mirror of https://github.com/ARMmbed/mbed-os.git
Merge pull request #6228 from OpenNuvoton/nuvoton_1timer_ticker
Nuvoton: Rework us_ticker/lp_ticker with one H/W timerpull/6274/head
commit
f1d493dd0c
|
@ -35,18 +35,14 @@
|
|||
/* Timer max counter */
|
||||
#define NU_TMR_MAXCNT ((1 << NU_TMR_MAXCNT_BITSIZE) - 1)
|
||||
|
||||
static void tmr2_vec(void);
|
||||
static void tmr3_vec(void);
|
||||
/* Configure scheduled alarm */
|
||||
static void arm_alarm(uint32_t cd_clk);
|
||||
|
||||
static int ticker_inited = 0;
|
||||
static uint32_t ticker_last_read_clk = 0;
|
||||
static void tmr1_vec(void);
|
||||
|
||||
/* NOTE: To wake the system from power down mode, timer clock source must be ether LXT or LIRC. */
|
||||
/* NOTE: TIMER_2 for normal counting and TIMER_3 for scheduled alarm */
|
||||
static const struct nu_modinit_s timer2_modinit = {TIMER_2, TMR2_MODULE, CLK_CLKSEL1_TMR2SEL_LXT, 0, TMR2_RST, TMR2_IRQn, (void *) tmr2_vec};
|
||||
static const struct nu_modinit_s timer3_modinit = {TIMER_3, TMR3_MODULE, CLK_CLKSEL1_TMR3SEL_LXT, 0, TMR3_RST, TMR3_IRQn, (void *) tmr3_vec};
|
||||
static const struct nu_modinit_s timer1_modinit = {TIMER_1, TMR1_MODULE, CLK_CLKSEL1_TMR1SEL_LXT, 0, TMR1_RST, TMR1_IRQn, (void *) tmr1_vec};
|
||||
|
||||
#define TIMER_MODINIT timer1_modinit
|
||||
|
||||
static int ticker_inited = 0;
|
||||
|
||||
#define TMR_CMP_MIN 2
|
||||
#define TMR_CMP_MAX 0xFFFFFFu
|
||||
|
@ -58,43 +54,37 @@ void lp_ticker_init(void)
|
|||
}
|
||||
ticker_inited = 1;
|
||||
|
||||
ticker_last_read_clk = 0;
|
||||
|
||||
// Reset module
|
||||
SYS_ResetModule(timer2_modinit.rsetidx);
|
||||
SYS_ResetModule(timer3_modinit.rsetidx);
|
||||
SYS_ResetModule(TIMER_MODINIT.rsetidx);
|
||||
|
||||
// Select IP clock source
|
||||
CLK_SetModuleClock(timer2_modinit.clkidx, timer2_modinit.clksrc, timer2_modinit.clkdiv);
|
||||
CLK_SetModuleClock(timer3_modinit.clkidx, timer3_modinit.clksrc, timer3_modinit.clkdiv);
|
||||
CLK_SetModuleClock(TIMER_MODINIT.clkidx, TIMER_MODINIT.clksrc, TIMER_MODINIT.clkdiv);
|
||||
|
||||
// Enable IP clock
|
||||
CLK_EnableModuleClock(timer2_modinit.clkidx);
|
||||
CLK_EnableModuleClock(timer3_modinit.clkidx);
|
||||
CLK_EnableModuleClock(TIMER_MODINIT.clkidx);
|
||||
|
||||
// Configure clock
|
||||
uint32_t clk_timer2 = TIMER_GetModuleClock((TIMER_T *) NU_MODBASE(timer2_modinit.modname));
|
||||
uint32_t prescale_timer2 = clk_timer2 / NU_TMRCLK_PER_SEC - 1;
|
||||
MBED_ASSERT((prescale_timer2 != (uint32_t) -1) && prescale_timer2 <= 127);
|
||||
MBED_ASSERT((clk_timer2 % NU_TMRCLK_PER_SEC) == 0);
|
||||
uint32_t cmp_timer2 = TMR_CMP_MAX;
|
||||
MBED_ASSERT(cmp_timer2 >= TMR_CMP_MIN && cmp_timer2 <= TMR_CMP_MAX);
|
||||
uint32_t clk_timer = TIMER_GetModuleClock((TIMER_T *) NU_MODBASE(TIMER_MODINIT.modname));
|
||||
uint32_t prescale_timer = clk_timer / NU_TMRCLK_PER_SEC - 1;
|
||||
MBED_ASSERT((prescale_timer != (uint32_t) -1) && prescale_timer <= 127);
|
||||
MBED_ASSERT((clk_timer % NU_TMRCLK_PER_SEC) == 0);
|
||||
uint32_t cmp_timer = TMR_CMP_MAX;
|
||||
MBED_ASSERT(cmp_timer >= TMR_CMP_MIN && cmp_timer <= TMR_CMP_MAX);
|
||||
// Continuous mode
|
||||
// NOTE: TIMER_CTL_CNTDATEN_Msk exists in NUC472, but not in M451. In M451, TIMER_CNT is updated continuously by default.
|
||||
((TIMER_T *) NU_MODBASE(timer2_modinit.modname))->CTL = TIMER_PERIODIC_MODE | prescale_timer2/* | TIMER_CTL_CNTDATEN_Msk*/;
|
||||
((TIMER_T *) NU_MODBASE(timer2_modinit.modname))->CMP = cmp_timer2;
|
||||
((TIMER_T *) NU_MODBASE(TIMER_MODINIT.modname))->CTL = TIMER_CONTINUOUS_MODE | prescale_timer/* | TIMER_CTL_CNTDATEN_Msk*/;
|
||||
((TIMER_T *) NU_MODBASE(TIMER_MODINIT.modname))->CMP = cmp_timer;
|
||||
|
||||
// Set vector
|
||||
NVIC_SetVector(timer2_modinit.irq_n, (uint32_t) timer2_modinit.var);
|
||||
NVIC_SetVector(timer3_modinit.irq_n, (uint32_t) timer3_modinit.var);
|
||||
NVIC_SetVector(TIMER_MODINIT.irq_n, (uint32_t) TIMER_MODINIT.var);
|
||||
|
||||
NVIC_EnableIRQ(timer2_modinit.irq_n);
|
||||
NVIC_EnableIRQ(timer3_modinit.irq_n);
|
||||
NVIC_EnableIRQ(TIMER_MODINIT.irq_n);
|
||||
|
||||
TIMER_EnableInt((TIMER_T *) NU_MODBASE(timer2_modinit.modname));
|
||||
TIMER_EnableWakeup((TIMER_T *) NU_MODBASE(timer2_modinit.modname));
|
||||
TIMER_EnableInt((TIMER_T *) NU_MODBASE(TIMER_MODINIT.modname));
|
||||
TIMER_EnableWakeup((TIMER_T *) NU_MODBASE(TIMER_MODINIT.modname));
|
||||
/* NOTE: When engine is clocked by low power clock source (LXT/LIRC), we need to wait for 3 engine clocks. */
|
||||
wait_us((NU_US_PER_SEC / NU_TMRCLK_PER_SEC) * 3);
|
||||
TIMER_Start((TIMER_T *) NU_MODBASE(timer2_modinit.modname));
|
||||
TIMER_Start((TIMER_T *) NU_MODBASE(TIMER_MODINIT.modname));
|
||||
}
|
||||
|
||||
timestamp_t lp_ticker_read()
|
||||
|
@ -103,145 +93,49 @@ timestamp_t lp_ticker_read()
|
|||
lp_ticker_init();
|
||||
}
|
||||
|
||||
TIMER_T * timer2_base = (TIMER_T *) NU_MODBASE(timer2_modinit.modname);
|
||||
TIMER_T * timer_base = (TIMER_T *) NU_MODBASE(TIMER_MODINIT.modname);
|
||||
|
||||
ticker_last_read_clk = TIMER_GetCounter(timer2_base);
|
||||
return (ticker_last_read_clk / NU_TMRCLK_PER_TICK);
|
||||
return (TIMER_GetCounter(timer_base) / NU_TMRCLK_PER_TICK);
|
||||
}
|
||||
|
||||
void lp_ticker_set_interrupt(timestamp_t timestamp)
|
||||
{
|
||||
TIMER_Stop((TIMER_T *) NU_MODBASE(timer3_modinit.modname));
|
||||
/* In continuous mode, counter will be reset to zero with the following sequence:
|
||||
* 1. Stop counting
|
||||
* 2. Configure new CMP value
|
||||
* 3. Restart counting
|
||||
*
|
||||
* This behavior is not what we want. To fix it, we could configure new CMP value
|
||||
* without stopping counting first.
|
||||
*/
|
||||
TIMER_T * timer_base = (TIMER_T *) NU_MODBASE(TIMER_MODINIT.modname);
|
||||
|
||||
/* We need to get alarm interval from alarm timestamp `timestamp` to configure H/W timer.
|
||||
*
|
||||
* Because both `timestamp` and xx_ticker_read() would wrap around, we have difficulties in distinguishing
|
||||
* long future event and past event. To distinguish them, we need `tick_last_read` against which
|
||||
* `timestamp` is calculated out. In timeline, we would always have below after fixing wrap-around:
|
||||
* (1) tick_last_read <= present_clk
|
||||
* (2) tick_last_read <= alarm_ts_clk
|
||||
*
|
||||
*
|
||||
* 1. Future event case:
|
||||
*
|
||||
* tick_last_read present_clk alarm_ts_clk
|
||||
* | | |
|
||||
* --------------------------------------------------------
|
||||
* |-alarm_intvl1_clk-|
|
||||
* |-------------------alarm_intvl2_clk-------------------|
|
||||
*
|
||||
* 2. Past event case:
|
||||
*
|
||||
* tick_last_read alarm_ts_clk present_clk
|
||||
* | | |
|
||||
* --------------------------------------------------------
|
||||
* |-------------------alarm_intvl1_clk-------------------|
|
||||
* |-alarm_intvl2_clk-|
|
||||
*
|
||||
* Unfortunately, `tick_last_read` is not passed along the xx_ticker_set_interrupt() call. To solve it, we
|
||||
* assume that `tick_last_read` tick is exactly the one returned by the last xx_ticker_read() call before
|
||||
* xx_ticker_set_interrupt() is invoked. With this assumption, we can hold it via `xx_ticker_last_read_clk`
|
||||
* in xx_ticker_read().
|
||||
*/
|
||||
|
||||
/* ticker_last_read_clk will update in lp_ticker_read(). Keep it beforehand. */
|
||||
uint32_t last_read_clk = ticker_last_read_clk;
|
||||
uint32_t present_clk = lp_ticker_read() * NU_TMRCLK_PER_TICK;
|
||||
uint32_t alarm_ts_clk = timestamp * NU_TMRCLK_PER_TICK;
|
||||
uint32_t alarm_intvl1_clk, alarm_intvl2_clk;
|
||||
|
||||
/* alarm_intvl1_clk = present_clk - last_read_clk
|
||||
*
|
||||
* NOTE: Don't miss the `=` sign here. Otherwise, we would get the wrong result.
|
||||
*/
|
||||
if (present_clk >= last_read_clk) {
|
||||
alarm_intvl1_clk = present_clk - last_read_clk;
|
||||
} else {
|
||||
alarm_intvl1_clk = (uint32_t) (((uint64_t) NU_TMR_MAXCNT) + 1 + present_clk - last_read_clk);
|
||||
}
|
||||
/* NOTE: Because H/W timer requests min compare value, our implementation would have alarm delay of
|
||||
* (TMR_CMP_MIN - interval_clk) clocks when interval_clk is between [1, TMR_CMP_MIN). */
|
||||
uint32_t cmp_timer = timestamp * NU_TMRCLK_PER_TICK;
|
||||
cmp_timer = NU_CLAMP(cmp_timer, TMR_CMP_MIN, TMR_CMP_MAX);
|
||||
timer_base->CMP = cmp_timer;
|
||||
|
||||
/* alarm_intvl2_clk = alarm_ts_clk - last_read_clk
|
||||
*
|
||||
* NOTE: Don't miss the `=` sign here. Otherwise, we would get the wrong result.
|
||||
*/
|
||||
if (alarm_ts_clk >= last_read_clk) {
|
||||
alarm_intvl2_clk = alarm_ts_clk - last_read_clk;
|
||||
} else {
|
||||
alarm_intvl2_clk = (uint32_t) (((uint64_t) NU_TMR_MAXCNT) + 1 + alarm_ts_clk - last_read_clk);
|
||||
}
|
||||
|
||||
/* Distinguish (long) future event and past event
|
||||
*
|
||||
* NOTE: No '=' sign here. Alarm should go off immediately in equal case.
|
||||
*/
|
||||
if (alarm_intvl2_clk > alarm_intvl1_clk) {
|
||||
/* Schedule for future event */
|
||||
arm_alarm(alarm_intvl2_clk - alarm_intvl1_clk);
|
||||
} else {
|
||||
/* Go off immediately for past event, including equal case */
|
||||
lp_ticker_fire_interrupt();
|
||||
}
|
||||
/* NOTE: When engine is clocked by low power clock source (LXT/LIRC), we need to wait for 3 engine clocks. */
|
||||
wait_us((NU_US_PER_SEC / NU_TMRCLK_PER_SEC) * 3);
|
||||
TIMER_Start(timer_base);
|
||||
}
|
||||
|
||||
void lp_ticker_disable_interrupt(void)
|
||||
{
|
||||
TIMER_DisableInt((TIMER_T *) NU_MODBASE(timer3_modinit.modname));
|
||||
TIMER_DisableInt((TIMER_T *) NU_MODBASE(TIMER_MODINIT.modname));
|
||||
}
|
||||
|
||||
void lp_ticker_clear_interrupt(void)
|
||||
{
|
||||
TIMER_ClearIntFlag((TIMER_T *) NU_MODBASE(timer3_modinit.modname));
|
||||
TIMER_ClearIntFlag((TIMER_T *) NU_MODBASE(TIMER_MODINIT.modname));
|
||||
}
|
||||
|
||||
void lp_ticker_fire_interrupt(void)
|
||||
{
|
||||
// NOTE: This event was in the past. Set the interrupt as pending, but don't process it here.
|
||||
// This prevents a recursive loop under heavy load which can lead to a stack overflow.
|
||||
NVIC_SetPendingIRQ(timer3_modinit.irq_n);
|
||||
}
|
||||
|
||||
static void tmr2_vec(void)
|
||||
{
|
||||
TIMER_ClearIntFlag((TIMER_T *) NU_MODBASE(timer2_modinit.modname));
|
||||
TIMER_ClearWakeupFlag((TIMER_T *) NU_MODBASE(timer2_modinit.modname));
|
||||
}
|
||||
|
||||
static void tmr3_vec(void)
|
||||
{
|
||||
TIMER_ClearIntFlag((TIMER_T *) NU_MODBASE(timer3_modinit.modname));
|
||||
TIMER_ClearWakeupFlag((TIMER_T *) NU_MODBASE(timer3_modinit.modname));
|
||||
|
||||
// NOTE: lp_ticker_set_interrupt() may get called in lp_ticker_irq_handler();
|
||||
lp_ticker_irq_handler();
|
||||
|
||||
}
|
||||
|
||||
static void arm_alarm(uint32_t cd_clk)
|
||||
{
|
||||
TIMER_T * timer3_base = (TIMER_T *) NU_MODBASE(timer3_modinit.modname);
|
||||
|
||||
// Reset 8-bit PSC counter, 24-bit up counter value and CNTEN bit
|
||||
timer3_base->CTL |= TIMER_CTL_RSTCNT_Msk;
|
||||
// One-shot mode, Clock = 1 KHz
|
||||
uint32_t clk_timer3 = TIMER_GetModuleClock((TIMER_T *) NU_MODBASE(timer3_modinit.modname));
|
||||
uint32_t prescale_timer3 = clk_timer3 / NU_TMRCLK_PER_SEC - 1;
|
||||
MBED_ASSERT((prescale_timer3 != (uint32_t) -1) && prescale_timer3 <= 127);
|
||||
MBED_ASSERT((clk_timer3 % NU_TMRCLK_PER_SEC) == 0);
|
||||
// NOTE: TIMER_CTL_CNTDATEN_Msk exists in NUC472, but not in M451. In M451, TIMER_CNT is updated continuously by default.
