TICK * TMR3_CLK_PER_SEC / US_PER_SEC;
lp_ticker_arm_cd();
}
void lp_ticker_fire_interrupt(void)
{
cd_major_minor_clks = cd_minor_clks = 0;
/**
* This event was in the past. Set the interrupt as pending, but don't process it here.
* This prevents a recurive loop under heavy load which can lead to a stack overflow.
*/
NVIC_SetPendingIRQ(timer3_modinit.irq_n);
/* We need to get alarm interval from alarm timestamp `timestamp` to configure H/W timer.
*
* Because both `timestamp` and xx_ticker_read() would wrap around, we have difficulties in distinguishing
* long future event and past event. To distinguish them, we need `tick_last_read` against which
* `timestamp` is calculated out. In timeline, we would always have below after fixing wrap-around:
* (1) tick_last_read <= present_clk
* (2) tick_last_read <= alarm_ts_clk
*
*
* 1. Future event case:
*
* tick_last_read present_clk alarm_ts_clk
* | | |
* --------------------------------------------------------
* |-alarm_intvl1_clk-|
* |-------------------alarm_intvl2_clk-------------------|
*
* 2. Past event case:
*
* tick_last_read alarm_ts_clk present_clk
* | | |
* --------------------------------------------------------
* |-------------------alarm_intvl1_clk-------------------|
* |-alarm_intvl2_clk-|
*
* Unfortunately, `tick_last_read` is not passed along the xx_ticker_set_interrupt() call. To solve it, we
* assume that `tick_last_read` tick is exactly the one returned by the last xx_ticker_read() call before
* xx_ticker_set_interrupt() is invoked. With this assumption, we can hold it via `xx_ticker_last_read_clk`
* in xx_ticker_read().
*/
/* ticker_last_read_clk will update in lp_ticker_read(). Keep it beforehand. */
uint32_t last_read_clk = ticker_last_read_clk;
uint32_t present_clk = lp_ticker_read() * NU_TMRCLK_PER_TICK;
uint32_t alarm_ts_clk = timestamp * NU_TMRCLK_PER_TICK;
uint32_t alarm_intvl1_clk, alarm_intvl2_clk;
/* alarm_intvl1_clk = present_clk - last_read_clk
*
* NOTE: Don't miss the `=` sign here. Otherwise, we would get the wrong result.
*/
if (present_clk >= last_read_clk) {
alarm_intvl1_clk = present_clk - last_read_clk;
} else {
alarm_intvl1_clk = (uint32_t) (((uint64_t) NU_TMR_MAXCNT) + 1 + present_clk - last_read_clk);
}
/* alarm_intvl2_clk = alarm_ts_clk - last_read_clk
*
* NOTE: Don't miss the `=` sign here. Otherwise, we would get the wrong result.
*/
if (alarm_ts_clk >= last_read_clk) {
alarm_intvl2_clk = alarm_ts_clk - last_read_clk;
} else {
alarm_intvl2_clk = (uint32_t) (((uint64_t) NU_TMR_MAXCNT) + 1 + alarm_ts_clk - last_read_clk);
}
/* Distinguish (long) future event and past event
*
* NOTE: No '=' sign here. Alarm should go off immediately in equal case.
*/
if (alarm_intvl2_clk > alarm_intvl1_clk) {
/* Schedule for future event */
arm_alarm(alarm_intvl2_clk - alarm_intvl1_clk);
} else {
/* Go off immediately for past event, including equal case */
lp_ticker_fire_interrupt();
}
}
void lp_ticker_disable_interrupt(void)
@ -174,48 +193,64 @@ void lp_ticker_clear_interrupt(void)
TIMER_ClearIntFlag((TIMER_T *) NU_MODBASE(timer3_modinit.modname));
}
void lp_ticker_fire_interrupt(void)
{
// NOTE: This event was in the past. Set the interrupt as pending, but don't process it here.
// This prevents a recursive loop under heavy load which can lead to a stack overflow.
NVIC_SetPendingIRQ(timer3_modinit.irq_n);
}
static void tmr2_vec(void)
{
TIMER_ClearIntFlag((TIMER_T *) NU_MODBASE(timer2_modinit.modname));
TIMER_ClearWakeupFlag((TIMER_T *) NU_MODBASE(timer2_modinit.modname));
counter_major ++;
}
static void tmr3_vec(void)
{
TIMER_ClearIntFlag((TIMER_T *) NU_MODBASE(timer3_modinit.modname));
TIMER_ClearWakeupFlag((TIMER_T *) NU_MODBASE(timer3_modinit.modname));
cd_major_minor_clks = (cd_major_minor_clks > cd_minor_clks) ? (cd_major_minor_clks - cd_minor_clks) : 0;
if (cd_major_minor_clks == 0) {
// NOTE: lp_ticker_set_interrupt() may get called in lp_ticker_irq_handler();
lp_ticker_irq_handler();
}
else {
lp_ticker_arm_cd();
}
// NOTE: lp_ticker_set_interrupt() may get called in lp_ticker_irq_handler();
lp_ticker_irq_handler();
}
static void lp_ticker_arm_cd(void)
static void arm_alarm(uint32_t cd_clk)
{
TIMER_T * timer3_base = (TIMER_T *) NU_MODBASE(timer3_modinit.modname);
// Reset 8-bit PSC counter, 24-bit up counter value and CNTEN bit
timer3_base->CTL |= TIMER_CTL_RSTCNT_Msk;
// One-shot mode, Clock = 1 KHz
uint32_t clk_timer3 = TIMER_GetModuleClock((TIMER_T *) NU_MODBASE(timer3_modinit.modname));
uint32_t prescale_timer3 = clk_timer3 / TMR3_CLK_PER_SEC - 1;
uint32_t prescale_timer3 = clk_timer3 / NU_TMRCLK_PER_SEC - 1;
MBED_ASSERT((prescale_timer3 != (uint32_t) -1) && prescale_timer3 <= 127);
MBED_ASSERT((clk_timer3 % TMR3_CLK_PER_SEC) == 0);
MBED_ASSERT((clk_timer3 % NU_TMRCLK_PER_SEC) == 0);
// NOTE: TIMER_CTL_CNTDATEN_Msk exists in NUC472, but not in M451. In M451, TIMER_CNT is updated continuously by default.
timer3_base->CTL &= ~(TIMER_CTL_OPMODE_Msk | TIMER_CTL_PSC_Msk/* | TIMER_CTL_CNTDATEN_Msk*/);
timer3_base->CTL |= TIMER_ONESHOT_MODE | prescale_timer3/* | TIMER_CTL_CNTDATEN_Msk*/;
cd_minor_clks = cd_major_minor_clks;
cd_minor_clks = NU_CLAMP(cd_minor_clks, TMR_CMP_MIN, TMR_CMP_MAX);
timer3_base->CMP = cd_minor_clks;
/* NOTE: Because H/W timer requests min compare value, our implementation would have alarm delay of
* (TMR_CMP_MIN - interval_clk) clocks when interval_clk is between [1, TMR_CMP_MIN). */
uint32_t cmp_timer3 = cd_clk;
cmp_timer3 = NU_CLAMP(cmp_timer3, TMR_CMP_MIN, TMR_CMP_MAX);
timer3_base->CMP = cmp_timer3;
TIMER_EnableInt(timer3_base);
TIMER_EnableWakeup((TIMER_T *) NU_MODBASE(timer3_modinit.modname));
/* NOTE: When engine is clocked by low power clock source (LXT/LIRC), we need to wait for 3 engine clocks. */
wait_us((NU_US_PER_SEC / NU_TMRCLK_PER_SEC) * 3);
TIMER_Start(timer3_base);
}
const ticker_info_t* lp_ticker_get_info()
{
static const ticker_info_t info = {
NU_TMRCLK_PER_SEC / NU_TMRCLK_PER_TICK,
NU_TMR_MAXCNT_BITSIZE
};
return &info;
}
#endif

View File

@ -13,43 +13,33 @@
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "us_ticker_api.h"
#include "sleep_api.h"
#include "mbed_assert.h"
#include "nu_modutil.h"
#include "nu_miscutil.h"
#include "mbed_critical.h"
// us_ticker tick = us = timestamp
#define US_PER_TICK 1
#define US_PER_SEC (1000 * 1000)
#define TMR0HIRES_CLK_PER_SEC (1000 * 1000)
#define TMR1HIRES_CLK_PER_SEC (1000 * 1000)
#define US_PER_TMR0HIRES_CLK (US_PER_SEC / TMR0HIRES_CLK_PER_SEC)
#define US_PER_TMR1HIRES_CLK (US_PER_SEC / TMR1HIRES_CLK_PER_SEC)
#define US_PER_TMR0HIRES_INT (1000 * 1000 * 10)
#define TMR0HIRES_CLK_PER_TMR0HIRES_INT ((uint32_t) ((uint64_t) US_PER_TMR0HIRES_INT * TMR0HIRES_CLK_PER_SEC / US_PER_SEC))
/* Micro seconds per second */
#define NU_US_PER_SEC 1000000
/* Timer clock per us_ticker tick */
#define NU_TMRCLK_PER_TICK 1
/* Timer clock per second */
#define NU_TMRCLK_PER_SEC (1000 * 1000)
/* Timer max counter bit size */
#define NU_TMR_MAXCNT_BITSIZE 24
/* Timer max counter */
#define NU_TMR_MAXCNT ((1 << NU_TMR_MAXCNT_BITSIZE) - 1)
static void tmr0_vec(void);
static void tmr1_vec(void);
static void us_ticker_arm_cd(void);
/* Configure scheduled alarm */
static void arm_alarm(uint32_t cd_clk);
static int us_ticker_inited = 0;
static volatile uint32_t counter_major = 0;
static volatile uint32_t cd_major_minor_us = 0;
static volatile uint32_t cd_minor_us = 0;
static int ticker_inited = 0;
static uint32_t ticker_last_read_clk = 0;
// NOTE: PCLK is set up in mbed_sdk_init(), invocation of which must be before C++ global object constructor. See init_api.c for details.
// NOTE: Choose clock source of timer:
// 1. HIRC: Be the most accurate but might cause unknown HardFault.
// 2. HXT: Less accurate and cannot pass mbed-drivers test.
// 3. PCLK(HXT): Less accurate but can pass mbed-drivers test.
// NOTE: TIMER_0 for normal counter, TIMER_1 for countdown.
/* NOTE: TIMER_0 for normal counting and TIMER_1 for scheduled alarm. */
static const struct nu_modinit_s timer0hires_modinit = {TIMER_0, TMR0_MODULE, CLK_CLKSEL1_TMR0SEL_PCLK0, 0, TMR0_RST, TMR0_IRQn, (void *) tmr0_vec};
static const struct nu_modinit_s timer1hires_modinit = {TIMER_1, TMR1_MODULE, CLK_CLKSEL1_TMR1SEL_PCLK0, 0, TMR1_RST, TMR1_IRQn, (void *) tmr1_vec};
@ -58,19 +48,17 @@ static const struct nu_modinit_s timer1hires_modinit = {TIMER_1, TMR1_MODULE, CL
void us_ticker_init(void)
{
if (us_ticker_inited) {
if (ticker_inited) {
return;
}
counter_major = 0;
cd_major_minor_us = 0;
cd_minor_us = 0;
us_ticker_inited = 1;
ticker_inited = 1;
ticker_last_read_clk = 0;
// Reset IP
SYS_ResetModule(timer0hires_modinit.rsetidx);
SYS_ResetModule(timer1hires_modinit.rsetidx);
// Select IP clock source
CLK_SetModuleClock(timer0hires_modinit.clkidx, timer0hires_modinit.clksrc, timer0hires_modinit.clkdiv);
CLK_SetModuleClock(timer1hires_modinit.clkidx, timer1hires_modinit.clksrc, timer1hires_modinit.clkdiv);
@ -80,60 +68,109 @@ void us_ticker_init(void)
// Timer for normal counter
uint32_t clk_timer0 = TIMER_GetModuleClock((TIMER_T *) NU_MODBASE(timer0hires_modinit.modname));
uint32_t prescale_timer0 = clk_timer0 / TMR0HIRES_CLK_PER_SEC - 1;
uint32_t prescale_timer0 = clk_timer0 / NU_TMRCLK_PER_SEC - 1;
MBED_ASSERT((prescale_timer0 != (uint32_t) -1) && prescale_timer0 <= 127);
MBED_ASSERT((clk_timer0 % TMR0HIRES_CLK_PER_SEC) == 0);
uint32_t cmp_timer0 = TMR0HIRES_CLK_PER_TMR0HIRES_INT;
MBED_ASSERT((clk_timer0 % NU_TMRCLK_PER_SEC) == 0);
uint32_t cmp_timer0 = TMR_CMP_MAX;
MBED_ASSERT(cmp_timer0 >= TMR_CMP_MIN && cmp_timer0 <= TMR_CMP_MAX);
// NOTE: TIMER_CTL_CNTDATEN_Msk exists in NUC472, but not in M451. In M451, TIMER_CNT is updated continuously by default.
((TIMER_T *) NU_MODBASE(timer0hires_modinit.modname))->CTL = TIMER_PERIODIC_MODE | prescale_timer0/* | TIMER_CTL_CNTDATEN_Msk*/;
((TIMER_T *) NU_MODBASE(timer0hires_modinit.modname))->CMP = cmp_timer0;
NVIC_SetVector(timer0hires_modinit.irq_n, (uint32_t) timer0hires_modinit.var);
NVIC_SetVector(timer1hires_modinit.irq_n, (uint32_t) timer1hires_modinit.var);
NVIC_EnableIRQ(timer0hires_modinit.irq_n);
NVIC_EnableIRQ(timer1hires_modinit.irq_n);
TIMER_EnableInt((TIMER_T *) NU_MODBASE(timer0hires_modinit.modname));
TIMER_Start((TIMER_T *) NU_MODBASE(timer0hires_modinit.modname));
}
uint32_t us_ticker_read()
{
if (! us_ticker_inited) {
if (! ticker_inited) {
us_ticker_init();
}
TIMER_T * timer0_base = (TIMER_T *) NU_MODBASE(timer0hires_modinit.modname);
do {
uint32_t major_minor_us;
uint32_t minor_us;
// NOTE: As TIMER_CNT = TIMER_CMP and counter_major has increased by one, TIMER_CNT doesn't change to 0 for one tick time.
