mirror of https://github.com/ARMmbed/mbed-os.git
MCUXpresso: Update the Kinetis Serial driver for MBED_TICKLESS
We should not block in case the UART is busy transmitting. The API has been updated to check the status of all UART's and return 1 in case any of them is busy transmitting. Signed-off-by: Mahesh Mahadevan <mahesh.mahadevan@nxp.com>pull/11412/head
parent
6eca8d2e2e
commit
e65012e549
|
@ -37,7 +37,6 @@ static UART_Type *const uart_addrs[] = UART_BASE_PTRS;
|
|||
/* Array of UART bus clock frequencies */
|
||||
static clock_name_t const uart_clocks[] = UART_CLOCK_FREQS;
|
||||
|
||||
|
||||
int stdio_uart_inited = 0;
|
||||
serial_t stdio_uart;
|
||||
|
||||
|
@ -340,14 +339,55 @@ const PinMap *serial_rts_pinmap()
|
|||
return PinMap_UART_RTS;
|
||||
}
|
||||
|
||||
void serial_wait_tx_complete(uint32_t uart_index)
|
||||
static int serial_is_enabled(uint32_t uart_index)
|
||||
{
|
||||
UART_Type *base = uart_addrs[uart_index];
|
||||
|
||||
/* Wait till data is flushed out of transmit buffer */
|
||||
while (!(kUART_TransmissionCompleteFlag & UART_GetStatusFlags((UART_Type *)base)))
|
||||
{
|
||||
int clock_enabled = 0;
|
||||
switch (uart_index) {
|
||||
case 0:
|
||||
clock_enabled = (SIM->SCGC4 & SIM_SCGC4_UART0_MASK) >> SIM_SCGC4_UART0_SHIFT;
|
||||
break;
|
||||
case 1:
|
||||
clock_enabled = (SIM->SCGC4 & SIM_SCGC4_UART1_MASK) >> SIM_SCGC4_UART1_SHIFT;
|
||||
break;
|
||||
case 2:
|
||||
clock_enabled = (SIM->SCGC4 & SIM_SCGC4_UART2_MASK) >> SIM_SCGC4_UART2_SHIFT;
|
||||
break;
|
||||
case 3:
|
||||
clock_enabled = (SIM->SCGC4 & SIM_SCGC4_UART3_MASK) >> SIM_SCGC4_UART3_SHIFT;
|
||||
break;
|
||||
case 4:
|
||||
clock_enabled = (SIM->SCGC1 & SIM_SCGC1_UART4_MASK) >> SIM_SCGC1_UART4_SHIFT;
|
||||
break;
|
||||
default:
|
||||
break;
|
||||
}
|
||||
|
||||
return clock_enabled;
|
||||
}
|
||||
|
||||
bool serial_check_tx_ongoing()
|
||||
{
|
||||
UART_Type *base;
|
||||
int i;
|
||||
bool uart_tx_ongoing = false;
|
||||
|
||||
for (i = 0; i < FSL_FEATURE_SOC_UART_COUNT; i++) {
|
||||
/* First check if UART is enabled */
|
||||
if (!serial_is_enabled(i)) {
|
||||
/* UART is not enabled, check the next instance */
|
||||
continue;
|
||||
}
|
||||
|
||||
base = uart_addrs[i];
|
||||
|
||||
/* Check if data is waiting to be written out of transmit buffer */
|
||||
if (!(kUART_TransmissionCompleteFlag & UART_GetStatusFlags((UART_Type *)base))) {
|
||||
uart_tx_ongoing = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
return uart_tx_ongoing;
|
||||
}
|
||||
|
||||
#endif
|
||||
|
|
|
@ -332,14 +332,55 @@ const PinMap *serial_rts_pinmap()
|
|||
return PinMap_UART_RTS;
|
||||
}
|
||||
|
||||
void serial_wait_tx_complete(uint32_t uart_index)
|
||||
static int serial_is_enabled(uint32_t uart_index)
|
||||
{
|
||||
LPUART_Type *base = uart_addrs[uart_index];
|
||||
|
||||
/* Wait till data is flushed out of transmit buffer */
|
||||
while (!(kLPUART_TransmissionCompleteFlag & LPUART_GetStatusFlags((LPUART_Type *)base)))
