Sync with STM S2LP RF driver v0.0.1

Sync with v0.0.1 in master repository.
pull/9828/head
Arto Kinnunen 2019-02-25 09:49:08 +02:00
parent 2c78427932
commit e8225fbd7c
4 changed files with 132 additions and 40 deletions

View File

@ -206,15 +206,24 @@ static uint16_t tx_sequence = 0xffff;
static uint32_t tx_time = 0;
static uint32_t rx_time = 0;
static uint32_t tx_finnish_time = 0;
static uint32_t symbols_in_seconds;
static uint32_t rf_symbol_rate;
static bool cca_enabled = true;
static uint8_t s2lp_PAN_ID[2] = {0xff, 0xff};
static uint8_t s2lp_short_address[2];
static uint8_t s2lp_MAC[8];
static rf_mode_e rf_mode = RF_MODE_NORMAL;
static bool rf_update_config = false;
/* Channel configurations for sub-GHz */
static const phy_rf_channel_configuration_s phy_subghz = {868300000U, 500000U, 250000U, 11U, M_UNDEFINED};
static phy_rf_channel_configuration_s phy_subghz = {
.channel_0_center_frequency = 868300000U,
.channel_spacing = 500000U,
.datarate = 250000U,
.number_of_channels = 11U,
.modulation = M_2FSK,
.modulation_index = MODULATION_INDEX_UNDEFINED
};
static const phy_device_channel_page_s phy_channel_pages[] = {
{ CHANNEL_PAGE_2, &phy_subghz},
@ -236,8 +245,8 @@ static void rf_irq_task_process_irq();
#define ACK_FRAME_LENGTH 3
// Give some additional time for processing, PHY headers, CRC etc.
#define PACKET_SENDING_EXTRA_TIME 10000
#define MAX_PACKET_SENDING_TIME (uint32_t)(8000000/phy_subghz.datarate)*RF_MTU + PACKET_SENDING_EXTRA_TIME
#define PACKET_SENDING_EXTRA_TIME 5000
#define MAX_PACKET_SENDING_TIME (uint32_t)(8000000/phy_subghz.datarate)*FIFO_SIZE + PACKET_SENDING_EXTRA_TIME
#define ACK_SENDING_TIME (uint32_t)(8000000/phy_subghz.datarate)*ACK_FRAME_LENGTH + PACKET_SENDING_EXTRA_TIME
#ifdef TEST_GPIOS_ENABLED
@ -259,11 +268,11 @@ void test2_toggle(void)
}
#endif //TEST_GPIOS_ENABLED
static void rf_calculate_symbols_in_seconds(uint32_t baudrate, phy_modulation_e modulation)
static void rf_calculate_symbol_rate(uint32_t baudrate, phy_modulation_e modulation)
{
(void) modulation;
uint8_t bits_in_symbols = 1;
symbols_in_seconds = baudrate / bits_in_symbols;
rf_symbol_rate = baudrate / bits_in_symbols;
}
static uint32_t rf_get_timestamp(void)
@ -419,12 +428,13 @@ static void rf_state_change(s2lp_states_e state, bool lock_mode_tx)
rf_poll_state_change(state);
}
static uint8_t rf_write_tx_fifo(uint8_t *ptr, uint16_t length, uint8_t max_write)
static uint8_t rf_write_tx_fifo(uint8_t *ptr, uint16_t length)
{
uint8_t free_bytes_in_fifo = FIFO_SIZE - rf_read_register(TX_FIFO_STATUS);
const uint8_t spi_header[SPI_HEADER_LENGTH] = {SPI_WR_REG, TX_FIFO};
uint8_t written_length = length;
if (length > max_write) {
written_length = max_write;
if (length > free_bytes_in_fifo) {
written_length = free_bytes_in_fifo;
}
CS_SELECT();
rf_spi_exchange(spi_header, SPI_HEADER_LENGTH, NULL, 0);
@ -463,15 +473,18 @@ static uint32_t read_irq_status(void)
return (((uint32_t)rx[2] << 24) | ((uint32_t)rx[3] << 16) | ((uint32_t)rx[4] << 8) | rx[5]);
}
static void rf_init_registers(void)
static void rf_set_channel_configuration_registers(void)
{
rf_write_register_field(PCKTCTRL3, PCKT_FORMAT_FIELD, PCKT_FORMAT_802_15_4);
// Set deviation
uint32_t deviation = rf_conf_calculate_deviation(phy_subghz.modulation_index, phy_subghz.datarate);
if (!deviation) {
deviation = DEFAULT_DEVIATION;
}
uint8_t fdev_m, fdev_e;
rf_conf_calculate_deviation_registers(DEVIATION, &fdev_m, &fdev_e);