// NOTE: As TIMER_CNT = TIMER_CMP or TIMER_CNT = 0, counter_major (ISR) may not sync with TIMER_CNT. So skip and fetch stable one at the cost of 1 clock delay on this read.
do {
core_util_critical_section_enter();
// NOTE: Order of reading minor_us/carry here is significant.
minor_us = TIMER_GetCounter(timer0_base) * US_PER_TMR0HIRES_CLK;
uint32_t carry = (timer0_base->INTSTS & TIMER_INTSTS_TIF_Msk) ? 1 : 0;
// When TIMER_CNT approaches TIMER_CMP and will wrap soon, we may get carry but TIMER_CNT not wrapped. Hanlde carefully carry == 1 && TIMER_CNT is near TIMER_CMP.
if (carry && minor_us > (US_PER_TMR0HIRES_INT / 2)) {
major_minor_us = (counter_major + 1) * US_PER_TMR0HIRES_INT;
}
else {
major_minor_us = (counter_major + carry) * US_PER_TMR0HIRES_INT + minor_us;
}
core_util_critical_section_exit();
}
while (minor_us == 0 || minor_us == US_PER_TMR0HIRES_INT);
return (major_minor_us / US_PER_TICK);
TIMER_T * timer0_base = (TIMER_T *) NU_MODBASE(timer0hires_modinit.modname);
ticker_last_read_clk = TIMER_GetCounter(timer0_base);
return (ticker_last_read_clk / NU_TMRCLK_PER_TICK);
}
void us_ticker_set_interrupt(timestamp_t timestamp)
{
TIMER_Stop((TIMER_T *) NU_MODBASE(timer1hires_modinit.modname));
/* We need to get alarm interval from alarm timestamp `timestamp` to configure H/W timer.
*
* Because both `timestamp` and xx_ticker_read() would wrap around, we have difficulties in distinguishing
* long future event and past event. To distinguish them, we need `tick_last_read` against which
* `timestamp` is calculated out. In timeline, we would always have below after fixing wrap-around:
* (1) tick_last_read <= present_clk
* (2) tick_last_read <= alarm_ts_clk
*
*
* 1. Future event case:
*
* tick_last_read present_clk alarm_ts_clk
* | | |
* --------------------------------------------------------
* |-alarm_intvl1_clk-|
* |-------------------alarm_intvl2_clk-------------------|
*
* 2. Past event case:
*
* tick_last_read alarm_ts_clk present_clk
* | | |
* --------------------------------------------------------
* |-------------------alarm_intvl1_clk-------------------|
* |-alarm_intvl2_clk-|
*
* Unfortunately, `tick_last_read` is not passed along the xx_ticker_set_interrupt() call. To solve it, we
* assume that `tick_last_read` tick is exactly the one returned by the last xx_ticker_read() call before
* xx_ticker_set_interrupt() is invoked. With this assumption, we can hold it via `xx_ticker_last_read_clk`
* in xx_ticker_read().
*/
/* ticker_last_read_clk will update in us_ticker_read(). Keep it beforehand. */
uint32_t last_read_clk = ticker_last_read_clk;
uint32_t present_clk = us_ticker_read() * NU_TMRCLK_PER_TICK;
uint32_t alarm_ts_clk = timestamp * NU_TMRCLK_PER_TICK;
uint32_t alarm_intvl1_clk, alarm_intvl2_clk;
/* alarm_intvl1_clk = present_clk - last_read_clk
*
* NOTE: Don't miss the `=` sign here. Otherwise, we would get the wrong result.
*/
if (present_clk >= last_read_clk) {
alarm_intvl1_clk = present_clk - last_read_clk;
} else {
alarm_intvl1_clk = (uint32_t) (((uint64_t) NU_TMR_MAXCNT) + 1 + present_clk - last_read_clk);
}
/* alarm_intvl2_clk = alarm_ts_clk - last_read_clk
*
* NOTE: Don't miss the `=` sign here. Otherwise, we would get the wrong result.
*/
if (alarm_ts_clk >= last_read_clk) {
alarm_intvl2_clk = alarm_ts_clk - last_read_clk;
} else {
alarm_intvl2_clk = (uint32_t) (((uint64_t) NU_TMR_MAXCNT) + 1 + alarm_ts_clk - last_read_clk);
}
/* Distinguish (long) future event and past event
*
* NOTE: No '=' sign here. Alarm should go off immediately in equal case.
*/
if (alarm_intvl2_clk > alarm_intvl1_clk) {
/* Schedule for future event */
arm_alarm(alarm_intvl2_clk - alarm_intvl1_clk);
} else {
/* Go off immediately for past event, including equal case */
us_ticker_fire_interrupt();
}
while (0);
}
void us_ticker_disable_interrupt(void)
@ -146,65 +183,56 @@ void us_ticker_clear_interrupt(void)
TIMER_ClearIntFlag((TIMER_T *) NU_MODBASE(timer1hires_modinit.modname));
}
void us_ticker_set_interrupt(timestamp_t timestamp)
{
TIMER_Stop((TIMER_T *) NU_MODBASE(timer1hires_modinit.modname));
uint32_t delta = timestamp - us_ticker_read();
cd_major_minor_us = delta * US_PER_TICK;
us_ticker_arm_cd();
}
void us_ticker_fire_interrupt(void)
{
cd_major_minor_us = cd_minor_us = 0;
/**
* This event was in the past. Set the interrupt as pending, but don't process it here.
* This prevents a recurive loop under heavy load which can lead to a stack overflow.
*/
// NOTE: This event was in the past. Set the interrupt as pending, but don't process it here.
// This prevents a recursive loop under heavy load which can lead to a stack overflow.
NVIC_SetPendingIRQ(timer1hires_modinit.irq_n);
}
static void tmr0_vec(void)
{
TIMER_ClearIntFlag((TIMER_T *) NU_MODBASE(timer0hires_modinit.modname));
counter_major ++;
}
static void tmr1_vec(void)
{
TIMER_ClearIntFlag((TIMER_T *) NU_MODBASE(timer1hires_modinit.modname));
cd_major_minor_us = (cd_major_minor_us > cd_minor_us) ? (cd_major_minor_us - cd_minor_us) : 0;
if (cd_major_minor_us == 0) {
// NOTE: us_ticker_set_interrupt() may get called in us_ticker_irq_handler();
us_ticker_irq_handler();
}
else {
us_ticker_arm_cd();
}
// NOTE: us_ticker_set_interrupt() may get called in us_ticker_irq_handler();
us_ticker_irq_handler();
}
static void us_ticker_arm_cd(void)
static void arm_alarm(uint32_t cd_clk)
{
TIMER_T * timer1_base = (TIMER_T *) NU_MODBASE(timer1hires_modinit.modname);
cd_minor_us = cd_major_minor_us;
// Reset 8-bit PSC counter, 24-bit up counter value and CNTEN bit
timer1_base->CTL |= TIMER_CTL_RSTCNT_Msk;
// One-shot mode, Clock = 1 MHz
uint32_t clk_timer1 = TIMER_GetModuleClock((TIMER_T *) NU_MODBASE(timer1hires_modinit.modname));
uint32_t prescale_timer1 = clk_timer1 / TMR1HIRES_CLK_PER_SEC - 1;
uint32_t prescale_timer1 = clk_timer1 / NU_TMRCLK_PER_SEC - 1;
MBED_ASSERT((prescale_timer1 != (uint32_t) -1) && prescale_timer1 <= 127);
MBED_ASSERT((clk_timer1 % TMR1HIRES_CLK_PER_SEC) == 0);
MBED_ASSERT((clk_timer1 % NU_TMRCLK_PER_SEC) == 0);
// NOTE: TIMER_CTL_CNTDATEN_Msk exists in NUC472, but not in M451. In M451, TIMER_CNT is updated continuously by default.
timer1_base->CTL &= ~(TIMER_CTL_OPMODE_Msk | TIMER_CTL_PSC_Msk/* | TIMER_CTL_CNTDATEN_Msk*/);
timer1_base->CTL |= TIMER_ONESHOT_MODE | prescale_timer1/* | TIMER_CTL_CNTDATEN_Msk*/;
uint32_t cmp_timer1 = cd_minor_us / US_PER_TMR1HIRES_CLK;
/* NOTE: Because H/W timer requests min compare value, our implementation would have alarm delay of
* (TMR_CMP_MIN - interval_clk) clocks when interval_clk is between [1, TMR_CMP_MIN). */
uint32_t cmp_timer1 = cd_clk;
cmp_timer1 = NU_CLAMP(cmp_timer1, TMR_CMP_MIN, TMR_CMP_MAX);
timer1_base->CMP = cmp_timer1;
TIMER_EnableInt(timer1_base);
TIMER_Start(timer1_base);
}
const ticker_info_t* us_ticker_get_info()
{
static const ticker_info_t info = {
NU_TMRCLK_PER_SEC / NU_TMRCLK_PER_TICK,
NU_TMR_MAXCNT_BITSIZE
};
return &info;
}

View File

@ -19,31 +19,32 @@
#if DEVICE_LOWPOWERTIMER
#include "sleep_api.h"
#include "mbed_wait_api.h"
#include "mbed_assert.h"
#include "nu_modutil.h"
#include "nu_miscutil.h"
#include "mbed_critical.h"
// lp_ticker tick = us = timestamp
#define US_PER_TICK (1)
#define US_PER_SEC (1000 * 1000)
#define US_PER_TMR2_INT (US_PER_SEC * 10)
#define TMR2_CLK_PER_SEC (__LXT)
#define TMR2_CLK_PER_TMR2_INT ((uint32_t) ((uint64_t) US_PER_TMR2_INT * TMR2_CLK_PER_SEC / US_PER_SEC))
#define TMR3_CLK_PER_SEC (__LXT)
/* Micro seconds per second */
#define NU_US_PER_SEC 1000000
/* Timer clock per lp_ticker tick */
#define NU_TMRCLK_PER_TICK 1
/* Timer clock per second */
#define NU_TMRCLK_PER_SEC (__LXT)
/* Timer max counter bit size */
#define NU_TMR_MAXCNT_BITSIZE 24
/* Timer max counter */
#define NU_TMR_MAXCNT ((1 << NU_TMR_MAXCNT_BITSIZE) - 1)
static void tmr2_vec(void);
static void tmr3_vec(void);
static void lp_ticker_arm_cd(void);
/* Configure scheduled alarm */
static void arm_alarm(uint32_t cd_clk);
static int lp_ticker_inited = 0;
static volatile uint32_t counter_major = 0;
static volatile uint32_t cd_major_minor_clks = 0;
static volatile uint32_t cd_minor_clks = 0;
static volatile uint32_t wakeup_tick = (uint32_t) -1;
static int ticker_inited = 0;
static uint32_t ticker_last_read_clk = 0;
// NOTE: To wake the system from power down mode, timer clock source must be ether LXT or LIRC.
// NOTE: TIMER_2 for normal counting and TIMER_3 for scheduled wakeup
/* NOTE: To wake the system from power down mode, timer clock source must be ether LXT or LIRC. */
/* NOTE: TIMER_2 for normal counting and TIMER_3 for scheduled alarm */
static const struct nu_modinit_s timer2_modinit = {TIMER_2, TMR2_MODULE, CLK_CLKSEL1_TMR2SEL_LXT, 0, TMR2_RST, TMR2_IRQn, (void *) tmr2_vec};
static const struct nu_modinit_s timer3_modinit = {TIMER_3, TMR3_MODULE, CLK_CLKSEL1_TMR3SEL_LXT, 0, TMR3_RST, TMR3_IRQn, (void *) tmr3_vec};
@ -52,15 +53,12 @@ static const struct nu_modinit_s timer3_modinit = {TIMER_3, TMR3_MODULE, CLK_CLK
void lp_ticker_init(void)
{
if (lp_ticker_inited) {
if (ticker_inited) {
return;
}
lp_ticker_inited = 1;
ticker_inited = 1;
counter_major = 0;
cd_major_minor_clks = 0;
cd_minor_clks = 0;
wakeup_tick = (uint32_t) -1;
ticker_last_read_clk = 0;
// Reset module
SYS_ResetModule(timer2_modinit.rsetidx);
@ -75,10 +73,10 @@ void lp_ticker_init(void)
// Configure clock
uint32_t clk_timer2 = TIMER_GetModuleClock((TIMER_T *) NU_MODBASE(timer2_modinit.modname));
uint32_t prescale_timer2 = clk_timer2 / TMR2_CLK_PER_SEC - 1;
uint32_t prescale_timer2 = clk_timer2 / NU_TMRCLK_PER_SEC - 1;
MBED_ASSERT((prescale_timer2 != (uint32_t) -1) && prescale_timer2 <= 127);
MBED_ASSERT((clk_timer2 % TMR2_CLK_PER_SEC) == 0);
uint32_t cmp_timer2 = TMR2_CLK_PER_TMR2_INT;
MBED_ASSERT((clk_timer2 % NU_TMRCLK_PER_SEC) == 0);
uint32_t cmp_timer2 = TMR_CMP_MAX;
MBED_ASSERT(cmp_timer2 >= TMR_CMP_MIN && cmp_timer2 <= TMR_CMP_MAX);
// Continuous mode
// NOTE: TIMER_CTL_CNTDATEN_Msk exists in NUC472, but not in M451/M480. In M451/M480, TIMER_CNT is updated continuously by default.
@ -94,69 +92,95 @@ void lp_ticker_init(void)
TIMER_EnableInt((TIMER_T *) NU_MODBASE(timer2_modinit.modname));
TIMER_EnableWakeup((TIMER_T *) NU_MODBASE(timer2_modinit.modname));
// NOTE: TIMER_Start() first and then lp_ticker_set_interrupt(); otherwise, we may get stuck in lp_ticker_read() because
// timer is not running.
// Start timer
/* NOTE: When engine is clocked by low power clock source (LXT/LIRC), we need to wait for 3 engine clocks. */
wait_us((NU_US_PER_SEC / NU_TMRCLK_PER_SEC) * 3);
TIMER_Start((TIMER_T *) NU_MODBASE(timer2_modinit.modname));
// Schedule wakeup to match semantics of lp_ticker_get_compare_match()
lp_ticker_set_interrupt(wakeup_tick);
}
timestamp_t lp_ticker_read()
{
if (! lp_ticker_inited) {
if (! ticker_inited) {
lp_ticker_init();
}
TIMER_T * timer2_base = (TIMER_T *) NU_MODBASE(timer2_modinit.modname);
do {
uint64_t major_minor_clks;
uint32_t minor_clks;
// NOTE: As TIMER_CNT = TIMER_CMP and counter_major has increased by one, TIMER_CNT doesn't change to 0 for one tick time.