|
||||
timer3_base->CTL &= ~(TIMER_CTL_OPMODE_Msk | TIMER_CTL_PSC_Msk/* | TIMER_CTL_CNTDATEN_Msk*/);
|
||||
timer3_base->CTL |= TIMER_ONESHOT_MODE | prescale_timer3/* | TIMER_CTL_CNTDATEN_Msk*/;
|
||||
|
||||
/* NOTE: Because H/W timer requests min compare value, our implementation would have alarm delay of
|
||||
* (TMR_CMP_MIN - interval_clk) clocks when interval_clk is between [1, TMR_CMP_MIN). */
|
||||
uint32_t cmp_timer3 = cd_clk;
|
||||
cmp_timer3 = NU_CLAMP(cmp_timer3, TMR_CMP_MIN, TMR_CMP_MAX);
|
||||
timer3_base->CMP = cmp_timer3;
|
||||
|
||||
TIMER_EnableInt(timer3_base);
|
||||
TIMER_EnableWakeup((TIMER_T *) NU_MODBASE(timer3_modinit.modname));
|
||||
/* NOTE: When engine is clocked by low power clock source (LXT/LIRC), we need to wait for 3 engine clocks. */
|
||||
wait_us((NU_US_PER_SEC / NU_TMRCLK_PER_SEC) * 3);
|
||||
TIMER_Start(timer3_base);
|
||||
NVIC_SetPendingIRQ(TIMER_MODINIT.irq_n);
|
||||
}
|
||||
|
||||
const ticker_info_t* lp_ticker_get_info()
|
||||
|
@ -253,4 +147,13 @@ const ticker_info_t* lp_ticker_get_info()
|
|||
return &info;
|
||||
}
|
||||
|
||||
static void tmr1_vec(void)
|
||||
{
|
||||
TIMER_ClearIntFlag((TIMER_T *) NU_MODBASE(TIMER_MODINIT.modname));
|
||||
TIMER_ClearWakeupFlag((TIMER_T *) NU_MODBASE(TIMER_MODINIT.modname));
|
||||
|
||||
// NOTE: lp_ticker_set_interrupt() may get called in lp_ticker_irq_handler();
|
||||
lp_ticker_irq_handler();
|
||||
}
|
||||
|
||||
#endif
|
||||
|
|
|
@ -32,16 +32,12 @@
|
|||
#define NU_TMR_MAXCNT ((1 << NU_TMR_MAXCNT_BITSIZE) - 1)
|
||||
|
||||
static void tmr0_vec(void);
|
||||
static void tmr1_vec(void);
|
||||
/* Configure scheduled alarm */
|
||||
static void arm_alarm(uint32_t cd_clk);
|
||||
|
||||
static const struct nu_modinit_s timer0_modinit = {TIMER_0, TMR0_MODULE, CLK_CLKSEL1_TMR0SEL_PCLK0, 0, TMR0_RST, TMR0_IRQn, (void *) tmr0_vec};
|
||||
|
||||
#define TIMER_MODINIT timer0_modinit
|
||||
|
||||
static int ticker_inited = 0;
|
||||
static uint32_t ticker_last_read_clk = 0;
|
||||
|
||||
/* NOTE: TIMER_0 for normal counting and TIMER_1 for scheduled alarm. */
|
||||
static const struct nu_modinit_s timer0hires_modinit = {TIMER_0, TMR0_MODULE, CLK_CLKSEL1_TMR0SEL_PCLK0, 0, TMR0_RST, TMR0_IRQn, (void *) tmr0_vec};
|
||||
static const struct nu_modinit_s timer1hires_modinit = {TIMER_1, TMR1_MODULE, CLK_CLKSEL1_TMR1SEL_PCLK0, 0, TMR1_RST, TMR1_IRQn, (void *) tmr1_vec};
|
||||
|
||||
#define TMR_CMP_MIN 2
|
||||
#define TMR_CMP_MAX 0xFFFFFFu
|
||||
|
@ -53,38 +49,32 @@ void us_ticker_init(void)
|
|||
}
|
||||
ticker_inited = 1;
|
||||
|
||||
ticker_last_read_clk = 0;
|
||||
|
||||
// Reset IP
|
||||
SYS_ResetModule(timer0hires_modinit.rsetidx);
|
||||
SYS_ResetModule(timer1hires_modinit.rsetidx);
|
||||
SYS_ResetModule(TIMER_MODINIT.rsetidx);
|
||||
|
||||
// Select IP clock source
|
||||
CLK_SetModuleClock(timer0hires_modinit.clkidx, timer0hires_modinit.clksrc, timer0hires_modinit.clkdiv);
|
||||
CLK_SetModuleClock(timer1hires_modinit.clkidx, timer1hires_modinit.clksrc, timer1hires_modinit.clkdiv);
|
||||
CLK_SetModuleClock(TIMER_MODINIT.clkidx, TIMER_MODINIT.clksrc, TIMER_MODINIT.clkdiv);
|
||||
|
||||
// Enable IP clock
|
||||
CLK_EnableModuleClock(timer0hires_modinit.clkidx);
|
||||
CLK_EnableModuleClock(timer1hires_modinit.clkidx);
|
||||
CLK_EnableModuleClock(TIMER_MODINIT.clkidx);
|
||||
|
||||
// Timer for normal counter
|
||||
uint32_t clk_timer0 = TIMER_GetModuleClock((TIMER_T *) NU_MODBASE(timer0hires_modinit.modname));
|
||||
uint32_t prescale_timer0 = clk_timer0 / NU_TMRCLK_PER_SEC - 1;
|
||||
MBED_ASSERT((prescale_timer0 != (uint32_t) -1) && prescale_timer0 <= 127);
|
||||
MBED_ASSERT((clk_timer0 % NU_TMRCLK_PER_SEC) == 0);
|
||||
uint32_t cmp_timer0 = TMR_CMP_MAX;
|
||||
MBED_ASSERT(cmp_timer0 >= TMR_CMP_MIN && cmp_timer0 <= TMR_CMP_MAX);
|
||||
uint32_t clk_timer = TIMER_GetModuleClock((TIMER_T *) NU_MODBASE(TIMER_MODINIT.modname));
|
||||
uint32_t prescale_timer = clk_timer / NU_TMRCLK_PER_SEC - 1;
|
||||
MBED_ASSERT((prescale_timer != (uint32_t) -1) && prescale_timer <= 127);
|
||||
MBED_ASSERT((clk_timer % NU_TMRCLK_PER_SEC) == 0);
|
||||
uint32_t cmp_timer = TMR_CMP_MAX;
|
||||
MBED_ASSERT(cmp_timer >= TMR_CMP_MIN && cmp_timer <= TMR_CMP_MAX);
|
||||
// NOTE: TIMER_CTL_CNTDATEN_Msk exists in NUC472, but not in M451. In M451, TIMER_CNT is updated continuously by default.
|
||||
((TIMER_T *) NU_MODBASE(timer0hires_modinit.modname))->CTL = TIMER_PERIODIC_MODE | prescale_timer0/* | TIMER_CTL_CNTDATEN_Msk*/;
|
||||
((TIMER_T *) NU_MODBASE(timer0hires_modinit.modname))->CMP = cmp_timer0;
|
||||
((TIMER_T *) NU_MODBASE(TIMER_MODINIT.modname))->CTL = TIMER_CONTINUOUS_MODE | prescale_timer/* | TIMER_CTL_CNTDATEN_Msk*/;
|
||||
((TIMER_T *) NU_MODBASE(TIMER_MODINIT.modname))->CMP = cmp_timer;
|
||||
|
||||
NVIC_SetVector(timer0hires_modinit.irq_n, (uint32_t) timer0hires_modinit.var);
|
||||
NVIC_SetVector(timer1hires_modinit.irq_n, (uint32_t) timer1hires_modinit.var);
|
||||
NVIC_SetVector(TIMER_MODINIT.irq_n, (uint32_t) TIMER_MODINIT.var);
|
||||
|
||||
NVIC_EnableIRQ(timer0hires_modinit.irq_n);
|
||||
NVIC_EnableIRQ(timer1hires_modinit.irq_n);
|
||||
NVIC_EnableIRQ(TIMER_MODINIT.irq_n);
|
||||
|
||||
TIMER_EnableInt((TIMER_T *) NU_MODBASE(timer0hires_modinit.modname));
|
||||
TIMER_Start((TIMER_T *) NU_MODBASE(timer0hires_modinit.modname));
|
||||
TIMER_EnableInt((TIMER_T *) NU_MODBASE(TIMER_MODINIT.modname));
|
||||
TIMER_Start((TIMER_T *) NU_MODBASE(TIMER_MODINIT.modname));
|
||||
}
|
||||
|
||||
uint32_t us_ticker_read()
|
||||
|
@ -93,139 +83,45 @@ uint32_t us_ticker_read()
|
|||
us_ticker_init();
|
||||
}
|
||||
|
||||
TIMER_T * timer0_base = (TIMER_T *) NU_MODBASE(timer0hires_modinit.modname);
|
||||
TIMER_T * timer_base = (TIMER_T *) NU_MODBASE(TIMER_MODINIT.modname);
|
||||
|
||||
ticker_last_read_clk = TIMER_GetCounter(timer0_base);
|
||||
return (ticker_last_read_clk / NU_TMRCLK_PER_TICK);
|
||||
return (TIMER_GetCounter(timer_base) / NU_TMRCLK_PER_TICK);
|
||||
}
|
||||
|
||||
void us_ticker_set_interrupt(timestamp_t timestamp)
|
||||
{
|
||||
TIMER_Stop((TIMER_T *) NU_MODBASE(timer1hires_modinit.modname));
|
||||
/* In continuous mode, counter will be reset to zero with the following sequence:
|
||||
* 1. Stop counting
|
||||
* 2. Configure new CMP value
|
||||
* 3. Restart counting
|
||||
*
|
||||
* This behavior is not what we want. To fix it, we could configure new CMP value
|
||||
* without stopping counting first.
|
||||
*/
|
||||
TIMER_T * timer_base = (TIMER_T *) NU_MODBASE(TIMER_MODINIT.modname);
|
||||
|
||||
/* We need to get alarm interval from alarm timestamp `timestamp` to configure H/W timer.
|
||||
*
|
||||
* Because both `timestamp` and xx_ticker_read() would wrap around, we have difficulties in distinguishing
|
||||
* long future event and past event. To distinguish them, we need `tick_last_read` against which
|
||||
* `timestamp` is calculated out. In timeline, we would always have below after fixing wrap-around:
|
||||
* (1) tick_last_read <= present_clk
|
||||
* (2) tick_last_read <= alarm_ts_clk
|
||||
*
|
||||
*
|
||||
* 1. Future event case:
|
||||
*
|
||||
* tick_last_read present_clk alarm_ts_clk
|
||||
* | | |
|
||||
* --------------------------------------------------------
|
||||
* |-alarm_intvl1_clk-|
|
||||
* |-------------------alarm_intvl2_clk-------------------|
|
||||
*
|
||||
* 2. Past event case:
|
||||
*
|
||||
* tick_last_read alarm_ts_clk present_clk
|
||||
* | | |
|
||||
* --------------------------------------------------------
|
||||
* |-------------------alarm_intvl1_clk-------------------|
|
||||
* |-alarm_intvl2_clk-|
|
||||
*
|
||||
* Unfortunately, `tick_last_read` is not passed along the xx_ticker_set_interrupt() call. To solve it, we
|
||||
* assume that `tick_last_read` tick is exactly the one returned by the last xx_ticker_read() call before
|
||||
* xx_ticker_set_interrupt() is invoked. With this assumption, we can hold it via `xx_ticker_last_read_clk`
|
||||
* in xx_ticker_read().
|
||||
*/
|
||||
|
||||
/* ticker_last_read_clk will update in us_ticker_read(). Keep it beforehand. */
|
||||
uint32_t last_read_clk = ticker_last_read_clk;
|
||||
uint32_t present_clk = us_ticker_read() * NU_TMRCLK_PER_TICK;
|
||||
uint32_t alarm_ts_clk = timestamp * NU_TMRCLK_PER_TICK;
|
||||
uint32_t alarm_intvl1_clk, alarm_intvl2_clk;
|
||||
|
||||
/* alarm_intvl1_clk = present_clk - last_read_clk
|
||||
*
|
||||
* NOTE: Don't miss the `=` sign here. Otherwise, we would get the wrong result.
|
||||
*/
|
||||
if (present_clk >= last_read_clk) {
|
||||
alarm_intvl1_clk = present_clk - last_read_clk;
|
||||
} else {
|
||||
alarm_intvl1_clk = (uint32_t) (((uint64_t) NU_TMR_MAXCNT) + 1 + present_clk - last_read_clk);
|
||||
}
|
||||
|
||||
/* alarm_intvl2_clk = alarm_ts_clk - last_read_clk
|
||||
*
|
||||
* NOTE: Don't miss the `=` sign here. Otherwise, we would get the wrong result.
|
||||
*/
|
||||
if (alarm_ts_clk >= last_read_clk) {
|
||||
alarm_intvl2_clk = alarm_ts_clk - last_read_clk;
|
||||
} else {
|
||||
alarm_intvl2_clk = (uint32_t) (((uint64_t) NU_TMR_MAXCNT) + 1 + alarm_ts_clk - last_read_clk);
|
||||
}
|
||||
|
||||
/* Distinguish (long) future event and past event
|
||||
*
|
||||
* NOTE: No '=' sign here. Alarm should go off immediately in equal case.
|
||||
*/
|
||||
if (alarm_intvl2_clk > alarm_intvl1_clk) {
|
||||
/* Schedule for future event */
|
||||
arm_alarm(alarm_intvl2_clk - alarm_intvl1_clk);
|
||||
} else {
|
||||
/* Go off immediately for past event, including equal case */
|
||||
us_ticker_fire_interrupt();
|
||||
}
|
||||
/* NOTE: Because H/W timer requests min compare value, our implementation would have alarm delay of
|
||||
* (TMR_CMP_MIN - interval_clk) clocks when interval_clk is between [1, TMR_CMP_MIN). */
|
||||
uint32_t cmp_timer = timestamp * NU_TMRCLK_PER_TICK;
|
||||
cmp_timer = NU_CLAMP(cmp_timer, TMR_CMP_MIN, TMR_CMP_MAX);
|
||||
timer_base->CMP = cmp_timer;
|
||||
}
|
||||
|
||||
void us_ticker_disable_interrupt(void)
|
||||
{
|
||||
TIMER_DisableInt((TIMER_T *) NU_MODBASE(timer1hires_modinit.modname));
|
||||
TIMER_DisableInt((TIMER_T *) NU_MODBASE(TIMER_MODINIT.modname));
|
||||
}
|
||||
|
||||
void us_ticker_clear_interrupt(void)
|
||||
{
|
||||
TIMER_ClearIntFlag((TIMER_T *) NU_MODBASE(timer1hires_modinit.modname));
|
||||
TIMER_ClearIntFlag((TIMER_T *) NU_MODBASE(TIMER_MODINIT.modname));
|
||||
}
|
||||
|
||||
void us_ticker_fire_interrupt(void)
|
||||
{
|
||||
// NOTE: This event was in the past. Set the interrupt as pending, but don't process it here.
|
||||
// This prevents a recursive loop under heavy load which can lead to a stack overflow.
|
||||
NVIC_SetPendingIRQ(timer1hires_modinit.irq_n);
|
||||
}
|
||||
|
||||
static void tmr0_vec(void)
|
||||
{
|
||||
TIMER_ClearIntFlag((TIMER_T *) NU_MODBASE(timer0hires_modinit.modname));
|
||||
}
|
||||
|
||||
static void tmr1_vec(void)
|
||||
{
|
||||
TIMER_ClearIntFlag((TIMER_T *) NU_MODBASE(timer1hires_modinit.modname));
|
||||
|
||||
// NOTE: us_ticker_set_interrupt() may get called in us_ticker_irq_handler();
|
||||
us_ticker_irq_handler();
|
||||
}
|
||||
|
||||
static void arm_alarm(uint32_t cd_clk)
|
||||
{
|
||||
TIMER_T * timer1_base = (TIMER_T *) NU_MODBASE(timer1hires_modinit.modname);
|
||||
|
||||
// Reset 8-bit PSC counter, 24-bit up counter value and CNTEN bit
|
||||
timer1_base->CTL |= TIMER_CTL_RSTCNT_Msk;
|
||||
// One-shot mode, Clock = 1 MHz
|
||||
uint32_t clk_timer1 = TIMER_GetModuleClock((TIMER_T *) NU_MODBASE(timer1hires_modinit.modname));
|
||||
uint32_t prescale_timer1 = clk_timer1 / NU_TMRCLK_PER_SEC - 1;
|
||||
MBED_ASSERT((prescale_timer1 != (uint32_t) -1) && prescale_timer1 <= 127);
|
||||
MBED_ASSERT((clk_timer1 % NU_TMRCLK_PER_SEC) == 0);
|
||||
// NOTE: TIMER_CTL_CNTDATEN_Msk exists in NUC472, but not in M451. In M451, TIMER_CNT is updated continuously by default.