rf_conf_calculate_deviation_registers(deviation, &fdev_m, &fdev_e);
rf_write_register(MOD0, fdev_m);
rf_write_register_field(MOD1, FDEV_E_FIELD, fdev_e);
rf_write_register_field(MOD2, MOD_TYPE_FIELD, MOD_2FSK);
// Set datarate
uint16_t datarate_m;
uint8_t datarate_e;
@ -479,12 +492,11 @@ static void rf_init_registers(void)
rf_write_register_field(MOD2, DATARATE_E_FIELD, datarate_e);
rf_write_register(MOD3, (uint8_t)datarate_m);
rf_write_register(MOD4, datarate_m >> 8);
// Set RX filter bandwidth
// Set RX filter bandwidth, using channel spacing as RX filter bandwidth
uint8_t chflt_m, chflt_e;
rf_conf_calculate_rx_filter_bandwidth_registers(RX_FILTER_BANDWIDTH, &chflt_m, &chflt_e);
rf_conf_calculate_rx_filter_bandwidth_registers(phy_subghz.channel_spacing, &chflt_m, &chflt_e);
rf_write_register_field(CHFLT, CHFLT_M_FIELD, chflt_m << 4);
rf_write_register_field(CHFLT, CHFLT_E_FIELD, chflt_e);
rf_write_register(PCKT_FLT_OPTIONS, 0);
// Set base frequency (Channel 0 center frequency)
uint8_t synt3, synt2, synt1, synt0;
rf_conf_calculate_base_frequency_registers(phy_subghz.channel_0_center_frequency, &synt3, &synt2, &synt1, &synt0);
@ -500,6 +512,19 @@ static void rf_init_registers(void)
rf_channel_multiplier++;
}
rf_write_register(CHSPACE, ch_space);
tr_info("RF config update:");
tr_info("Frequency(ch0): %luHz", phy_subghz.channel_0_center_frequency);
tr_info("Channel spacing: %luHz", phy_subghz.channel_spacing);
tr_info("Datarate: %lubps", phy_subghz.datarate);
tr_info("Deviation: %luHz", deviation);
tr_info("RX BW M: %u, E: %u", chflt_m, chflt_e);
}
static void rf_init_registers(void)
{
rf_write_register_field(PCKTCTRL3, PCKT_FORMAT_FIELD, PCKT_FORMAT_802_15_4);
rf_write_register_field(MOD2, MOD_TYPE_FIELD, MOD_2FSK);
rf_write_register(PCKT_FLT_OPTIONS, 0);
rf_write_register_field(PCKTCTRL1, PCKT_CRCMODE_FIELD, PCKT_CRCMODE_0X1021);
rf_write_register_field(PCKTCTRL1, PCKT_TXSOURCE_FIELD, PCKT_TXSOURCE_NORMAL);
rf_write_register_field(PCKTCTRL1, PCKT_WHITENING_FIELD, PCKT_WHITENING_ENABLED);
@ -515,6 +540,7 @@ static void rf_init_registers(void)
uint8_t rssi_th;
rf_conf_calculate_rssi_threshold_registers(RSSI_THRESHOLD, &rssi_th);
rf_write_register(RSSI_TH, rssi_th);
rf_set_channel_configuration_registers();
}
static int8_t rf_address_write(phy_address_type_e address_type, uint8_t *address_ptr)
@ -544,6 +570,7 @@ static int8_t rf_extension(phy_extension_type_e extension_type, uint8_t *data_pt
{
int8_t retval = 0;
phy_csma_params_t *csma_params;
phy_rf_channel_configuration_s *channel_params;
uint32_t *timer_value;
switch (extension_type) {
case PHY_EXTENSION_SET_CHANNEL:
@ -602,9 +629,22 @@ static int8_t rf_extension(phy_extension_type_e extension_type, uint8_t *data_pt
case PHY_EXTENSION_GET_SYMBOLS_PER_SECOND:
timer_value = (uint32_t *)data_ptr;
*timer_value = symbols_in_seconds;
*timer_value = rf_symbol_rate;
break;
case PHY_EXTENSION_SET_RF_CONFIGURATION:
channel_params = (phy_rf_channel_configuration_s *)data_ptr;
phy_subghz.datarate = channel_params->datarate;
phy_subghz.channel_spacing = channel_params->channel_spacing;
phy_subghz.channel_0_center_frequency = channel_params->channel_0_center_frequency;
phy_subghz.number_of_channels = channel_params->number_of_channels;
phy_subghz.modulation = channel_params->modulation;
phy_subghz.modulation_index = channel_params->modulation_index;
rf_calculate_symbol_rate(phy_subghz.datarate, phy_subghz.modulation);