|
||||
{
|
||||
int clock_enabled = 0;
|
||||
switch (uart_index) {
|
||||
case 0:
|
||||
clock_enabled = (SIM->SCGC2 & SIM_SCGC2_LPUART0_MASK) >> SIM_SCGC2_LPUART0_SHIFT;
|
||||
break;
|
||||
case 1:
|
||||
clock_enabled = (SIM->SCGC2 & SIM_SCGC2_LPUART1_MASK) >> SIM_SCGC2_LPUART1_SHIFT;
|
||||
break;
|
||||
case 2:
|
||||
clock_enabled = (SIM->SCGC2 & SIM_SCGC2_LPUART2_MASK) >> SIM_SCGC2_LPUART2_SHIFT;
|
||||
break;
|
||||
case 3:
|
||||
clock_enabled = (SIM->SCGC2 & SIM_SCGC2_LPUART3_MASK) >> SIM_SCGC2_LPUART3_SHIFT;
|
||||
break;
|
||||
case 4:
|
||||
clock_enabled = (SIM->SCGC2 & SIM_SCGC2_LPUART4_MASK) >> SIM_SCGC2_LPUART4_SHIFT;
|
||||
break;
|
||||
default:
|
||||
break;
|
||||
}
|
||||
|
||||
return clock_enabled;
|
||||
}
|
||||
|
||||
bool serial_check_tx_ongoing()
|
||||
{
|
||||
LPUART_Type *base;
|
||||
int i;
|
||||
bool uart_tx_ongoing = false;
|
||||
|
||||
for (i = 0; i < FSL_FEATURE_SOC_LPUART_COUNT; i++) {
|
||||
/* First check if UART is enabled */
|
||||
if (!serial_is_enabled(i)) {
|
||||
/* UART is not enabled, check the next instance */
|
||||
continue;
|
||||
}
|
||||
|
||||
base = uart_addrs[i];
|
||||
|
||||
/* Check if data is waiting to be written out of transmit buffer */
|
||||
if (!(kLPUART_TransmissionCompleteFlag & LPUART_GetStatusFlags((LPUART_Type *)base))) {
|
||||
uart_tx_ongoing = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
return uart_tx_ongoing;
|
||||
}
|
||||
|
||||
#endif
|
||||
|
|
|
@ -288,14 +288,46 @@ const PinMap *serial_rts_pinmap()
|
|||
return PinMap_UART_RTS;
|
||||
}
|
||||
|
||||
void serial_wait_tx_complete(uint32_t uart_index)
|
||||
static int serial_is_enabled(uint32_t uart_index)
|
||||
{
|
||||
LPUART_Type *base = uart_addrs[uart_index];
|
||||
|
||||
/* Wait till data is flushed out of transmit buffer */
|
||||
while (!(kLPUART_TransmissionCompleteFlag & LPUART_GetStatusFlags((LPUART_Type *)base)))
|
||||
{
|
||||
int clock_enabled = 0;
|
||||
switch (uart_index) {
|
||||
case 0:
|
||||
clock_enabled = (SIM->SCGC5 & SIM_SCGC5_LPUART0_MASK) >> SIM_SCGC5_LPUART0_SHIFT;
|
||||
break;
|
||||
case 1:
|
||||
clock_enabled = (SIM->SCGC5 & SIM_SCGC5_LPUART1_MASK) >> SIM_SCGC5_LPUART1_SHIFT;
|
||||
break;
|
||||
default:
|
||||
break;
|
||||
}
|
||||
|
||||
return clock_enabled;
|
||||
}
|
||||
|
||||
bool serial_check_tx_ongoing()
|
||||
{
|
||||
LPUART_Type *base;
|
||||
int i;
|
||||
bool uart_tx_ongoing = false;
|
||||
|
||||
for (i = 0; i < FSL_FEATURE_SOC_LPUART_COUNT; i++) {
|
||||
/* First check if UART is enabled */
|
||||
if (!serial_is_enabled(i)) {
|
||||
/* UART is not enabled, check the next instance */
|
||||
continue;
|
||||
}
|
||||
|
||||
base = uart_addrs[i];
|
||||
|
||||
/* Check if data is waiting to be written out of transmit buffer */
|
||||
if (!(kLPUART_TransmissionCompleteFlag & LPUART_GetStatusFlags((LPUART_Type *)base))) {
|
||||