|
||||
timer1_base->CTL &= ~(TIMER_CTL_OPMODE_Msk | TIMER_CTL_PSC_Msk/* | TIMER_CTL_CNTDATEN_Msk*/);
|
||||
timer1_base->CTL |= TIMER_ONESHOT_MODE | prescale_timer1/* | TIMER_CTL_CNTDATEN_Msk*/;
|
||||
|
||||
/* NOTE: Because H/W timer requests min compare value, our implementation would have alarm delay of
|
||||
* (TMR_CMP_MIN - interval_clk) clocks when interval_clk is between [1, TMR_CMP_MIN). */
|
||||
uint32_t cmp_timer1 = cd_clk;
|
||||
cmp_timer1 = NU_CLAMP(cmp_timer1, TMR_CMP_MIN, TMR_CMP_MAX);
|
||||
timer1_base->CMP = cmp_timer1;
|
||||
|
||||
TIMER_EnableInt(timer1_base);
|
||||
TIMER_Start(timer1_base);
|
||||
NVIC_SetPendingIRQ(TIMER_MODINIT.irq_n);
|
||||
}
|
||||
|
||||
const ticker_info_t* us_ticker_get_info()
|
||||
|
@ -236,3 +132,11 @@ const ticker_info_t* us_ticker_get_info()
|
|||
};
|
||||
return &info;
|
||||
}
|
||||
|
||||
static void tmr0_vec(void)
|
||||
{
|
||||
TIMER_ClearIntFlag((TIMER_T *) NU_MODBASE(TIMER_MODINIT.modname));
|
||||
|
||||
// NOTE: us_ticker_set_interrupt() may get called in us_ticker_irq_handler();
|
||||
us_ticker_irq_handler();
|
||||
}
|
||||
|
|
|
@ -35,18 +35,14 @@
|
|||
/* Timer max counter */
|
||||
#define NU_TMR_MAXCNT ((1 << NU_TMR_MAXCNT_BITSIZE) - 1)
|
||||
|
||||
static void tmr2_vec(void);
|
||||
static void tmr3_vec(void);
|
||||
/* Configure scheduled alarm */
|
||||
static void arm_alarm(uint32_t cd_clk);
|
||||
|
||||
static int ticker_inited = 0;
|
||||
static uint32_t ticker_last_read_clk = 0;
|
||||
static void tmr1_vec(void);
|
||||
|
||||
/* NOTE: To wake the system from power down mode, timer clock source must be ether LXT or LIRC. */
|
||||
/* NOTE: TIMER_2 for normal counting and TIMER_3 for scheduled alarm */
|
||||
static const struct nu_modinit_s timer2_modinit = {TIMER_2, TMR2_MODULE, CLK_CLKSEL1_TMR2SEL_LXT, 0, TMR2_RST, TMR2_IRQn, (void *) tmr2_vec};
|
||||
static const struct nu_modinit_s timer3_modinit = {TIMER_3, TMR3_MODULE, CLK_CLKSEL1_TMR3SEL_LXT, 0, TMR3_RST, TMR3_IRQn, (void *) tmr3_vec};
|
||||
static const struct nu_modinit_s timer1_modinit = {TIMER_1, TMR1_MODULE, CLK_CLKSEL1_TMR1SEL_LXT, 0, TMR1_RST, TMR1_IRQn, (void *) tmr1_vec};
|
||||
|
||||
#define TIMER_MODINIT timer1_modinit
|
||||
|
||||
static int ticker_inited = 0;
|
||||
|
||||
#define TMR_CMP_MIN 2
|
||||
#define TMR_CMP_MAX 0xFFFFFFu
|
||||
|
@ -58,43 +54,37 @@ void lp_ticker_init(void)
|
|||
}
|
||||
ticker_inited = 1;
|
||||
|
||||
ticker_last_read_clk = 0;
|
||||
|
||||
// Reset module
|
||||
SYS_ResetModule(timer2_modinit.rsetidx);
|
||||
SYS_ResetModule(timer3_modinit.rsetidx);
|
||||
SYS_ResetModule(TIMER_MODINIT.rsetidx);
|
||||
|
||||
// Select IP clock source
|
||||
CLK_SetModuleClock(timer2_modinit.clkidx, timer2_modinit.clksrc, timer2_modinit.clkdiv);
|
||||
CLK_SetModuleClock(timer3_modinit.clkidx, timer3_modinit.clksrc, timer3_modinit.clkdiv);
|
||||
CLK_SetModuleClock(TIMER_MODINIT.clkidx, TIMER_MODINIT.clksrc, TIMER_MODINIT.clkdiv);
|
||||
|
||||
// Enable IP clock
|
||||
CLK_EnableModuleClock(timer2_modinit.clkidx);
|
||||
CLK_EnableModuleClock(timer3_modinit.clkidx);
|
||||
CLK_EnableModuleClock(TIMER_MODINIT.clkidx);
|
||||
|
||||
// Configure clock
|
||||
uint32_t clk_timer2 = TIMER_GetModuleClock((TIMER_T *) NU_MODBASE(timer2_modinit.modname));
|
||||
uint32_t prescale_timer2 = clk_timer2 / NU_TMRCLK_PER_SEC - 1;
|
||||
MBED_ASSERT((prescale_timer2 != (uint32_t) -1) && prescale_timer2 <= 127);
|
||||
MBED_ASSERT((clk_timer2 % NU_TMRCLK_PER_SEC) == 0);
|
||||
uint32_t cmp_timer2 = TMR_CMP_MAX;
|
||||
MBED_ASSERT(cmp_timer2 >= TMR_CMP_MIN && cmp_timer2 <= TMR_CMP_MAX);
|
||||
uint32_t clk_timer = TIMER_GetModuleClock((TIMER_T *) NU_MODBASE(TIMER_MODINIT.modname));
|
||||
uint32_t prescale_timer = clk_timer / NU_TMRCLK_PER_SEC - 1;
|
||||
MBED_ASSERT((prescale_timer != (uint32_t) -1) && prescale_timer <= 127);
|
||||
MBED_ASSERT((clk_timer % NU_TMRCLK_PER_SEC) == 0);
|
||||
uint32_t cmp_timer = TMR_CMP_MAX;
|
||||
MBED_ASSERT(cmp_timer >= TMR_CMP_MIN && cmp_timer <= TMR_CMP_MAX);
|
||||
// Continuous mode
|
||||
// NOTE: TIMER_CTL_CNTDATEN_Msk exists in NUC472, but not in M451/M480. In M451/M480, TIMER_CNT is updated continuously by default.
|
||||
((TIMER_T *) NU_MODBASE(timer2_modinit.modname))->CTL = TIMER_PERIODIC_MODE | prescale_timer2/* | TIMER_CTL_CNTDATEN_Msk*/;
|
||||
((TIMER_T *) NU_MODBASE(timer2_modinit.modname))->CMP = cmp_timer2;
|
||||
((TIMER_T *) NU_MODBASE(TIMER_MODINIT.modname))->CTL = TIMER_CONTINUOUS_MODE | prescale_timer/* | TIMER_CTL_CNTDATEN_Msk*/;
|
||||
((TIMER_T *) NU_MODBASE(TIMER_MODINIT.modname))->CMP = cmp_timer;
|
||||
|
||||
// Set vector
|
||||
NVIC_SetVector(timer2_modinit.irq_n, (uint32_t) timer2_modinit.var);
|
||||
NVIC_SetVector(timer3_modinit.irq_n, (uint32_t) timer3_modinit.var);
|
||||
NVIC_SetVector(TIMER_MODINIT.irq_n, (uint32_t) TIMER_MODINIT.var);
|
||||
|
||||
NVIC_EnableIRQ(timer2_modinit.irq_n);
|
||||
NVIC_EnableIRQ(timer3_modinit.irq_n);
|
||||
NVIC_EnableIRQ(TIMER_MODINIT.irq_n);
|
||||
|
||||
TIMER_EnableInt((TIMER_T *) NU_MODBASE(timer2_modinit.modname));
|
||||
TIMER_EnableWakeup((TIMER_T *) NU_MODBASE(timer2_modinit.modname));
|
||||
TIMER_EnableInt((TIMER_T *) NU_MODBASE(TIMER_MODINIT.modname));
|
||||
TIMER_EnableWakeup((TIMER_T *) NU_MODBASE(TIMER_MODINIT.modname));
|
||||
/* NOTE: When engine is clocked by low power clock source (LXT/LIRC), we need to wait for 3 engine clocks. */
|
||||
wait_us((NU_US_PER_SEC / NU_TMRCLK_PER_SEC) * 3);
|
||||
TIMER_Start((TIMER_T *) NU_MODBASE(timer2_modinit.modname));
|
||||
TIMER_Start((TIMER_T *) NU_MODBASE(TIMER_MODINIT.modname));
|
||||
}
|
||||
|
||||
timestamp_t lp_ticker_read()
|
||||
|
@ -103,148 +93,49 @@ timestamp_t lp_ticker_read()
|
|||
lp_ticker_init();
|
||||
}
|
||||
|
||||
TIMER_T * timer2_base = (TIMER_T *) NU_MODBASE(timer2_modinit.modname);
|
||||
TIMER_T * timer_base = (TIMER_T *) NU_MODBASE(TIMER_MODINIT.modname);
|
||||
|
||||
ticker_last_read_clk = TIMER_GetCounter(timer2_base);
|
||||
return (ticker_last_read_clk / NU_TMRCLK_PER_TICK);
|
||||
return (TIMER_GetCounter(timer_base) / NU_TMRCLK_PER_TICK);
|
||||
}
|
||||
|
||||
void lp_ticker_set_interrupt(timestamp_t timestamp)
|
||||
{
|
||||
TIMER_Stop((TIMER_T *) NU_MODBASE(timer3_modinit.modname));
|
||||
/* In continuous mode, counter will be reset to zero with the following sequence:
|
||||
* 1. Stop counting
|
||||
* 2. Configure new CMP value
|
||||
* 3. Restart counting
|
||||
*
|
||||
* This behavior is not what we want. To fix it, we could configure new CMP value
|
||||
* without stopping counting first.
|
||||
*/
|
||||
TIMER_T * timer_base = (TIMER_T *) NU_MODBASE(TIMER_MODINIT.modname);
|
||||
|
||||
/* We need to get alarm interval from alarm timestamp `timestamp` to configure H/W timer.
|
||||
*
|
||||
* Because both `timestamp` and xx_ticker_read() would wrap around, we have difficulties in distinguishing
|
||||
* long future event and past event. To distinguish them, we need `tick_last_read` against which
|
||||
* `timestamp` is calculated out. In timeline, we would always have below after fixing wrap-around:
|
||||
* (1) tick_last_read <= present_clk
|
||||
* (2) tick_last_read <= alarm_ts_clk
|
||||
*
|
||||
*
|
||||
* 1. Future event case:
|
||||
*
|
||||
* tick_last_read present_clk alarm_ts_clk
|
||||
* | | |
|
||||
* --------------------------------------------------------
|
||||
* |-alarm_intvl1_clk-|
|
||||
* |-------------------alarm_intvl2_clk-------------------|
|
||||
*
|
||||
* 2. Past event case:
|
||||
*
|
||||
* tick_last_read alarm_ts_clk present_clk
|
||||
* | | |
|
||||
* --------------------------------------------------------
|
||||
* |-------------------alarm_intvl1_clk-------------------|
|
||||
* |-alarm_intvl2_clk-|
|
||||
*
|
||||
* Unfortunately, `tick_last_read` is not passed along the xx_ticker_set_interrupt() call. To solve it, we
|
||||
* assume that `tick_last_read` tick is exactly the one returned by the last xx_ticker_read() call before
|
||||
* xx_ticker_set_interrupt() is invoked. With this assumption, we can hold it via `xx_ticker_last_read_clk`
|
||||
* in xx_ticker_read().
|
||||
*/
|
||||
|
||||
/* ticker_last_read_clk will update in lp_ticker_read(). Keep it beforehand. */
|
||||
uint32_t last_read_clk = ticker_last_read_clk;
|
||||
uint32_t present_clk = lp_ticker_read() * NU_TMRCLK_PER_TICK;
|
||||
uint32_t alarm_ts_clk = timestamp * NU_TMRCLK_PER_TICK;
|
||||
uint32_t alarm_intvl1_clk, alarm_intvl2_clk;
|
||||
|
||||
/* alarm_intvl1_clk = present_clk - last_read_clk
|
||||
*
|
||||
* NOTE: Don't miss the `=` sign here. Otherwise, we would get the wrong result.
|
||||
*/
|
||||
if (present_clk >= last_read_clk) {
|
||||
alarm_intvl1_clk = present_clk - last_read_clk;
|
||||
} else {
|
||||
alarm_intvl1_clk = (uint32_t) (((uint64_t) NU_TMR_MAXCNT) + 1 + present_clk - last_read_clk);
|
||||
}
|
||||
/* NOTE: Because H/W timer requests min compare value, our implementation would have alarm delay of
|
||||
* (TMR_CMP_MIN - interval_clk) clocks when interval_clk is between [1, TMR_CMP_MIN). */
|
||||
uint32_t cmp_timer = timestamp * NU_TMRCLK_PER_TICK;
|
||||
cmp_timer = NU_CLAMP(cmp_timer, TMR_CMP_MIN, TMR_CMP_MAX);
|
||||
timer_base->CMP = cmp_timer;
|
||||
|
||||
/* alarm_intvl2_clk = alarm_ts_clk - last_read_clk
|
||||
*
|
||||
* NOTE: Don't miss the `=` sign here. Otherwise, we would get the wrong result.
|
||||
*/
|
||||
if (alarm_ts_clk >= last_read_clk) {
|
||||
alarm_intvl2_clk = alarm_ts_clk - last_read_clk;
|
||||
} else {
|
||||
alarm_intvl2_clk = (uint32_t) (((uint64_t) NU_TMR_MAXCNT) + 1 + alarm_ts_clk - last_read_clk);
|
||||
}
|
||||
|
||||
/* Distinguish (long) future event and past event
|
||||
*
|
||||
* NOTE: No '=' sign here. Alarm should go off immediately in equal case.
|
||||
*/
|
||||
if (alarm_intvl2_clk > alarm_intvl1_clk) {
|
||||
/* Schedule for future event */
|
||||
arm_alarm(alarm_intvl2_clk - alarm_intvl1_clk);
|
||||
} else {
|
||||
/* Go off immediately for past event, including equal case */
|
||||
lp_ticker_fire_interrupt();
|
||||
}
|
||||
/* NOTE: When engine is clocked by low power clock source (LXT/LIRC), we need to wait for 3 engine clocks. */
|
||||
wait_us((NU_US_PER_SEC / NU_TMRCLK_PER_SEC) * 3);
|
||||
TIMER_Start(timer_base);
|
||||
}
|
||||
|
||||
void lp_ticker_disable_interrupt(void)
|
||||
{
|
||||
TIMER_DisableInt((TIMER_T *) NU_MODBASE(timer3_modinit.modname));
|
||||
TIMER_DisableInt((TIMER_T *) NU_MODBASE(TIMER_MODINIT.modname));
|
||||
}
|
||||
|
||||
void lp_ticker_clear_interrupt(void)
|
||||
{
|
||||
TIMER_ClearIntFlag((TIMER_T *) NU_MODBASE(timer3_modinit.modname));
|
||||
TIMER_ClearIntFlag((TIMER_T *) NU_MODBASE(TIMER_MODINIT.modname));
|
||||
}
|
||||
|
||||
void lp_ticker_fire_interrupt(void)
|
||||
{
|
||||
// NOTE: This event was in the past. Set the interrupt as pending, but don't process it here.
|
||||
// This prevents a recursive loop under heavy load which can lead to a stack overflow.
|
||||
NVIC_SetPendingIRQ(timer3_modinit.irq_n);
|
||||
}
|
||||
|
||||
static void tmr2_vec(void)
|
||||
{
|
||||
TIMER_ClearIntFlag((TIMER_T *) NU_MODBASE(timer2_modinit.modname));
|
||||
TIMER_ClearWakeupFlag((TIMER_T *) NU_MODBASE(timer2_modinit.modname));
|
||||
}
|
||||
|
||||
static void tmr3_vec(void)
|
||||
{
|
||||
TIMER_ClearIntFlag((TIMER_T *) NU_MODBASE(timer3_modinit.modname));
|
||||
TIMER_ClearWakeupFlag((TIMER_T *) NU_MODBASE(timer3_modinit.modname));
|
||||
|
||||
// NOTE: lp_ticker_set_interrupt() may get called in lp_ticker_irq_handler();
|
||||
lp_ticker_irq_handler();
|
||||
|
||||
}
|
||||
|
||||
static void arm_alarm(uint32_t cd_clk)
|
||||
{
|
||||
TIMER_T * timer3_base = (TIMER_T *) NU_MODBASE(timer3_modinit.modname);
|
||||
|
||||
// Reset 8-bit PSC counter, 24-bit up counter value and CNTEN bit
|
||||
// NUC472/M451: See TIMER_CTL_RSTCNT_Msk
|
||||
// M480
|
||||
timer3_base->CNT = 0;
|
||||
while (timer3_base->CNT & TIMER_CNT_RSTACT_Msk);
|
||||
// One-shot mode, Clock = 1 KHz
|
||||
uint32_t clk_timer3 = TIMER_GetModuleClock((TIMER_T *) NU_MODBASE(timer3_modinit.modname));
|
||||
uint32_t prescale_timer3 = clk_timer3 / NU_TMRCLK_PER_SEC - 1;
|
||||
MBED_ASSERT((prescale_timer3 != (uint32_t) -1) && prescale_timer3 <= 127);
|
||||
MBED_ASSERT((clk_timer3 % NU_TMRCLK_PER_SEC) == 0);
|
||||
// NOTE: TIMER_CTL_CNTDATEN_Msk exists in NUC472, but not in M451/M480. In M451/M480, TIMER_CNT is updated continuously by default.