rf_update_config = true;
if (rf_state == RF_IDLE) {
rf_receive(rf_rx_channel);
}
break;
default:
break;
}
@ -660,28 +700,30 @@ static void rf_tx_sent_handler(void)
static void rf_tx_threshold_handler(void)
{
rf_backup_timer_stop();
rf_disable_interrupt(TX_FIFO_ALMOST_EMPTY);
// TODO check the FIFO threshold. By default, threshold is half of the FIFO size
uint8_t written_length = rf_write_tx_fifo(tx_data_ptr, tx_data_length, FIFO_SIZE / 2);
uint8_t written_length = rf_write_tx_fifo(tx_data_ptr, tx_data_length);
if (written_length < tx_data_length) {
tx_data_ptr += written_length;
tx_data_length -= written_length;
rf_enable_interrupt(TX_FIFO_ALMOST_EMPTY);
}
rf_backup_timer_start(MAX_PACKET_SENDING_TIME);
}
static void rf_start_tx(void)
{
rf_send_command(S2LP_CMD_SABORT);
rf_disable_all_interrupts();
rf_poll_state_change(S2LP_STATE_READY);
rf_state_change(S2LP_STATE_TX, false);
// More TX data to be written in FIFO when TX threshold interrupt occurs
if (tx_data_ptr) {
rf_enable_interrupt(TX_FIFO_ALMOST_EMPTY);
}
rf_enable_interrupt(TX_DATA_SENT);
rf_enable_interrupt(TX_FIFO_UNF_OVF);
rf_state_change(S2LP_STATE_READY, false);
rf_state_change(S2LP_STATE_LOCK, true);
rf_state_change(S2LP_STATE_TX, false);
rf_backup_timer_start(MAX_PACKET_SENDING_TIME);
}
@ -694,7 +736,7 @@ static void rf_cca_timer_interrupt(void)
rf_state = RF_IDLE;
return;
}
if ((cca_enabled == true) && (rf_read_register(LINK_QUALIF1) & CARRIER_SENSE || (rf_state != RF_CSMA_STARTED && rf_state != RF_IDLE))) {
if ((cca_enabled == true) && ((rf_state != RF_CSMA_STARTED && rf_state != RF_IDLE) || (read_irq_status() & (1 << SYNC_WORD)) || (rf_read_register(LINK_QUALIF1) & CARRIER_SENSE))) {
if (rf_state == RF_CSMA_STARTED) {
rf_state = RF_IDLE;
}
@ -765,7 +807,7 @@ static int8_t rf_start_cca(uint8_t *data_ptr, uint16_t data_length, uint8_t tx_h
return -1;
}
rf_state = RF_CSMA_STARTED;
uint8_t written_length = rf_write_tx_fifo(data_ptr, data_length, FIFO_SIZE);
uint8_t written_length = rf_write_tx_fifo(data_ptr, data_length);
if (written_length < data_length) {
tx_data_ptr = data_ptr + written_length;
tx_data_length = data_length - written_length;
@ -789,7 +831,8 @@ static int8_t rf_start_cca(uint8_t *data_ptr, uint16_t data_length, uint8_t tx_h
return 0;
}
}
rf_cca_timer_interrupt();
// Short timeout to start CCA immediately.
rf_cca_timer_start(1);
rf_unlock();
return 0;
}
@ -805,7 +848,7 @@ static void rf_send_ack(uint8_t seq)
}
rf_state = RF_TX_ACK;
uint8_t ack_frame[3] = {MAC_TYPE_ACK, 0, seq};
rf_write_tx_fifo(ack_frame, sizeof(ack_frame), FIFO_SIZE);
rf_write_tx_fifo(ack_frame, sizeof(ack_frame));
rf_write_packet_length(sizeof(ack_frame) + 4);
tx_data_ptr = NULL;
rf_start_tx();
@ -841,11 +884,11 @@ static void rf_rx_ready_handler(void)
}
rx_data_length += rx_read_length;
if (rf_mode != RF_MODE_SNIFFER) {
rf_state = RF_IDLE;
uint8_t version = ((rx_buffer[1] & VERSION_FIELD_MASK) >> SHIFT_VERSION_FIELD);
if (((rx_buffer[0] & MAC_FRAME_TYPE_MASK) == MAC_TYPE_ACK) && (version < MAC_FRAME_VERSION_2)) {
rf_handle_ack(rx_buffer[2], rx_buffer[0] & MAC_DATA_PENDING);
} else if (rf_rx_filter(rx_buffer, s2lp_MAC, s2lp_short_address, s2lp_PAN_ID)) {
rf_state = RF_IDLE;
int8_t rssi = (rf_read_register(RSSI_LEVEL) - RSSI_OFFSET);
if (device_driver.phy_rx_cb) {
device_driver.phy_rx_cb(rx_buffer, rx_data_length, 0xf0, rssi, rf_radio_driver_id);
@ -869,12 +912,14 @@ static void rf_rx_ready_handler(void)