// NOTE: As TIMER_CNT = TIMER_CMP or TIMER_CNT = 0, counter_major (ISR) may not sync with TIMER_CNT. So skip and fetch stable one at the cost of 1 clock delay on this read.
do {
core_util_critical_section_enter();
// NOTE: Order of reading minor_us/carry here is significant.
minor_clks = TIMER_GetCounter(timer2_base);
uint32_t carry = (timer2_base->INTSTS & TIMER_INTSTS_TIF_Msk) ? 1 : 0;
// When TIMER_CNT approaches TIMER_CMP and will wrap soon, we may get carry but TIMER_CNT not wrapped. Handle carefully carry == 1 && TIMER_CNT is near TIMER_CMP.
if (carry && minor_clks > (TMR2_CLK_PER_TMR2_INT / 2)) {
major_minor_clks = (counter_major + 1) * TMR2_CLK_PER_TMR2_INT;
} else {
major_minor_clks = (counter_major + carry) * TMR2_CLK_PER_TMR2_INT + minor_clks;
}
core_util_critical_section_exit();
} while (minor_clks == 0 || minor_clks == TMR2_CLK_PER_TMR2_INT);
// Add power-down compensation
return ((uint64_t) major_minor_clks * US_PER_SEC / TMR2_CLK_PER_SEC / US_PER_TICK);
} while (0);
ticker_last_read_clk = TIMER_GetCounter(timer2_base);
return (ticker_last_read_clk / NU_TMRCLK_PER_TICK);
}
void lp_ticker_set_interrupt(timestamp_t timestamp)
{
uint32_t delta = timestamp - lp_ticker_read();
wakeup_tick = timestamp;
TIMER_Stop((TIMER_T *) NU_MODBASE(timer3_modinit.modname));
cd_major_minor_clks = (uint64_t) delta * US_PER_TICK * TMR3_CLK_PER_SEC / US_PER_SEC;
lp_ticker_arm_cd();
}
/* We need to get alarm interval from alarm timestamp `timestamp` to configure H/W timer.
*
* Because both `timestamp` and xx_ticker_read() would wrap around, we have difficulties in distinguishing
* long future event and past event. To distinguish them, we need `tick_last_read` against which
* `timestamp` is calculated out. In timeline, we would always have below after fixing wrap-around:
* (1) tick_last_read <= present_clk
* (2) tick_last_read <= alarm_ts_clk
*
*
* 1. Future event case:
*
* tick_last_read present_clk alarm_ts_clk
* | | |
* --------------------------------------------------------
* |-alarm_intvl1_clk-|
* |-------------------alarm_intvl2_clk-------------------|
*
* 2. Past event case:
*
* tick_last_read alarm_ts_clk present_clk
* | | |
* --------------------------------------------------------
* |-------------------alarm_intvl1_clk-------------------|
* |-alarm_intvl2_clk-|
*
* Unfortunately, `tick_last_read` is not passed along the xx_ticker_set_interrupt() call. To solve it, we
* assume that `tick_last_read` tick is exactly the one returned by the last xx_ticker_read() call before
* xx_ticker_set_interrupt() is invoked. With this assumption, we can hold it via `xx_ticker_last_read_clk`
* in xx_ticker_read().
*/
/* ticker_last_read_clk will update in lp_ticker_read(). Keep it beforehand. */
uint32_t last_read_clk = ticker_last_read_clk;
uint32_t present_clk = lp_ticker_read() * NU_TMRCLK_PER_TICK;
uint32_t alarm_ts_clk = timestamp * NU_TMRCLK_PER_TICK;
uint32_t alarm_intvl1_clk, alarm_intvl2_clk;
/* alarm_intvl1_clk = present_clk - last_read_clk
*
* NOTE: Don't miss the `=` sign here. Otherwise, we would get the wrong result.
*/
if (present_clk >= last_read_clk) {
alarm_intvl1_clk = present_clk - last_read_clk;
} else {
alarm_intvl1_clk = (uint32_t) (((uint64_t) NU_TMR_MAXCNT) + 1 + present_clk - last_read_clk);
}
void lp_ticker_fire_interrupt(void)
{
// NOTE: This event was in the past. Set the interrupt as pending, but don't process it here.
// This prevents a recursive loop under heavy load which can lead to a stack overflow.
cd_major_minor_clks = cd_minor_clks = 0;
NVIC_SetPendingIRQ(timer3_modinit.irq_n);
/* alarm_intvl2_clk = alarm_ts_clk - last_read_clk
*
* NOTE: Don't miss the `=` sign here. Otherwise, we would get the wrong result.
*/
if (alarm_ts_clk >= last_read_clk) {
alarm_intvl2_clk = alarm_ts_clk - last_read_clk;
} else {
alarm_intvl2_clk = (uint32_t) (((uint64_t) NU_TMR_MAXCNT) + 1 + alarm_ts_clk - last_read_clk);
}
/* Distinguish (long) future event and past event
*
* NOTE: No '=' sign here. Alarm should go off immediately in equal case.
*/
if (alarm_intvl2_clk > alarm_intvl1_clk) {
/* Schedule for future event */
arm_alarm(alarm_intvl2_clk - alarm_intvl1_clk);
} else {
/* Go off immediately for past event, including equal case */
lp_ticker_fire_interrupt();
}
}
void lp_ticker_disable_interrupt(void)
@ -169,27 +193,30 @@ void lp_ticker_clear_interrupt(void)
TIMER_ClearIntFlag((TIMER_T *) NU_MODBASE(timer3_modinit.modname));
}
void lp_ticker_fire_interrupt(void)
{
// NOTE: This event was in the past. Set the interrupt as pending, but don't process it here.
// This prevents a recursive loop under heavy load which can lead to a stack overflow.
NVIC_SetPendingIRQ(timer3_modinit.irq_n);
}
static void tmr2_vec(void)
{
TIMER_ClearIntFlag((TIMER_T *) NU_MODBASE(timer2_modinit.modname));
TIMER_ClearWakeupFlag((TIMER_T *) NU_MODBASE(timer2_modinit.modname));
counter_major ++;
}
static void tmr3_vec(void)
{
TIMER_ClearIntFlag((TIMER_T *) NU_MODBASE(timer3_modinit.modname));
TIMER_ClearWakeupFlag((TIMER_T *) NU_MODBASE(timer3_modinit.modname));
cd_major_minor_clks = (cd_major_minor_clks > cd_minor_clks) ? (cd_major_minor_clks - cd_minor_clks) : 0;
if (cd_major_minor_clks == 0) {
// NOTE: lp_ticker_set_interrupt() may get called in lp_ticker_irq_handler();
lp_ticker_irq_handler();
} else {
lp_ticker_arm_cd();
}
// NOTE: lp_ticker_set_interrupt() may get called in lp_ticker_irq_handler();
lp_ticker_irq_handler();
}
static void lp_ticker_arm_cd(void)
static void arm_alarm(uint32_t cd_clk)
{
TIMER_T * timer3_base = (TIMER_T *) NU_MODBASE(timer3_modinit.modname);
@ -200,19 +227,33 @@ static void lp_ticker_arm_cd(void)
while (timer3_base->CNT & TIMER_CNT_RSTACT_Msk);
// One-shot mode, Clock = 1 KHz
uint32_t clk_timer3 = TIMER_GetModuleClock((TIMER_T *) NU_MODBASE(timer3_modinit.modname));
uint32_t prescale_timer3 = clk_timer3 / TMR3_CLK_PER_SEC - 1;
uint32_t prescale_timer3 = clk_timer3 / NU_TMRCLK_PER_SEC - 1;
MBED_ASSERT((prescale_timer3 != (uint32_t) -1) && prescale_timer3 <= 127);
MBED_ASSERT((clk_timer3 % TMR3_CLK_PER_SEC) == 0);
MBED_ASSERT((clk_timer3 % NU_TMRCLK_PER_SEC) == 0);
// NOTE: TIMER_CTL_CNTDATEN_Msk exists in NUC472, but not in M451/M480. In M451/M480, TIMER_CNT is updated continuously by default.
timer3_base->CTL &= ~(TIMER_CTL_OPMODE_Msk | TIMER_CTL_PSC_Msk/* | TIMER_CTL_CNTDATEN_Msk*/);
timer3_base->CTL |= TIMER_ONESHOT_MODE | prescale_timer3/* | TIMER_CTL_CNTDATEN_Msk*/;
cd_minor_clks = cd_major_minor_clks;
cd_minor_clks = NU_CLAMP(cd_minor_clks, TMR_CMP_MIN, TMR_CMP_MAX);
timer3_base->CMP = cd_minor_clks;
/* NOTE: Because H/W timer requests min compare value, our implementation would have alarm delay of
* (TMR_CMP_MIN - interval_clk) clocks when interval_clk is between [1, TMR_CMP_MIN). */
uint32_t cmp_timer3 = cd_clk;
cmp_timer3 = NU_CLAMP(cmp_timer3, TMR_CMP_MIN, TMR_CMP_MAX);
timer3_base->CMP = cmp_timer3;
TIMER_EnableInt(timer3_base);
TIMER_EnableWakeup((TIMER_T *) NU_MODBASE(timer3_modinit.modname));
/* NOTE: When engine is clocked by low power clock source (LXT/LIRC), we need to wait for 3 engine clocks. */
wait_us((NU_US_PER_SEC / NU_TMRCLK_PER_SEC) * 3);
TIMER_Start(timer3_base);
}
const ticker_info_t* lp_ticker_get_info()
{
static const ticker_info_t info = {
NU_TMRCLK_PER_SEC / NU_TMRCLK_PER_TICK,
NU_TMR_MAXCNT_BITSIZE
};
return &info;
}
#endif

View File

@ -19,37 +19,27 @@
#include "mbed_assert.h"
#include "nu_modutil.h"
#include "nu_miscutil.h"
#include "mbed_critical.h"
// us_ticker tick = us = timestamp
#define US_PER_TICK 1
#define US_PER_SEC (1000 * 1000)
#define TMR0HIRES_CLK_PER_SEC (1000 * 1000)
#define TMR1HIRES_CLK_PER_SEC (1000 * 1000)
#define US_PER_TMR0HIRES_CLK (US_PER_SEC / TMR0HIRES_CLK_PER_SEC)
#define US_PER_TMR1HIRES_CLK (US_PER_SEC / TMR1HIRES_CLK_PER_SEC)
#define US_PER_TMR0HIRES_INT (1000 * 1000 * 10)
#define TMR0HIRES_CLK_PER_TMR0HIRES_INT ((uint32_t) ((uint64_t) US_PER_TMR0HIRES_INT * TMR0HIRES_CLK_PER_SEC / US_PER_SEC))
/* Micro seconds per second */
#define NU_US_PER_SEC 1000000
/* Timer clock per us_ticker tick */
#define NU_TMRCLK_PER_TICK 1
/* Timer clock per second */
#define NU_TMRCLK_PER_SEC (1000 * 1000)
/* Timer max counter bit size */
#define NU_TMR_MAXCNT_BITSIZE 24
/* Timer max counter */
#define NU_TMR_MAXCNT ((1 << NU_TMR_MAXCNT_BITSIZE) - 1)
static void tmr0_vec(void);
static void tmr1_vec(void);
static void us_ticker_arm_cd(void);
/* Configure scheduled alarm */
static void arm_alarm(uint32_t cd_clk);
static int us_ticker_inited = 0;
static volatile uint32_t counter_major = 0;
static volatile uint32_t cd_major_minor_us = 0;
static volatile uint32_t cd_minor_us = 0;
static int ticker_inited = 0;
static uint32_t ticker_last_read_clk = 0;
// NOTE: PCLK is set up in mbed_sdk_init(), invocation of which must be before C++ global object constructor. See init_api.c for details.
// NOTE: Choose clock source of timer:
// 1. HIRC: Be the most accurate but might cause unknown HardFault.
// 2. HXT: Less accurate and cannot pass mbed-drivers test.
// 3. PCLK(HXT): Less accurate but can pass mbed-drivers test.
// NOTE: TIMER_0 for normal counter, TIMER_1 for countdown.
/* NOTE: TIMER_0 for normal counting and TIMER_1 for scheduled alarm. */
static const struct nu_modinit_s timer0hires_modinit = {TIMER_0, TMR0_MODULE, CLK_CLKSEL1_TMR0SEL_PCLK0, 0, TMR0_RST, TMR0_IRQn, (void *) tmr0_vec};
static const struct nu_modinit_s timer1hires_modinit = {TIMER_1, TMR1_MODULE, CLK_CLKSEL1_TMR1SEL_PCLK0, 0, TMR1_RST, TMR1_IRQn, (void *) tmr1_vec};
@ -58,15 +48,13 @@ static const struct nu_modinit_s timer1hires_modinit = {TIMER_1, TMR1_MODULE, CL
void us_ticker_init(void)
{
if (us_ticker_inited) {
if (ticker_inited) {
return;
}
ticker_inited = 1;
counter_major = 0;
cd_major_minor_us = 0;
cd_minor_us = 0;
us_ticker_inited = 1;
ticker_last_read_clk = 0;
// Reset IP
SYS_ResetModule(timer0hires_modinit.rsetidx);
SYS_ResetModule(timer1hires_modinit.rsetidx);
@ -80,10 +68,10 @@ void us_ticker_init(void)
// Timer for normal counter
uint32_t clk_timer0 = TIMER_GetModuleClock((TIMER_T *) NU_MODBASE(timer0hires_modinit.modname));
uint32_t prescale_timer0 = clk_timer0 / TMR0HIRES_CLK_PER_SEC - 1;
uint32_t prescale_timer0 = clk_timer0 / NU_TMRCLK_PER_SEC - 1;
MBED_ASSERT((prescale_timer0 != (uint32_t) -1) && prescale_timer0 <= 127);
MBED_ASSERT((clk_timer0 % TMR0HIRES_CLK_PER_SEC) == 0);
uint32_t cmp_timer0 = TMR0HIRES_CLK_PER_TMR0HIRES_INT;
MBED_ASSERT((clk_timer0 % NU_TMRCLK_PER_SEC) == 0);
uint32_t cmp_timer0 = TMR_CMP_MAX;
MBED_ASSERT(cmp_timer0 >= TMR_CMP_MIN && cmp_timer0 <= TMR_CMP_MAX);
// NOTE: TIMER_CTL_CNTDATEN_Msk exists in NUC472, but not in M451/M480. In M451/M480, TIMER_CNT is updated continuously by default.