uart_tx_ongoing = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
return uart_tx_ongoing;
|
||||
}
|
||||
|
||||
#endif
|
||||
|
|
|
@ -300,14 +300,46 @@ const PinMap *serial_rts_pinmap()
|
|||
return PinMap_UART_RTS;
|
||||
}
|
||||
|
||||
void serial_wait_tx_complete(uint32_t uart_index)
|
||||
static int serial_is_enabled(uint32_t uart_index)
|
||||
{
|
||||
LPUART_Type *base = uart_addrs[uart_index];
|
||||
|
||||
/* Wait till data is flushed out of transmit buffer */
|
||||
while (!(kLPUART_TransmissionCompleteFlag & LPUART_GetStatusFlags((LPUART_Type *)base)))
|
||||
{
|
||||
int clock_enabled = 0;
|
||||
switch (uart_index) {
|
||||
case 0:
|
||||
clock_enabled = (SIM->SCGC5 & SIM_SCGC5_LPUART0_MASK) >> SIM_SCGC5_LPUART0_SHIFT;
|
||||
break;
|
||||
case 1:
|
||||
clock_enabled = (SIM->SCGC5 & SIM_SCGC5_LPUART1_MASK) >> SIM_SCGC5_LPUART1_SHIFT;
|
||||
break;
|
||||
default:
|
||||
break;
|
||||
}
|
||||
|
||||
return clock_enabled;
|
||||
}
|
||||
|
||||
bool serial_check_tx_ongoing()
|
||||
{
|
||||
LPUART_Type *base;
|
||||
int i;
|
||||
bool uart_tx_ongoing = false;
|
||||
|
||||
for (i = 0; i < FSL_FEATURE_SOC_LPUART_COUNT; i++) {
|
||||
/* First check if UART is enabled */
|
||||
if (!serial_is_enabled(i)) {
|
||||
/* UART is not enabled, check the next instance */
|
||||
continue;
|
||||
}
|
||||
|
||||
base = uart_addrs[i];
|
||||
|
||||
/* Check if data is waiting to be written out of transmit buffer */
|
||||
if (!(kLPUART_TransmissionCompleteFlag & LPUART_GetStatusFlags((LPUART_Type *)base))) {
|
||||
uart_tx_ongoing = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
return uart_tx_ongoing;
|
||||
}
|
||||
|
||||
#endif
|
||||
|
|
|
@ -328,14 +328,49 @@ const PinMap *serial_rts_pinmap()
|
|||
return PinMap_UART_RTS;
|
||||
}
|
||||
|
||||
void serial_wait_tx_complete(uint32_t uart_index)
|
||||
static int serial_is_enabled(uint32_t uart_index)
|
||||
{
|
||||
LPUART_Type *base = uart_addrs[uart_index];
|
||||
|
||||
/* Wait till data is flushed out of transmit buffer */
|
||||
while (!(kLPUART_TransmissionCompleteFlag & LPUART_GetStatusFlags((LPUART_Type *)base)))
|
||||
{
|
||||
int clock_enabled = 0;
|
||||
switch (uart_index) {
|
||||
case 0:
|
||||
clock_enabled = (SIM->SCGC5 & SIM_SCGC5_LPUART0_MASK) >> SIM_SCGC5_LPUART0_SHIFT;
|
||||
break;
|
||||
case 1:
|
||||
clock_enabled = (SIM->SCGC5 & SIM_SCGC5_LPUART1_MASK) >> SIM_SCGC5_LPUART1_SHIFT;
|
||||
break;
|
||||
case 2:
|
||||
clock_enabled = (SIM->SCGC5 & SIM_SCGC5_LPUART2_MASK) >> SIM_SCGC5_LPUART2_SHIFT;
|
||||
break;
|
||||
default:
|
||||
break;
|
||||
}
|
||||
|
||||
return clock_enabled;
|
||||
}
|
||||
|
||||
bool serial_check_tx_ongoing()
|
||||
{
|
||||
LPUART_Type *base;
|
||||
int i;
|
||||
bool uart_tx_ongoing = false;
|
||||
|
||||
for (i = 0; i < FSL_FEATURE_SOC_LPUART_COUNT; i++) {
|
||||
/* First check if UART is enabled */
|
||||
if (!serial_is_enabled(i)) {
|
||||
/* UART is not enabled, check the next instance */