static void rf_rx_threshold_handler(void)
{
rf_backup_timer_stop();
int rx_read_length = rf_read_rx_fifo(rx_data_length, rf_read_register(RX_FIFO_STATUS));
if (rx_read_length < 0) {
rf_receive(rf_rx_channel);
return;
}
rx_data_length += rx_read_length;
rf_backup_timer_start(MAX_PACKET_SENDING_TIME);
}
static void rf_sync_detected_handler(void)
@ -896,6 +941,10 @@ static void rf_receive(uint8_t rx_channel)
rf_state_change(S2LP_STATE_READY, false);
rf_send_command(S2LP_CMD_FLUSHRXFIFO);
rf_poll_state_change(S2LP_STATE_READY);
if (rf_update_config == true) {
rf_update_config = false;
rf_set_channel_configuration_registers();
}
if (rx_channel != rf_rx_channel) {
rf_write_register(CHNUM, rx_channel * rf_channel_multiplier);
rf_rx_channel = rf_new_channel = rx_channel;
@ -953,9 +1002,10 @@ static void rf_interrupt_handler(void)
}
}
if ((irq_status & (1 << TX_FIFO_UNF_OVF)) && (enabled_interrupts & (1 << TX_FIFO_UNF_OVF))) {
rf_backup_timer_stop();
tx_finnish_time = rf_get_timestamp();
TEST_TX_DONE
device_driver.phy_tx_done_cb(rf_radio_driver_id, mac_tx_handle, PHY_LINK_TX_FAIL, 1, 0);
device_driver.phy_tx_done_cb(rf_radio_driver_id, mac_tx_handle, PHY_LINK_CCA_FAIL, 1, 0);
rf_send_command(S2LP_CMD_SABORT);
rf_poll_state_change(S2LP_STATE_READY);
rf_send_command(S2LP_CMD_FLUSHTXFIFO);
@ -963,7 +1013,7 @@ static void rf_interrupt_handler(void)
rf_state = RF_IDLE;
rf_receive(rf_rx_channel);
}
if (rf_state == RF_IDLE || rf_state == RF_TX_STARTED) {
if (rf_state == RF_IDLE || rf_state == RF_CSMA_STARTED || rf_state == RF_TX_STARTED) {
if ((irq_status & (1 << SYNC_WORD)) && (enabled_interrupts & (1 << SYNC_WORD))) {
rf_sync_detected_handler();
}
@ -972,6 +1022,8 @@ static void rf_interrupt_handler(void)
if (!(irq_status & (1 << CRC_ERROR))) {
rf_rx_ready_handler();
} else {
TEST_RX_DONE
rf_backup_timer_stop();
rf_state = RF_IDLE;
// In case the channel change was called during reception, driver is responsible to change the channel if CRC failed.
rf_receive(rf_new_channel);
@ -1006,8 +1058,7 @@ static void rf_reset(void)
wait_ms(10);
// Wake up
rf->SDN = 0;
// Wait until GPIO0 (RESETN) goes high
while (rf->RF_S2LP_GPIO0 == 0);
wait_ms(10);
}
static void rf_init(void)
@ -1019,15 +1070,9 @@ static void rf_init(void)
rf_reset();
rf->spi.frequency(10000000);
CS_RELEASE();
if (PARTNUM != rf_read_register(DEVICE_INFO1)) {
tr_err("Invalid part number: %x", rf_read_register(DEVICE_INFO1));
}
if (VERSION != rf_read_register(DEVICE_INFO0)) {
tr_err("Invalid version: %x", rf_read_register(DEVICE_INFO0));
}
rf_init_registers();
rf_enable_gpio_interrupt();
rf_calculate_symbols_in_seconds(phy_subghz.datarate, phy_subghz.modulation);
rf_calculate_symbol_rate(phy_subghz.datarate, phy_subghz.modulation);
rf->tx_timer.start();
rf_print_registers();
}
@ -1071,12 +1116,31 @@ static void rf_device_unregister()
void NanostackRfPhys2lp::get_mac_address(uint8_t *mac)
{
rf_lock();
if (NULL == rf) {
error("NanostackRfPhys2lp Must be registered to read mac address");
rf_unlock();
return;
}
memcpy((void*)mac, (void*)_mac_addr, sizeof(_mac_addr));
rf_unlock();
}
void NanostackRfPhys2lp::set_mac_address(uint8_t *mac)
{
rf_lock();
if (NULL != rf) {
error("NanostackRfPhys2lp cannot change mac address when running");
rf_unlock();
return;
}
memcpy((void*)_mac_addr, (void*)mac, sizeof(_mac_addr));
_mac_set = true;
rf_unlock();
}
int8_t NanostackRfPhys2lp::rf_register()