((TIMER_T *) NU_MODBASE(timer0hires_modinit.modname))->CTL = TIMER_PERIODIC_MODE | prescale_timer0/* | TIMER_CTL_CNTDATEN_Msk*/;
@ -101,36 +89,88 @@ void us_ticker_init(void)
uint32_t us_ticker_read()
{
if (! us_ticker_inited) {
if (! ticker_inited) {
us_ticker_init();
}
TIMER_T * timer0_base = (TIMER_T *) NU_MODBASE(timer0hires_modinit.modname);
do {
uint32_t major_minor_us;
uint32_t minor_us;
ticker_last_read_clk = TIMER_GetCounter(timer0_base);
return (ticker_last_read_clk / NU_TMRCLK_PER_TICK);
}
// NOTE: As TIMER_CNT = TIMER_CMP and counter_major has increased by one, TIMER_CNT doesn't change to 0 for one tick time.
// NOTE: As TIMER_CNT = TIMER_CMP or TIMER_CNT = 0, counter_major (ISR) may not sync with TIMER_CNT. So skip and fetch stable one at the cost of 1 clock delay on this read.
do {
core_util_critical_section_enter();
void us_ticker_set_interrupt(timestamp_t timestamp)
{
TIMER_Stop((TIMER_T *) NU_MODBASE(timer1hires_modinit.modname));
// NOTE: Order of reading minor_us/carry here is significant.
minor_us = TIMER_GetCounter(timer0_base) * US_PER_TMR0HIRES_CLK;
uint32_t carry = (timer0_base->INTSTS & TIMER_INTSTS_TIF_Msk) ? 1 : 0;
// When TIMER_CNT approaches TIMER_CMP and will wrap soon, we may get carry but TIMER_CNT not wrapped. Hanlde carefully carry == 1 && TIMER_CNT is near TIMER_CMP.
if (carry && minor_us > (US_PER_TMR0HIRES_INT / 2)) {
major_minor_us = (counter_major + 1) * US_PER_TMR0HIRES_INT;
} else {
major_minor_us = (counter_major + carry) * US_PER_TMR0HIRES_INT + minor_us;
}
/* We need to get alarm interval from alarm timestamp `timestamp` to configure H/W timer.
*
* Because both `timestamp` and xx_ticker_read() would wrap around, we have difficulties in distinguishing
* long future event and past event. To distinguish them, we need `tick_last_read` against which
* `timestamp` is calculated out. In timeline, we would always have below after fixing wrap-around:
* (1) tick_last_read <= present_clk
* (2) tick_last_read <= alarm_ts_clk
*
*
* 1. Future event case:
*
* tick_last_read present_clk alarm_ts_clk
* | | |
* --------------------------------------------------------
* |-alarm_intvl1_clk-|
* |-------------------alarm_intvl2_clk-------------------|
*
* 2. Past event case:
*
* tick_last_read alarm_ts_clk present_clk
* | | |
* --------------------------------------------------------
* |-------------------alarm_intvl1_clk-------------------|
* |-alarm_intvl2_clk-|
*
* Unfortunately, `tick_last_read` is not passed along the xx_ticker_set_interrupt() call. To solve it, we
* assume that `tick_last_read` tick is exactly the one returned by the last xx_ticker_read() call before
* xx_ticker_set_interrupt() is invoked. With this assumption, we can hold it via `xx_ticker_last_read_clk`
* in xx_ticker_read().
*/
/* ticker_last_read_clk will update in us_ticker_read(). Keep it beforehand. */
uint32_t last_read_clk = ticker_last_read_clk;
uint32_t present_clk = us_ticker_read() * NU_TMRCLK_PER_TICK;
uint32_t alarm_ts_clk = timestamp * NU_TMRCLK_PER_TICK;
uint32_t alarm_intvl1_clk, alarm_intvl2_clk;
/* alarm_intvl1_clk = present_clk - last_read_clk
*
* NOTE: Don't miss the `=` sign here. Otherwise, we would get the wrong result.
*/
if (present_clk >= last_read_clk) {
alarm_intvl1_clk = present_clk - last_read_clk;
} else {
alarm_intvl1_clk = (uint32_t) (((uint64_t) NU_TMR_MAXCNT) + 1 + present_clk - last_read_clk);
}
core_util_critical_section_exit();
} while (minor_us == 0 || minor_us == US_PER_TMR0HIRES_INT);
/* alarm_intvl2_clk = alarm_ts_clk - last_read_clk
*
* NOTE: Don't miss the `=` sign here. Otherwise, we would get the wrong result.
*/
if (alarm_ts_clk >= last_read_clk) {
alarm_intvl2_clk = alarm_ts_clk - last_read_clk;
} else {
alarm_intvl2_clk = (uint32_t) (((uint64_t) NU_TMR_MAXCNT) + 1 + alarm_ts_clk - last_read_clk);
}
return (major_minor_us / US_PER_TICK);
} while (0);
/* Distinguish (long) future event and past event
*
* NOTE: No '=' sign here. Alarm should go off immediately in equal case.
*/
if (alarm_intvl2_clk > alarm_intvl1_clk) {
/* Schedule for future event */
arm_alarm(alarm_intvl2_clk - alarm_intvl1_clk);
} else {
/* Go off immediately for past event, including equal case */
us_ticker_fire_interrupt();
}
}
void us_ticker_disable_interrupt(void)
@ -143,47 +183,30 @@ void us_ticker_clear_interrupt(void)
TIMER_ClearIntFlag((TIMER_T *) NU_MODBASE(timer1hires_modinit.modname));
}
void us_ticker_set_interrupt(timestamp_t timestamp)
{
TIMER_Stop((TIMER_T *) NU_MODBASE(timer1hires_modinit.modname));
uint32_t delta = timestamp - us_ticker_read();
cd_major_minor_us = delta * US_PER_TICK;
us_ticker_arm_cd();
}
void us_ticker_fire_interrupt(void)
{
// NOTE: This event was in the past. Set the interrupt as pending, but don't process it here.
// This prevents a recursive loop under heavy load which can lead to a stack overflow.
cd_major_minor_us = cd_minor_us = 0;
NVIC_SetPendingIRQ(timer1hires_modinit.irq_n);
}
static void tmr0_vec(void)
{
TIMER_ClearIntFlag((TIMER_T *) NU_MODBASE(timer0hires_modinit.modname));
counter_major ++;
}
static void tmr1_vec(void)
{
TIMER_ClearIntFlag((TIMER_T *) NU_MODBASE(timer1hires_modinit.modname));
cd_major_minor_us = (cd_major_minor_us > cd_minor_us) ? (cd_major_minor_us - cd_minor_us) : 0;
if (cd_major_minor_us == 0) {
// NOTE: us_ticker_set_interrupt() may get called in us_ticker_irq_handler();
us_ticker_irq_handler();
} else {
us_ticker_arm_cd();
}
// NOTE: us_ticker_set_interrupt() may get called in us_ticker_irq_handler();
us_ticker_irq_handler();
}
static void us_ticker_arm_cd(void)
static void arm_alarm(uint32_t cd_clk)
{
TIMER_T * timer1_base = (TIMER_T *) NU_MODBASE(timer1hires_modinit.modname);
cd_minor_us = cd_major_minor_us;
// Reset 8-bit PSC counter, 24-bit up counter value and CNTEN bit
// NUC472/M451: See TIMER_CTL_RSTCNT_Msk
// M480
@ -191,17 +214,28 @@ static void us_ticker_arm_cd(void)
while (timer1_base->CNT & TIMER_CNT_RSTACT_Msk);
// One-shot mode, Clock = 1 MHz
uint32_t clk_timer1 = TIMER_GetModuleClock((TIMER_T *) NU_MODBASE(timer1hires_modinit.modname));
uint32_t prescale_timer1 = clk_timer1 / TMR1HIRES_CLK_PER_SEC - 1;
uint32_t prescale_timer1 = clk_timer1 / NU_TMRCLK_PER_SEC - 1;
MBED_ASSERT((prescale_timer1 != (uint32_t) -1) && prescale_timer1 <= 127);
MBED_ASSERT((clk_timer1 % TMR1HIRES_CLK_PER_SEC) == 0);
MBED_ASSERT((clk_timer1 % NU_TMRCLK_PER_SEC) == 0);
// NOTE: TIMER_CTL_CNTDATEN_Msk exists in NUC472, but not in M451/M480. In M451/M480, TIMER_CNT is updated continuously by default.
timer1_base->CTL &= ~(TIMER_CTL_OPMODE_Msk | TIMER_CTL_PSC_Msk/* | TIMER_CTL_CNTDATEN_Msk*/);
timer1_base->CTL |= TIMER_ONESHOT_MODE | prescale_timer1/* | TIMER_CTL_CNTDATEN_Msk*/;
uint32_t cmp_timer1 = cd_minor_us / US_PER_TMR1HIRES_CLK;
/* NOTE: Because H/W timer requests min compare value, our implementation would have alarm delay of
* (TMR_CMP_MIN - interval_clk) clocks when interval_clk is between [1, TMR_CMP_MIN). */
uint32_t cmp_timer1 = cd_clk;
cmp_timer1 = NU_CLAMP(cmp_timer1, TMR_CMP_MIN, TMR_CMP_MAX);
timer1_base->CMP = cmp_timer1;
TIMER_EnableInt(timer1_base);
TIMER_Start(timer1_base);
}
const ticker_info_t* us_ticker_get_info()
{
static const ticker_info_t info = {
NU_TMRCLK_PER_SEC / NU_TMRCLK_PER_TICK,
NU_TMR_MAXCNT_BITSIZE
};
return &info;
}

View File

@ -13,38 +13,40 @@
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "lp_ticker_api.h"
#if DEVICE_LOWPOWERTIMER
#include "sleep_api.h"
#include "mbed_wait_api.h"
#include "mbed_assert.h"
#include "nu_modutil.h"
#include "nu_miscutil.h"
#include "mbed_critical.h"
#include "mbed_wait_api.h"
// lp_ticker tick = us = timestamp
#define US_PER_TICK (1)
#define US_PER_SEC (1000 * 1000)
#define US_PER_TMR2_INT (US_PER_SEC * 10)
#define TMR2_CLK_PER_SEC (__LXT)
#define TMR2_CLK_PER_TMR2_INT ((uint32_t) ((uint64_t) US_PER_TMR2_INT * TMR2_CLK_PER_SEC / US_PER_SEC))
#define TMR3_CLK_PER_SEC (__LXT)
/* Micro seconds per second */
#define NU_US_PER_SEC 1000000
/* Timer clock per lp_ticker tick */
#define NU_TMRCLK_PER_TICK 1
/* Timer clock per second */
#define NU_TMRCLK_PER_SEC (__LXT)
/* Timer max counter bit size */
#define NU_TMR_MAXCNT_BITSIZE 24
/* Timer max counter */
#define NU_TMR_MAXCNT ((1 << NU_TMR_MAXCNT_BITSIZE) - 1)
/* NOTE: Don't add static modifier here. These IRQ handler symbols are for linking.
Vector table relocation is not actually supported for low-resource target. */
void TMR2_IRQHandler(void);
void TMR3_IRQHandler(void);
static void lp_ticker_arm_cd(void);
/* Configure scheduled alarm */
static void arm_alarm(uint32_t cd_clk);
static int lp_ticker_inited = 0;
static volatile uint32_t counter_major = 0;
static volatile uint32_t cd_major_minor_clks = 0;
static volatile uint32_t cd_minor_clks = 0;
static volatile uint32_t wakeup_tick = (uint32_t) -1;
static uint32_t ticker_last_read_clk = 0;
static int ticker_inited = 0;
// NOTE: To wake the system from power down mode, timer clock source must be ether LXT or LIRC.
// NOTE: TIMER_2 for normal counting and TIMER_3 for scheduled wakeup
/* NOTE: To wake the system from power down mode, timer clock source must be ether LXT or LIRC. */
/* NOTE: TIMER_2 for normal counting and TIMER_3 for scheduled alarm */
static const struct nu_modinit_s timer2_modinit = {TIMER_2, TMR2_MODULE, CLK_CLKSEL2_TMR2_S_LXT, 0, TMR2_RST, TMR2_IRQn, (void *) TMR2_IRQHandler};
static const struct nu_modinit_s timer3_modinit = {TIMER_3, TMR3_MODULE, CLK_CLKSEL2_TMR3_S_LXT, 0, TMR3_RST, TMR3_IRQn, (void *) TMR3_IRQHandler};
@ -53,20 +55,17 @@ static const struct nu_modinit_s timer3_modinit = {TIMER_3, TMR3_MODULE, CLK_CLK
void lp_ticker_init(void)
{
if (lp_ticker_inited) {
if (ticker_inited) {
return;
}
lp_ticker_inited = 1;
counter_major = 0;
cd_major_minor_clks = 0;
cd_minor_clks = 0;
wakeup_tick = (uint32_t) -1;
ticker_inited = 1;
ticker_last_read_clk = 0;
// Reset module
SYS_ResetModule(timer2_modinit.rsetidx);
SYS_ResetModule(timer3_modinit.rsetidx);
// Select IP clock source
CLK_SetModuleClock(timer2_modinit.clkidx, timer2_modinit.clksrc, timer2_modinit.clkdiv);
CLK_SetModuleClock(timer3_modinit.clkidx, timer3_modinit.clksrc, timer3_modinit.clkdiv);
@ -76,95 +75,114 @@ void lp_ticker_init(void)
// Configure clock
uint32_t clk_timer2 = TIMER_GetModuleClock((TIMER_T *) NU_MODBASE(timer2_modinit.modname));
uint32_t prescale_timer2 = clk_timer2 / TMR2_CLK_PER_SEC - 1;
uint32_t prescale_timer2 = clk_timer2 / NU_TMRCLK_PER_SEC - 1;
MBED_ASSERT((prescale_timer2 != (uint32_t) -1) && prescale_timer2 <= 127);
MBED_ASSERT((clk_timer2 % TMR2_CLK_PER_SEC) == 0);
uint32_t cmp_timer2 = TMR2_CLK_PER_TMR2_INT;
MBED_ASSERT((clk_timer2 % NU_TMRCLK_PER_SEC) == 0);
uint32_t cmp_timer2 = TMR_CMP_MAX;
MBED_ASSERT(cmp_timer2 >= TMR_CMP_MIN && cmp_timer2 <= TMR_CMP_MAX);
// Continuous mode
((TIMER_T *) NU_MODBASE(timer2_modinit.modname))->CTL = TIMER_PERIODIC_MODE;
((TIMER_T *) NU_MODBASE(timer2_modinit.modname))->PRECNT = prescale_timer2;
((TIMER_T *) NU_MODBASE(timer2_modinit.modname))->CMPR = cmp_timer2;
// Set vector
NVIC_SetVector(timer2_modinit.irq_n, (uint32_t) timer2_modinit.var);
NVIC_SetVector(timer3_modinit.irq_n, (uint32_t) timer3_modinit.var);
NVIC_EnableIRQ(timer2_modinit.irq_n);
NVIC_EnableIRQ(timer3_modinit.irq_n);
TIMER_EnableInt((TIMER_T *) NU_MODBASE(timer2_modinit.modname));
TIMER_EnableWakeup((TIMER_T *) NU_MODBASE(timer2_modinit.modname));
// NOTE: TIMER_Start() first and then lp_ticker_set_interrupt(); otherwise, we may get stuck in lp_ticker_read() because
// timer is not running.
