pwmout - LPC176X - add read methods for period and pulsewidth

pull/13492/head
talorion 2020-08-25 23:45:26 +02:00 committed by Gregor Mayramhof
parent 7270f296d3
commit ea6e806a31
1 changed files with 50 additions and 31 deletions

View File

@ -29,12 +29,12 @@ static const PinMap PinMap_PWM[] = {
{P1_23, PWM_4, 2}, {P1_23, PWM_4, 2},
{P1_24, PWM_5, 2}, {P1_24, PWM_5, 2},
{P1_26, PWM_6, 2}, {P1_26, PWM_6, 2},
{P2_0 , PWM_1, 1}, {P2_0, PWM_1, 1},
{P2_1 , PWM_2, 1}, {P2_1, PWM_2, 1},
{P2_2 , PWM_3, 1}, {P2_2, PWM_3, 1},
{P2_3 , PWM_4, 1}, {P2_3, PWM_4, 1},
{P2_4 , PWM_5, 1}, {P2_4, PWM_5, 1},
{P2_5 , PWM_6, 1}, {P2_5, PWM_6, 1},
{P3_25, PWM_2, 3}, {P3_25, PWM_2, 3},
{P3_26, PWM_3, 3}, {P3_26, PWM_3, 3},
{NC, NC, 0} {NC, NC, 0}
@ -54,77 +54,84 @@ __IO uint32_t *PWM_MATCH[] = {
static unsigned int pwm_clock_mhz; static unsigned int pwm_clock_mhz;
void pwmout_init(pwmout_t* obj, PinName pin) { void pwmout_init(pwmout_t *obj, PinName pin)
{
// determine the channel // determine the channel
PWMName pwm = (PWMName)pinmap_peripheral(pin, PinMap_PWM); PWMName pwm = (PWMName)pinmap_peripheral(pin, PinMap_PWM);
MBED_ASSERT(pwm != (PWMName)NC); MBED_ASSERT(pwm != (PWMName)NC);
obj->pwm = pwm; obj->pwm = pwm;
obj->MR = PWM_MATCH[pwm]; obj->MR = PWM_MATCH[pwm];
// ensure the power is on // ensure the power is on
LPC_SC->PCONP |= 1 << 6; LPC_SC->PCONP |= 1 << 6;
// ensure clock to /4 // ensure clock to /4
LPC_SC->PCLKSEL0 &= ~(0x3 << 12); // pclk = /4 LPC_SC->PCLKSEL0 &= ~(0x3 << 12); // pclk = /4
LPC_PWM1->PR = 0; // no pre-scale LPC_PWM1->PR = 0; // no pre-scale
// ensure single PWM mode // ensure single PWM mode
LPC_PWM1->MCR = 1 << 1; // reset TC on match 0 LPC_PWM1->MCR = 1 << 1; // reset TC on match 0
// enable the specific PWM output // enable the specific PWM output
LPC_PWM1->PCR |= 1 << (8 + pwm); LPC_PWM1->PCR |= 1 << (8 + pwm);
pwm_clock_mhz = SystemCoreClock / 4000000; pwm_clock_mhz = SystemCoreClock / 4000000;
// default to 20ms: standard for servos, and fine for e.g. brightness control // default to 20ms: standard for servos, and fine for e.g. brightness control
pwmout_period_ms(obj, 20); pwmout_period_ms(obj, 20);
pwmout_write (obj, 0); pwmout_write(obj, 0);
// Wire pinout // Wire pinout
pinmap_pinout(pin, PinMap_PWM); pinmap_pinout(pin, PinMap_PWM);
} }
void pwmout_free(pwmout_t* obj) { void pwmout_free(pwmout_t *obj)
{
// [TODO] // [TODO]
} }
void pwmout_write(pwmout_t* obj, float value) { void pwmout_write(pwmout_t *obj, float value)
{
if (value < 0.0f) { if (value < 0.0f) {
value = 0.0; value = 0.0;
} else if (value > 1.0f) { } else if (value > 1.0f) {
value = 1.0; value = 1.0;
} }
// set channel match to percentage // set channel match to percentage
uint32_t v = (uint32_t)((float)(LPC_PWM1->MR0) * value); uint32_t v = (uint32_t)((float)(LPC_PWM1->MR0) * value);