View File

@ -13,9 +13,10 @@
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "nanostack/platform/arm_hal_phy.h"
#include "rf_configuration.h"
// Note that F_XO and F_DIG depends on the used clock frequency
#define F_XO 50000000
#define F_DIG 25000000
@ -95,6 +96,17 @@ int rf_conf_calculate_channel_spacing_registers(uint32_t channel_spacing, uint8_
* When accurate chflt_m and chflt_e settings are needed they must be computed manually.
* Function uses undefined values (900000, 852000, ...)
* to find the chflt_m and chflt_e settings from the RX filter table (see. S2-LP datasheet).
*
* E=0 E=1 E=2 E=3 E=4 E=5 E=6 E=7 E=8 E=9
* M=0 800.1 450.9 224.7 112.3 56.1 28.0 14.0 7.0 3.5 1.8
* M=1 795.1 425.9 212.4 106.2 53.0 26.5 13.3 6.6 3.3 1.7
* M=2 768.4 403.2 201.1 100.5 50.2 25.1 12.6 6.3 3.1 1.6
* M=3 736.8 380.8 190.0 95.0 47.4 23.7 11.9 5.9 3.0 1.5
* M=4 705.1 362.1 180.7 90.3 45.1 22.6 11.3 5.6 2.8 1.4
* M=5 670.9 341.7 170.6 85.3 42.6 21.3 10.6 5.3 2.7 1.3
* M=6 642.3 325.4 162.4 81.2 40.6 20.3 10.1 5.1 2.5 1.3
* M=7 586.7 294.5 147.1 73.5 36.7 18.4 9.2 4.6 2.3 1.2
* M=8 541.4 270.3 135.0 67.5 33.7 16.9 8.4 4.2 2.1 1.1
*/
void rf_conf_calculate_rx_filter_bandwidth_registers(uint32_t rx_bandwidth, uint8_t *chflt_m, uint8_t *chflt_e)
{
@ -140,3 +152,18 @@ void rf_conf_calculate_rssi_threshold_registers(int16_t rssi_threshold, uint8_t
{
*rssi_th = rssi_threshold + RSSI_OFFSET;
}
/*
* Function calculates deviation from given parameters for 2FSK and 2GFSK modulations.
* Calculated using formula Deviation=(modulation_index*datarate)/2
*/
uint32_t rf_conf_calculate_deviation(phy_modulation_index_e modulation_index, uint32_t datarate)
{
uint32_t deviation = 0;
if (modulation_index == MODULATION_INDEX_0_5) {
deviation = datarate/4;
} else if (modulation_index == MODULATION_INDEX_1_0) {
deviation = datarate/2;
}
return deviation;
}

View File

@ -31,6 +31,7 @@ void rf_conf_calculate_deviation_registers(uint32_t deviation, uint8_t *fdev_m,
int rf_conf_calculate_channel_spacing_registers(uint32_t channel_spacing, uint8_t *ch_space);
void rf_conf_calculate_rx_filter_bandwidth_registers(uint32_t rx_bandwidth, uint8_t *chflt_m, uint8_t *chflt_e);
void rf_conf_calculate_rssi_threshold_registers(int16_t rssi_threshold, uint8_t *rssi_th);
uint32_t rf_conf_calculate_deviation(phy_modulation_index_e modulation_index, uint32_t datarate);
#ifdef __cplusplus
}

View File

@ -226,7 +226,7 @@ extern "C" {
#define SFD0 0x90
#define SFD1 0x4e
#define DEVIATION 125000
#define DEFAULT_DEVIATION 125000
#define RX_FILTER_BANDWIDTH 540000
#define RSSI_THRESHOLD -60