// Wait 3 cycles of engine clock to ensure previous CTL write action is finish
nu_nop(SystemCoreClock / __LXT * 3);
// Start timer
/* NOTE: When engine is clocked by low power clock source (LXT/LIRC), we need to wait for 3 engine clocks. */
wait_us((NU_US_PER_SEC / NU_TMRCLK_PER_SEC) * 3);
TIMER_Start((TIMER_T *) NU_MODBASE(timer2_modinit.modname));
// Schedule wakeup to match semantics of lp_ticker_get_compare_match()
lp_ticker_set_interrupt(wakeup_tick);
}
timestamp_t lp_ticker_read()
{
if (! lp_ticker_inited) {
{
if (! ticker_inited) {
lp_ticker_init();
}
TIMER_T * timer2_base = (TIMER_T *) NU_MODBASE(timer2_modinit.modname);
do {
uint64_t major_minor_clks;
uint32_t minor_clks;
// NOTE: As TIMER_DR = TIMER_CMPR and counter_major has increased by one, TIMER_DR doesn't change to 0 for one tick time.
// NOTE: As TIMER_DR = TIMER_CMPR or TIMER_DR = 0, counter_major (ISR) may not sync with TIMER_DR. So skip and fetch stable one at the cost of 1 clock delay on this read.
do {
core_util_critical_section_enter();
// NOTE: Order of reading minor_us/carry here is significant.
minor_clks = TIMER_GetCounter(timer2_base);
uint32_t carry = (timer2_base->ISR & TIMER_ISR_TMR_IS_Msk) ? 1 : 0;
// When TIMER_DR approaches TIMER_CMPR and will wrap soon, we may get carry but TIMER_DR not wrapped. Hanlde carefully carry == 1 && TIMER_DR is near TIMER_CMPR.
if (carry && minor_clks > (TMR2_CLK_PER_TMR2_INT / 2)) {
major_minor_clks = (counter_major + 1) * TMR2_CLK_PER_TMR2_INT;
}
else {
major_minor_clks = (counter_major + carry) * TMR2_CLK_PER_TMR2_INT + minor_clks;
}
core_util_critical_section_exit();
}
while (minor_clks == 0 || minor_clks == TMR2_CLK_PER_TMR2_INT);
// Add power-down compensation
return ((uint64_t) major_minor_clks * US_PER_SEC / TMR2_CLK_PER_SEC / US_PER_TICK);
}
while (0);
TIMER_T * timer2_base = (TIMER_T *) NU_MODBASE(timer2_modinit.modname);
ticker_last_read_clk = TIMER_GetCounter(timer2_base);
return (ticker_last_read_clk / NU_TMRCLK_PER_TICK);
}
void lp_ticker_set_interrupt(timestamp_t timestamp)
{
uint32_t delta = timestamp - lp_ticker_read();
wakeup_tick = timestamp;
TIMER_Stop((TIMER_T *) NU_MODBASE(timer3_modinit.modname));
cd_major_minor_clks = (uint64_t) delta * US_PER_TICK * TMR3_CLK_PER_SEC / US_PER_SEC;
lp_ticker_arm_cd();
}
/* We need to get alarm interval from alarm timestamp `timestamp` to configure H/W timer.
*
* Because both `timestamp` and xx_ticker_read() would wrap around, we have difficulties in distinguishing
* long future event and past event. To distinguish them, we need `tick_last_read` against which
* `timestamp` is calculated out. In timeline, we would always have below after fixing wrap-around:
* (1) tick_last_read <= present_clk
* (2) tick_last_read <= alarm_ts_clk
*
*
* 1. Future event case:
*
* tick_last_read present_clk alarm_ts_clk
* | | |
* --------------------------------------------------------
* |-alarm_intvl1_clk-|
* |-------------------alarm_intvl2_clk-------------------|
*
* 2. Past event case:
*
* tick_last_read alarm_ts_clk present_clk
* | | |
* --------------------------------------------------------
* |-------------------alarm_intvl1_clk-------------------|
* |-alarm_intvl2_clk-|
*
* Unfortunately, `tick_last_read` is not passed along the xx_ticker_set_interrupt() call. To solve it, we
* assume that `tick_last_read` tick is exactly the one returned by the last xx_ticker_read() call before
* xx_ticker_set_interrupt() is invoked. With this assumption, we can hold it via `xx_ticker_last_read_clk`
* in xx_ticker_read().
*/
/* ticker_last_read_clk will update in lp_ticker_read(). Keep it beforehand. */
uint32_t last_read_clk = ticker_last_read_clk;
uint32_t present_clk = lp_ticker_read() * NU_TMRCLK_PER_TICK;
uint32_t alarm_ts_clk = timestamp * NU_TMRCLK_PER_TICK;
uint32_t alarm_intvl1_clk, alarm_intvl2_clk;
/* alarm_intvl1_clk = present_clk - last_read_clk
*
* NOTE: Don't miss the `=` sign here. Otherwise, we would get the wrong result.
*/
if (present_clk >= last_read_clk) {
alarm_intvl1_clk = present_clk - last_read_clk;
} else {
alarm_intvl1_clk = (uint32_t) (((uint64_t) NU_TMR_MAXCNT) + 1 + present_clk - last_read_clk);
}
void lp_ticker_fire_interrupt(void)
{
cd_major_minor_clks = cd_minor_clks = 0;
/**
* This event was in the past. Set the interrupt as pending, but don't process it here.
* This prevents a recurive loop under heavy load which can lead to a stack overflow.
*/
NVIC_SetPendingIRQ(timer3_modinit.irq_n);
/* alarm_intvl2_clk = alarm_ts_clk - last_read_clk
*
* NOTE: Don't miss the `=` sign here. Otherwise, we would get the wrong result.
*/
if (alarm_ts_clk >= last_read_clk) {
alarm_intvl2_clk = alarm_ts_clk - last_read_clk;
} else {
alarm_intvl2_clk = (uint32_t) (((uint64_t) NU_TMR_MAXCNT) + 1 + alarm_ts_clk - last_read_clk);
}
/* Distinguish (long) future event and past event
*
* NOTE: No '=' sign here. Alarm should go off immediately in equal case.
*/
if (alarm_intvl2_clk > alarm_intvl1_clk) {
/* Schedule for future event */
arm_alarm(alarm_intvl2_clk - alarm_intvl1_clk);
} else {
/* Go off immediately for past event, including equal case */
lp_ticker_fire_interrupt();
}
}
void lp_ticker_disable_interrupt(void)
@ -177,28 +195,29 @@ void lp_ticker_clear_interrupt(void)
TIMER_ClearIntFlag((TIMER_T *) NU_MODBASE(timer3_modinit.modname));
}
void lp_ticker_fire_interrupt(void)
{
// NOTE: This event was in the past. Set the interrupt as pending, but don't process it here.
// This prevents a recursive loop under heavy load which can lead to a stack overflow.
NVIC_SetPendingIRQ(timer3_modinit.irq_n);
}
void TMR2_IRQHandler(void)
{
TIMER_ClearIntFlag((TIMER_T *) NU_MODBASE(timer2_modinit.modname));
TIMER_ClearWakeupFlag((TIMER_T *) NU_MODBASE(timer2_modinit.modname));
counter_major ++;
}
void TMR3_IRQHandler(void)
{
TIMER_ClearIntFlag((TIMER_T *) NU_MODBASE(timer3_modinit.modname));
TIMER_ClearWakeupFlag((TIMER_T *) NU_MODBASE(timer3_modinit.modname));
cd_major_minor_clks = (cd_major_minor_clks > cd_minor_clks) ? (cd_major_minor_clks - cd_minor_clks) : 0;
if (cd_major_minor_clks == 0) {
// NOTE: lp_ticker_set_interrupt() may get called in lp_ticker_irq_handler();
lp_ticker_irq_handler();
}
else {
lp_ticker_arm_cd();
}
// NOTE: lp_ticker_set_interrupt() may get called in lp_ticker_irq_handler();
lp_ticker_irq_handler();
}
static void lp_ticker_arm_cd(void)
static void arm_alarm(uint32_t cd_clk)
{
TIMER_T * timer3_base = (TIMER_T *) NU_MODBASE(timer3_modinit.modname);
@ -206,22 +225,33 @@ static void lp_ticker_arm_cd(void)
timer3_base->CTL |= TIMER_CTL_SW_RST_Msk;
// One-shot mode, Clock = 1 KHz
uint32_t clk_timer3 = TIMER_GetModuleClock((TIMER_T *) NU_MODBASE(timer3_modinit.modname));
uint32_t prescale_timer3 = clk_timer3 / TMR3_CLK_PER_SEC - 1;
uint32_t prescale_timer3 = clk_timer3 / NU_TMRCLK_PER_SEC - 1;
MBED_ASSERT((prescale_timer3 != (uint32_t) -1) && prescale_timer3 <= 127);
MBED_ASSERT((clk_timer3 % TMR3_CLK_PER_SEC) == 0);
uint32_t ctl_timer3 = timer3_base->CTL;
ctl_timer3 &= ~TIMER_CTL_MODE_SEL_Msk;
ctl_timer3 |= TIMER_ONESHOT_MODE;
MBED_ASSERT((clk_timer3 % NU_TMRCLK_PER_SEC) == 0);
timer3_base->CTL &= ~TIMER_CTL_MODE_SEL_Msk;
timer3_base->CTL |= TIMER_ONESHOT_MODE;
timer3_base->PRECNT = prescale_timer3;
cd_minor_clks = cd_major_minor_clks;
cd_minor_clks = NU_CLAMP(cd_minor_clks, TMR_CMP_MIN, TMR_CMP_MAX);
timer3_base->CMPR = cd_minor_clks;
/* NOTE: Because H/W timer requests min compare value, our implementation would have alarm delay of
* (TMR_CMP_MIN - interval_clk) clocks when interval_clk is between [1, TMR_CMP_MIN). */
uint32_t cmp_timer3 = cd_clk;
cmp_timer3 = NU_CLAMP(cmp_timer3, TMR_CMP_MIN, TMR_CMP_MAX);
timer3_base->CMPR = cmp_timer3;
TIMER_EnableInt(timer3_base);
TIMER_EnableWakeup((TIMER_T *) NU_MODBASE(timer3_modinit.modname));
// Wait 2 cycles of engine clock to ensure previous CTL write action is finish
wait_us(30 * 2);
timer3_base->CTL |= ctl_timer3 | TIMER_CTL_TMR_EN_Msk;
/* NOTE: When engine is clocked by low power clock source (LXT/LIRC), we need to wait for 3 engine clocks. */
wait_us((NU_US_PER_SEC / NU_TMRCLK_PER_SEC) * 3);
TIMER_Start(timer3_base);
}
const ticker_info_t* lp_ticker_get_info()
{
static const ticker_info_t info = {
NU_TMRCLK_PER_SEC / NU_TMRCLK_PER_TICK,
NU_TMR_MAXCNT_BITSIZE
};
return &info;
}
#endif

View File

@ -13,41 +13,35 @@
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "us_ticker_api.h"
#include "sleep_api.h"
#include "mbed_assert.h"
#include "nu_modutil.h"
#include "nu_miscutil.h"
#include "mbed_critical.h"
// us_ticker tick = us = timestamp
#define US_PER_TICK 1
#define US_PER_SEC (1000 * 1000)
#define TMR0HIRES_CLK_PER_SEC (1000 * 1000)
#define TMR1HIRES_CLK_PER_SEC (1000 * 1000)
#define US_PER_TMR0HIRES_CLK (US_PER_SEC / TMR0HIRES_CLK_PER_SEC)
#define US_PER_TMR1HIRES_CLK (US_PER_SEC / TMR1HIRES_CLK_PER_SEC)
#define US_PER_TMR0HIRES_INT (1000 * 1000 * 10)
#define TMR0HIRES_CLK_PER_TMR0HIRES_INT ((uint32_t) ((uint64_t) US_PER_TMR0HIRES_INT * TMR0HIRES_CLK_PER_SEC / US_PER_SEC))
/* Micro seconds per second */
#define NU_US_PER_SEC 1000000
/* Timer clock per us_ticker tick */
#define NU_TMRCLK_PER_TICK 1
/* Timer clock per second */
#define NU_TMRCLK_PER_SEC (1000 * 1000)
/* Timer max counter bit size */
#define NU_TMR_MAXCNT_BITSIZE 24
/* Timer max counter */
#define NU_TMR_MAXCNT ((1 << NU_TMR_MAXCNT_BITSIZE) - 1)
/* NOTE: Don't add static modifier here. These IRQ handler symbols are for linking.
Vector table relocation is not actually supported for low-resource target. */
void TMR0_IRQHandler(void);
void TMR1_IRQHandler(void);
static void us_ticker_arm_cd(void);
/* Configure scheduled alarm */
static void arm_alarm(uint32_t cd_clk);
static int us_ticker_inited = 0;
static volatile uint32_t counter_major = 0;
static volatile uint32_t cd_major_minor_us = 0;
static volatile uint32_t cd_minor_us = 0;
static uint32_t ticker_last_read_clk = 0;
static int ticker_inited = 0;
// NOTE: Choose clock source of timer:
// 1. HIRC: Be the most accurate but might cause unknown HardFault.
// 2. HXT: Less accurate and cannot pass mbed-drivers test.
// NOTE: TIMER_0 for normal counter, TIMER_1 for countdown.