// workaround for PWM1[1] - Never make it equal MR0, else we get 1 cycle dropout // workaround for PWM1[1] - Never make it equal MR0, else we get 1 cycle dropout
if (v == LPC_PWM1->MR0) { if (v == LPC_PWM1->MR0) {
v++; v++;
} }
*obj->MR = v; *obj->MR = v;
// accept on next period start // accept on next period start
LPC_PWM1->LER |= 1 << obj->pwm; LPC_PWM1->LER |= 1 << obj->pwm;
} }
float pwmout_read(pwmout_t* obj) { float pwmout_read(pwmout_t *obj)
{
float v = (float)(*obj->MR) / (float)(LPC_PWM1->MR0); float v = (float)(*obj->MR) / (float)(LPC_PWM1->MR0);
return (v > 1.0f) ? (1.0f) : (v); return (v > 1.0f) ? (1.0f) : (v);
} }
void pwmout_period(pwmout_t* obj, float seconds) { void pwmout_period(pwmout_t *obj, float seconds)
{
pwmout_period_us(obj, seconds * 1000000.0f); pwmout_period_us(obj, seconds * 1000000.0f);
} }
void pwmout_period_ms(pwmout_t* obj, int ms) { void pwmout_period_ms(pwmout_t *obj, int ms)
{
pwmout_period_us(obj, ms * 1000); pwmout_period_us(obj, ms * 1000);
} }
// Set the PWM period, keeping the duty cycle the same. // Set the PWM period, keeping the duty cycle the same.
void pwmout_period_us(pwmout_t* obj, int us) { void pwmout_period_us(pwmout_t *obj, int us)
{
// calculate number of ticks // calculate number of ticks
uint32_t ticks = pwm_clock_mhz * us; uint32_t ticks = pwm_clock_mhz * us;
@ -146,30 +153,42 @@ void pwmout_period_us(pwmout_t* obj, int us) {
LPC_PWM1->TCR = TCR_CNT_EN | TCR_PWM_EN; LPC_PWM1->TCR = TCR_CNT_EN | TCR_PWM_EN;
} }
void pwmout_pulsewidth(pwmout_t* obj, float seconds) { int pwmout_read_period_us(pwmout_t *obj)
{
return (float)(LPC_PWM1->MR0);
}
void pwmout_pulsewidth(pwmout_t *obj, float seconds)
{
pwmout_pulsewidth_us(obj, seconds * 1000000.0f); pwmout_pulsewidth_us(obj, seconds * 1000000.0f);
} }
void pwmout_pulsewidth_ms(pwmout_t* obj, int ms) { void pwmout_pulsewidth_ms(pwmout_t *obj, int ms)
{
pwmout_pulsewidth_us(obj, ms * 1000); pwmout_pulsewidth_us(obj, ms * 1000);
} }
void pwmout_pulsewidth_us(pwmout_t* obj, int us) { void pwmout_pulsewidth_us(pwmout_t *obj, int us)
{
// calculate number of ticks // calculate number of ticks
uint32_t v = pwm_clock_mhz * us; uint32_t v = pwm_clock_mhz * us;
// workaround for PWM1[1] - Never make it equal MR0, else we get 1 cycle dropout // workaround for PWM1[1] - Never make it equal MR0, else we get 1 cycle dropout
if (v == LPC_PWM1->MR0) { if (v == LPC_PWM1->MR0) {
v++; v++;
} }
// set the match register value // set the match register value
*obj->MR = v; *obj->MR = v;
// set the channel latch to update value at next period start // set the channel latch to update value at next period start
LPC_PWM1->LER |= 1 << obj->pwm; LPC_PWM1->LER |= 1 << obj->pwm;
} }
int pwmout_read_pulsewidth_us(pwmout_t *obj {
return (timer->MR3 - timer->MR[tid.mr]);
}
const PinMap *pwmout_pinmap() const PinMap *pwmout_pinmap()
{ {
return PinMap_PWM; return PinMap_PWM;