|
||||
timer3_base->CTL &= ~(TIMER_CTL_OPMODE_Msk | TIMER_CTL_PSC_Msk/* | TIMER_CTL_CNTDATEN_Msk*/);
|
||||
timer3_base->CTL |= TIMER_ONESHOT_MODE | prescale_timer3/* | TIMER_CTL_CNTDATEN_Msk*/;
|
||||
|
||||
/* NOTE: Because H/W timer requests min compare value, our implementation would have alarm delay of
|
||||
* (TMR_CMP_MIN - interval_clk) clocks when interval_clk is between [1, TMR_CMP_MIN). */
|
||||
uint32_t cmp_timer3 = cd_clk;
|
||||
cmp_timer3 = NU_CLAMP(cmp_timer3, TMR_CMP_MIN, TMR_CMP_MAX);
|
||||
timer3_base->CMP = cmp_timer3;
|
||||
|
||||
TIMER_EnableInt(timer3_base);
|
||||
TIMER_EnableWakeup((TIMER_T *) NU_MODBASE(timer3_modinit.modname));
|
||||
/* NOTE: When engine is clocked by low power clock source (LXT/LIRC), we need to wait for 3 engine clocks. */
|
||||
wait_us((NU_US_PER_SEC / NU_TMRCLK_PER_SEC) * 3);
|
||||
TIMER_Start(timer3_base);
|
||||
NVIC_SetPendingIRQ(TIMER_MODINIT.irq_n);
|
||||
}
|
||||
|
||||
const ticker_info_t* lp_ticker_get_info()
|
||||
|
@ -256,4 +147,13 @@ const ticker_info_t* lp_ticker_get_info()
|
|||
return &info;
|
||||
}
|
||||
|
||||
static void tmr1_vec(void)
|
||||
{
|
||||
TIMER_ClearIntFlag((TIMER_T *) NU_MODBASE(TIMER_MODINIT.modname));
|
||||
TIMER_ClearWakeupFlag((TIMER_T *) NU_MODBASE(TIMER_MODINIT.modname));
|
||||
|
||||
// NOTE: lp_ticker_set_interrupt() may get called in lp_ticker_irq_handler();
|
||||
lp_ticker_irq_handler();
|
||||
}
|
||||
|
||||
#endif
|
||||
|
|
|
@ -32,16 +32,12 @@
|
|||
#define NU_TMR_MAXCNT ((1 << NU_TMR_MAXCNT_BITSIZE) - 1)
|
||||
|
||||
static void tmr0_vec(void);
|
||||
static void tmr1_vec(void);
|
||||
/* Configure scheduled alarm */
|
||||
static void arm_alarm(uint32_t cd_clk);
|
||||
|
||||
static const struct nu_modinit_s timer0_modinit = {TIMER_0, TMR0_MODULE, CLK_CLKSEL1_TMR0SEL_PCLK0, 0, TMR0_RST, TMR0_IRQn, (void *) tmr0_vec};
|
||||
|
||||
#define TIMER_MODINIT timer0_modinit
|
||||
|
||||
static int ticker_inited = 0;
|
||||
static uint32_t ticker_last_read_clk = 0;
|
||||
|
||||
/* NOTE: TIMER_0 for normal counting and TIMER_1 for scheduled alarm. */
|
||||
static const struct nu_modinit_s timer0hires_modinit = {TIMER_0, TMR0_MODULE, CLK_CLKSEL1_TMR0SEL_PCLK0, 0, TMR0_RST, TMR0_IRQn, (void *) tmr0_vec};
|
||||
static const struct nu_modinit_s timer1hires_modinit = {TIMER_1, TMR1_MODULE, CLK_CLKSEL1_TMR1SEL_PCLK0, 0, TMR1_RST, TMR1_IRQn, (void *) tmr1_vec};
|
||||
|
||||
#define TMR_CMP_MIN 2
|
||||
#define TMR_CMP_MAX 0xFFFFFFu
|
||||
|
@ -53,38 +49,32 @@ void us_ticker_init(void)
|
|||
}
|
||||
ticker_inited = 1;
|
||||
|
||||
ticker_last_read_clk = 0;
|
||||
|
||||
// Reset IP
|
||||
SYS_ResetModule(timer0hires_modinit.rsetidx);
|
||||
SYS_ResetModule(timer1hires_modinit.rsetidx);
|
||||
SYS_ResetModule(TIMER_MODINIT.rsetidx);
|
||||
|
||||
// Select IP clock source
|
||||
CLK_SetModuleClock(timer0hires_modinit.clkidx, timer0hires_modinit.clksrc, timer0hires_modinit.clkdiv);
|
||||
CLK_SetModuleClock(timer1hires_modinit.clkidx, timer1hires_modinit.clksrc, timer1hires_modinit.clkdiv);
|
||||
CLK_SetModuleClock(TIMER_MODINIT.clkidx, TIMER_MODINIT.clksrc, TIMER_MODINIT.clkdiv);
|
||||
|
||||
// Enable IP clock
|
||||
CLK_EnableModuleClock(timer0hires_modinit.clkidx);
|
||||
CLK_EnableModuleClock(timer1hires_modinit.clkidx);
|
||||
CLK_EnableModuleClock(TIMER_MODINIT.clkidx);
|
||||
|
||||
// Timer for normal counter
|
||||
uint32_t clk_timer0 = TIMER_GetModuleClock((TIMER_T *) NU_MODBASE(timer0hires_modinit.modname));
|
||||
uint32_t prescale_timer0 = clk_timer0 / NU_TMRCLK_PER_SEC - 1;
|
||||
MBED_ASSERT((prescale_timer0 != (uint32_t) -1) && prescale_timer0 <= 127);
|
||||
MBED_ASSERT((clk_timer0 % NU_TMRCLK_PER_SEC) == 0);
|
||||
uint32_t cmp_timer0 = TMR_CMP_MAX;
|
||||
MBED_ASSERT(cmp_timer0 >= TMR_CMP_MIN && cmp_timer0 <= TMR_CMP_MAX);
|
||||
uint32_t clk_timer = TIMER_GetModuleClock((TIMER_T *) NU_MODBASE(TIMER_MODINIT.modname));
|
||||
uint32_t prescale_timer = clk_timer / NU_TMRCLK_PER_SEC - 1;
|
||||
MBED_ASSERT((prescale_timer != (uint32_t) -1) && prescale_timer <= 127);
|
||||
MBED_ASSERT((clk_timer % NU_TMRCLK_PER_SEC) == 0);
|
||||
uint32_t cmp_timer = TMR_CMP_MAX;
|
||||
MBED_ASSERT(cmp_timer >= TMR_CMP_MIN && cmp_timer <= TMR_CMP_MAX);
|
||||
// NOTE: TIMER_CTL_CNTDATEN_Msk exists in NUC472, but not in M451/M480. In M451/M480, TIMER_CNT is updated continuously by default.
|
||||
((TIMER_T *) NU_MODBASE(timer0hires_modinit.modname))->CTL = TIMER_PERIODIC_MODE | prescale_timer0/* | TIMER_CTL_CNTDATEN_Msk*/;
|
||||
((TIMER_T *) NU_MODBASE(timer0hires_modinit.modname))->CMP = cmp_timer0;
|
||||
((TIMER_T *) NU_MODBASE(TIMER_MODINIT.modname))->CTL = TIMER_CONTINUOUS_MODE | prescale_timer/* | TIMER_CTL_CNTDATEN_Msk*/;
|
||||
((TIMER_T *) NU_MODBASE(TIMER_MODINIT.modname))->CMP = cmp_timer;
|
||||
|
||||
NVIC_SetVector(timer0hires_modinit.irq_n, (uint32_t) timer0hires_modinit.var);
|
||||
NVIC_SetVector(timer1hires_modinit.irq_n, (uint32_t) timer1hires_modinit.var);
|
||||
NVIC_SetVector(TIMER_MODINIT.irq_n, (uint32_t) TIMER_MODINIT.var);
|
||||
|
||||
NVIC_EnableIRQ(timer0hires_modinit.irq_n);
|
||||
NVIC_EnableIRQ(timer1hires_modinit.irq_n);
|
||||
NVIC_EnableIRQ(TIMER_MODINIT.irq_n);
|
||||
|
||||
TIMER_EnableInt((TIMER_T *) NU_MODBASE(timer0hires_modinit.modname));
|
||||
TIMER_Start((TIMER_T *) NU_MODBASE(timer0hires_modinit.modname));
|
||||
TIMER_EnableInt((TIMER_T *) NU_MODBASE(TIMER_MODINIT.modname));
|
||||
TIMER_Start((TIMER_T *) NU_MODBASE(TIMER_MODINIT.modname));
|
||||
}
|
||||
|
||||
uint32_t us_ticker_read()
|
||||
|
@ -93,142 +83,45 @@ uint32_t us_ticker_read()
|
|||
us_ticker_init();
|
||||
}
|
||||
|
||||
TIMER_T * timer0_base = (TIMER_T *) NU_MODBASE(timer0hires_modinit.modname);
|
||||
TIMER_T * timer_base = (TIMER_T *) NU_MODBASE(TIMER_MODINIT.modname);
|
||||
|
||||
ticker_last_read_clk = TIMER_GetCounter(timer0_base);
|
||||
return (ticker_last_read_clk / NU_TMRCLK_PER_TICK);
|
||||
return (TIMER_GetCounter(timer_base) / NU_TMRCLK_PER_TICK);
|
||||
}
|
||||
|
||||
void us_ticker_set_interrupt(timestamp_t timestamp)
|
||||
{
|
||||
TIMER_Stop((TIMER_T *) NU_MODBASE(timer1hires_modinit.modname));
|
||||
/* In continuous mode, counter will be reset to zero with the following sequence:
|
||||
* 1. Stop counting
|
||||
* 2. Configure new CMP value
|
||||
* 3. Restart counting
|
||||
*
|
||||
* This behavior is not what we want. To fix it, we could configure new CMP value
|
||||
* without stopping counting first.
|
||||
*/
|
||||
TIMER_T * timer_base = (TIMER_T *) NU_MODBASE(TIMER_MODINIT.modname);
|
||||
|
||||
/* We need to get alarm interval from alarm timestamp `timestamp` to configure H/W timer.
|
||||
*
|
||||
* Because both `timestamp` and xx_ticker_read() would wrap around, we have difficulties in distinguishing
|
||||
* long future event and past event. To distinguish them, we need `tick_last_read` against which
|
||||
* `timestamp` is calculated out. In timeline, we would always have below after fixing wrap-around:
|
||||
* (1) tick_last_read <= present_clk
|
||||
* (2) tick_last_read <= alarm_ts_clk
|
||||
*
|
||||
*
|
||||
* 1. Future event case:
|
||||
*
|
||||
* tick_last_read present_clk alarm_ts_clk
|
||||
* | | |
|
||||
* --------------------------------------------------------
|
||||
* |-alarm_intvl1_clk-|
|
||||
* |-------------------alarm_intvl2_clk-------------------|
|
||||
*
|
||||
* 2. Past event case:
|
||||
*
|
||||
* tick_last_read alarm_ts_clk present_clk
|
||||
* | | |
|
||||
* --------------------------------------------------------
|
||||
* |-------------------alarm_intvl1_clk-------------------|
|
||||
* |-alarm_intvl2_clk-|
|
||||
*
|
||||
* Unfortunately, `tick_last_read` is not passed along the xx_ticker_set_interrupt() call. To solve it, we
|
||||
* assume that `tick_last_read` tick is exactly the one returned by the last xx_ticker_read() call before
|
||||
* xx_ticker_set_interrupt() is invoked. With this assumption, we can hold it via `xx_ticker_last_read_clk`
|
||||
* in xx_ticker_read().
|
||||
*/
|
||||
|
||||
/* ticker_last_read_clk will update in us_ticker_read(). Keep it beforehand. */
|
||||
uint32_t last_read_clk = ticker_last_read_clk;
|
||||
uint32_t present_clk = us_ticker_read() * NU_TMRCLK_PER_TICK;
|
||||
uint32_t alarm_ts_clk = timestamp * NU_TMRCLK_PER_TICK;
|
||||
uint32_t alarm_intvl1_clk, alarm_intvl2_clk;
|
||||
|
||||
/* alarm_intvl1_clk = present_clk - last_read_clk
|
||||
*
|
||||
* NOTE: Don't miss the `=` sign here. Otherwise, we would get the wrong result.
|
||||
*/
|
||||
if (present_clk >= last_read_clk) {
|
||||
alarm_intvl1_clk = present_clk - last_read_clk;
|
||||
} else {
|
||||
alarm_intvl1_clk = (uint32_t) (((uint64_t) NU_TMR_MAXCNT) + 1 + present_clk - last_read_clk);
|
||||
}
|
||||
|
||||
/* alarm_intvl2_clk = alarm_ts_clk - last_read_clk
|
||||
*
|
||||
* NOTE: Don't miss the `=` sign here. Otherwise, we would get the wrong result.
|
||||
*/
|
||||
if (alarm_ts_clk >= last_read_clk) {
|
||||
alarm_intvl2_clk = alarm_ts_clk - last_read_clk;
|
||||
} else {
|
||||
alarm_intvl2_clk = (uint32_t) (((uint64_t) NU_TMR_MAXCNT) + 1 + alarm_ts_clk - last_read_clk);
|
||||
}
|
||||
|
||||
/* Distinguish (long) future event and past event
|
||||
*
|
||||
* NOTE: No '=' sign here. Alarm should go off immediately in equal case.
|
||||
*/
|
||||
if (alarm_intvl2_clk > alarm_intvl1_clk) {
|
||||
/* Schedule for future event */
|
||||
arm_alarm(alarm_intvl2_clk - alarm_intvl1_clk);
|
||||
} else {
|
||||
/* Go off immediately for past event, including equal case */
|
||||
us_ticker_fire_interrupt();
|
||||
}
|
||||
/* NOTE: Because H/W timer requests min compare value, our implementation would have alarm delay of
|
||||
* (TMR_CMP_MIN - interval_clk) clocks when interval_clk is between [1, TMR_CMP_MIN). */
|
||||
uint32_t cmp_timer = timestamp * NU_TMRCLK_PER_TICK;
|
||||
cmp_timer = NU_CLAMP(cmp_timer, TMR_CMP_MIN, TMR_CMP_MAX);
|
||||
timer_base->CMP = cmp_timer;
|
||||
}
|
||||
|
||||
void us_ticker_disable_interrupt(void)
|
||||
{
|
||||
TIMER_DisableInt((TIMER_T *) NU_MODBASE(timer1hires_modinit.modname));
|
||||
TIMER_DisableInt((TIMER_T *) NU_MODBASE(TIMER_MODINIT.modname));
|
||||
}
|
||||
|
||||
void us_ticker_clear_interrupt(void)
|
||||
{
|
||||
TIMER_ClearIntFlag((TIMER_T *) NU_MODBASE(timer1hires_modinit.modname));
|
||||
TIMER_ClearIntFlag((TIMER_T *) NU_MODBASE(TIMER_MODINIT.modname));
|
||||
}
|
||||
|
||||
void us_ticker_fire_interrupt(void)
|
||||
{
|
||||
// NOTE: This event was in the past. Set the interrupt as pending, but don't process it here.
|
||||
// This prevents a recursive loop under heavy load which can lead to a stack overflow.
|
||||
NVIC_SetPendingIRQ(timer1hires_modinit.irq_n);
|
||||
}
|
||||
|
||||
static void tmr0_vec(void)
|
||||
{
|
||||
TIMER_ClearIntFlag((TIMER_T *) NU_MODBASE(timer0hires_modinit.modname));
|
||||
}
|
||||
|
||||
static void tmr1_vec(void)
|
||||
{
|
||||
TIMER_ClearIntFlag((TIMER_T *) NU_MODBASE(timer1hires_modinit.modname));
|
||||
|
||||
// NOTE: us_ticker_set_interrupt() may get called in us_ticker_irq_handler();
|
||||
us_ticker_irq_handler();
|
||||
}
|
||||
|
||||
static void arm_alarm(uint32_t cd_clk)
|
||||
{
|
||||
TIMER_T * timer1_base = (TIMER_T *) NU_MODBASE(timer1hires_modinit.modname);
|
||||
|
||||
// Reset 8-bit PSC counter, 24-bit up counter value and CNTEN bit
|
||||
// NUC472/M451: See TIMER_CTL_RSTCNT_Msk
|
||||
// M480
|
||||
timer1_base->CNT = 0;
|
||||
while (timer1_base->CNT & TIMER_CNT_RSTACT_Msk);
|
||||
// One-shot mode, Clock = 1 MHz
|
||||
uint32_t clk_timer1 = TIMER_GetModuleClock((TIMER_T *) NU_MODBASE(timer1hires_modinit.modname));
|
||||
uint32_t prescale_timer1 = clk_timer1 / NU_TMRCLK_PER_SEC - 1;
|
||||
MBED_ASSERT((prescale_timer1 != (uint32_t) -1) && prescale_timer1 <= 127);
|
||||
MBED_ASSERT((clk_timer1 % NU_TMRCLK_PER_SEC) == 0);
|
||||
// NOTE: TIMER_CTL_CNTDATEN_Msk exists in NUC472, but not in M451/M480. In M451/M480, TIMER_CNT is updated continuously by default.