/* NOTE: TIMER_0 for normal counting and TIMER_1 for scheduled alarm. */
static const struct nu_modinit_s timer0hires_modinit = {TIMER_0, TMR0_MODULE, CLK_CLKSEL1_TMR0_S_HXT, 0, TMR0_RST, TMR0_IRQn, (void *) TMR0_IRQHandler};
static const struct nu_modinit_s timer1hires_modinit = {TIMER_1, TMR1_MODULE, CLK_CLKSEL1_TMR1_S_HXT, 0, TMR1_RST, TMR1_IRQn, (void *) TMR1_IRQHandler};
@ -56,19 +50,17 @@ static const struct nu_modinit_s timer1hires_modinit = {TIMER_1, TMR1_MODULE, CL
void us_ticker_init(void)
{
if (us_ticker_inited) {
if (ticker_inited) {
return;
}
counter_major = 0;
cd_major_minor_us = 0;
cd_minor_us = 0;
us_ticker_inited = 1;
ticker_inited = 1;
ticker_last_read_clk = 0;
// Reset IP
SYS_ResetModule(timer0hires_modinit.rsetidx);
SYS_ResetModule(timer1hires_modinit.rsetidx);
// Select IP clock source
CLK_SetModuleClock(timer0hires_modinit.clkidx, timer0hires_modinit.clksrc, timer0hires_modinit.clkdiv);
CLK_SetModuleClock(timer1hires_modinit.clkidx, timer1hires_modinit.clksrc, timer1hires_modinit.clkdiv);
@ -78,60 +70,109 @@ void us_ticker_init(void)
// Timer for normal counter
uint32_t clk_timer0 = TIMER_GetModuleClock((TIMER_T *) NU_MODBASE(timer0hires_modinit.modname));
uint32_t prescale_timer0 = clk_timer0 / TMR0HIRES_CLK_PER_SEC - 1;
uint32_t prescale_timer0 = clk_timer0 / NU_TMRCLK_PER_SEC - 1;
MBED_ASSERT((prescale_timer0 != (uint32_t) -1) && prescale_timer0 <= 127);
MBED_ASSERT((clk_timer0 % TMR0HIRES_CLK_PER_SEC) == 0);
uint32_t cmp_timer0 = TMR0HIRES_CLK_PER_TMR0HIRES_INT;
MBED_ASSERT((clk_timer0 % NU_TMRCLK_PER_SEC) == 0);
uint32_t cmp_timer0 = TMR_CMP_MAX;
MBED_ASSERT(cmp_timer0 >= TMR_CMP_MIN && cmp_timer0 <= TMR_CMP_MAX);
((TIMER_T *) NU_MODBASE(timer0hires_modinit.modname))->CTL = TIMER_PERIODIC_MODE;
((TIMER_T *) NU_MODBASE(timer0hires_modinit.modname))->PRECNT = prescale_timer0;
((TIMER_T *) NU_MODBASE(timer0hires_modinit.modname))->CMPR = cmp_timer0;
NVIC_SetVector(timer0hires_modinit.irq_n, (uint32_t) timer0hires_modinit.var);
NVIC_SetVector(timer1hires_modinit.irq_n, (uint32_t) timer1hires_modinit.var);
NVIC_EnableIRQ(timer0hires_modinit.irq_n);
NVIC_EnableIRQ(timer1hires_modinit.irq_n);
TIMER_EnableInt((TIMER_T *) NU_MODBASE(timer0hires_modinit.modname));
TIMER_Start((TIMER_T *) NU_MODBASE(timer0hires_modinit.modname));
}
uint32_t us_ticker_read()
{
if (! us_ticker_inited) {
if (! ticker_inited) {
us_ticker_init();
}
TIMER_T * timer0_base = (TIMER_T *) NU_MODBASE(timer0hires_modinit.modname);
do {
uint32_t major_minor_us;
uint32_t minor_us;
// NOTE: As TIMER_DR = TIMER_CMPR and counter_major has increased by one, TIMER_DR doesn't change to 0 for one tick time.
// NOTE: As TIMER_DR = TIMER_CMPR or TIMER_DR = 0, counter_major (ISR) may not sync with TIMER_DR. So skip and fetch stable one at the cost of 1 clock delay on this read.
do {
core_util_critical_section_enter();
// NOTE: Order of reading minor_us/carry here is significant.
minor_us = TIMER_GetCounter(timer0_base) * US_PER_TMR0HIRES_CLK;
uint32_t carry = (timer0_base->ISR & TIMER_ISR_TMR_IS_Msk) ? 1 : 0;
// When TIMER_DR approaches TIMER_CMPR and will wrap soon, we may get carry but TIMER_DR not wrapped. Hanlde carefully carry == 1 && TIMER_DR is near TIMER_CMPR.
if (carry && minor_us > (US_PER_TMR0HIRES_INT / 2)) {
major_minor_us = (counter_major + 1) * US_PER_TMR0HIRES_INT;
}
else {
major_minor_us = (counter_major + carry) * US_PER_TMR0HIRES_INT + minor_us;
}
core_util_critical_section_exit();
}
while (minor_us == 0 || minor_us == US_PER_TMR0HIRES_INT);
return (major_minor_us / US_PER_TICK);
TIMER_T * timer0_base = (TIMER_T *) NU_MODBASE(timer0hires_modinit.modname);
ticker_last_read_clk = TIMER_GetCounter(timer0_base);
return (ticker_last_read_clk / NU_TMRCLK_PER_TICK);
}
void us_ticker_set_interrupt(timestamp_t timestamp)
{
TIMER_Stop((TIMER_T *) NU_MODBASE(timer1hires_modinit.modname));
/* We need to get alarm interval from alarm timestamp `timestamp` to configure H/W timer.
*
* Because both `timestamp` and xx_ticker_read() would wrap around, we have difficulties in distinguishing
* long future event and past event. To distinguish them, we need `tick_last_read` against which
* `timestamp` is calculated out. In timeline, we would always have below after fixing wrap-around:
* (1) tick_last_read <= present_clk
* (2) tick_last_read <= alarm_ts_clk
*
*
* 1. Future event case:
*
* tick_last_read present_clk alarm_ts_clk
* | | |
* --------------------------------------------------------
* |-alarm_intvl1_clk-|
* |-------------------alarm_intvl2_clk-------------------|
*
* 2. Past event case:
*
* tick_last_read alarm_ts_clk present_clk
* | | |
* --------------------------------------------------------
* |-------------------alarm_intvl1_clk-------------------|
* |-alarm_intvl2_clk-|
*
* Unfortunately, `tick_last_read` is not passed along the xx_ticker_set_interrupt() call. To solve it, we
* assume that `tick_last_read` tick is exactly the one returned by the last xx_ticker_read() call before
* xx_ticker_set_interrupt() is invoked. With this assumption, we can hold it via `xx_ticker_last_read_clk`
* in xx_ticker_read().
*/
/* ticker_last_read_clk will update in us_ticker_read(). Keep it beforehand. */
uint32_t last_read_clk = ticker_last_read_clk;
uint32_t present_clk = us_ticker_read() * NU_TMRCLK_PER_TICK;
uint32_t alarm_ts_clk = timestamp * NU_TMRCLK_PER_TICK;
uint32_t alarm_intvl1_clk, alarm_intvl2_clk;
/* alarm_intvl1_clk = present_clk - last_read_clk
*
* NOTE: Don't miss the `=` sign here. Otherwise, we would get the wrong result.
*/
if (present_clk >= last_read_clk) {
alarm_intvl1_clk = present_clk - last_read_clk;
} else {
alarm_intvl1_clk = (uint32_t) (((uint64_t) NU_TMR_MAXCNT) + 1 + present_clk - last_read_clk);
}
/* alarm_intvl2_clk = alarm_ts_clk - last_read_clk
*
* NOTE: Don't miss the `=` sign here. Otherwise, we would get the wrong result.
*/
if (alarm_ts_clk >= last_read_clk) {
alarm_intvl2_clk = alarm_ts_clk - last_read_clk;
} else {
alarm_intvl2_clk = (uint32_t) (((uint64_t) NU_TMR_MAXCNT) + 1 + alarm_ts_clk - last_read_clk);
}
/* Distinguish (long) future event and past event
*
* NOTE: No '=' sign here. Alarm should go off immediately in equal case.
*/
if (alarm_intvl2_clk > alarm_intvl1_clk) {
/* Schedule for future event */
arm_alarm(alarm_intvl2_clk - alarm_intvl1_clk);
} else {
/* Go off immediately for past event, including equal case */
us_ticker_fire_interrupt();
}
while (0);
}
void us_ticker_disable_interrupt(void)
@ -144,61 +185,56 @@ void us_ticker_clear_interrupt(void)
TIMER_ClearIntFlag((TIMER_T *) NU_MODBASE(timer1hires_modinit.modname));
}
void us_ticker_set_interrupt(timestamp_t timestamp)
{
TIMER_Stop((TIMER_T *) NU_MODBASE(timer1hires_modinit.modname));
uint32_t delta = timestamp - us_ticker_read();
cd_major_minor_us = delta * US_PER_TICK;
us_ticker_arm_cd();
}
void us_ticker_fire_interrupt(void)
{
cd_major_minor_us = cd_minor_us = 0;
// NOTE: This event was in the past. Set the interrupt as pending, but don't process it here.
// This prevents a recursive loop under heavy load which can lead to a stack overflow.
NVIC_SetPendingIRQ(timer1hires_modinit.irq_n);
}
void TMR0_IRQHandler(void)
{
TIMER_ClearIntFlag((TIMER_T *) NU_MODBASE(timer0hires_modinit.modname));
counter_major ++;
}
void TMR1_IRQHandler(void)
{
TIMER_ClearIntFlag((TIMER_T *) NU_MODBASE(timer1hires_modinit.modname));
cd_major_minor_us = (cd_major_minor_us > cd_minor_us) ? (cd_major_minor_us - cd_minor_us) : 0;
if (cd_major_minor_us == 0) {
// NOTE: us_ticker_set_interrupt() may get called in us_ticker_irq_handler();
us_ticker_irq_handler();
}
else {
us_ticker_arm_cd();
}
// NOTE: us_ticker_set_interrupt() may get called in us_ticker_irq_handler();
us_ticker_irq_handler();
}
static void us_ticker_arm_cd(void)
static void arm_alarm(uint32_t cd_clk)
{
TIMER_T * timer1_base = (TIMER_T *) NU_MODBASE(timer1hires_modinit.modname);
cd_minor_us = cd_major_minor_us;
// Reset Timer's pre-scale counter, internal 24-bit up-counter and TMR_CTL [TMR_EN] bit
timer1_base->CTL |= TIMER_CTL_SW_RST_Msk;
// One-shot mode, Clock = 1 MHz
uint32_t clk_timer1 = TIMER_GetModuleClock((TIMER_T *) NU_MODBASE(timer1hires_modinit.modname));
uint32_t prescale_timer1 = clk_timer1 / TMR1HIRES_CLK_PER_SEC - 1;
uint32_t prescale_timer1 = clk_timer1 / NU_TMRCLK_PER_SEC - 1;
MBED_ASSERT((prescale_timer1 != (uint32_t) -1) && prescale_timer1 <= 127);
MBED_ASSERT((clk_timer1 % TMR1HIRES_CLK_PER_SEC) == 0);
MBED_ASSERT((clk_timer1 % NU_TMRCLK_PER_SEC) == 0);
timer1_base->CTL &= ~TIMER_CTL_MODE_SEL_Msk;
timer1_base->CTL |= TIMER_ONESHOT_MODE;
timer1_base->PRECNT = prescale_timer1;
uint32_t cmp_timer1 = cd_minor_us / US_PER_TMR1HIRES_CLK;
/* NOTE: Because H/W timer requests min compare value, our implementation would have alarm delay of
* (TMR_CMP_MIN - interval_clk) clocks when interval_clk is between [1, TMR_CMP_MIN). */
uint32_t cmp_timer1 = cd_clk;
cmp_timer1 = NU_CLAMP(cmp_timer1, TMR_CMP_MIN, TMR_CMP_MAX);
timer1_base->CMPR = cmp_timer1;
TIMER_EnableInt(timer1_base);
TIMER_Start(timer1_base);
}
const ticker_info_t* us_ticker_get_info()
{
static const ticker_info_t info = {
NU_TMRCLK_PER_SEC / NU_TMRCLK_PER_TICK,
NU_TMR_MAXCNT_BITSIZE
};
return &info;
}

View File

@ -13,37 +13,38 @@
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "lp_ticker_api.h"
#if DEVICE_LOWPOWERTIMER
#include "sleep_api.h"
#include "mbed_wait_api.h"
#include "mbed_assert.h"
#include "nu_modutil.h"
#include "nu_miscutil.h"
#include "mbed_critical.h"
// lp_ticker tick = us = timestamp
#define US_PER_TICK (1)
#define US_PER_SEC (1000 * 1000)
#define US_PER_TMR2_INT (US_PER_SEC * 10)
#define TMR2_CLK_PER_SEC (__LXT)
#define TMR2_CLK_PER_TMR2_INT ((uint32_t) ((uint64_t) US_PER_TMR2_INT * TMR2_CLK_PER_SEC / US_PER_SEC))
#define TMR3_CLK_PER_SEC (__LXT)
/* Micro seconds per second */
#define NU_US_PER_SEC 1000000
/* Timer clock per lp_ticker tick */
#define NU_TMRCLK_PER_TICK 1
/* Timer clock per second */
#define NU_TMRCLK_PER_SEC (__LXT)
/* Timer max counter bit size */
#define NU_TMR_MAXCNT_BITSIZE 24
/* Timer max counter */
#define NU_TMR_MAXCNT ((1 << NU_TMR_MAXCNT_BITSIZE) - 1)
static void tmr2_vec(void);
static void tmr3_vec(void);
static void lp_ticker_arm_cd(void);
/* Configure scheduled alarm */
static void arm_alarm(uint32_t cd_clk);
static int lp_ticker_inited = 0;
static volatile uint32_t counter_major = 0;
static volatile uint32_t cd_major_minor_clks = 0;
static volatile uint32_t cd_minor_clks = 0;
static volatile uint32_t wakeup_tick = (uint32_t) -1;
static int ticker_inited = 0;
static uint32_t ticker_last_read_clk = 0;
// NOTE: To wake the system from power down mode, timer clock source must be ether LXT or LIRC.
