Add generic BlockDevice test for contiguous erase/write/read.

pull/8524/head
Jaakko Korhonen 2018-10-24 14:30:42 +03:00
parent b1904a5d65
commit ebef79a05c
1 changed files with 137 additions and 1 deletions

View File

@ -13,12 +13,16 @@
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef __STDC_FORMAT_MACROS
#define __STDC_FORMAT_MACROS //Required for PRIu64
#endif
#include "mbed.h"
#include "greentea-client/test_env.h"
#include "unity.h"
#include "utest.h"
#include "mbed_trace.h"
#include <inttypes.h>
#include <stdlib.h>
using namespace utest::v1;
@ -209,6 +213,137 @@ void test_multi_threads()
TEST_ASSERT_EQUAL(0, err);
}
void test_contiguous_erase_write_read()
{
utest_printf("\nTest Contiguous Erase/Program/Read Starts..\n");
// Test flow:
// 1. Erase whole test area
// - Tests contiguous erase
// 2. Write smaller memory area
// - Tests contiguous sector writes
// 3. Rerun step 2 for whole erase region
BlockDevice *block_device = BlockDevice::get_default_instance();
TEST_SKIP_UNLESS_MESSAGE(block_device != NULL, "\nno block device found.\n");
// Initialize BlockDevice
int err = block_device->init();
TEST_ASSERT_EQUAL(0, err);
// Test parameters
bd_size_t erase_size = block_device->get_erase_size();
TEST_ASSERT(erase_size > 0);
bd_size_t program_size = block_device->get_program_size();
TEST_ASSERT(program_size > 0);
utest_printf("\nerase_size=%d", erase_size);
utest_printf("\nprogram_size=%d", program_size);
utest_printf("\nblock_device->size()=%" PRId64, block_device->size());
// Determine write/read buffer size
// start write_read_buf_size from 1% block_device->size()
bd_size_t write_read_buf_size = block_device->size() / 100; // 1%, 10k=100, 100k=1k, 1MB=10k, 32MB=32k
// try to limit write_read_buf_size to 10k. If program_size*2 is larger than 10k, that will be used instead.
if (write_read_buf_size > 10000) {
write_read_buf_size = 10000;
}
// 2 program_size blocks is minimum for contiguous write/read test
if (write_read_buf_size < program_size*2) {
write_read_buf_size = program_size*2; // going over 10k
}
bd_size_t contiguous_write_read_blocks_per_region = write_read_buf_size / program_size; // 2 is minimum to test contiguous write
write_read_buf_size = contiguous_write_read_blocks_per_region * program_size;
utest_printf("\ncontiguous_write_read_blocks_per_region=%" PRIu64, contiguous_write_read_blocks_per_region);
utest_printf("\nwrite_read_buf_size=%" PRIu64, write_read_buf_size);
// Determine test region count
int contiguous_write_read_regions = TEST_BLOCK_COUNT;
utest_printf("\ncontiguous_write_read_regions=%d", contiguous_write_read_regions);
// Determine whole erase size
bd_size_t contiguous_erase_size = write_read_buf_size * contiguous_write_read_regions;
contiguous_erase_size -= contiguous_erase_size % erase_size; // aligned to erase_size
contiguous_erase_size += erase_size; // but larger than write/read size * regions
utest_printf("\ncontiguous_erase_size=%" PRIu64, contiguous_erase_size);
// Determine starting address
bd_addr_t start_address = rand(); // low 32 bytes
start_address += (uint64_t)rand() << 32; // high 32 bytes
start_address %= block_device->size() - contiguous_erase_size - erase_size; // fit all data + alignment reserve
start_address += erase_size; // add alignment reserve
start_address -= start_address % erase_size; // align with erase_block
bd_addr_t stop_address = start_address + write_read_buf_size * contiguous_write_read_regions;
utest_printf("\nstart_address=0x%016" PRIx64, start_address);
utest_printf("\nstop_address=0x%016" PRIx64, stop_address);
// Allocate write/read buffer
uint8_t *write_read_buf = (uint8_t*)malloc(write_read_buf_size);
if (write_read_buf == NULL) {
block_device->deinit();
TEST_SKIP_MESSAGE("\nnot enough memory for test");
}
utest_printf("\nwrite_read_buf_size=%" PRIu64 "", (uint64_t)write_read_buf_size);
// Pre-fill the to-be-erased region. By pre-filling the region,
// we can be sure the test will not pass if the erase doesn't work.
for (bd_size_t offset=0; start_address+offset < stop_address; offset+=write_read_buf_size) {
for (size_t i=0; i<write_read_buf_size; i++) {
write_read_buf[i] = (uint8_t)rand();
}
utest_printf("\npre-filling memory, from 0x%" PRIx64 " of size 0x%" PRIx64, start_address+offset, write_read_buf_size);
err = block_device->program((const void*)write_read_buf, start_address+offset, write_read_buf_size);
TEST_ASSERT_EQUAL(0, err);
}
// Erase the whole region first
utest_printf("\nerasing memory, from 0x%" PRIx64 " of size 0x%" PRIx64, start_address, contiguous_erase_size);
err = block_device->erase(start_address, contiguous_erase_size);
TEST_ASSERT_EQUAL(0, err);
// Loop through all write/read regions
int region = 0;
for (; start_address < stop_address; start_address+=write_read_buf_size) {
utest_printf("\n\nregion #%d start_address=0x%016" PRIx64, region++, start_address);
// Generate test data
unsigned int seed = rand();
utest_printf("\ngenerating test data, seed=%u", seed);
srand(seed);
for (size_t i=0; i<write_read_buf_size; i++) {
write_read_buf[i] = (uint8_t)rand();
}
// Write test data
utest_printf("\nwriting test data");
err = block_device->program((const void*)write_read_buf, start_address, write_read_buf_size);
TEST_ASSERT_EQUAL(0, err);
// Read test data
memset(write_read_buf, 0, (size_t)write_read_buf_size);
utest_printf("\nreading test data");
err = block_device->read(write_read_buf, start_address, write_read_buf_size);
TEST_ASSERT_EQUAL(0, err);
// Verify read data
utest_printf("\nverifying test data");
srand(seed);
for (size_t i=0; i<write_read_buf_size; i++) {
uint8_t expected_value = (uint8_t)rand();
if (write_read_buf[i] != expected_value) {
utest_printf("\ndata verify failed, write_read_buf[%d]=%" PRIu8 " and not %" PRIu8 "\n",
i, write_read_buf[i], expected_value);
}
TEST_ASSERT_EQUAL(write_read_buf[i], expected_value);
}
utest_printf("\nverify OK");
}
free(write_read_buf);
// BlockDevice deinitialization
err = block_device->deinit();
TEST_ASSERT_EQUAL(0, err);
}
// Test setup
utest::v1::status_t test_setup(const size_t number_of_cases)
@ -219,7 +354,8 @@ utest::v1::status_t test_setup(const size_t number_of_cases)
Case cases[] = {
Case("Testing read write random blocks", test_random_program_read_erase),
Case("Testing Multi Threads Erase Program Read", test_multi_threads)
Case("Testing Multi Threads Erase Program Read", test_multi_threads),
Case("Testing contiguous erase, write and read", test_contiguous_erase_write_read)
};
Specification specification(test_setup, cases);