|
||||
timer1_base->CTL &= ~(TIMER_CTL_OPMODE_Msk | TIMER_CTL_PSC_Msk/* | TIMER_CTL_CNTDATEN_Msk*/);
|
||||
timer1_base->CTL |= TIMER_ONESHOT_MODE | prescale_timer1/* | TIMER_CTL_CNTDATEN_Msk*/;
|
||||
|
||||
/* NOTE: Because H/W timer requests min compare value, our implementation would have alarm delay of
|
||||
* (TMR_CMP_MIN - interval_clk) clocks when interval_clk is between [1, TMR_CMP_MIN). */
|
||||
uint32_t cmp_timer1 = cd_clk;
|
||||
cmp_timer1 = NU_CLAMP(cmp_timer1, TMR_CMP_MIN, TMR_CMP_MAX);
|
||||
timer1_base->CMP = cmp_timer1;
|
||||
|
||||
TIMER_EnableInt(timer1_base);
|
||||
TIMER_Start(timer1_base);
|
||||
NVIC_SetPendingIRQ(TIMER_MODINIT.irq_n);
|
||||
}
|
||||
|
||||
const ticker_info_t* us_ticker_get_info()
|
||||
|
@ -239,3 +132,11 @@ const ticker_info_t* us_ticker_get_info()
|
|||
};
|
||||
return &info;
|
||||
}
|
||||
|
||||
static void tmr0_vec(void)
|
||||
{
|
||||
TIMER_ClearIntFlag((TIMER_T *) NU_MODBASE(TIMER_MODINIT.modname));
|
||||
|
||||
// NOTE: us_ticker_set_interrupt() may get called in us_ticker_irq_handler();
|
||||
us_ticker_irq_handler();
|
||||
}
|
||||
|
|
|
@ -37,18 +37,14 @@
|
|||
|
||||
/* NOTE: Don't add static modifier here. These IRQ handler symbols are for linking.
|
||||
Vector table relocation is not actually supported for low-resource target. */
|
||||
void TMR2_IRQHandler(void);
|
||||
void TMR3_IRQHandler(void);
|
||||
/* Configure scheduled alarm */
|
||||
static void arm_alarm(uint32_t cd_clk);
|
||||
|
||||
static uint32_t ticker_last_read_clk = 0;
|
||||
static int ticker_inited = 0;
|
||||
void TMR1_IRQHandler(void);
|
||||
|
||||
/* NOTE: To wake the system from power down mode, timer clock source must be ether LXT or LIRC. */
|
||||
/* NOTE: TIMER_2 for normal counting and TIMER_3 for scheduled alarm */
|
||||
static const struct nu_modinit_s timer2_modinit = {TIMER_2, TMR2_MODULE, CLK_CLKSEL2_TMR2_S_LXT, 0, TMR2_RST, TMR2_IRQn, (void *) TMR2_IRQHandler};
|
||||
static const struct nu_modinit_s timer3_modinit = {TIMER_3, TMR3_MODULE, CLK_CLKSEL2_TMR3_S_LXT, 0, TMR3_RST, TMR3_IRQn, (void *) TMR3_IRQHandler};
|
||||
static const struct nu_modinit_s timer1_modinit = {TIMER_1, TMR1_MODULE, CLK_CLKSEL1_TMR1_S_LXT, 0, TMR1_RST, TMR1_IRQn, (void *) TMR1_IRQHandler};
|
||||
|
||||
#define TIMER_MODINIT timer1_modinit
|
||||
|
||||
static int ticker_inited = 0;
|
||||
|
||||
#define TMR_CMP_MIN 2
|
||||
#define TMR_CMP_MAX 0xFFFFFFu
|
||||
|
@ -60,43 +56,37 @@ void lp_ticker_init(void)
|
|||
}
|
||||
ticker_inited = 1;
|
||||
|
||||
ticker_last_read_clk = 0;
|
||||
|
||||
// Reset module
|
||||
SYS_ResetModule(timer2_modinit.rsetidx);
|
||||
SYS_ResetModule(timer3_modinit.rsetidx);
|
||||
SYS_ResetModule(TIMER_MODINIT.rsetidx);
|
||||
|
||||
// Select IP clock source
|
||||
CLK_SetModuleClock(timer2_modinit.clkidx, timer2_modinit.clksrc, timer2_modinit.clkdiv);
|
||||
CLK_SetModuleClock(timer3_modinit.clkidx, timer3_modinit.clksrc, timer3_modinit.clkdiv);
|
||||
CLK_SetModuleClock(TIMER_MODINIT.clkidx, TIMER_MODINIT.clksrc, TIMER_MODINIT.clkdiv);
|
||||
|
||||
// Enable IP clock
|
||||
CLK_EnableModuleClock(timer2_modinit.clkidx);
|
||||
CLK_EnableModuleClock(timer3_modinit.clkidx);
|
||||
CLK_EnableModuleClock(TIMER_MODINIT.clkidx);
|
||||
|
||||
// Configure clock
|
||||
uint32_t clk_timer2 = TIMER_GetModuleClock((TIMER_T *) NU_MODBASE(timer2_modinit.modname));
|
||||
uint32_t prescale_timer2 = clk_timer2 / NU_TMRCLK_PER_SEC - 1;
|
||||
MBED_ASSERT((prescale_timer2 != (uint32_t) -1) && prescale_timer2 <= 127);
|
||||
MBED_ASSERT((clk_timer2 % NU_TMRCLK_PER_SEC) == 0);
|
||||
uint32_t cmp_timer2 = TMR_CMP_MAX;
|
||||
MBED_ASSERT(cmp_timer2 >= TMR_CMP_MIN && cmp_timer2 <= TMR_CMP_MAX);
|
||||
uint32_t clk_timer = TIMER_GetModuleClock((TIMER_T *) NU_MODBASE(TIMER_MODINIT.modname));
|
||||
uint32_t prescale_timer = clk_timer / NU_TMRCLK_PER_SEC - 1;
|
||||
MBED_ASSERT((prescale_timer != (uint32_t) -1) && prescale_timer <= 127);
|
||||
MBED_ASSERT((clk_timer % NU_TMRCLK_PER_SEC) == 0);
|
||||
uint32_t cmp_timer = TMR_CMP_MAX;
|
||||
MBED_ASSERT(cmp_timer >= TMR_CMP_MIN && cmp_timer <= TMR_CMP_MAX);
|
||||
// Continuous mode
|
||||
((TIMER_T *) NU_MODBASE(timer2_modinit.modname))->CTL = TIMER_PERIODIC_MODE;
|
||||
((TIMER_T *) NU_MODBASE(timer2_modinit.modname))->PRECNT = prescale_timer2;
|
||||
((TIMER_T *) NU_MODBASE(timer2_modinit.modname))->CMPR = cmp_timer2;
|
||||
((TIMER_T *) NU_MODBASE(TIMER_MODINIT.modname))->CTL = TIMER_CONTINUOUS_MODE;
|
||||
((TIMER_T *) NU_MODBASE(TIMER_MODINIT.modname))->PRECNT = prescale_timer;
|
||||
((TIMER_T *) NU_MODBASE(TIMER_MODINIT.modname))->CMPR = cmp_timer;
|
||||
|
||||
// Set vector
|
||||
NVIC_SetVector(timer2_modinit.irq_n, (uint32_t) timer2_modinit.var);
|
||||
NVIC_SetVector(timer3_modinit.irq_n, (uint32_t) timer3_modinit.var);
|
||||
NVIC_SetVector(TIMER_MODINIT.irq_n, (uint32_t) TIMER_MODINIT.var);
|
||||
|
||||
NVIC_EnableIRQ(timer2_modinit.irq_n);
|
||||
NVIC_EnableIRQ(timer3_modinit.irq_n);
|
||||
NVIC_EnableIRQ(TIMER_MODINIT.irq_n);
|
||||
|
||||
TIMER_EnableInt((TIMER_T *) NU_MODBASE(timer2_modinit.modname));
|
||||
TIMER_EnableWakeup((TIMER_T *) NU_MODBASE(timer2_modinit.modname));
|
||||
TIMER_EnableInt((TIMER_T *) NU_MODBASE(TIMER_MODINIT.modname));
|
||||
TIMER_EnableWakeup((TIMER_T *) NU_MODBASE(TIMER_MODINIT.modname));
|
||||
/* NOTE: When engine is clocked by low power clock source (LXT/LIRC), we need to wait for 3 engine clocks. */
|
||||
wait_us((NU_US_PER_SEC / NU_TMRCLK_PER_SEC) * 3);
|
||||
TIMER_Start((TIMER_T *) NU_MODBASE(timer2_modinit.modname));
|
||||
TIMER_Start((TIMER_T *) NU_MODBASE(TIMER_MODINIT.modname));
|
||||
}
|
||||
|
||||
timestamp_t lp_ticker_read()
|
||||
|
@ -105,144 +95,49 @@ timestamp_t lp_ticker_read()
|
|||
lp_ticker_init();
|
||||
}
|
||||
|
||||
TIMER_T * timer2_base = (TIMER_T *) NU_MODBASE(timer2_modinit.modname);
|
||||
TIMER_T * timer_base = (TIMER_T *) NU_MODBASE(TIMER_MODINIT.modname);
|
||||
|
||||
ticker_last_read_clk = TIMER_GetCounter(timer2_base);
|
||||
return (ticker_last_read_clk / NU_TMRCLK_PER_TICK);
|
||||
return (TIMER_GetCounter(timer_base) / NU_TMRCLK_PER_TICK);
|
||||
}
|
||||
|
||||
void lp_ticker_set_interrupt(timestamp_t timestamp)
|
||||
{
|
||||
TIMER_Stop((TIMER_T *) NU_MODBASE(timer3_modinit.modname));
|
||||
/* In continuous mode, counter will be reset to zero with the following sequence:
|
||||
* 1. Stop counting
|
||||
* 2. Configure new CMP value
|
||||
* 3. Restart counting
|
||||
*
|
||||
* This behavior is not what we want. To fix it, we could configure new CMP value
|
||||
* without stopping counting first.
|
||||
*/
|
||||
TIMER_T * timer_base = (TIMER_T *) NU_MODBASE(TIMER_MODINIT.modname);
|
||||
|
||||
/* We need to get alarm interval from alarm timestamp `timestamp` to configure H/W timer.
|
||||
*
|
||||
* Because both `timestamp` and xx_ticker_read() would wrap around, we have difficulties in distinguishing
|
||||
* long future event and past event. To distinguish them, we need `tick_last_read` against which
|
||||
* `timestamp` is calculated out. In timeline, we would always have below after fixing wrap-around:
|
||||
* (1) tick_last_read <= present_clk
|
||||
* (2) tick_last_read <= alarm_ts_clk
|
||||
*
|
||||
*
|
||||
* 1. Future event case:
|
||||
*
|
||||
* tick_last_read present_clk alarm_ts_clk
|
||||
* | | |
|
||||
* --------------------------------------------------------
|
||||
* |-alarm_intvl1_clk-|
|
||||
* |-------------------alarm_intvl2_clk-------------------|
|
||||
*
|
||||
* 2. Past event case:
|
||||
*
|
||||
* tick_last_read alarm_ts_clk present_clk
|
||||
* | | |
|
||||
* --------------------------------------------------------
|
||||
* |-------------------alarm_intvl1_clk-------------------|
|
||||
* |-alarm_intvl2_clk-|
|
||||
*
|
||||
* Unfortunately, `tick_last_read` is not passed along the xx_ticker_set_interrupt() call. To solve it, we
|
||||
* assume that `tick_last_read` tick is exactly the one returned by the last xx_ticker_read() call before
|
||||
* xx_ticker_set_interrupt() is invoked. With this assumption, we can hold it via `xx_ticker_last_read_clk`
|
||||
* in xx_ticker_read().
|
||||
*/
|
||||
|
||||
/* ticker_last_read_clk will update in lp_ticker_read(). Keep it beforehand. */
|
||||
uint32_t last_read_clk = ticker_last_read_clk;
|
||||
uint32_t present_clk = lp_ticker_read() * NU_TMRCLK_PER_TICK;
|
||||
uint32_t alarm_ts_clk = timestamp * NU_TMRCLK_PER_TICK;
|
||||
uint32_t alarm_intvl1_clk, alarm_intvl2_clk;
|
||||
|
||||
/* alarm_intvl1_clk = present_clk - last_read_clk
|
||||
*
|
||||
* NOTE: Don't miss the `=` sign here. Otherwise, we would get the wrong result.
|
||||
*/
|
||||
if (present_clk >= last_read_clk) {
|
||||
alarm_intvl1_clk = present_clk - last_read_clk;
|
||||
} else {
|
||||
alarm_intvl1_clk = (uint32_t) (((uint64_t) NU_TMR_MAXCNT) + 1 + present_clk - last_read_clk);
|
||||
}
|
||||
/* NOTE: Because H/W timer requests min compare value, our implementation would have alarm delay of
|
||||
* (TMR_CMP_MIN - interval_clk) clocks when interval_clk is between [1, TMR_CMP_MIN). */
|
||||
uint32_t cmp_timer = timestamp * NU_TMRCLK_PER_TICK;
|
||||
cmp_timer = NU_CLAMP(cmp_timer, TMR_CMP_MIN, TMR_CMP_MAX);
|
||||
timer_base->CMPR = cmp_timer;
|
||||
|
||||
/* alarm_intvl2_clk = alarm_ts_clk - last_read_clk
|
||||
*
|
||||
* NOTE: Don't miss the `=` sign here. Otherwise, we would get the wrong result.
|
||||
*/
|
||||
if (alarm_ts_clk >= last_read_clk) {
|
||||
alarm_intvl2_clk = alarm_ts_clk - last_read_clk;
|
||||
} else {
|
||||
alarm_intvl2_clk = (uint32_t) (((uint64_t) NU_TMR_MAXCNT) + 1 + alarm_ts_clk - last_read_clk);
|
||||
}
|
||||
|
||||
/* Distinguish (long) future event and past event
|
||||
*
|
||||
* NOTE: No '=' sign here. Alarm should go off immediately in equal case.
|
||||
*/
|
||||
if (alarm_intvl2_clk > alarm_intvl1_clk) {
|
||||
/* Schedule for future event */
|
||||
arm_alarm(alarm_intvl2_clk - alarm_intvl1_clk);
|
||||
} else {
|
||||
/* Go off immediately for past event, including equal case */
|
||||
lp_ticker_fire_interrupt();
|
||||
}
|
||||
/* NOTE: When engine is clocked by low power clock source (LXT/LIRC), we need to wait for 3 engine clocks. */
|
||||
wait_us((NU_US_PER_SEC / NU_TMRCLK_PER_SEC) * 3);
|
||||
TIMER_Start(timer_base);
|
||||
}
|
||||
|
||||
void lp_ticker_disable_interrupt(void)
|
||||
{
|
||||
TIMER_DisableInt((TIMER_T *) NU_MODBASE(timer3_modinit.modname));
|
||||
TIMER_DisableInt((TIMER_T *) NU_MODBASE(TIMER_MODINIT.modname));
|
||||
}
|
||||
|
||||
void lp_ticker_clear_interrupt(void)
|
||||
{
|
||||
TIMER_ClearIntFlag((TIMER_T *) NU_MODBASE(timer3_modinit.modname));
|
||||
TIMER_ClearIntFlag((TIMER_T *) NU_MODBASE(TIMER_MODINIT.modname));
|
||||
}
|
||||
|
||||
void lp_ticker_fire_interrupt(void)
|
||||
{
|
||||
// NOTE: This event was in the past. Set the interrupt as pending, but don't process it here.
|
||||
// This prevents a recursive loop under heavy load which can lead to a stack overflow.
|
||||
NVIC_SetPendingIRQ(timer3_modinit.irq_n);
|
||||
}
|
||||
void TMR2_IRQHandler(void)
|
||||
{
|
||||
TIMER_ClearIntFlag((TIMER_T *) NU_MODBASE(timer2_modinit.modname));
|
||||
TIMER_ClearWakeupFlag((TIMER_T *) NU_MODBASE(timer2_modinit.modname));
|
||||
}
|
||||
|
||||
void TMR3_IRQHandler(void)
|
||||
{
|
||||
TIMER_ClearIntFlag((TIMER_T *) NU_MODBASE(timer3_modinit.modname));
|
||||
TIMER_ClearWakeupFlag((TIMER_T *) NU_MODBASE(timer3_modinit.modname));
|
||||
|
||||
// NOTE: lp_ticker_set_interrupt() may get called in lp_ticker_irq_handler();
|
||||
lp_ticker_irq_handler();
|
||||
|
||||
}
|
||||
|
||||
static void arm_alarm(uint32_t cd_clk)
|
||||
{
|
||||
TIMER_T * timer3_base = (TIMER_T *) NU_MODBASE(timer3_modinit.modname);
|
||||
|
||||
// Reset Timer's pre-scale counter, internal 24-bit up-counter and TMR_CTL [TMR_EN] bit
|
||||
timer3_base->CTL |= TIMER_CTL_SW_RST_Msk;
|
||||
// One-shot mode, Clock = 1 KHz
|
||||
uint32_t clk_timer3 = TIMER_GetModuleClock((TIMER_T *) NU_MODBASE(timer3_modinit.modname));
|
||||
uint32_t prescale_timer3 = clk_timer3 / NU_TMRCLK_PER_SEC - 1;
|
||||
MBED_ASSERT((prescale_timer3 != (uint32_t) -1) && prescale_timer3 <= 127);
|
||||
MBED_ASSERT((clk_timer3 % NU_TMRCLK_PER_SEC) == 0);
|
||||
timer3_base->CTL &= ~TIMER_CTL_MODE_SEL_Msk;
|
||||
timer3_base->CTL |= TIMER_ONESHOT_MODE;
|
||||
timer3_base->PRECNT = prescale_timer3;
|
||||
|
||||
/* NOTE: Because H/W timer requests min compare value, our implementation would have alarm delay of
|
||||
* (TMR_CMP_MIN - interval_clk) clocks when interval_clk is between [1, TMR_CMP_MIN). */
|
||||
uint32_t cmp_timer3 = cd_clk;
|
||||
cmp_timer3 = NU_CLAMP(cmp_timer3, TMR_CMP_MIN, TMR_CMP_MAX);
|
||||
timer3_base->CMPR = cmp_timer3;
|
||||
|
||||
TIMER_EnableInt(timer3_base);
|
||||
TIMER_EnableWakeup((TIMER_T *) NU_MODBASE(timer3_modinit.modname));
|
||||
/* NOTE: When engine is clocked by low power clock source (LXT/LIRC), we need to wait for 3 engine clocks. */
|
||||
wait_us((NU_US_PER_SEC / NU_TMRCLK_PER_SEC) * 3);
|
||||
TIMER_Start(timer3_base);
|
||||
NVIC_SetPendingIRQ(TIMER_MODINIT.irq_n);
|
||||
}
|
||||
|
||||
const ticker_info_t* lp_ticker_get_info()
|
||||
|
@ -254,4 +149,13 @@ const ticker_info_t* lp_ticker_get_info()
|
|||
return &info;
|
||||
}
|
||||
|
||||
void TMR1_IRQHandler(void)
|
||||
{
|
||||
TIMER_ClearIntFlag((TIMER_T *) NU_MODBASE(TIMER_MODINIT.modname));
|
||||
TIMER_ClearWakeupFlag((TIMER_T *) NU_MODBASE(TIMER_MODINIT.modname));
|
||||
|
||||
// NOTE: lp_ticker_set_interrupt() may get called in lp_ticker_irq_handler();
|
||||
lp_ticker_irq_handler();
|
||||
}
|
||||
|
||||
#endif
|
||||
|
|
|
@ -34,17 +34,13 @@
|
|||
/* NOTE: Don't add static modifier here. These IRQ handler symbols are for linking.