// NOTE: TIMER_2 for normal counting and TIMER_3 for scheduled wakeup
/* NOTE: To wake the system from power down mode, timer clock source must be ether LXT or LIRC. */
/* NOTE: TIMER_2 for normal counting and TIMER_3 for scheduled alarm */
static const struct nu_modinit_s timer2_modinit = {TIMER_2, TMR2_MODULE, CLK_CLKSEL1_TMR2SEL_LXT, 0, TMR2_RST, TMR2_IRQn, (void *) tmr2_vec};
static const struct nu_modinit_s timer3_modinit = {TIMER_3, TMR3_MODULE, CLK_CLKSEL1_TMR3SEL_LXT, 0, TMR3_RST, TMR3_IRQn, (void *) tmr3_vec};
@ -52,20 +53,17 @@ static const struct nu_modinit_s timer3_modinit = {TIMER_3, TMR3_MODULE, CLK_CLK
void lp_ticker_init(void)
{
if (lp_ticker_inited) {
if (ticker_inited) {
return;
}
lp_ticker_inited = 1;
counter_major = 0;
cd_major_minor_clks = 0;
cd_minor_clks = 0;
wakeup_tick = (uint32_t) -1;
ticker_inited = 1;
ticker_last_read_clk = 0;
// Reset module
SYS_ResetModule(timer2_modinit.rsetidx);
SYS_ResetModule(timer3_modinit.rsetidx);
// Select IP clock source
CLK_SetModuleClock(timer2_modinit.clkidx, timer2_modinit.clksrc, timer2_modinit.clkdiv);
CLK_SetModuleClock(timer3_modinit.clkidx, timer3_modinit.clksrc, timer3_modinit.clkdiv);
@ -75,92 +73,113 @@ void lp_ticker_init(void)
// Configure clock
uint32_t clk_timer2 = TIMER_GetModuleClock((TIMER_T *) NU_MODBASE(timer2_modinit.modname));
uint32_t prescale_timer2 = clk_timer2 / TMR2_CLK_PER_SEC - 1;
uint32_t prescale_timer2 = clk_timer2 / NU_TMRCLK_PER_SEC - 1;
MBED_ASSERT((prescale_timer2 != (uint32_t) -1) && prescale_timer2 <= 127);
MBED_ASSERT((clk_timer2 % TMR2_CLK_PER_SEC) == 0);
uint32_t cmp_timer2 = TMR2_CLK_PER_TMR2_INT;
MBED_ASSERT((clk_timer2 % NU_TMRCLK_PER_SEC) == 0);
uint32_t cmp_timer2 = TMR_CMP_MAX;
MBED_ASSERT(cmp_timer2 >= TMR_CMP_MIN && cmp_timer2 <= TMR_CMP_MAX);
// Continuous mode
((TIMER_T *) NU_MODBASE(timer2_modinit.modname))->CTL = TIMER_PERIODIC_MODE | prescale_timer2 | TIMER_CTL_CNTDATEN_Msk;
((TIMER_T *) NU_MODBASE(timer2_modinit.modname))->CMP = cmp_timer2;
// Set vector
NVIC_SetVector(timer2_modinit.irq_n, (uint32_t) timer2_modinit.var);
NVIC_SetVector(timer3_modinit.irq_n, (uint32_t) timer3_modinit.var);
NVIC_EnableIRQ(timer2_modinit.irq_n);
NVIC_EnableIRQ(timer3_modinit.irq_n);
TIMER_EnableInt((TIMER_T *) NU_MODBASE(timer2_modinit.modname));
TIMER_EnableWakeup((TIMER_T *) NU_MODBASE(timer2_modinit.modname));
// NOTE: TIMER_Start() first and then lp_ticker_set_interrupt(); otherwise, we may get stuck in lp_ticker_read() because
// timer is not running.
// Start timer
/* NOTE: When engine is clocked by low power clock source (LXT/LIRC), we need to wait for 3 engine clocks. */
wait_us((NU_US_PER_SEC / NU_TMRCLK_PER_SEC) * 3);
TIMER_Start((TIMER_T *) NU_MODBASE(timer2_modinit.modname));
// Schedule wakeup to match semantics of lp_ticker_get_compare_match()
lp_ticker_set_interrupt(wakeup_tick);
}
timestamp_t lp_ticker_read()
{
if (! lp_ticker_inited) {
{
if (! ticker_inited) {
lp_ticker_init();
}
TIMER_T * timer2_base = (TIMER_T *) NU_MODBASE(timer2_modinit.modname);
do {
uint64_t major_minor_clks;
uint32_t minor_clks;
// NOTE: As TIMER_CNT = TIMER_CMP and counter_major has increased by one, TIMER_CNT doesn't change to 0 for one tick time.
// NOTE: As TIMER_CNT = TIMER_CMP or TIMER_CNT = 0, counter_major (ISR) may not sync with TIMER_CNT. So skip and fetch stable one at the cost of 1 clock delay on this read.
do {
core_util_critical_section_enter();
// NOTE: Order of reading minor_us/carry here is significant.
minor_clks = TIMER_GetCounter(timer2_base);
uint32_t carry = (timer2_base->INTSTS & TIMER_INTSTS_TIF_Msk) ? 1 : 0;
// When TIMER_CNT approaches TIMER_CMP and will wrap soon, we may get carry but TIMER_CNT not wrapped. Hanlde carefully carry == 1 && TIMER_CNT is near TIMER_CMP.
if (carry && minor_clks > (TMR2_CLK_PER_TMR2_INT / 2)) {
major_minor_clks = (counter_major + 1) * TMR2_CLK_PER_TMR2_INT;
}
else {
major_minor_clks = (counter_major + carry) * TMR2_CLK_PER_TMR2_INT + minor_clks;
}
core_util_critical_section_exit();
}
while (minor_clks == 0 || minor_clks == TMR2_CLK_PER_TMR2_INT);
// Add power-down compensation
return ((uint64_t) major_minor_clks * US_PER_SEC / TMR2_CLK_PER_SEC / US_PER_TICK);
}
while (0);
TIMER_T * timer2_base = (TIMER_T *) NU_MODBASE(timer2_modinit.modname);
ticker_last_read_clk = TIMER_GetCounter(timer2_base);
return (ticker_last_read_clk / NU_TMRCLK_PER_TICK);
}
void lp_ticker_set_interrupt(timestamp_t timestamp)
{
uint32_t delta = timestamp - lp_ticker_read();
wakeup_tick = timestamp;
TIMER_Stop((TIMER_T *) NU_MODBASE(timer3_modinit.modname));
cd_major_minor_clks = (uint64_t) delta * US_PER_TICK * TMR3_CLK_PER_SEC / US_PER_SEC;
lp_ticker_arm_cd();
}
/* We need to get alarm interval from alarm timestamp `timestamp` to configure H/W timer.
*
* Because both `timestamp` and xx_ticker_read() would wrap around, we have difficulties in distinguishing
* long future event and past event. To distinguish them, we need `tick_last_read` against which
* `timestamp` is calculated out. In timeline, we would always have below after fixing wrap-around:
* (1) tick_last_read <= present_clk
* (2) tick_last_read <= alarm_ts_clk
*
*
* 1. Future event case:
*
* tick_last_read present_clk alarm_ts_clk
* | | |
* --------------------------------------------------------
* |-alarm_intvl1_clk-|
* |-------------------alarm_intvl2_clk-------------------|
*
* 2. Past event case:
*
* tick_last_read alarm_ts_clk present_clk
* | | |
* --------------------------------------------------------
* |-------------------alarm_intvl1_clk-------------------|
* |-alarm_intvl2_clk-|
*
* Unfortunately, `tick_last_read` is not passed along the xx_ticker_set_interrupt() call. To solve it, we
* assume that `tick_last_read` tick is exactly the one returned by the last xx_ticker_read() call before
* xx_ticker_set_interrupt() is invoked. With this assumption, we can hold it via `xx_ticker_last_read_clk`
* in xx_ticker_read().
*/
/* ticker_last_read_clk will update in lp_ticker_read(). Keep it beforehand. */
uint32_t last_read_clk = ticker_last_read_clk;
uint32_t present_clk = lp_ticker_read() * NU_TMRCLK_PER_TICK;
uint32_t alarm_ts_clk = timestamp * NU_TMRCLK_PER_TICK;
uint32_t alarm_intvl1_clk, alarm_intvl2_clk;
/* alarm_intvl1_clk = present_clk - last_read_clk
*
* NOTE: Don't miss the `=` sign here. Otherwise, we would get the wrong result.
*/
if (present_clk >= last_read_clk) {
alarm_intvl1_clk = present_clk - last_read_clk;
} else {
alarm_intvl1_clk = (uint32_t) (((uint64_t) NU_TMR_MAXCNT) + 1 + present_clk - last_read_clk);
}
void lp_ticker_fire_interrupt(void)
{
cd_major_minor_clks = cd_minor_clks = 0;
/**
* This event was in the past. Set the interrupt as pending, but don't process it here.
* This prevents a recurive loop under heavy load which can lead to a stack overflow.
*/
NVIC_SetPendingIRQ(timer3_modinit.irq_n);
/* alarm_intvl2_clk = alarm_ts_clk - last_read_clk
*
* NOTE: Don't miss the `=` sign here. Otherwise, we would get the wrong result.
*/
if (alarm_ts_clk >= last_read_clk) {
alarm_intvl2_clk = alarm_ts_clk - last_read_clk;
} else {
alarm_intvl2_clk = (uint32_t) (((uint64_t) NU_TMR_MAXCNT) + 1 + alarm_ts_clk - last_read_clk);
}
/* Distinguish (long) future event and past event
*
* NOTE: No '=' sign here. Alarm should go off immediately in equal case.
*/
if (alarm_intvl2_clk > alarm_intvl1_clk) {
/* Schedule for future event */
arm_alarm(alarm_intvl2_clk - alarm_intvl1_clk);
} else {
/* Go off immediately for past event, including equal case */
lp_ticker_fire_interrupt();
}
}
void lp_ticker_disable_interrupt(void)
@ -173,47 +192,63 @@ void lp_ticker_clear_interrupt(void)
TIMER_ClearIntFlag((TIMER_T *) NU_MODBASE(timer3_modinit.modname));
}
void lp_ticker_fire_interrupt(void)
{
// NOTE: This event was in the past. Set the interrupt as pending, but don't process it here.
// This prevents a recursive loop under heavy load which can lead to a stack overflow.
NVIC_SetPendingIRQ(timer3_modinit.irq_n);
}
static void tmr2_vec(void)
{
TIMER_ClearIntFlag((TIMER_T *) NU_MODBASE(timer2_modinit.modname));
TIMER_ClearWakeupFlag((TIMER_T *) NU_MODBASE(timer2_modinit.modname));
counter_major ++;
}
static void tmr3_vec(void)
{
TIMER_ClearIntFlag((TIMER_T *) NU_MODBASE(timer3_modinit.modname));
TIMER_ClearWakeupFlag((TIMER_T *) NU_MODBASE(timer3_modinit.modname));
cd_major_minor_clks = (cd_major_minor_clks > cd_minor_clks) ? (cd_major_minor_clks - cd_minor_clks) : 0;
if (cd_major_minor_clks == 0) {
// NOTE: lp_ticker_set_interrupt() may get called in lp_ticker_irq_handler();
lp_ticker_irq_handler();
}
else {
lp_ticker_arm_cd();
}
// NOTE: lp_ticker_set_interrupt() may get called in lp_ticker_irq_handler();
lp_ticker_irq_handler();
}
static void lp_ticker_arm_cd(void)
static void arm_alarm(uint32_t cd_clk)
{
TIMER_T * timer3_base = (TIMER_T *) NU_MODBASE(timer3_modinit.modname);
// Reset 8-bit PSC counter, 24-bit up counter value and CNTEN bit
timer3_base->CTL |= TIMER_CTL_RSTCNT_Msk;
// One-shot mode, Clock = 1 KHz
uint32_t clk_timer3 = TIMER_GetModuleClock((TIMER_T *) NU_MODBASE(timer3_modinit.modname));
uint32_t prescale_timer3 = clk_timer3 / TMR3_CLK_PER_SEC - 1;
uint32_t prescale_timer3 = clk_timer3 / NU_TMRCLK_PER_SEC - 1;
MBED_ASSERT((prescale_timer3 != (uint32_t) -1) && prescale_timer3 <= 127);
MBED_ASSERT((clk_timer3 % TMR3_CLK_PER_SEC) == 0);
MBED_ASSERT((clk_timer3 % NU_TMRCLK_PER_SEC) == 0);
timer3_base->CTL &= ~(TIMER_CTL_OPMODE_Msk | TIMER_CTL_PSC_Msk | TIMER_CTL_CNTDATEN_Msk);
timer3_base->CTL |= TIMER_ONESHOT_MODE | prescale_timer3 | TIMER_CTL_CNTDATEN_Msk;
cd_minor_clks = cd_major_minor_clks;
cd_minor_clks = NU_CLAMP(cd_minor_clks, TMR_CMP_MIN, TMR_CMP_MAX);
timer3_base->CMP = cd_minor_clks;
/* NOTE: Because H/W timer requests min compare value, our implementation would have alarm delay of
* (TMR_CMP_MIN - interval_clk) clocks when interval_clk is between [1, TMR_CMP_MIN). */
uint32_t cmp_timer3 = cd_clk;
cmp_timer3 = NU_CLAMP(cmp_timer3, TMR_CMP_MIN, TMR_CMP_MAX);
timer3_base->CMP = cmp_timer3;
TIMER_EnableInt(timer3_base);
TIMER_EnableWakeup((TIMER_T *) NU_MODBASE(timer3_modinit.modname));
/* NOTE: When engine is clocked by low power clock source (LXT/LIRC), we need to wait for 3 engine clocks. */
wait_us((NU_US_PER_SEC / NU_TMRCLK_PER_SEC) * 3);
TIMER_Start(timer3_base);
}
const ticker_info_t* lp_ticker_get_info()
{
static const ticker_info_t info = {
NU_TMRCLK_PER_SEC / NU_TMRCLK_PER_TICK,
NU_TMR_MAXCNT_BITSIZE
};
return &info;
}
#endif

View File

@ -13,43 +13,33 @@
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "us_ticker_api.h"
#include "sleep_api.h"
#include "mbed_assert.h"
#include "nu_modutil.h"
#include "nu_miscutil.h"
#include "mbed_critical.h"
// us_ticker tick = us = timestamp
#define US_PER_TICK 1
#define US_PER_SEC (1000 * 1000)
#define TMR0HIRES_CLK_PER_SEC (1000 * 1000)
#define TMR1HIRES_CLK_PER_SEC (1000 * 1000)
#define US_PER_TMR0HIRES_CLK (US_PER_SEC / TMR0HIRES_CLK_PER_SEC)
#define US_PER_TMR1HIRES_CLK (US_PER_SEC / TMR1HIRES_CLK_PER_SEC)
#define US_PER_TMR0HIRES_INT (1000 * 1000 * 10)
#define TMR0HIRES_CLK_PER_TMR0HIRES_INT ((uint32_t) ((uint64_t) US_PER_TMR0HIRES_INT * TMR0HIRES_CLK_PER_SEC / US_PER_SEC))
/* Micro seconds per second */
#define NU_US_PER_SEC 1000000
/* Timer clock per us_ticker tick */
#define NU_TMRCLK_PER_TICK 1
/* Timer clock per second */
#define NU_TMRCLK_PER_SEC (1000 * 1000)
/* Timer max counter bit size */
#define NU_TMR_MAXCNT_BITSIZE 24
/* Timer max counter */
#define NU_TMR_MAXCNT ((1 << NU_TMR_MAXCNT_BITSIZE) - 1)
static void tmr0_vec(void);
static void tmr1_vec(void);
static void us_ticker_arm_cd(void);
/* Configure alarm exactly after scheduled clocks */
static void arm_alarm(uint32_t cd_clk);
static int us_ticker_inited = 0;
static volatile uint32_t counter_major = 0;
static volatile uint32_t cd_major_minor_us = 0;
static volatile uint32_t cd_minor_us = 0;
static int ticker_inited = 0;
static uint32_t ticker_last_read_clk = 0;
// NOTE: PCLK is set up in mbed_sdk_init(), invocation of which must be before C++ global object constructor. See init_api.c for details.
// NOTE: Choose clock source of timer:
// 1. HIRC: Be the most accurate but might cause unknown HardFault.
// 2. HXT: Less accurate and cannot pass mbed-drivers test.
// 3. PCLK(HXT): Less accurate but can pass mbed-drivers test.
// NOTE: TIMER_0 for normal counter, TIMER_1 for countdown.
/* NOTE: TIMER_0 for normal counting and TIMER_1 for scheduled alarm. */
static const struct nu_modinit_s timer0hires_modinit = {TIMER_0, TMR0_MODULE, CLK_CLKSEL1_TMR0SEL_PCLK, 0, TMR0_RST, TMR0_IRQn, (void *) tmr0_vec};
static const struct nu_modinit_s timer1hires_modinit = {TIMER_1, TMR1_MODULE, CLK_CLKSEL1_TMR1SEL_PCLK, 0, TMR1_RST, TMR1_IRQn, (void *) tmr1_vec};
@ -58,19 +48,17 @@ static const struct nu_modinit_s timer1hires_modinit = {TIMER_1, TMR1_MODULE, CL
void us_ticker_init(void)
{
if (us_ticker_inited) {
if (ticker_inited) {
return;
}
counter_major = 0;
cd_major_minor_us = 0;
cd_minor_us = 0;
us_ticker_inited = 1;
ticker_inited = 1;
ticker_last_read_clk = 0;
// Reset IP
SYS_ResetModule(timer0hires_modinit.rsetidx);
SYS_ResetModule(timer1hires_modinit.rsetidx);
// Select IP clock source
CLK_SetModuleClock(timer0hires_modinit.clkidx, timer0hires_modinit.clksrc, timer0hires_modinit.clkdiv);
CLK_SetModuleClock(timer1hires_modinit.clkidx, timer1hires_modinit.clksrc, timer1hires_modinit.clkdiv);
@ -80,59 +68,108 @@ void us_ticker_init(void)
// Timer for normal counter
uint32_t clk_timer0 = TIMER_GetModuleClock((TIMER_T *) NU_MODBASE(timer0hires_modinit.modname));
uint32_t prescale_timer0 = clk_timer0 / TMR0HIRES_CLK_PER_SEC - 1;
uint32_t prescale_timer0 = clk_timer0 / NU_TMRCLK_PER_SEC - 1;
MBED_ASSERT((prescale_timer0 != (uint32_t) -1) && prescale_timer0 <= 127);
MBED_ASSERT((clk_timer0 % TMR0HIRES_CLK_PER_SEC) == 0);
uint32_t cmp_timer0 = TMR0HIRES_CLK_PER_TMR0HIRES_INT;
MBED_ASSERT((clk_timer0 % NU_TMRCLK_PER_SEC) == 0);
uint32_t cmp_timer0 = TMR_CMP_MAX;
MBED_ASSERT(cmp_timer0 >= TMR_CMP_MIN && cmp_timer0 <= TMR_CMP_MAX);
((TIMER_T *) NU_MODBASE(timer0hires_modinit.modname))->CTL = TIMER_PERIODIC_MODE | prescale_timer0 | TIMER_CTL_CNTDATEN_Msk;
((TIMER_T *) NU_MODBASE(timer0hires_modinit.modname))->CMP = cmp_timer0;
NVIC_SetVector(timer0hires_modinit.irq_n, (uint32_t) timer0hires_modinit.var);
NVIC_SetVector(timer1hires_modinit.irq_n, (uint32_t) timer1hires_modinit.var);
NVIC_EnableIRQ(timer0hires_modinit.irq_n);
NVIC_EnableIRQ(timer1hires_modinit.irq_n);
TIMER_EnableInt((TIMER_T *) NU_MODBASE(timer0hires_modinit.modname));
TIMER_Start((TIMER_T *) NU_MODBASE(timer0hires_modinit.modname));
}
uint32_t us_ticker_read()
{
if (! us_ticker_inited) {
if (! ticker_inited) {
us_ticker_init();
}
TIMER_T * timer0_base = (TIMER_T *) NU_MODBASE(timer0hires_modinit.modname);
do {
uint32_t major_minor_us;
uint32_t minor_us;
// NOTE: As TIMER_CNT = TIMER_CMP and counter_major has increased by one, TIMER_CNT doesn't change to 0 for one tick time.
// NOTE: As TIMER_CNT = TIMER_CMP or TIMER_CNT = 0, counter_major (ISR) may not sync with TIMER_CNT. So skip and fetch stable one at the cost of 1 clock delay on this read.
do {
core_util_critical_section_enter();
// NOTE: Order of reading minor_us/carry here is significant.
minor_us = TIMER_GetCounter(timer0_base) * US_PER_TMR0HIRES_CLK;
uint32_t carry = (timer0_base->INTSTS & TIMER_INTSTS_TIF_Msk) ? 1 : 0;
// When TIMER_CNT approaches TIMER_CMP and will wrap soon, we may get carry but TIMER_CNT not wrapped. Hanlde carefully carry == 1 && TIMER_CNT is near TIMER_CMP.
if (carry && minor_us > (US_PER_TMR0HIRES_INT / 2)) {
major_minor_us = (counter_major + 1) * US_PER_TMR0HIRES_INT;
}
else {
major_minor_us = (counter_major + carry) * US_PER_TMR0HIRES_INT + minor_us;
}
core_util_critical_section_exit();
}
while (minor_us == 0 || minor_us == US_PER_TMR0HIRES_INT);
return (major_minor_us / US_PER_TICK);
TIMER_T * timer0_base = (TIMER_T *) NU_MODBASE(timer0hires_modinit.modname);
ticker_last_read_clk = TIMER_GetCounter(timer0_base);
return (ticker_last_read_clk / NU_TMRCLK_PER_TICK);
}
void us_ticker_set_interrupt(timestamp_t timestamp)
{
TIMER_Stop((TIMER_T *) NU_MODBASE(timer1hires_modinit.modname));
/* We need to get alarm interval from alarm timestamp `timestamp` to configure H/W timer.
*
* Because both `timestamp` and xx_ticker_read() would wrap around, we have difficulties in distinguishing
* long future event and past event. To distinguish them, we need `tick_last_read` against which
* `timestamp` is calculated out. In timeline, we would always have below after fixing wrap-around:
* (1) tick_last_read <= present_clk
* (2) tick_last_read <= alarm_ts_clk
*
*
* 1. Future event case:
*
* tick_last_read present_clk alarm_ts_clk
* | | |
* --------------------------------------------------------
* |-alarm_intvl1_clk-|
* |-------------------alarm_intvl2_clk-------------------|
*
* 2. Past event case:
*
* tick_last_read alarm_ts_clk present_clk
* | | |
* --------------------------------------------------------
* |-------------------alarm_intvl1_clk-------------------|
* |-alarm_intvl2_clk-|
*
* Unfortunately, `tick_last_read` is not passed along the xx_ticker_set_interrupt() call. To solve it, we
* assume that `tick_last_read` tick is exactly the one returned by the last xx_ticker_read() call before
* xx_ticker_set_interrupt() is invoked. With this assumption, we can hold it via `xx_ticker_last_read_clk`
* in xx_ticker_read().
*/
/* ticker_last_read_clk will update in us_ticker_read(). Keep it beforehand. */
uint32_t last_read_clk = ticker_last_read_clk;
uint32_t present_clk = us_ticker_read() * NU_TMRCLK_PER_TICK;
uint32_t alarm_ts_clk = timestamp * NU_TMRCLK_PER_TICK;
uint32_t alarm_intvl1_clk, alarm_intvl2_clk;
/* alarm_intvl1_clk = present_clk - last_read_clk
*
* NOTE: Don't miss the `=` sign here. Otherwise, we would get the wrong result.
*/
if (present_clk >= last_read_clk) {
alarm_intvl1_clk = present_clk - last_read_clk;
} else {
alarm_intvl1_clk = (uint32_t) (((uint64_t) NU_TMR_MAXCNT) + 1 + present_clk - last_read_clk);
}
/* alarm_intvl2_clk = alarm_ts_clk - last_read_clk
*
* NOTE: Don't miss the `=` sign here. Otherwise, we would get the wrong result.
*/
if (alarm_ts_clk >= last_read_clk) {
alarm_intvl2_clk = alarm_ts_clk - last_read_clk;
} else {
alarm_intvl2_clk = (uint32_t) (((uint64_t) NU_TMR_MAXCNT) + 1 + alarm_ts_clk - last_read_clk);
}
/* Distinguish (long) future event and past event
*
* NOTE: No '=' sign here. Alarm should go off immediately in equal case.
*/
if (alarm_intvl2_clk > alarm_intvl1_clk) {
/* Schedule for future event */
arm_alarm(alarm_intvl2_clk - alarm_intvl1_clk);
} else {
/* Go off immediately for past event, including equal case */
us_ticker_fire_interrupt();
}
while (0);
}
void us_ticker_disable_interrupt(void)
@ -145,60 +182,55 @@ void us_ticker_clear_interrupt(void)
TIMER_ClearIntFlag((TIMER_T *) NU_MODBASE(timer1hires_modinit.modname));
}
void us_ticker_set_interrupt(timestamp_t timestamp)
{
TIMER_Stop((TIMER_T *) NU_MODBASE(timer1hires_modinit.modname));
uint32_t delta = timestamp - us_ticker_read();
cd_major_minor_us = delta * US_PER_TICK;
us_ticker_arm_cd();
}
void us_ticker_fire_interrupt(void)
{
cd_major_minor_us = cd_minor_us = 0;
// NOTE: This event was in the past. Set the interrupt as pending, but don't process it here.
// This prevents a recursive loop under heavy load which can lead to a stack overflow.
NVIC_SetPendingIRQ(timer1hires_modinit.irq_n);
}
static void tmr0_vec(void)
{
TIMER_ClearIntFlag((TIMER_T *) NU_MODBASE(timer0hires_modinit.modname));
counter_major ++;
}
static void tmr1_vec(void)
{
TIMER_ClearIntFlag((TIMER_T *) NU_MODBASE(timer1hires_modinit.modname));
cd_major_minor_us = (cd_major_minor_us > cd_minor_us) ? (cd_major_minor_us - cd_minor_us) : 0;
if (cd_major_minor_us == 0) {
// NOTE: us_ticker_set_interrupt() may get called in us_ticker_irq_handler();
us_ticker_irq_handler();
}
else {
us_ticker_arm_cd();
}
// NOTE: us_ticker_set_interrupt() may get called in us_ticker_irq_handler();
us_ticker_irq_handler();
}
static void us_ticker_arm_cd(void)
static void arm_alarm(uint32_t cd_clk)
{
TIMER_T * timer1_base = (TIMER_T *) NU_MODBASE(timer1hires_modinit.modname);
cd_minor_us = cd_major_minor_us;
// Reset 8-bit PSC counter, 24-bit up counter value and CNTEN bit
timer1_base->CTL |= TIMER_CTL_RSTCNT_Msk;
// One-shot mode, Clock = 1 MHz
uint32_t clk_timer1 = TIMER_GetModuleClock((TIMER_T *) NU_MODBASE(timer1hires_modinit.modname));
uint32_t prescale_timer1 = clk_timer1 / TMR1HIRES_CLK_PER_SEC - 1;
uint32_t prescale_timer1 = clk_timer1 / NU_TMRCLK_PER_SEC - 1;
MBED_ASSERT((prescale_timer1 != (uint32_t) -1) && prescale_timer1 <= 127);
MBED_ASSERT((clk_timer1 % TMR1HIRES_CLK_PER_SEC) == 0);
MBED_ASSERT((clk_timer1 % NU_TMRCLK_PER_SEC) == 0);
timer1_base->CTL &= ~(TIMER_CTL_OPMODE_Msk | TIMER_CTL_PSC_Msk | TIMER_CTL_CNTDATEN_Msk);
timer1_base->CTL |= TIMER_ONESHOT_MODE | prescale_timer1 | TIMER_CTL_CNTDATEN_Msk;
uint32_t cmp_timer1 = cd_minor_us / US_PER_TMR1HIRES_CLK;
/* NOTE: Because H/W timer requests min compare value, our implementation would have alarm delay of
* (TMR_CMP_MIN - interval_clk) clocks when interval_clk is between [1, TMR_CMP_MIN). */
uint32_t cmp_timer1 = cd_clk;
cmp_timer1 = NU_CLAMP(cmp_timer1, TMR_CMP_MIN, TMR_CMP_MAX);
timer1_base->CMP = cmp_timer1;
TIMER_EnableInt(timer1_base);
TIMER_Start(timer1_base);
}
const ticker_info_t* us_ticker_get_info()
{
static const ticker_info_t info = {
NU_TMRCLK_PER_SEC / NU_TMRCLK_PER_TICK,
NU_TMR_MAXCNT_BITSIZE
};
return &info;
}