|
||||
continue;
|
||||
}
|
||||
|
||||
base = uart_addrs[i];
|
||||
|
||||
/* Check if data is waiting to be written out of transmit buffer */
|
||||
if (!(kLPUART_TransmissionCompleteFlag & LPUART_GetStatusFlags((LPUART_Type *)base))) {
|
||||
uart_tx_ongoing = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
return uart_tx_ongoing;
|
||||
}
|
||||
|
||||
#endif
|
||||
|
|
|
@ -327,14 +327,49 @@ void serial_set_flow_control(serial_t *obj, FlowControl type, PinName rxflow, Pi
|
|||
|
||||
#endif
|
||||
|
||||
void serial_wait_tx_complete(uint32_t uart_index)
|
||||
static int serial_is_enabled(uint32_t uart_index)
|
||||
{
|
||||
UART_Type *base = uart_addrs[uart_index];
|
||||
|
||||
/* Wait till data is flushed out of transmit buffer */
|
||||
while (!(kUART_TransmissionCompleteFlag & UART_GetStatusFlags((UART_Type *)base)))
|
||||
{
|
||||
int clock_enabled = 0;
|
||||
switch (uart_index) {
|
||||
case 0:
|
||||
clock_enabled = (SIM->SCGC4 & SIM_SCGC4_UART0_MASK) >> SIM_SCGC4_UART0_SHIFT;
|
||||
break;
|
||||
case 1:
|
||||
clock_enabled = (SIM->SCGC4 & SIM_SCGC4_UART1_MASK) >> SIM_SCGC4_UART1_SHIFT;
|
||||
break;
|
||||
case 2:
|
||||
clock_enabled = (SIM->SCGC4 & SIM_SCGC4_UART2_MASK) >> SIM_SCGC4_UART2_SHIFT;
|
||||
break;
|
||||
default:
|
||||
break;
|
||||
}
|
||||
|
||||
return clock_enabled;
|
||||
}
|
||||
|
||||
bool serial_check_tx_ongoing()
|
||||
{
|
||||
UART_Type *base;
|
||||
int i;
|
||||
bool uart_tx_ongoing = false;
|
||||
|
||||
for (i = 0; i < FSL_FEATURE_SOC_UART_COUNT; i++) {
|
||||
/* First check if UART is enabled */
|
||||
if (!serial_is_enabled(i)) {
|
||||
/* UART is not enabled, check the next instance */
|
||||
continue;
|
||||
}
|
||||
|
||||
base = uart_addrs[i];
|
||||
|
||||
/* Check if data is waiting to be written out of transmit buffer */
|
||||
if (!(kUART_TransmissionCompleteFlag & UART_GetStatusFlags((UART_Type *)base))) {
|
||||
uart_tx_ongoing = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
return uart_tx_ongoing;
|
||||
}
|
||||
|
||||
#endif
|
||||
|
|
|
@ -282,14 +282,29 @@ const PinMap *serial_rts_pinmap()
|
|||
return PinMap_UART_RTS;
|
||||
}
|
||||
|
||||
void serial_wait_tx_complete(uint32_t uart_index)
|
||||
bool serial_check_tx_ongoing()
|
||||
{
|
||||
LPUART_Type *base = uart_addrs[uart_index];
|
||||
LPUART_Type *base;
|
||||
int i;
|
||||
bool uart_tx_ongoing = false;
|
||||
int clock_enabled = 0;
|
||||
|
||||
/* Wait till data is flushed out of transmit buffer */
|
||||
while (!(kLPUART_TransmissionCompleteFlag & LPUART_GetStatusFlags((LPUART_Type *)base)))
|
||||
{
|
||||
/* First check if UART is enabled */
|
||||
clock_enabled = (SIM->SCGC5 & SIM_SCGC5_LPUART0_MASK) >> SIM_SCGC5_LPUART0_SHIFT;
|
||||
|
||||
if (!clock_enabled) {
|
||||
/* UART is not enabled return */
|
||||
return uart_tx_ongoing;
|
||||
}
|
||||
|
||||
base = uart_addrs[i];
|
||||
|
||||
/* Check if data is waiting to be written out of transmit buffer */