|
||||
Vector table relocation is not actually supported for low-resource target. */
|
||||
void TMR0_IRQHandler(void);
|
||||
void TMR1_IRQHandler(void);
|
||||
/* Configure scheduled alarm */
|
||||
static void arm_alarm(uint32_t cd_clk);
|
||||
|
||||
static uint32_t ticker_last_read_clk = 0;
|
||||
static const struct nu_modinit_s timer0_modinit = {TIMER_0, TMR0_MODULE, CLK_CLKSEL1_TMR0_S_HXT, 0, TMR0_RST, TMR0_IRQn, (void *) TMR0_IRQHandler};
|
||||
|
||||
#define TIMER_MODINIT timer0_modinit
|
||||
|
||||
static int ticker_inited = 0;
|
||||
|
||||
/* NOTE: TIMER_0 for normal counting and TIMER_1 for scheduled alarm. */
|
||||
static const struct nu_modinit_s timer0hires_modinit = {TIMER_0, TMR0_MODULE, CLK_CLKSEL1_TMR0_S_HXT, 0, TMR0_RST, TMR0_IRQn, (void *) TMR0_IRQHandler};
|
||||
static const struct nu_modinit_s timer1hires_modinit = {TIMER_1, TMR1_MODULE, CLK_CLKSEL1_TMR1_S_HXT, 0, TMR1_RST, TMR1_IRQn, (void *) TMR1_IRQHandler};
|
||||
|
||||
#define TMR_CMP_MIN 2
|
||||
#define TMR_CMP_MAX 0xFFFFFFu
|
||||
|
||||
|
@ -55,38 +51,32 @@ void us_ticker_init(void)
|
|||
}
|
||||
ticker_inited = 1;
|
||||
|
||||
ticker_last_read_clk = 0;
|
||||
|
||||
// Reset IP
|
||||
SYS_ResetModule(timer0hires_modinit.rsetidx);
|
||||
SYS_ResetModule(timer1hires_modinit.rsetidx);
|
||||
SYS_ResetModule(TIMER_MODINIT.rsetidx);
|
||||
|
||||
// Select IP clock source
|
||||
CLK_SetModuleClock(timer0hires_modinit.clkidx, timer0hires_modinit.clksrc, timer0hires_modinit.clkdiv);
|
||||
CLK_SetModuleClock(timer1hires_modinit.clkidx, timer1hires_modinit.clksrc, timer1hires_modinit.clkdiv);
|
||||
CLK_SetModuleClock(TIMER_MODINIT.clkidx, TIMER_MODINIT.clksrc, TIMER_MODINIT.clkdiv);
|
||||
|
||||
// Enable IP clock
|
||||
CLK_EnableModuleClock(timer0hires_modinit.clkidx);
|
||||
CLK_EnableModuleClock(timer1hires_modinit.clkidx);
|
||||
CLK_EnableModuleClock(TIMER_MODINIT.clkidx);
|
||||
|
||||
// Timer for normal counter
|
||||
uint32_t clk_timer0 = TIMER_GetModuleClock((TIMER_T *) NU_MODBASE(timer0hires_modinit.modname));
|
||||
uint32_t prescale_timer0 = clk_timer0 / NU_TMRCLK_PER_SEC - 1;
|
||||
MBED_ASSERT((prescale_timer0 != (uint32_t) -1) && prescale_timer0 <= 127);
|
||||
MBED_ASSERT((clk_timer0 % NU_TMRCLK_PER_SEC) == 0);
|
||||
uint32_t cmp_timer0 = TMR_CMP_MAX;
|
||||
MBED_ASSERT(cmp_timer0 >= TMR_CMP_MIN && cmp_timer0 <= TMR_CMP_MAX);
|
||||
((TIMER_T *) NU_MODBASE(timer0hires_modinit.modname))->CTL = TIMER_PERIODIC_MODE;
|
||||
((TIMER_T *) NU_MODBASE(timer0hires_modinit.modname))->PRECNT = prescale_timer0;
|
||||
((TIMER_T *) NU_MODBASE(timer0hires_modinit.modname))->CMPR = cmp_timer0;
|
||||
uint32_t clk_timer = TIMER_GetModuleClock((TIMER_T *) NU_MODBASE(TIMER_MODINIT.modname));
|
||||
uint32_t prescale_timer = clk_timer / NU_TMRCLK_PER_SEC - 1;
|
||||
MBED_ASSERT((prescale_timer != (uint32_t) -1) && prescale_timer <= 127);
|
||||
MBED_ASSERT((clk_timer % NU_TMRCLK_PER_SEC) == 0);
|
||||
uint32_t cmp_timer = TMR_CMP_MAX;
|
||||
MBED_ASSERT(cmp_timer >= TMR_CMP_MIN && cmp_timer <= TMR_CMP_MAX);
|
||||
((TIMER_T *) NU_MODBASE(TIMER_MODINIT.modname))->CTL = TIMER_CONTINUOUS_MODE;
|
||||
((TIMER_T *) NU_MODBASE(TIMER_MODINIT.modname))->PRECNT = prescale_timer;
|
||||
((TIMER_T *) NU_MODBASE(TIMER_MODINIT.modname))->CMPR = cmp_timer;
|
||||
|
||||
NVIC_SetVector(timer0hires_modinit.irq_n, (uint32_t) timer0hires_modinit.var);
|
||||
NVIC_SetVector(timer1hires_modinit.irq_n, (uint32_t) timer1hires_modinit.var);
|
||||
NVIC_SetVector(TIMER_MODINIT.irq_n, (uint32_t) TIMER_MODINIT.var);
|
||||
|
||||
NVIC_EnableIRQ(timer0hires_modinit.irq_n);
|
||||
NVIC_EnableIRQ(timer1hires_modinit.irq_n);
|
||||
NVIC_EnableIRQ(TIMER_MODINIT.irq_n);
|
||||
|
||||
TIMER_EnableInt((TIMER_T *) NU_MODBASE(timer0hires_modinit.modname));
|
||||
TIMER_Start((TIMER_T *) NU_MODBASE(timer0hires_modinit.modname));
|
||||
TIMER_EnableInt((TIMER_T *) NU_MODBASE(TIMER_MODINIT.modname));
|
||||
TIMER_Start((TIMER_T *) NU_MODBASE(TIMER_MODINIT.modname));
|
||||
}
|
||||
|
||||
uint32_t us_ticker_read()
|
||||
|
@ -95,139 +85,45 @@ uint32_t us_ticker_read()
|
|||
us_ticker_init();
|
||||
}
|
||||
|
||||
TIMER_T * timer0_base = (TIMER_T *) NU_MODBASE(timer0hires_modinit.modname);
|
||||
TIMER_T * timer_base = (TIMER_T *) NU_MODBASE(TIMER_MODINIT.modname);
|
||||
|
||||
ticker_last_read_clk = TIMER_GetCounter(timer0_base);
|
||||
return (ticker_last_read_clk / NU_TMRCLK_PER_TICK);
|
||||
return (TIMER_GetCounter(timer_base) / NU_TMRCLK_PER_TICK);
|
||||
}
|
||||
|
||||
void us_ticker_set_interrupt(timestamp_t timestamp)
|
||||
{
|
||||
TIMER_Stop((TIMER_T *) NU_MODBASE(timer1hires_modinit.modname));
|
||||
/* In continuous mode, counter will be reset to zero with the following sequence:
|
||||
* 1. Stop counting
|
||||
* 2. Configure new CMP value
|
||||
* 3. Restart counting
|
||||
*
|
||||
* This behavior is not what we want. To fix it, we could configure new CMP value
|
||||
* without stopping counting first.
|
||||
*/
|
||||
TIMER_T * timer_base = (TIMER_T *) NU_MODBASE(TIMER_MODINIT.modname);
|
||||
|
||||
/* We need to get alarm interval from alarm timestamp `timestamp` to configure H/W timer.
|
||||
*
|
||||
* Because both `timestamp` and xx_ticker_read() would wrap around, we have difficulties in distinguishing
|
||||
* long future event and past event. To distinguish them, we need `tick_last_read` against which
|
||||
* `timestamp` is calculated out. In timeline, we would always have below after fixing wrap-around:
|
||||
* (1) tick_last_read <= present_clk
|
||||
* (2) tick_last_read <= alarm_ts_clk
|
||||
*
|
||||
*
|
||||
* 1. Future event case:
|
||||
*
|
||||
* tick_last_read present_clk alarm_ts_clk
|
||||
* | | |
|
||||
* --------------------------------------------------------
|
||||
* |-alarm_intvl1_clk-|
|
||||
* |-------------------alarm_intvl2_clk-------------------|
|
||||
*
|
||||
* 2. Past event case:
|
||||
*
|
||||
* tick_last_read alarm_ts_clk present_clk
|
||||
* | | |
|
||||
* --------------------------------------------------------
|
||||
* |-------------------alarm_intvl1_clk-------------------|
|
||||
* |-alarm_intvl2_clk-|
|
||||
*
|
||||
* Unfortunately, `tick_last_read` is not passed along the xx_ticker_set_interrupt() call. To solve it, we
|
||||
* assume that `tick_last_read` tick is exactly the one returned by the last xx_ticker_read() call before
|
||||
* xx_ticker_set_interrupt() is invoked. With this assumption, we can hold it via `xx_ticker_last_read_clk`
|
||||
* in xx_ticker_read().
|
||||
*/
|
||||
|
||||
/* ticker_last_read_clk will update in us_ticker_read(). Keep it beforehand. */
|
||||
uint32_t last_read_clk = ticker_last_read_clk;
|
||||
uint32_t present_clk = us_ticker_read() * NU_TMRCLK_PER_TICK;
|
||||
uint32_t alarm_ts_clk = timestamp * NU_TMRCLK_PER_TICK;
|
||||
uint32_t alarm_intvl1_clk, alarm_intvl2_clk;
|
||||
|
||||
/* alarm_intvl1_clk = present_clk - last_read_clk
|
||||
*
|
||||
* NOTE: Don't miss the `=` sign here. Otherwise, we would get the wrong result.
|
||||
*/
|
||||
if (present_clk >= last_read_clk) {
|
||||
alarm_intvl1_clk = present_clk - last_read_clk;
|
||||
} else {
|
||||
alarm_intvl1_clk = (uint32_t) (((uint64_t) NU_TMR_MAXCNT) + 1 + present_clk - last_read_clk);
|
||||
}
|
||||
|
||||
/* alarm_intvl2_clk = alarm_ts_clk - last_read_clk
|
||||
*
|
||||
* NOTE: Don't miss the `=` sign here. Otherwise, we would get the wrong result.
|
||||
*/
|
||||
if (alarm_ts_clk >= last_read_clk) {
|
||||
alarm_intvl2_clk = alarm_ts_clk - last_read_clk;
|
||||
} else {
|
||||
alarm_intvl2_clk = (uint32_t) (((uint64_t) NU_TMR_MAXCNT) + 1 + alarm_ts_clk - last_read_clk);
|
||||
}
|
||||
|
||||
/* Distinguish (long) future event and past event
|
||||
*
|
||||
* NOTE: No '=' sign here. Alarm should go off immediately in equal case.
|
||||
*/
|
||||
if (alarm_intvl2_clk > alarm_intvl1_clk) {
|
||||
/* Schedule for future event */
|
||||
arm_alarm(alarm_intvl2_clk - alarm_intvl1_clk);
|
||||
} else {
|
||||
/* Go off immediately for past event, including equal case */
|
||||
us_ticker_fire_interrupt();
|
||||
}
|
||||
/* NOTE: Because H/W timer requests min compare value, our implementation would have alarm delay of
|
||||
* (TMR_CMP_MIN - interval_clk) clocks when interval_clk is between [1, TMR_CMP_MIN). */
|
||||
uint32_t cmp_timer = timestamp * NU_TMRCLK_PER_TICK;
|
||||
cmp_timer = NU_CLAMP(cmp_timer, TMR_CMP_MIN, TMR_CMP_MAX);
|
||||
timer_base->CMPR = cmp_timer;
|
||||
}
|
||||
|
||||
void us_ticker_disable_interrupt(void)
|
||||
{
|
||||
TIMER_DisableInt((TIMER_T *) NU_MODBASE(timer1hires_modinit.modname));
|
||||
TIMER_DisableInt((TIMER_T *) NU_MODBASE(TIMER_MODINIT.modname));
|
||||
}
|
||||
|
||||
void us_ticker_clear_interrupt(void)
|
||||
{
|
||||
TIMER_ClearIntFlag((TIMER_T *) NU_MODBASE(timer1hires_modinit.modname));
|
||||
TIMER_ClearIntFlag((TIMER_T *) NU_MODBASE(TIMER_MODINIT.modname));
|
||||
}
|
||||
|
||||
void us_ticker_fire_interrupt(void)
|
||||
{
|
||||
// NOTE: This event was in the past. Set the interrupt as pending, but don't process it here.
|
||||
// This prevents a recursive loop under heavy load which can lead to a stack overflow.
|
||||
NVIC_SetPendingIRQ(timer1hires_modinit.irq_n);
|
||||
}
|
||||
|
||||
void TMR0_IRQHandler(void)
|
||||
{
|
||||
TIMER_ClearIntFlag((TIMER_T *) NU_MODBASE(timer0hires_modinit.modname));
|
||||
}
|
||||
|
||||
void TMR1_IRQHandler(void)
|
||||
{
|
||||
TIMER_ClearIntFlag((TIMER_T *) NU_MODBASE(timer1hires_modinit.modname));
|
||||
|
||||
// NOTE: us_ticker_set_interrupt() may get called in us_ticker_irq_handler();
|
||||
us_ticker_irq_handler();
|
||||
}
|
||||
|
||||
static void arm_alarm(uint32_t cd_clk)
|
||||
{
|
||||
TIMER_T * timer1_base = (TIMER_T *) NU_MODBASE(timer1hires_modinit.modname);
|
||||
|
||||
// Reset Timer's pre-scale counter, internal 24-bit up-counter and TMR_CTL [TMR_EN] bit
|
||||
timer1_base->CTL |= TIMER_CTL_SW_RST_Msk;
|
||||
// One-shot mode, Clock = 1 MHz
|
||||
uint32_t clk_timer1 = TIMER_GetModuleClock((TIMER_T *) NU_MODBASE(timer1hires_modinit.modname));
|
||||
uint32_t prescale_timer1 = clk_timer1 / NU_TMRCLK_PER_SEC - 1;
|
||||
MBED_ASSERT((prescale_timer1 != (uint32_t) -1) && prescale_timer1 <= 127);
|
||||
MBED_ASSERT((clk_timer1 % NU_TMRCLK_PER_SEC) == 0);
|
||||
timer1_base->CTL &= ~TIMER_CTL_MODE_SEL_Msk;
|
||||
timer1_base->CTL |= TIMER_ONESHOT_MODE;
|
||||
timer1_base->PRECNT = prescale_timer1;
|
||||
|
||||
/* NOTE: Because H/W timer requests min compare value, our implementation would have alarm delay of
|
||||
* (TMR_CMP_MIN - interval_clk) clocks when interval_clk is between [1, TMR_CMP_MIN). */
|
||||
uint32_t cmp_timer1 = cd_clk;
|
||||
cmp_timer1 = NU_CLAMP(cmp_timer1, TMR_CMP_MIN, TMR_CMP_MAX);
|
||||
timer1_base->CMPR = cmp_timer1;
|
||||
|
||||
TIMER_EnableInt(timer1_base);
|
||||
TIMER_Start(timer1_base);
|
||||
NVIC_SetPendingIRQ(TIMER_MODINIT.irq_n);
|
||||
}
|
||||
|
||||
const ticker_info_t* us_ticker_get_info()
|
||||
|
@ -238,3 +134,11 @@ const ticker_info_t* us_ticker_get_info()
|
|||
};
|
||||
return &info;
|
||||
}
|
||||
|
||||
void TMR0_IRQHandler(void)
|
||||
{
|
||||
TIMER_ClearIntFlag((TIMER_T *) NU_MODBASE(TIMER_MODINIT.modname));
|
||||
|
||||
// NOTE: us_ticker_set_interrupt() may get called in us_ticker_irq_handler();
|
||||
us_ticker_irq_handler();
|
||||
}
|
||||
|
|
|
@ -35,18 +35,14 @@
|
|||
/* Timer max counter */
|
||||
#define NU_TMR_MAXCNT ((1 << NU_TMR_MAXCNT_BITSIZE) - 1)
|
||||
|
||||
static void tmr2_vec(void);
|
||||
static void tmr3_vec(void);
|
||||
/* Configure scheduled alarm */
|
||||
static void arm_alarm(uint32_t cd_clk);
|
||||
|
||||
static int ticker_inited = 0;
|
||||
static uint32_t ticker_last_read_clk = 0;
|
||||
static void tmr1_vec(void);
|
||||
|
||||
/* NOTE: To wake the system from power down mode, timer clock source must be ether LXT or LIRC. */
|
||||
/* NOTE: TIMER_2 for normal counting and TIMER_3 for scheduled alarm */
|
||||
static const struct nu_modinit_s timer2_modinit = {TIMER_2, TMR2_MODULE, CLK_CLKSEL1_TMR2SEL_LXT, 0, TMR2_RST, TMR2_IRQn, (void *) tmr2_vec};
|
||||
static const struct nu_modinit_s timer3_modinit = {TIMER_3, TMR3_MODULE, CLK_CLKSEL1_TMR3SEL_LXT, 0, TMR3_RST, TMR3_IRQn, (void *) tmr3_vec};
|
||||
static const struct nu_modinit_s timer1_modinit = {TIMER_1, TMR1_MODULE, CLK_CLKSEL1_TMR1SEL_LXT, 0, TMR1_RST, TMR1_IRQn, (void *) tmr1_vec};
|
||||
|
||||
#define TIMER_MODINIT timer1_modinit
|
||||
|
||||
static int ticker_inited = 0;
|
||||
|
||||
#define TMR_CMP_MIN 2
|
||||
#define TMR_CMP_MAX 0xFFFFFFu
|
||||
|
@ -58,42 +54,36 @@ void lp_ticker_init(void)
|
|||
}
|
||||
ticker_inited = 1;
|
||||
|
||||
ticker_last_read_clk = 0;
|
||||
|
||||
// Reset module
|
||||
SYS_ResetModule(timer2_modinit.rsetidx);
|
||||
SYS_ResetModule(timer3_modinit.rsetidx);
|
||||
SYS_ResetModule(TIMER_MODINIT.rsetidx);
|
||||
|
||||
// Select IP clock source
|
||||
CLK_SetModuleClock(timer2_modinit.clkidx, timer2_modinit.clksrc, timer2_modinit.clkdiv);
|
||||
CLK_SetModuleClock(timer3_modinit.clkidx, timer3_modinit.clksrc, timer3_modinit.clkdiv);
|
||||
CLK_SetModuleClock(TIMER_MODINIT.clkidx, TIMER_MODINIT.clksrc, TIMER_MODINIT.clkdiv);
|
||||
|
||||
// Enable IP clock
|
||||
CLK_EnableModuleClock(timer2_modinit.clkidx);
|
||||
CLK_EnableModuleClock(timer3_modinit.clkidx);
|
||||
CLK_EnableModuleClock(TIMER_MODINIT.clkidx);
|
||||
|
||||
// Configure clock
|
||||
uint32_t clk_timer2 = TIMER_GetModuleClock((TIMER_T *) NU_MODBASE(timer2_modinit.modname));
|
||||
uint32_t prescale_timer2 = clk_timer2 / NU_TMRCLK_PER_SEC - 1;
|
||||
MBED_ASSERT((prescale_timer2 != (uint32_t) -1) && prescale_timer2 <= 127);
|
||||
MBED_ASSERT((clk_timer2 % NU_TMRCLK_PER_SEC) == 0);
|
||||
uint32_t cmp_timer2 = TMR_CMP_MAX;
|
||||
MBED_ASSERT(cmp_timer2 >= TMR_CMP_MIN && cmp_timer2 <= TMR_CMP_MAX);
|
||||
uint32_t clk_timer = TIMER_GetModuleClock((TIMER_T *) NU_MODBASE(TIMER_MODINIT.modname));
|
||||
uint32_t prescale_timer = clk_timer / NU_TMRCLK_PER_SEC - 1;
|
||||
MBED_ASSERT((prescale_timer != (uint32_t) -1) && prescale_timer <= 127);
|
||||
MBED_ASSERT((clk_timer % NU_TMRCLK_PER_SEC) == 0);
|
||||
uint32_t cmp_timer = TMR_CMP_MAX;
|
||||
MBED_ASSERT(cmp_timer >= TMR_CMP_MIN && cmp_timer <= TMR_CMP_MAX);
|
||||
// Continuous mode
|
||||
((TIMER_T *) NU_MODBASE(timer2_modinit.modname))->CTL = TIMER_PERIODIC_MODE | prescale_timer2 | TIMER_CTL_CNTDATEN_Msk;
|
||||
((TIMER_T *) NU_MODBASE(timer2_modinit.modname))->CMP = cmp_timer2;
|
||||
((TIMER_T *) NU_MODBASE(TIMER_MODINIT.modname))->CTL = TIMER_CONTINUOUS_MODE | prescale_timer | TIMER_CTL_CNTDATEN_Msk;
|
||||
((TIMER_T *) NU_MODBASE(TIMER_MODINIT.modname))->CMP = cmp_timer;
|
||||
|
||||
// Set vector
|
||||
NVIC_SetVector(timer2_modinit.irq_n, (uint32_t) timer2_modinit.var);
|
||||
NVIC_SetVector(timer3_modinit.irq_n, (uint32_t) timer3_modinit.var);
|
||||
NVIC_SetVector(TIMER_MODINIT.irq_n, (uint32_t) TIMER_MODINIT.var);
|
||||
|
||||
NVIC_EnableIRQ(timer2_modinit.irq_n);
|
||||
NVIC_EnableIRQ(timer3_modinit.irq_n);
|
||||
NVIC_EnableIRQ(TIMER_MODINIT.irq_n);
|
||||
|
||||
TIMER_EnableInt((TIMER_T *) NU_MODBASE(timer2_modinit.modname));
|
||||
TIMER_EnableWakeup((TIMER_T *) NU_MODBASE(timer2_modinit.modname));
|
||||
TIMER_EnableInt((TIMER_T *) NU_MODBASE(TIMER_MODINIT.modname));
|
||||
TIMER_EnableWakeup((TIMER_T *) NU_MODBASE(TIMER_MODINIT.modname));
|
||||
/* NOTE: When engine is clocked by low power clock source (LXT/LIRC), we need to wait for 3 engine clocks. */
|
||||
wait_us((NU_US_PER_SEC / NU_TMRCLK_PER_SEC) * 3);
|
||||
TIMER_Start((TIMER_T *) NU_MODBASE(timer2_modinit.modname));
|
||||
TIMER_Start((TIMER_T *) NU_MODBASE(TIMER_MODINIT.modname));
|
||||
}
|
||||
|
||||
timestamp_t lp_ticker_read()
|
||||
|
@ -102,144 +92,49 @@ timestamp_t lp_ticker_read()
|
|||
lp_ticker_init();
|
||||
}
|
||||
|
||||
TIMER_T * timer2_base = (TIMER_T *) NU_MODBASE(timer2_modinit.modname);
|
||||
TIMER_T * timer_base = (TIMER_T *) NU_MODBASE(TIMER_MODINIT.modname);
|
||||
|
||||
ticker_last_read_clk = TIMER_GetCounter(timer2_base);
|
||||
return (ticker_last_read_clk / NU_TMRCLK_PER_TICK);
|
||||
return (TIMER_GetCounter(timer_base) / NU_TMRCLK_PER_TICK);
|
||||
}
|
||||
|
||||
void lp_ticker_set_interrupt(timestamp_t timestamp)
|
||||
{
|
||||
TIMER_Stop((TIMER_T *) NU_MODBASE(timer3_modinit.modname));
|
||||
/* In continuous mode, counter will be reset to zero with the following sequence:
|
||||
* 1. Stop counting
|
||||
* 2. Configure new CMP value
|
||||
* 3. Restart counting
|
||||
*
|
||||
* This behavior is not what we want. To fix it, we could configure new CMP value
|
||||
* without stopping counting first.
|
||||
*/
|
||||
TIMER_T * timer_base = (TIMER_T *) NU_MODBASE(TIMER_MODINIT.modname);
|
||||
|
||||
/* We need to get alarm interval from alarm timestamp `timestamp` to configure H/W timer.
|
||||
*
|
||||
* Because both `timestamp` and xx_ticker_read() would wrap around, we have difficulties in distinguishing
|
||||
* long future event and past event. To distinguish them, we need `tick_last_read` against which
|
||||
* `timestamp` is calculated out. In timeline, we would always have below after fixing wrap-around:
|
||||
* (1) tick_last_read <= present_clk
|
||||
* (2) tick_last_read <= alarm_ts_clk
|
||||
*
|
||||
*
|
||||
* 1. Future event case:
|
||||
*
|
||||
* tick_last_read present_clk alarm_ts_clk
|
||||
* | | |
|
||||
* --------------------------------------------------------
|
||||
* |-alarm_intvl1_clk-|
|
||||
* |-------------------alarm_intvl2_clk-------------------|
|
||||
*
|
||||
* 2. Past event case:
|
||||
*
|
||||
* tick_last_read alarm_ts_clk present_clk
|
||||
* | | |
|
||||
* --------------------------------------------------------
|
||||
* |-------------------alarm_intvl1_clk-------------------|
|
||||
* |-alarm_intvl2_clk-|
|
||||
*
|
||||
* Unfortunately, `tick_last_read` is not passed along the xx_ticker_set_interrupt() call. To solve it, we
|
||||
* assume that `tick_last_read` tick is exactly the one returned by the last xx_ticker_read() call before
|
||||
* xx_ticker_set_interrupt() is invoked. With this assumption, we can hold it via `xx_ticker_last_read_clk`
|
||||
* in xx_ticker_read().
|
||||
*/
|
||||
|
||||
/* ticker_last_read_clk will update in lp_ticker_read(). Keep it beforehand. */
|
||||
uint32_t last_read_clk = ticker_last_read_clk;
|
||||
uint32_t present_clk = lp_ticker_read() * NU_TMRCLK_PER_TICK;
|
||||
uint32_t alarm_ts_clk = timestamp * NU_TMRCLK_PER_TICK;
|
||||
uint32_t alarm_intvl1_clk, alarm_intvl2_clk;
|
||||
|
||||
/* alarm_intvl1_clk = present_clk - last_read_clk
|
||||
*
|
||||
* NOTE: Don't miss the `=` sign here. Otherwise, we would get the wrong result.
|
||||
*/
|
||||
if (present_clk >= last_read_clk) {
|
||||
alarm_intvl1_clk = present_clk - last_read_clk;
|
||||
} else {
|
||||
alarm_intvl1_clk = (uint32_t) (((uint64_t) NU_TMR_MAXCNT) + 1 + present_clk - last_read_clk);
|
||||
}
|
||||
/* NOTE: Because H/W timer requests min compare value, our implementation would have alarm delay of
|
||||
* (TMR_CMP_MIN - interval_clk) clocks when interval_clk is between [1, TMR_CMP_MIN). */
|
||||
uint32_t cmp_timer = timestamp * NU_TMRCLK_PER_TICK;
|
||||
cmp_timer = NU_CLAMP(cmp_timer, TMR_CMP_MIN, TMR_CMP_MAX);
|
||||
timer_base->CMP = cmp_timer;
|
||||
|
||||
/* alarm_intvl2_clk = alarm_ts_clk - last_read_clk
|
||||
*
|
||||
* NOTE: Don't miss the `=` sign here. Otherwise, we would get the wrong result.
|
||||
*/
|
||||
if (alarm_ts_clk >= last_read_clk) {
|
||||
alarm_intvl2_clk = alarm_ts_clk - last_read_clk;
|
||||
} else {
|
||||
alarm_intvl2_clk = (uint32_t) (((uint64_t) NU_TMR_MAXCNT) + 1 + alarm_ts_clk - last_read_clk);
|
||||
}
|
||||
|
||||
/* Distinguish (long) future event and past event
|
||||
*
|
||||
* NOTE: No '=' sign here. Alarm should go off immediately in equal case.
|
||||
*/
|
||||
if (alarm_intvl2_clk > alarm_intvl1_clk) {
|
||||
/* Schedule for future event */
|
||||
arm_alarm(alarm_intvl2_clk - alarm_intvl1_clk);
|
||||
} else {
|
||||
/* Go off immediately for past event, including equal case */
|
||||
lp_ticker_fire_interrupt();
|
||||
}
|
||||
/* NOTE: When engine is clocked by low power clock source (LXT/LIRC), we need to wait for 3 engine clocks. */
|
||||
wait_us((NU_US_PER_SEC / NU_TMRCLK_PER_SEC) * 3);
|
||||
TIMER_Start(timer_base);
|
||||
}
|
||||
|
||||
void lp_ticker_disable_interrupt(void)
|
||||
{
|
||||
TIMER_DisableInt((TIMER_T *) NU_MODBASE(timer3_modinit.modname));
|
||||
TIMER_DisableInt((TIMER_T *) NU_MODBASE(TIMER_MODINIT.modname));
|
||||
}
|
||||
|
||||
void lp_ticker_clear_interrupt(void)
|
||||
{
|
||||
TIMER_ClearIntFlag((TIMER_T *) NU_MODBASE(timer3_modinit.modname));
|
||||
TIMER_ClearIntFlag((TIMER_T *) NU_MODBASE(TIMER_MODINIT.modname));
|
||||
}
|
||||
|
||||
void lp_ticker_fire_interrupt(void)
|
||||
{
|
||||
// NOTE: This event was in the past. Set the interrupt as pending, but don't process it here.
|
||||
// This prevents a recursive loop under heavy load which can lead to a stack overflow.