|
||||
if (!(kLPUART_TransmissionCompleteFlag & LPUART_GetStatusFlags((LPUART_Type *)base))) {
|
||||
uart_tx_ongoing = true;
|
||||
}
|
||||
|
||||
return uart_tx_ongoing;
|
||||
}
|
||||
|
||||
#endif
|
||||
|
|
|
@ -302,14 +302,49 @@ const PinMap *serial_rts_pinmap()
|
|||
return PinMap_UART_RTS;
|
||||
}
|
||||
|
||||
void serial_wait_tx_complete(uint32_t uart_index)
|
||||
static int serial_is_enabled(uint32_t uart_index)
|
||||
{
|
||||
UART_Type *base = uart_addrs[uart_index];
|
||||
|
||||
/* Wait till data is flushed out of transmit buffer */
|
||||
while (!(kUART_TransmissionCompleteFlag & UART_GetStatusFlags((UART_Type *)base)))
|
||||
{
|
||||
int clock_enabled = 0;
|
||||
switch (uart_index) {
|
||||
case 0:
|
||||
clock_enabled = (SIM->SCGC4 & SIM_SCGC4_UART0_MASK) >> SIM_SCGC4_UART0_SHIFT;
|
||||
break;
|
||||
case 1:
|
||||
clock_enabled = (SIM->SCGC4 & SIM_SCGC4_UART1_MASK) >> SIM_SCGC4_UART1_SHIFT;
|
||||
break;
|
||||
case 2:
|
||||
clock_enabled = (SIM->SCGC4 & SIM_SCGC4_UART2_MASK) >> SIM_SCGC4_UART2_SHIFT;
|
||||
break;
|
||||
default:
|
||||
break;
|
||||
}
|
||||
|
||||
return clock_enabled;
|
||||
}
|
||||
|
||||
bool serial_check_tx_ongoing()
|
||||
{
|
||||
UART_Type *base;
|
||||
int i;
|
||||
bool uart_tx_ongoing = false;
|
||||
|
||||
for (i = 0; i < FSL_FEATURE_SOC_UART_COUNT; i++) {
|
||||
/* First check if UART is enabled */
|
||||
if (!serial_is_enabled(i)) {
|
||||
/* UART is not enabled, check the next instance */
|
||||
continue;
|
||||
}
|
||||
|
||||
base = uart_addrs[i];
|
||||
|
||||
/* Check if data is waiting to be written out of transmit buffer */
|
||||
if (!(kUART_TransmissionCompleteFlag & UART_GetStatusFlags((UART_Type *)base))) {
|
||||
uart_tx_ongoing = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
return uart_tx_ongoing;
|
||||
}
|
||||
|
||||
#endif
|
||||
|
|
|
@ -723,14 +723,58 @@ void serial_rx_abort_asynch(serial_t *obj)
|
|||
}
|
||||
}
|
||||
|
||||
void serial_wait_tx_complete(uint32_t uart_index)
|
||||
static int serial_is_enabled(uint32_t uart_index)
|
||||
{
|
||||
UART_Type *base = uart_addrs[uart_index];
|
||||
|
||||
/* Wait till data is flushed out of transmit buffer */
|
||||
while (!(kUART_TransmissionCompleteFlag & UART_GetStatusFlags((UART_Type *)base)))
|
||||
{
|
||||
int clock_enabled = 0;
|
||||
switch (uart_index) {
|
||||
case 0:
|
||||
clock_enabled = (SIM->SCGC4 & SIM_SCGC4_UART0_MASK) >> SIM_SCGC4_UART0_SHIFT;
|
||||
break;
|
||||
case 1:
|
||||
clock_enabled = (SIM->SCGC4 & SIM_SCGC4_UART1_MASK) >> SIM_SCGC4_UART1_SHIFT;
|
||||
break;
|
||||
case 2:
|
||||
clock_enabled = (SIM->SCGC4 & SIM_SCGC4_UART2_MASK) >> SIM_SCGC4_UART2_SHIFT;
|
||||
break;
|
||||
case 3:
|
||||
clock_enabled = (SIM->SCGC4 & SIM_SCGC4_UART3_MASK) >> SIM_SCGC4_UART3_SHIFT;
|
||||
break;
|
||||
case 4:
|
||||
clock_enabled = (SIM->SCGC1 & SIM_SCGC1_UART4_MASK) >> SIM_SCGC1_UART4_SHIFT;
|
||||
break;
|
||||
case 5:
|
||||
clock_enabled = (SIM->SCGC1 & SIM_SCGC1_UART5_MASK) >> SIM_SCGC1_UART5_SHIFT;
|
||||
break;
|
||||
default:
|
||||
break;
|
||||
}
|
||||
|
||||
return clock_enabled;
|
||||
}
|
||||
|
||||
bool serial_check_tx_ongoing()
|
||||
{
|
||||
UART_Type *base;
|
||||
int i;
|
||||
bool uart_tx_ongoing = false;
|
||||
|
||||
for (i = 0; i < FSL_FEATURE_SOC_UART_COUNT; i++) {
|
||||
/* First check if UART is enabled */
|
||||
if (!serial_is_enabled(i)) {
|
||||
/* UART is not enabled, check the next instance */
|
||||
continue;
|
||||
}
|
||||
|
||||
base = uart_addrs[i];
|
||||
|
||||
/* Check if data is waiting to be written out of transmit buffer */
|
||||
if (!(kUART_TransmissionCompleteFlag & UART_GetStatusFlags((UART_Type *)base))) {
|
||||
uart_tx_ongoing = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
return uart_tx_ongoing;
|
||||
}
|
||||
|
||||
#endif
|
||||
|
|
|
@ -766,14 +766,58 @@ void serial_rx_abort_asynch(serial_t *obj)
|
|||
sleep_manager_unlock_deep_sleep();
|
||||
}
|
||||
|
||||
void serial_wait_tx_complete(uint32_t uart_index)
|
||||
static int serial_is_enabled(uint32_t uart_index)
|
||||
{
|
||||
UART_Type *base = uart_addrs[uart_index];
|
||||
|
||||
/* Wait till data is flushed out of transmit buffer */
|
||||
while (!(kUART_TransmissionCompleteFlag & UART_GetStatusFlags((UART_Type *)base)))
|
||||
{
|
||||
int clock_enabled = 0;
|
||||
switch (uart_index) {
|
||||
case 0:
|
||||
clock_enabled = (SIM->SCGC4 & SIM_SCGC4_UART0_MASK) >> SIM_SCGC4_UART0_SHIFT;
|
||||
break;
|
||||
case 1:
|
||||
clock_enabled = (SIM->SCGC4 & SIM_SCGC4_UART1_MASK) >> SIM_SCGC4_UART1_SHIFT;
|
||||
break;
|
||||
case 2:
|
||||
clock_enabled = (SIM->SCGC4 & SIM_SCGC4_UART2_MASK) >> SIM_SCGC4_UART2_SHIFT;
|
||||
break;
|
||||
case 3:
|
||||
clock_enabled = (SIM->SCGC4 & SIM_SCGC4_UART3_MASK) >> SIM_SCGC4_UART3_SHIFT;
|
||||
break;
|
||||
case 4:
|
||||
clock_enabled = (SIM->SCGC1 & SIM_SCGC1_UART4_MASK) >> SIM_SCGC1_UART4_SHIFT;
|
||||
break;
|
||||
case 5:
|
||||
clock_enabled = (SIM->SCGC1 & SIM_SCGC1_UART5_MASK) >> SIM_SCGC1_UART5_SHIFT;
|
||||
break;
|
||||
default:
|
||||
break;
|
||||
}
|
||||
|
||||
return clock_enabled;
|
||||
}
|
||||
|
||||
bool serial_check_tx_ongoing()
|
||||
{
|
||||
UART_Type *base;
|
||||
int i;
|
||||
bool uart_tx_ongoing = false;
|
||||
|
||||
for (i = 0; i < FSL_FEATURE_SOC_UART_COUNT; i++) {
|
||||
/* First check if UART is enabled */
|
||||
if (!serial_is_enabled(i)) {
|
||||
/* UART is not enabled, check the next instance */
|
||||
continue;
|
||||
}
|
||||
|
||||
base = uart_addrs[i];
|
||||
|
||||
/* Check if data is waiting to be written out of transmit buffer */
|
||||
if (!(kUART_TransmissionCompleteFlag & UART_GetStatusFlags((UART_Type *)base))) {
|
||||
uart_tx_ongoing = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
return uart_tx_ongoing;
|
||||
}
|
||||
|
||||
#endif
|
||||
|
|
Loading…
Reference in New Issue