|
||||
NVIC_SetPendingIRQ(timer3_modinit.irq_n);
|
||||
}
|
||||
|
||||
static void tmr2_vec(void)
|
||||
{
|
||||
TIMER_ClearIntFlag((TIMER_T *) NU_MODBASE(timer2_modinit.modname));
|
||||
TIMER_ClearWakeupFlag((TIMER_T *) NU_MODBASE(timer2_modinit.modname));
|
||||
}
|
||||
|
||||
static void tmr3_vec(void)
|
||||
{
|
||||
TIMER_ClearIntFlag((TIMER_T *) NU_MODBASE(timer3_modinit.modname));
|
||||
TIMER_ClearWakeupFlag((TIMER_T *) NU_MODBASE(timer3_modinit.modname));
|
||||
|
||||
// NOTE: lp_ticker_set_interrupt() may get called in lp_ticker_irq_handler();
|
||||
lp_ticker_irq_handler();
|
||||
|
||||
}
|
||||
|
||||
static void arm_alarm(uint32_t cd_clk)
|
||||
{
|
||||
TIMER_T * timer3_base = (TIMER_T *) NU_MODBASE(timer3_modinit.modname);
|
||||
|
||||
// Reset 8-bit PSC counter, 24-bit up counter value and CNTEN bit
|
||||
timer3_base->CTL |= TIMER_CTL_RSTCNT_Msk;
|
||||
// One-shot mode, Clock = 1 KHz
|
||||
uint32_t clk_timer3 = TIMER_GetModuleClock((TIMER_T *) NU_MODBASE(timer3_modinit.modname));
|
||||
uint32_t prescale_timer3 = clk_timer3 / NU_TMRCLK_PER_SEC - 1;
|
||||
MBED_ASSERT((prescale_timer3 != (uint32_t) -1) && prescale_timer3 <= 127);
|
||||
MBED_ASSERT((clk_timer3 % NU_TMRCLK_PER_SEC) == 0);
|
||||
timer3_base->CTL &= ~(TIMER_CTL_OPMODE_Msk | TIMER_CTL_PSC_Msk | TIMER_CTL_CNTDATEN_Msk);
|
||||
timer3_base->CTL |= TIMER_ONESHOT_MODE | prescale_timer3 | TIMER_CTL_CNTDATEN_Msk;
|
||||
|
||||
/* NOTE: Because H/W timer requests min compare value, our implementation would have alarm delay of
|
||||
* (TMR_CMP_MIN - interval_clk) clocks when interval_clk is between [1, TMR_CMP_MIN). */
|
||||
uint32_t cmp_timer3 = cd_clk;
|
||||
cmp_timer3 = NU_CLAMP(cmp_timer3, TMR_CMP_MIN, TMR_CMP_MAX);
|
||||
timer3_base->CMP = cmp_timer3;
|
||||
|
||||
TIMER_EnableInt(timer3_base);
|
||||
TIMER_EnableWakeup((TIMER_T *) NU_MODBASE(timer3_modinit.modname));
|
||||
/* NOTE: When engine is clocked by low power clock source (LXT/LIRC), we need to wait for 3 engine clocks. */
|
||||
wait_us((NU_US_PER_SEC / NU_TMRCLK_PER_SEC) * 3);
|
||||
TIMER_Start(timer3_base);
|
||||
NVIC_SetPendingIRQ(TIMER_MODINIT.irq_n);
|
||||
}
|
||||
|
||||
const ticker_info_t* lp_ticker_get_info()
|
||||
|
@ -251,4 +146,13 @@ const ticker_info_t* lp_ticker_get_info()
|
|||
return &info;
|
||||
}
|
||||
|
||||
static void tmr1_vec(void)
|
||||
{
|
||||
TIMER_ClearIntFlag((TIMER_T *) NU_MODBASE(TIMER_MODINIT.modname));
|
||||
TIMER_ClearWakeupFlag((TIMER_T *) NU_MODBASE(TIMER_MODINIT.modname));
|
||||
|
||||
// NOTE: lp_ticker_set_interrupt() may get called in lp_ticker_irq_handler();
|
||||
lp_ticker_irq_handler();
|
||||
}
|
||||
|
||||
#endif
|
||||
|
|
|
@ -32,16 +32,12 @@
|
|||
#define NU_TMR_MAXCNT ((1 << NU_TMR_MAXCNT_BITSIZE) - 1)
|
||||
|
||||
static void tmr0_vec(void);
|
||||
static void tmr1_vec(void);
|
||||
/* Configure alarm exactly after scheduled clocks */
|
||||
static void arm_alarm(uint32_t cd_clk);
|
||||
|
||||
static const struct nu_modinit_s timer0_modinit = {TIMER_0, TMR0_MODULE, CLK_CLKSEL1_TMR0SEL_PCLK, 0, TMR0_RST, TMR0_IRQn, (void *) tmr0_vec};
|
||||
|
||||
#define TIMER_MODINIT timer0_modinit
|
||||
|
||||
static int ticker_inited = 0;
|
||||
static uint32_t ticker_last_read_clk = 0;
|
||||
|
||||
/* NOTE: TIMER_0 for normal counting and TIMER_1 for scheduled alarm. */
|
||||
static const struct nu_modinit_s timer0hires_modinit = {TIMER_0, TMR0_MODULE, CLK_CLKSEL1_TMR0SEL_PCLK, 0, TMR0_RST, TMR0_IRQn, (void *) tmr0_vec};
|
||||
static const struct nu_modinit_s timer1hires_modinit = {TIMER_1, TMR1_MODULE, CLK_CLKSEL1_TMR1SEL_PCLK, 0, TMR1_RST, TMR1_IRQn, (void *) tmr1_vec};
|
||||
|
||||
#define TMR_CMP_MIN 2
|
||||
#define TMR_CMP_MAX 0xFFFFFFu
|
||||
|
@ -53,37 +49,31 @@ void us_ticker_init(void)
|
|||
}
|
||||
ticker_inited = 1;
|
||||
|
||||
ticker_last_read_clk = 0;
|
||||
|
||||
// Reset IP
|
||||
SYS_ResetModule(timer0hires_modinit.rsetidx);
|
||||
SYS_ResetModule(timer1hires_modinit.rsetidx);
|
||||
SYS_ResetModule(TIMER_MODINIT.rsetidx);
|
||||
|
||||
// Select IP clock source
|
||||
CLK_SetModuleClock(timer0hires_modinit.clkidx, timer0hires_modinit.clksrc, timer0hires_modinit.clkdiv);
|
||||
CLK_SetModuleClock(timer1hires_modinit.clkidx, timer1hires_modinit.clksrc, timer1hires_modinit.clkdiv);
|
||||
CLK_SetModuleClock(TIMER_MODINIT.clkidx, TIMER_MODINIT.clksrc, TIMER_MODINIT.clkdiv);
|
||||
|
||||
// Enable IP clock
|
||||
CLK_EnableModuleClock(timer0hires_modinit.clkidx);
|
||||
CLK_EnableModuleClock(timer1hires_modinit.clkidx);
|
||||
CLK_EnableModuleClock(TIMER_MODINIT.clkidx);
|
||||
|
||||
// Timer for normal counter
|
||||
uint32_t clk_timer0 = TIMER_GetModuleClock((TIMER_T *) NU_MODBASE(timer0hires_modinit.modname));
|
||||
uint32_t prescale_timer0 = clk_timer0 / NU_TMRCLK_PER_SEC - 1;
|
||||
MBED_ASSERT((prescale_timer0 != (uint32_t) -1) && prescale_timer0 <= 127);
|
||||
MBED_ASSERT((clk_timer0 % NU_TMRCLK_PER_SEC) == 0);
|
||||
uint32_t cmp_timer0 = TMR_CMP_MAX;
|
||||
MBED_ASSERT(cmp_timer0 >= TMR_CMP_MIN && cmp_timer0 <= TMR_CMP_MAX);
|
||||
((TIMER_T *) NU_MODBASE(timer0hires_modinit.modname))->CTL = TIMER_PERIODIC_MODE | prescale_timer0 | TIMER_CTL_CNTDATEN_Msk;
|
||||
((TIMER_T *) NU_MODBASE(timer0hires_modinit.modname))->CMP = cmp_timer0;
|
||||
uint32_t clk_timer = TIMER_GetModuleClock((TIMER_T *) NU_MODBASE(TIMER_MODINIT.modname));
|
||||
uint32_t prescale_timer = clk_timer / NU_TMRCLK_PER_SEC - 1;
|
||||
MBED_ASSERT((prescale_timer != (uint32_t) -1) && prescale_timer <= 127);
|
||||
MBED_ASSERT((clk_timer % NU_TMRCLK_PER_SEC) == 0);
|
||||
uint32_t cmp_timer = TMR_CMP_MAX;
|
||||
MBED_ASSERT(cmp_timer >= TMR_CMP_MIN && cmp_timer <= TMR_CMP_MAX);
|
||||
((TIMER_T *) NU_MODBASE(TIMER_MODINIT.modname))->CTL = TIMER_CONTINUOUS_MODE | prescale_timer | TIMER_CTL_CNTDATEN_Msk;
|
||||
((TIMER_T *) NU_MODBASE(TIMER_MODINIT.modname))->CMP = cmp_timer;
|
||||
|
||||
NVIC_SetVector(timer0hires_modinit.irq_n, (uint32_t) timer0hires_modinit.var);
|
||||
NVIC_SetVector(timer1hires_modinit.irq_n, (uint32_t) timer1hires_modinit.var);
|
||||
NVIC_SetVector(TIMER_MODINIT.irq_n, (uint32_t) TIMER_MODINIT.var);
|
||||
|
||||
NVIC_EnableIRQ(timer0hires_modinit.irq_n);
|
||||
NVIC_EnableIRQ(timer1hires_modinit.irq_n);
|
||||
NVIC_EnableIRQ(TIMER_MODINIT.irq_n);
|
||||
|
||||
TIMER_EnableInt((TIMER_T *) NU_MODBASE(timer0hires_modinit.modname));
|
||||
TIMER_Start((TIMER_T *) NU_MODBASE(timer0hires_modinit.modname));
|
||||
TIMER_EnableInt((TIMER_T *) NU_MODBASE(TIMER_MODINIT.modname));
|
||||
TIMER_Start((TIMER_T *) NU_MODBASE(TIMER_MODINIT.modname));
|
||||
}
|
||||
|
||||
uint32_t us_ticker_read()
|
||||
|
@ -92,138 +82,45 @@ uint32_t us_ticker_read()
|
|||
us_ticker_init();
|
||||
}
|
||||
|
||||
TIMER_T * timer0_base = (TIMER_T *) NU_MODBASE(timer0hires_modinit.modname);
|
||||
TIMER_T * timer_base = (TIMER_T *) NU_MODBASE(TIMER_MODINIT.modname);
|
||||
|
||||
ticker_last_read_clk = TIMER_GetCounter(timer0_base);
|
||||
return (ticker_last_read_clk / NU_TMRCLK_PER_TICK);
|
||||
return (TIMER_GetCounter(timer_base) / NU_TMRCLK_PER_TICK);
|
||||
}
|
||||
|
||||
void us_ticker_set_interrupt(timestamp_t timestamp)
|
||||
{
|
||||
TIMER_Stop((TIMER_T *) NU_MODBASE(timer1hires_modinit.modname));
|
||||
/* In continuous mode, counter will be reset to zero with the following sequence:
|
||||
* 1. Stop counting
|
||||
* 2. Configure new CMP value
|
||||
* 3. Restart counting
|
||||
*
|
||||
* This behavior is not what we want. To fix it, we could configure new CMP value
|
||||
* without stopping counting first.
|
||||
*/
|
||||
TIMER_T * timer_base = (TIMER_T *) NU_MODBASE(TIMER_MODINIT.modname);
|
||||
|
||||
/* We need to get alarm interval from alarm timestamp `timestamp` to configure H/W timer.
|
||||
*
|
||||
* Because both `timestamp` and xx_ticker_read() would wrap around, we have difficulties in distinguishing
|
||||
* long future event and past event. To distinguish them, we need `tick_last_read` against which
|
||||
* `timestamp` is calculated out. In timeline, we would always have below after fixing wrap-around:
|
||||
* (1) tick_last_read <= present_clk
|
||||
* (2) tick_last_read <= alarm_ts_clk
|
||||
*
|
||||
*
|
||||
* 1. Future event case:
|
||||
*
|
||||
* tick_last_read present_clk alarm_ts_clk
|
||||
* | | |
|
||||
* --------------------------------------------------------
|
||||
* |-alarm_intvl1_clk-|
|
||||
* |-------------------alarm_intvl2_clk-------------------|
|
||||
*
|
||||
* 2. Past event case:
|
||||
*
|
||||
* tick_last_read alarm_ts_clk present_clk
|
||||
* | | |
|
||||
* --------------------------------------------------------
|
||||
* |-------------------alarm_intvl1_clk-------------------|
|
||||
* |-alarm_intvl2_clk-|
|
||||
*
|
||||
* Unfortunately, `tick_last_read` is not passed along the xx_ticker_set_interrupt() call. To solve it, we
|
||||
* assume that `tick_last_read` tick is exactly the one returned by the last xx_ticker_read() call before
|
||||
* xx_ticker_set_interrupt() is invoked. With this assumption, we can hold it via `xx_ticker_last_read_clk`
|
||||
* in xx_ticker_read().
|
||||
*/
|
||||
|
||||
/* ticker_last_read_clk will update in us_ticker_read(). Keep it beforehand. */
|
||||
uint32_t last_read_clk = ticker_last_read_clk;
|
||||
uint32_t present_clk = us_ticker_read() * NU_TMRCLK_PER_TICK;
|
||||
uint32_t alarm_ts_clk = timestamp * NU_TMRCLK_PER_TICK;
|
||||
uint32_t alarm_intvl1_clk, alarm_intvl2_clk;
|
||||
|
||||
/* alarm_intvl1_clk = present_clk - last_read_clk
|
||||
*
|
||||
* NOTE: Don't miss the `=` sign here. Otherwise, we would get the wrong result.
|
||||
*/
|
||||
if (present_clk >= last_read_clk) {
|
||||
alarm_intvl1_clk = present_clk - last_read_clk;
|
||||
} else {
|
||||
alarm_intvl1_clk = (uint32_t) (((uint64_t) NU_TMR_MAXCNT) + 1 + present_clk - last_read_clk);
|
||||
}
|
||||
|
||||
/* alarm_intvl2_clk = alarm_ts_clk - last_read_clk
|
||||
*
|
||||
* NOTE: Don't miss the `=` sign here. Otherwise, we would get the wrong result.
|
||||
*/
|
||||
if (alarm_ts_clk >= last_read_clk) {
|
||||
alarm_intvl2_clk = alarm_ts_clk - last_read_clk;
|
||||
} else {
|
||||
alarm_intvl2_clk = (uint32_t) (((uint64_t) NU_TMR_MAXCNT) + 1 + alarm_ts_clk - last_read_clk);
|
||||
}
|
||||
|
||||
/* Distinguish (long) future event and past event
|
||||
*
|
||||
* NOTE: No '=' sign here. Alarm should go off immediately in equal case.
|
||||
*/
|
||||
if (alarm_intvl2_clk > alarm_intvl1_clk) {
|
||||
/* Schedule for future event */
|
||||
arm_alarm(alarm_intvl2_clk - alarm_intvl1_clk);
|
||||
} else {
|
||||
/* Go off immediately for past event, including equal case */
|
||||
us_ticker_fire_interrupt();
|
||||
}
|
||||
/* NOTE: Because H/W timer requests min compare value, our implementation would have alarm delay of
|
||||
* (TMR_CMP_MIN - interval_clk) clocks when interval_clk is between [1, TMR_CMP_MIN). */
|
||||
uint32_t cmp_timer = timestamp * NU_TMRCLK_PER_TICK;
|
||||
cmp_timer = NU_CLAMP(cmp_timer, TMR_CMP_MIN, TMR_CMP_MAX);
|
||||
timer_base->CMP = cmp_timer;
|
||||
}
|
||||
|
||||
void us_ticker_disable_interrupt(void)
|
||||
{
|
||||
TIMER_DisableInt((TIMER_T *) NU_MODBASE(timer1hires_modinit.modname));
|
||||
TIMER_DisableInt((TIMER_T *) NU_MODBASE(TIMER_MODINIT.modname));
|
||||
}
|
||||
|
||||
void us_ticker_clear_interrupt(void)
|
||||
{
|
||||
TIMER_ClearIntFlag((TIMER_T *) NU_MODBASE(timer1hires_modinit.modname));
|
||||
TIMER_ClearIntFlag((TIMER_T *) NU_MODBASE(TIMER_MODINIT.modname));
|
||||
}
|
||||
|
||||
void us_ticker_fire_interrupt(void)
|
||||
{
|
||||
// NOTE: This event was in the past. Set the interrupt as pending, but don't process it here.
|
||||
// This prevents a recursive loop under heavy load which can lead to a stack overflow.
|
||||
NVIC_SetPendingIRQ(timer1hires_modinit.irq_n);
|
||||
}
|
||||
|
||||
static void tmr0_vec(void)
|
||||
{
|
||||
TIMER_ClearIntFlag((TIMER_T *) NU_MODBASE(timer0hires_modinit.modname));
|
||||
}
|
||||
|
||||
static void tmr1_vec(void)
|
||||
{
|
||||
TIMER_ClearIntFlag((TIMER_T *) NU_MODBASE(timer1hires_modinit.modname));
|
||||
|
||||
// NOTE: us_ticker_set_interrupt() may get called in us_ticker_irq_handler();
|
||||
us_ticker_irq_handler();
|
||||
}
|
||||
|
||||
static void arm_alarm(uint32_t cd_clk)
|
||||
{
|
||||
TIMER_T * timer1_base = (TIMER_T *) NU_MODBASE(timer1hires_modinit.modname);
|
||||
|
||||
// Reset 8-bit PSC counter, 24-bit up counter value and CNTEN bit
|
||||
timer1_base->CTL |= TIMER_CTL_RSTCNT_Msk;
|
||||
// One-shot mode, Clock = 1 MHz
|
||||
uint32_t clk_timer1 = TIMER_GetModuleClock((TIMER_T *) NU_MODBASE(timer1hires_modinit.modname));
|
||||
uint32_t prescale_timer1 = clk_timer1 / NU_TMRCLK_PER_SEC - 1;
|
||||
MBED_ASSERT((prescale_timer1 != (uint32_t) -1) && prescale_timer1 <= 127);
|
||||
MBED_ASSERT((clk_timer1 % NU_TMRCLK_PER_SEC) == 0);
|
||||
timer1_base->CTL &= ~(TIMER_CTL_OPMODE_Msk | TIMER_CTL_PSC_Msk | TIMER_CTL_CNTDATEN_Msk);
|
||||
timer1_base->CTL |= TIMER_ONESHOT_MODE | prescale_timer1 | TIMER_CTL_CNTDATEN_Msk;
|
||||
|
||||
/* NOTE: Because H/W timer requests min compare value, our implementation would have alarm delay of
|
||||
* (TMR_CMP_MIN - interval_clk) clocks when interval_clk is between [1, TMR_CMP_MIN). */
|
||||
uint32_t cmp_timer1 = cd_clk;
|
||||
cmp_timer1 = NU_CLAMP(cmp_timer1, TMR_CMP_MIN, TMR_CMP_MAX);
|
||||
timer1_base->CMP = cmp_timer1;
|
||||
|
||||
TIMER_EnableInt(timer1_base);
|
||||
TIMER_Start(timer1_base);
|
||||
NVIC_SetPendingIRQ(TIMER_MODINIT.irq_n);
|
||||
}
|
||||
|
||||
const ticker_info_t* us_ticker_get_info()
|
||||
|
@ -234,3 +131,11 @@ const ticker_info_t* us_ticker_get_info()
|
|||
};
|
||||
return &info;
|
||||
}
|
||||
|
||||
static void tmr0_vec(void)
|
||||
{
|
||||
TIMER_ClearIntFlag((TIMER_T *) NU_MODBASE(TIMER_MODINIT.modname));
|
||||
|
||||
// NOTE: us_ticker_set_interrupt() may get called in us_ticker_irq_handler();
|
||||
us_ticker_irq_handler();
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue