[DISCO-F051R8] Updated with F030R8 recent changes

pull/378/head
dinau 2014-06-25 22:55:52 +09:00
parent e2e0999886
commit e6050cceca
19 changed files with 588 additions and 255 deletions

View File

@ -76,7 +76,7 @@
*/
#if !defined (STM32F030) && !defined (STM32F031) && !defined (STM32F051) && !defined (STM32F072) && !defined (STM32F042)
#define STM32F030
/* #define STM32F030 */
/* #define STM32F031 */
#define STM32F051
/* #define STM32F072 */

View File

@ -3,11 +3,11 @@
* @file system_stm32f0xx.c
* @author MCD Application Team
* @version V1.0.1
* @date 29-May-2012
* @date 12-January-2014
* @brief CMSIS Cortex-M0 Device Peripheral Access Layer System Source File.
* This file contains the system clock configuration for STM32F0xx devices,
* and is generated by the clock configuration tool
* STM32f0xx_Clock_Configuration_V1.0.1.xls
* STM32F0xx_Clock_Configuration_V1.0.1.xls
*
* 1. This file provides two functions and one global variable to be called from
* user application:
@ -40,52 +40,44 @@
* value to your own configuration.
*
* 5. This file configures the system clock as follows:
*=============================================================================
*=============================================================================
* System Clock source | PLL(HSI)
*-----------------------------------------------------------------------------
* SYSCLK(Hz) | 48000000
* System clock source | 1- PLL_HSE_EXTC | 3- PLL_HSI
* | (external 8 MHz clock) | (internal 8 MHz)
* | 2- PLL_HSE_XTAL |
* | (external 8 MHz xtal) |
*-----------------------------------------------------------------------------
* HCLK(Hz) | 48000000
* SYSCLK(MHz) | 48 | 48
*-----------------------------------------------------------------------------
* AHB Prescaler | 1
* AHBCLK (MHz) | 48 | 48
*-----------------------------------------------------------------------------
* APB Prescaler | 1
*-----------------------------------------------------------------------------
* HSE Frequency(Hz) | NA
*----------------------------------------------------------------------------
* PLLMUL | 12
*-----------------------------------------------------------------------------
* PREDIV | 2
*-----------------------------------------------------------------------------
* I2S input clock(Hz) | 48000000
* |
* To achieve the following I2S config: |
* - Master clock output (MCKO): OFF |
* - Frame wide : 16bit |
* - Audio sampling freq (KHz) : 44.1 |
* - Error % : 0.2674 |
*-----------------------------------------------------------------------------
* Flash Latency(WS) | 1
*-----------------------------------------------------------------------------
* Prefetch Buffer | ON
* APBCLK (MHz) | 48 | 48
*-----------------------------------------------------------------------------
******************************************************************************
* @attention
*
* <h2><center>&copy; COPYRIGHT 2012 STMicroelectronics</center></h2>
* <h2><center>&copy; COPYRIGHT(c) 2014 STMicroelectronics</center></h2>
*
* Licensed under MCD-ST Liberty SW License Agreement V2, (the "License");
* You may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* 3. Neither the name of STMicroelectronics nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* http://www.st.com/software_license_agreement_liberty_v2
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
******************************************************************************
*/
@ -127,6 +119,10 @@
* @{
*/
/* Select the clock sources (other than HSI) to start with (0=OFF, 1=ON) */
#define USE_PLL_HSE_EXTC (1) /* Use external clock */
#define USE_PLL_HSE_XTAL (1) /* Use external xtal */
/**
* @}
*/
@ -145,7 +141,11 @@ __I uint8_t AHBPrescTable[16] = {0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 6, 7, 8, 9}
* @{
*/
static void SetSysClock(void);
#if (USE_PLL_HSE_XTAL != 0) || (USE_PLL_HSE_EXTC != 0)
uint8_t SetSysClock_PLL_HSE(uint8_t bypass);
#endif
uint8_t SetSysClock_PLL_HSI(void);
/**
* @}
@ -191,7 +191,8 @@ void SystemInit (void)
/* Disable all interrupts */
RCC->CIR = 0x00000000;
/* Configure the System clock frequency, AHB/APBx prescalers and Flash settings */
/* Configure the System clock source, PLL Multiplier and Divider factors,
AHB/APBx prescalers and Flash settings */
SetSysClock();
}
@ -275,35 +276,136 @@ void SystemCoreClockUpdate (void)
}
/**
* @brief Configures the System clock frequency, AHB/APBx prescalers and Flash
* settings.
* @note This function should be called only once the RCC clock configuration
* is reset to the default reset state (done in SystemInit() function).
* @brief Configures the System clock frequency, HCLK, PCLK2 and PCLK1 prescalers.
* @param None
* @retval None
*/
static void SetSysClock(void)
void SetSysClock(void)
{
/******************************************************************************/
/* PLL (clocked by HSI) used as System clock source */
/******************************************************************************/
/* 1- Try to start with HSE and external clock */
#if USE_PLL_HSE_EXTC != 0
if (SetSysClock_PLL_HSE(1) == 0)
#endif
{
/* 2- If fail try to start with HSE and external xtal */
#if USE_PLL_HSE_XTAL != 0
if (SetSysClock_PLL_HSE(0) == 0)
#endif
{
/* 3- If fail start with HSI clock */
if (SetSysClock_PLL_HSI() == 0)
{
while(1)
{
// [TODO] Put something here to tell the user that a problem occured...
}
}
}
}
/* At this stage the HSI is already enabled and used as System clock source */
// Output clock on MCO pin (PA8) for debugging purpose
/*
RCC_AHBPeriphClockCmd(RCC_AHBPeriph_GPIOA, ENABLE);
GPIO_InitTypeDef GPIO_InitStructure;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;
GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_UP;
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_8;
GPIO_Init(GPIOA, &GPIO_InitStructure);
GPIO_PinAFConfig(GPIOA, GPIO_PinSource8, GPIO_AF_0);
// Output clock on MCO pin
// Warning: only RCC_MCOPrescaler_1 is available on STM32F030x8 devices
RCC_MCOConfig(RCC_MCOSource_SYSCLK, RCC_MCOPrescaler_1);
*/
}
#if (USE_PLL_HSE_XTAL != 0) || (USE_PLL_HSE_EXTC != 0)
/******************************************************************************/
/* PLL (clocked by HSE) used as System clock source */
/******************************************************************************/
uint8_t SetSysClock_PLL_HSE(uint8_t bypass)
{
__IO uint32_t StartUpCounter = 0;
__IO uint32_t HSEStatus = 0;
/* Bypass HSE: can be done only if HSE is OFF */
RCC->CR &= ((uint32_t)~RCC_CR_HSEON); /* To be sure HSE is OFF */
if (bypass != 0)
{
RCC->CR |= ((uint32_t)RCC_CR_HSEBYP);
}
else
{
RCC->CR &= ((uint32_t)~RCC_CR_HSEBYP);
}
/* SYSCLK, HCLK, PCLK configuration ----------------------------------------*/
/* Enable HSE */
RCC->CR |= ((uint32_t)RCC_CR_HSEON);
/* Wait till HSE is ready */
do
{
HSEStatus = RCC->CR & RCC_CR_HSERDY;
StartUpCounter++;
} while((HSEStatus == 0) && (StartUpCounter != HSE_STARTUP_TIMEOUT));
/* Check if HSE has started correctly */
if ((RCC->CR & RCC_CR_HSERDY) != RESET)
{
/* Enable Prefetch Buffer */
FLASH->ACR |= FLASH_ACR_PRFTBE;
/* Enable Prefetch Buffer and set Flash Latency */
FLASH->ACR = FLASH_ACR_PRFTBE | FLASH_ACR_LATENCY;
/* HCLK = SYSCLK / 1 */
RCC->CFGR |= (uint32_t)RCC_CFGR_HPRE_DIV1;
/* PCLK = HCLK / 1 */
RCC->CFGR |= (uint32_t)RCC_CFGR_PPRE_DIV1;
/* PLL configuration */
/* PLL configuration
PLLCLK = 48 MHz (xtal 8 MHz * 6) */
RCC->CFGR &= (uint32_t)((uint32_t)~(RCC_CFGR_PLLSRC | RCC_CFGR_PLLXTPRE | RCC_CFGR_PLLMULL));
RCC->CFGR |= (uint32_t)(RCC_CFGR_PLLSRC_HSI_Div2 | RCC_CFGR_PLLXTPRE_PREDIV1 | RCC_CFGR_PLLMULL12);
RCC->CFGR |= (uint32_t)(RCC_CFGR_PLLSRC_PREDIV1 | RCC_CFGR_PLLXTPRE_PREDIV1 | RCC_CFGR_PLLMULL6
| RCC_CFGR_HPRE_DIV1 /* HCLK = 48 MHz */
| RCC_CFGR_PPRE_DIV1); /* PCLK = 48 MHz */
/* Enable PLL */
RCC->CR |= RCC_CR_PLLON;
/* Wait till PLL is ready */
while((RCC->CR & RCC_CR_PLLRDY) == 0)
{
}
/* Select PLL as system clock source */
RCC->CFGR &= (uint32_t)((uint32_t)~(RCC_CFGR_SW));
RCC->CFGR |= (uint32_t)RCC_CFGR_SW_PLL;
/* Wait till PLL is used as system clock source */
while ((RCC->CFGR & (uint32_t)RCC_CFGR_SWS) != (uint32_t)RCC_CFGR_SWS_PLL)
{
}
return 1; // OK
}
else
{
return 0; // FAIL
}
}
#endif
/******************************************************************************/
/* PLL (clocked by HSI) used as System clock source */
/******************************************************************************/
uint8_t SetSysClock_PLL_HSI(void)
{
/* Enable Prefetch Buffer and set Flash Latency */
FLASH->ACR = FLASH_ACR_PRFTBE | FLASH_ACR_LATENCY;
/* PLL configuration
PLLCLK = 48 MHz ((HSI 8 MHz / 2) * 12) */
RCC->CFGR &= (uint32_t)((uint32_t)~(RCC_CFGR_PLLSRC | RCC_CFGR_PLLXTPRE | RCC_CFGR_PLLMULL));
RCC->CFGR |= (uint32_t)(RCC_CFGR_PLLSRC_HSI_Div2 | RCC_CFGR_PLLXTPRE_PREDIV1 | RCC_CFGR_PLLMULL12
| RCC_CFGR_HPRE_DIV1 /* HCLK = 48 MHz */
| RCC_CFGR_PPRE_DIV1); /* PCLK = 48 MHz */
/* Enable PLL */
RCC->CR |= RCC_CR_PLLON;
@ -321,6 +423,8 @@ static void SetSysClock(void)
while ((RCC->CFGR & (uint32_t)RCC_CFGR_SWS) != (uint32_t)RCC_CFGR_SWS_PLL)
{
}
return 1; // OK
}
/**

View File

@ -94,6 +94,8 @@ extern uint32_t SystemCoreClock; /*!< System Clock Frequency (Core Cloc
extern void SystemInit(void);
extern void SystemCoreClockUpdate(void);
extern void SetSysClock(void);
/**
* @}
*/

View File

@ -67,7 +67,9 @@ typedef enum {
typedef enum {
TIM_3 = (int)TIM3_BASE,
TIM_14 = (int)TIM14_BASE,
TIM_16 = (int)TIM16_BASE
TIM_15 = (int)TIM15_BASE,
TIM_16 = (int)TIM16_BASE,
TIM_17 = (int)TIM17_BASE
} PWMName;
#ifdef __cplusplus

View File

@ -27,20 +27,31 @@
*/
#include "mbed_assert.h"
#include "analogin_api.h"
#include "wait_api.h"
#if DEVICE_ANALOGIN
#include "cmsis.h"
#include "pinmap.h"
#include "error.h"
#include "wait_api.h"
static const PinMap PinMap_ADC[] = {
{PA_0, ADC_1, STM_PIN_DATA(GPIO_Mode_AN, GPIO_OType_PP, GPIO_PuPd_NOPULL, 0xFF)}, // ADC_IN0
{PA_1, ADC_1, STM_PIN_DATA(GPIO_Mode_AN, GPIO_OType_PP, GPIO_PuPd_NOPULL, 0xFF)}, // ADC_IN1
{PA_2, ADC_1, STM_PIN_DATA(GPIO_Mode_AN, GPIO_OType_PP, GPIO_PuPd_NOPULL, 0xFF)}, // ADC_IN2
{PA_3, ADC_1, STM_PIN_DATA(GPIO_Mode_AN, GPIO_OType_PP, GPIO_PuPd_NOPULL, 0xFF)}, // ADC_IN3
{PA_4, ADC_1, STM_PIN_DATA(GPIO_Mode_AN, GPIO_OType_PP, GPIO_PuPd_NOPULL, 0xFF)}, // ADC_IN4
{PA_5, ADC_1, STM_PIN_DATA(GPIO_Mode_AN, GPIO_OType_PP, GPIO_PuPd_NOPULL, 0xFF)}, // ADC_IN5
{PA_6, ADC_1, STM_PIN_DATA(GPIO_Mode_AN, GPIO_OType_PP, GPIO_PuPd_NOPULL, 0xFF)}, // ADC_IN6
{PA_7, ADC_1, STM_PIN_DATA(GPIO_Mode_AN, GPIO_OType_PP, GPIO_PuPd_NOPULL, 0xFF)}, // ADC_IN7
{PB_0, ADC_1, STM_PIN_DATA(GPIO_Mode_AN, GPIO_OType_PP, GPIO_PuPd_NOPULL, 0xFF)}, // ADC_IN8
{PC_1, ADC_1, STM_PIN_DATA(GPIO_Mode_AN, GPIO_OType_PP, GPIO_PuPd_NOPULL, 0xFF)}, // ADC_IN11
{PB_1, ADC_1, STM_PIN_DATA(GPIO_Mode_AN, GPIO_OType_PP, GPIO_PuPd_NOPULL, 0xFF)}, // ADC_IN9
{PC_0, ADC_1, STM_PIN_DATA(GPIO_Mode_AN, GPIO_OType_PP, GPIO_PuPd_NOPULL, 0xFF)}, // ADC_IN10
{PC_1, ADC_1, STM_PIN_DATA(GPIO_Mode_AN, GPIO_OType_PP, GPIO_PuPd_NOPULL, 0xFF)}, // ADC_IN11
{PC_2, ADC_1, STM_PIN_DATA(GPIO_Mode_AN, GPIO_OType_PP, GPIO_PuPd_NOPULL, 0xFF)}, // ADC_IN12
{PC_3, ADC_1, STM_PIN_DATA(GPIO_Mode_AN, GPIO_OType_PP, GPIO_PuPd_NOPULL, 0xFF)}, // ADC_IN13
{PC_4, ADC_1, STM_PIN_DATA(GPIO_Mode_AN, GPIO_OType_PP, GPIO_PuPd_NOPULL, 0xFF)}, // ADC_IN14
{PC_5, ADC_1, STM_PIN_DATA(GPIO_Mode_AN, GPIO_OType_PP, GPIO_PuPd_NOPULL, 0xFF)}, // ADC_IN15
{NC, NC, 0}
};
@ -102,33 +113,63 @@ static inline uint16_t adc_read(analogin_t *obj) {
case PA_1:
ADC_ChannelConfig(adc, ADC_Channel_1, ADC_SampleTime_7_5Cycles);
break;
case PA_2:
ADC_ChannelConfig(adc, ADC_Channel_2, ADC_SampleTime_7_5Cycles);
break;
case PA_3:
ADC_ChannelConfig(adc, ADC_Channel_3, ADC_SampleTime_7_5Cycles);
break;
case PA_4:
ADC_ChannelConfig(adc, ADC_Channel_4, ADC_SampleTime_7_5Cycles);
break;
case PA_5:
ADC_ChannelConfig(adc, ADC_Channel_5, ADC_SampleTime_7_5Cycles);
break;
case PA_6:
ADC_ChannelConfig(adc, ADC_Channel_6, ADC_SampleTime_7_5Cycles);
break;
case PA_7:
ADC_ChannelConfig(adc, ADC_Channel_7, ADC_SampleTime_7_5Cycles);
break;
case PB_0:
ADC_ChannelConfig(adc, ADC_Channel_8, ADC_SampleTime_7_5Cycles);
break;
case PC_1:
ADC_ChannelConfig(adc, ADC_Channel_11, ADC_SampleTime_7_5Cycles);
case PB_1:
ADC_ChannelConfig(adc, ADC_Channel_9, ADC_SampleTime_7_5Cycles);
break;
case PC_0:
ADC_ChannelConfig(adc, ADC_Channel_10, ADC_SampleTime_7_5Cycles);
break;
case PC_1:
ADC_ChannelConfig(adc, ADC_Channel_11, ADC_SampleTime_7_5Cycles);
break;
case PC_2:
ADC_ChannelConfig(adc, ADC_Channel_12, ADC_SampleTime_7_5Cycles);
break;
case PC_3:
ADC_ChannelConfig(adc, ADC_Channel_13, ADC_SampleTime_7_5Cycles);
break;
case PC_4:
ADC_ChannelConfig(adc, ADC_Channel_14, ADC_SampleTime_7_5Cycles);
break;
case PC_5:
ADC_ChannelConfig(adc, ADC_Channel_15, ADC_SampleTime_7_5Cycles);
break;
default:
return 0;
}
while(!ADC_GetFlagStatus(adc, ADC_FLAG_ADRDY)); // Wait ADC ready
while (!ADC_GetFlagStatus(adc, ADC_FLAG_ADRDY)); // Wait ADC ready
ADC_StartOfConversion(adc); // Start conversion
while(ADC_GetFlagStatus(adc, ADC_FLAG_EOC) == RESET); // Wait end of conversion
while (ADC_GetFlagStatus(adc, ADC_FLAG_EOC) == RESET); // Wait end of conversion
return(ADC_GetConversionValue(adc)); // Get conversion value
return (ADC_GetConversionValue(adc)); // Get conversion value
}
uint16_t analogin_read_u16(analogin_t *obj) {
return(adc_read(obj));
return (adc_read(obj));
}
float analogin_read(analogin_t *obj) {

View File

@ -42,10 +42,10 @@
#define DEVICE_SERIAL 1
#define DEVICE_I2C 1
#define DEVICE_I2CSLAVE 0
#define DEVICE_I2CSLAVE 1
#define DEVICE_SPI 1
#define DEVICE_SPISLAVE 0
#define DEVICE_SPISLAVE 1
#define DEVICE_RTC 1

View File

@ -67,8 +67,7 @@ void gpio_dir(gpio_t *obj, PinDirection direction) {
MBED_ASSERT(obj->pin != (PinName)NC);
if (direction == PIN_OUTPUT) {
pin_function(obj->pin, STM_PIN_DATA(GPIO_Mode_OUT, GPIO_OType_PP, GPIO_PuPd_NOPULL, 0xFF));
}
else { // PIN_INPUT
} else { // PIN_INPUT
pin_function(obj->pin, STM_PIN_DATA(GPIO_Mode_IN, 0, GPIO_PuPd_NOPULL, 0xFF));
}
}

View File

@ -53,8 +53,7 @@ static void handle_interrupt_in(uint32_t irq_index) {
uint32_t pin = (uint32_t)(1 << channel_pin[irq_index]);
// Clear interrupt flag
if (EXTI_GetITStatus(pin) != RESET)
{
if (EXTI_GetITStatus(pin) != RESET) {
EXTI_ClearITPendingBit(pin);
}
@ -63,16 +62,21 @@ static void handle_interrupt_in(uint32_t irq_index) {
// Check which edge has generated the irq
if ((gpio->IDR & pin) == 0) {
irq_handler(channel_ids[irq_index], IRQ_FALL);
}
else {
} else {
irq_handler(channel_ids[irq_index], IRQ_RISE);
}
}
// The irq_index is passed to the function
static void gpio_irq0(void) {handle_interrupt_in(0);}
static void gpio_irq1(void) {handle_interrupt_in(1);}
static void gpio_irq2(void) {handle_interrupt_in(2);}
static void gpio_irq0(void) {
handle_interrupt_in(0);
}
static void gpio_irq1(void) {
handle_interrupt_in(1);
}
static void gpio_irq2(void) {
handle_interrupt_in(2);
}
extern uint32_t Set_GPIO_Clock(uint32_t port_idx);
@ -87,24 +91,20 @@ int gpio_irq_init(gpio_irq_t *obj, PinName pin, gpio_irq_handler handler, uint32
uint32_t pin_index = STM_PIN(pin);
// Select irq number and interrupt routine
switch (pin) {
case PC_13: // User button
irq_n = EXTI4_15_IRQn;
if ((pin_index == 0) || (pin_index == 1)) {
irq_n = EXTI0_1_IRQn;
vector = (uint32_t)&gpio_irq0;
irq_index = 0;
break;
case PA_0:
irq_n = EXTI0_1_IRQn;
} else if ((pin_index == 2) || (pin_index == 3)) {
irq_n = EXTI2_3_IRQn;
vector = (uint32_t)&gpio_irq1;
irq_index = 1;
break;
case PB_3:
irq_n = EXTI2_3_IRQn;
} else if ((pin_index > 3) && (pin_index < 16)) {
irq_n = EXTI4_15_IRQn;
vector = (uint32_t)&gpio_irq2;
irq_index = 2;
break;
default:
error("This pin is not supported");
} else {
error("InterruptIn error: pin not supported.\n");
return -1;
}
@ -171,8 +171,7 @@ void gpio_irq_set(gpio_irq_t *obj, gpio_irq_event event, uint32_t enable) {
if ((obj->event == EDGE_FALL) || (obj->event == EDGE_BOTH)) {
EXTI_InitStructure.EXTI_Trigger = EXTI_Trigger_Rising_Falling;
obj->event = EDGE_BOTH;
}
else { // NONE or RISE
} else { // NONE or RISE
EXTI_InitStructure.EXTI_Trigger = EXTI_Trigger_Rising;
obj->event = EDGE_RISE;
}
@ -182,8 +181,7 @@ void gpio_irq_set(gpio_irq_t *obj, gpio_irq_event event, uint32_t enable) {
if ((obj->event == EDGE_RISE) || (obj->event == EDGE_BOTH)) {
EXTI_InitStructure.EXTI_Trigger = EXTI_Trigger_Rising_Falling;
obj->event = EDGE_BOTH;
}
else { // NONE or FALL
} else { // NONE or FALL
EXTI_InitStructure.EXTI_Trigger = EXTI_Trigger_Falling;
obj->event = EDGE_FALL;
}
@ -191,8 +189,7 @@ void gpio_irq_set(gpio_irq_t *obj, gpio_irq_event event, uint32_t enable) {
if (enable) {
EXTI_InitStructure.EXTI_LineCmd = ENABLE;
}
else {
} else {
EXTI_InitStructure.EXTI_LineCmd = DISABLE;
}

View File

@ -52,8 +52,7 @@ static inline void gpio_write(gpio_t *obj, int value) {
MBED_ASSERT(obj->pin != (PinName)NC);
if (value) {
*obj->reg_set = obj->mask;
}
else {
} else {
*obj->reg_clr = obj->mask;
}
}

View File

@ -42,12 +42,16 @@
#define LONG_TIMEOUT ((int)0x8000)
static const PinMap PinMap_I2C_SDA[] = {
{PB_7, I2C_1, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_OD, GPIO_PuPd_UP, GPIO_AF_1)},
{PB_9, I2C_1, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_OD, GPIO_PuPd_UP, GPIO_AF_1)},
{PB_11, I2C_2, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_OD, GPIO_PuPd_UP, GPIO_AF_1)},
{NC, NC, 0}
};
static const PinMap PinMap_I2C_SCL[] = {
{PB_6, I2C_1, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_OD, GPIO_PuPd_UP, GPIO_AF_1)},
{PB_8, I2C_1, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_OD, GPIO_PuPd_UP, GPIO_AF_1)},
{PB_10, I2C_2, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_OD, GPIO_PuPd_UP, GPIO_AF_1)},
{NC, NC, 0}
};
@ -62,10 +66,11 @@ void i2c_init(i2c_t *obj, PinName sda, PinName scl) {
// Enable I2C clock
if (obj->i2c == I2C_1) {
RCC_APB1PeriphClockCmd(RCC_APB1Periph_I2C1, ENABLE);
RCC_I2CCLKConfig(RCC_I2C1CLK_SYSCLK);
}
if (obj->i2c == I2C_2) {
RCC_APB1PeriphClockCmd(RCC_APB1Periph_I2C2, ENABLE);
}
//if (obj->i2c == I2C_2) {
// RCC_APB1PeriphClockCmd(RCC_APB1Periph_I2C2, ENABLE);
//}
// Configure I2C pins
pinmap_pinout(scl, PinMap_I2C_SCL);
@ -81,28 +86,54 @@ void i2c_init(i2c_t *obj, PinName sda, PinName scl) {
}
void i2c_frequency(i2c_t *obj, int hz) {
MBED_ASSERT((hz == 100000) || (hz == 200000) || (hz == 400000)); //"Only 100kHz, 200kHz and 400kHz I2C frequencies are supported."
MBED_ASSERT((hz == 100000) || (hz == 200000) || (hz == 400000) || (hz == 1000000));
I2C_TypeDef *i2c = (I2C_TypeDef *)(obj->i2c);
I2C_InitTypeDef I2C_InitStructure;
uint32_t tim = 0;
// Values calculated with I2C_Timing_Configuration_V1.0.1.xls file (see AN4235)
// with Rise time = 100ns and Fall time = 10ns
// Disable the Fast Mode Plus capability
RCC_APB2PeriphClockCmd(RCC_APB2Periph_SYSCFG, ENABLE); // Enable SYSCFG clock
SYSCFG_I2CFastModePlusConfig(SYSCFG_I2CFastModePlus_I2C1, DISABLE);
SYSCFG_I2CFastModePlusConfig(SYSCFG_I2CFastModePlus_I2C2, DISABLE);
/*
Values calculated with I2C_Timing_Configuration_V1.0.1.xls file (see AN4235)
* Standard mode (up to 100 kHz)
* Fast Mode (up to 400 kHz)
* Fast Mode Plus (up to 1 MHz)
Below values obtained with:
- I2C clock source = 48 MHz (System Clock)
- Analog filter delay = ON
- Digital filter coefficient = 0
- Rise time = 100 ns
- Fall time = 10ns
*/
switch (hz) {
case 100000:
tim = 0x00201D2B; // Standard mode
tim = 0x10805E89; // Standard mode
break;
case 200000:
tim = 0x0010021E; // Fast mode
tim = 0x00905E82; // Fast Mode
break;
case 400000:
tim = 0x0010020A; // Fast mode
tim = 0x00901850; // Fast Mode
break;
case 1000000:
tim = 0x00700818; // Fast Mode Plus
// Enable the Fast Mode Plus capability
if (obj->i2c == I2C_1) {
SYSCFG_I2CFastModePlusConfig(SYSCFG_I2CFastModePlus_I2C1, ENABLE);
}
if (obj->i2c == I2C_2) {
SYSCFG_I2CFastModePlusConfig(SYSCFG_I2CFastModePlus_I2C2, ENABLE);
}
break;
default:
break;
}
// I2C configuration
I2C_DeInit(i2c);
I2C_InitStructure.I2C_Mode = I2C_Mode_I2C;
I2C_InitStructure.I2C_AnalogFilter = I2C_AnalogFilter_Enable;
I2C_InitStructure.I2C_DigitalFilter = 0x00;
@ -144,12 +175,13 @@ inline int i2c_stop(i2c_t *obj) {
int i2c_read(i2c_t *obj, int address, char *data, int length, int stop) {
I2C_TypeDef *i2c = (I2C_TypeDef *)(obj->i2c);
int count;
int timeout;
int value;
if (length == 0) return 0;
// Configure slave address, nbytes, reload, end mode and start or stop generation
I2C_TransferHandling(i2c, address, length, I2C_AutoEnd_Mode, I2C_Generate_Start_Read);
I2C_TransferHandling(i2c, address, length, I2C_SoftEnd_Mode, I2C_Generate_Start_Read);
// Read all bytes
for (count = 0; count < length; count++) {
@ -157,48 +189,39 @@ int i2c_read(i2c_t *obj, int address, char *data, int length, int stop) {
data[count] = (char)value;
}
timeout = FLAG_TIMEOUT;
while (!I2C_GetFlagStatus(i2c, I2C_FLAG_TC)) {
timeout--;
if (timeout == 0) return 0;
}
if (stop) i2c_stop(obj);
return length;
}
int i2c_write(i2c_t *obj, int address, const char *data, int length, int stop) {
I2C_TypeDef *i2c = (I2C_TypeDef *)(obj->i2c);
//int timeout;
int timeout;
int count;
if (length == 0) return 0;
// TODO: the stop is always sent even with I2C_SoftEnd_Mode. To be corrected.
// Configure slave address, nbytes, reload, end mode and start or stop generation
//if (stop) {
I2C_TransferHandling(i2c, address, length, I2C_AutoEnd_Mode, I2C_Generate_Start_Write);
//}
//else {
// I2C_TransferHandling(i2c, address, length, I2C_SoftEnd_Mode, I2C_Generate_Start_Write);
//}
// Configure slave address, nbytes, reload, end mode and start generation
I2C_TransferHandling(i2c, address, length, I2C_SoftEnd_Mode, I2C_Generate_Start_Write);
// Write all bytes
for (count = 0; count < length; count++) {
if (i2c_byte_write(obj, data[count]) != 1) {
i2c_stop(obj);
return 0;
}
i2c_byte_write(obj, data[count]);
}
/*
if (stop) {
// Wait until STOPF flag is set
timeout = LONG_TIMEOUT;
while (I2C_GetFlagStatus(i2c, I2C_ISR_STOPF) == RESET) {
timeout = FLAG_TIMEOUT;
while (!I2C_GetFlagStatus(i2c, I2C_FLAG_TC)) {
timeout--;
if (timeout == 0) {
return 0;
}
if (timeout == 0) return 0;
}
// Clear STOPF flag
I2C_ClearFlag(i2c, I2C_ICR_STOPCF);
}
*/
if (stop) i2c_stop(obj);
return count;
}
@ -245,10 +268,10 @@ void i2c_reset(i2c_t *obj) {
RCC_APB1PeriphResetCmd(RCC_APB1Periph_I2C1, ENABLE);
RCC_APB1PeriphResetCmd(RCC_APB1Periph_I2C1, DISABLE);
}
//if (obj->i2c == I2C_2) {
// RCC_APB1PeriphResetCmd(RCC_APB1Periph_I2C2, ENABLE);
// RCC_APB1PeriphResetCmd(RCC_APB1Periph_I2C2, DISABLE);
//}
if (obj->i2c == I2C_2) {
RCC_APB1PeriphResetCmd(RCC_APB1Periph_I2C2, ENABLE);
RCC_APB1PeriphResetCmd(RCC_APB1Periph_I2C2, DISABLE);
}
}
#if DEVICE_I2CSLAVE
@ -257,6 +280,9 @@ void i2c_slave_address(i2c_t *obj, int idx, uint32_t address, uint32_t mask) {
I2C_TypeDef *i2c = (I2C_TypeDef *)(obj->i2c);
uint16_t tmpreg;
// reset own address enable
i2c->OAR1 &= ~ I2C_OAR1_OA1EN;
// Get the old register value
tmpreg = i2c->OAR1;
// Reset address bits
@ -264,7 +290,7 @@ void i2c_slave_address(i2c_t *obj, int idx, uint32_t address, uint32_t mask) {
// Set new address
tmpreg |= (uint16_t)((uint16_t)address & (uint16_t)0x00FE); // 7-bits
// Store the new register value
i2c->OAR1 = tmpreg;
i2c->OAR1 = tmpreg | I2C_OAR1_OA1EN;
}
void i2c_slave_mode(i2c_t *obj, int enable_slave) {
@ -278,8 +304,20 @@ void i2c_slave_mode(i2c_t *obj, int enable_slave) {
#define WriteAddressed 3 // the master is writing to this slave (slave = receiver)
int i2c_slave_receive(i2c_t *obj) {
// TO BE DONE
return(0);
I2C_TypeDef *i2c = (I2C_TypeDef *)(obj->i2c);
int event = NoData;
if (I2C_GetFlagStatus(i2c, I2C_ISR_BUSY) == SET) {
if (I2C_GetFlagStatus(i2c, I2C_ISR_ADDR) == SET) {
// Check direction
if (I2C_GetFlagStatus(i2c, I2C_ISR_DIR) == SET) {
event = ReadAddressed;
} else event = WriteAddressed;
// Clear adress match flag to generate an acknowledge
i2c->ICR |= I2C_ICR_ADDRCF;
}
}
return event;
}
int i2c_slave_read(i2c_t *obj, char *data, int length) {

View File

@ -70,6 +70,8 @@ struct serial_s {
uint32_t databits;
uint32_t stopbits;
uint32_t parity;
PinName pin_tx;
PinName pin_rx;
};
struct spi_s {
@ -80,6 +82,10 @@ struct spi_s {
uint32_t mode;
uint32_t nss;
uint32_t br_presc;
PinName pin_miso;
PinName pin_mosi;
PinName pin_sclk;
PinName pin_ssel;
};
struct i2c_s {

View File

@ -28,8 +28,8 @@
*******************************************************************************
*/
#include "mbed_assert.h"
#include "device.h"
#include "pinmap.h"
#include "PortNames.h"
#include "error.h"
// Enable GPIO clock and return GPIO base address
@ -121,8 +121,7 @@ void pin_mode(PinName pin, PinMode mode) {
// Configure pull-up/pull-down resistors
uint32_t pupd = (uint32_t)mode;
if (pupd > 2)
pupd = 0; // Open-drain = No pull-up/No pull-down
if (pupd > 2) pupd = 0; // Open-drain = No pull-up/No pull-down
gpio->PUPDR &= (uint32_t)(~(GPIO_PUPDR_PUPDR0 << (pin_index * 2)));
gpio->PUPDR |= (uint32_t)(pupd << (pin_index * 2));

View File

@ -28,12 +28,13 @@
*******************************************************************************
*/
#include "port_api.h"
#if DEVICE_PORTIN || DEVICE_PORTOUT
#include "pinmap.h"
#include "gpio_api.h"
#include "error.h"
#if DEVICE_PORTIN || DEVICE_PORTOUT
extern uint32_t Set_GPIO_Clock(uint32_t port_idx);
// high nibble = port number (0=A, 1=B, 2=C, 3=D, 4=E, 5=F, ...)
@ -66,8 +67,7 @@ void port_dir(port_t *obj, PinDirection dir) {
if (obj->mask & (1 << i)) { // If the pin is used
if (dir == PIN_OUTPUT) {
pin_function(port_pin(obj->port, i), STM_PIN_DATA(GPIO_Mode_OUT, GPIO_OType_PP, GPIO_PuPd_NOPULL, 0xFF));
}
else { // PIN_INPUT
} else { // PIN_INPUT
pin_function(port_pin(obj->port, i), STM_PIN_DATA(GPIO_Mode_IN, 0, GPIO_PuPd_NOPULL, 0xFF));
}
}
@ -90,8 +90,7 @@ void port_write(port_t *obj, int value) {
int port_read(port_t *obj) {
if (obj->direction == PIN_OUTPUT) {
return (*obj->reg_out & obj->mask);
}
else { // PIN_INPUT
} else { // PIN_INPUT
return (*obj->reg_in & obj->mask);
}
}

View File

@ -27,35 +27,55 @@
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*******************************************************************************
*/
#include "mbed_assert.h"
#include "pwmout_api.h"
#if DEVICE_PWMOUT
#include "cmsis.h"
#include "pinmap.h"
#include "error.h"
// TIM1 cannot be used because already used by the us_ticker
static const PinMap PinMap_PWM[] = {
{PA_7, TIM_14, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_NOPULL, GPIO_AF_4)}, // TIM14_CH1
{PA_4, TIM_14, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_NOPULL, GPIO_AF_4)}, // TIM14_CH1
{PA_6, TIM_3, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_NOPULL, GPIO_AF_1)}, // TIM3_CH1
// {PA_6, TIM_16, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_NOPULL, GPIO_AF_5)}, // TIM16_CH1
{PA_7, TIM_3, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_NOPULL, GPIO_AF_1)}, // TIM3_CH2
// {PA_7, TIM_14, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_NOPULL, GPIO_AF_4)}, // TIM14_CH1
// {PA_7, TIM_17, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_NOPULL, GPIO_AF_5)}, // TIM17_CH1
{PB_0, TIM_3, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_NOPULL, GPIO_AF_1)}, // TIM3_CH3
{PB_1, TIM_14, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_NOPULL, GPIO_AF_0)}, // TIM14_CH1
// {PB_1, TIM_3, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_NOPULL, GPIO_AF_1)}, // TIM3_CH4
{PB_4, TIM_3, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_NOPULL, GPIO_AF_1)}, // TIM3_CH1
{PB_5, TIM_3, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_NOPULL, GPIO_AF_1)}, // TIM3_CH2
{PB_6, TIM_16, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_NOPULL, GPIO_AF_2)}, // TIM16_CH1N
{PB_7, TIM_17, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_NOPULL, GPIO_AF_2)}, // TIM17_CH1N
{PB_8, TIM_16, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_NOPULL, GPIO_AF_2)}, // TIM16_CH1
{PB_9, TIM_17, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_NOPULL, GPIO_AF_2)}, // TIM17_CH1
{PB_14, TIM_15, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_NOPULL, GPIO_AF_1)}, // TIM15_CH1
{PB_15, TIM_15, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_NOPULL, GPIO_AF_1)}, // TIM15_CH2
// {PB_15, TIM_15, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_NOPULL, GPIO_AF_3)}, // TIM15_CH1N
{PC_6, TIM_3, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_NOPULL, GPIO_AF_0)}, // TIM3_CH1
{PC_7, TIM_3, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_NOPULL, GPIO_AF_0)}, // TIM3_CH2
{PB_6, TIM_16, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_NOPULL, GPIO_AF_2)}, // TIM16_CH1N --> FAIL
{PC_8, TIM_3, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_NOPULL, GPIO_AF_0)}, // TIM3_CH3
{PC_9, TIM_3, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_NOPULL, GPIO_AF_0)}, // TIM3_CH4
{NC, NC, 0}
};
void pwmout_init(pwmout_t* obj, PinName pin) {
// Get the peripheral name from the pin and assign it to the object
obj->pwm = (PWMName)pinmap_peripheral(pin, PinMap_PWM);
if (obj->pwm == (PWMName)NC) {
error("PWM pinout mapping failed");
}
MBED_ASSERT(obj->pwm != (PWMName)NC);
// Enable TIM clock
if (obj->pwm == TIM_3) RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM3, ENABLE);
if (obj->pwm == TIM_14) RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM14, ENABLE);
if (obj->pwm == TIM_15) RCC_APB2PeriphClockCmd(RCC_APB2Periph_TIM15, ENABLE);
if (obj->pwm == TIM_16) RCC_APB2PeriphClockCmd(RCC_APB2Periph_TIM16, ENABLE);
if (obj->pwm == TIM_17) RCC_APB2PeriphClockCmd(RCC_APB2Periph_TIM17, ENABLE);
// Configure GPIO
pinmap_pinout(pin, PinMap_PWM);
//pin_mode(pin, PullUp);
obj->pin = pin;
obj->period = 0;
@ -65,8 +85,8 @@ void pwmout_init(pwmout_t* obj, PinName pin) {
}
void pwmout_free(pwmout_t* obj) {
TIM_TypeDef *tim = (TIM_TypeDef *)(obj->pwm);
TIM_DeInit(tim);
// Configure GPIOs
pin_function(obj->pin, STM_PIN_DATA(GPIO_Mode_IN, 0, GPIO_PuPd_NOPULL, 0xFF));
}
void pwmout_write(pwmout_t* obj, float value) {
@ -81,32 +101,63 @@ void pwmout_write(pwmout_t* obj, float value) {
obj->pulse = (uint32_t)((float)obj->period * value);
// Configure channels
TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1;
TIM_OCInitStructure.TIM_Pulse = obj->pulse;
// Configure channel 1
if (obj->pin == PA_7) {
TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;
TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High;
TIM_OC1PreloadConfig(tim, TIM_OCPreload_Enable);
TIM_OC1Init(tim, &TIM_OCInitStructure);
}
TIM_OCInitStructure.TIM_OCNPolarity = TIM_OCPolarity_Low;
TIM_OCInitStructure.TIM_OCIdleState = TIM_OCIdleState_Reset;
TIM_OCInitStructure.TIM_OCNIdleState = TIM_OCNIdleState_Reset;
// Configure channel 1N
if (obj->pin == PB_6) {
TIM_OCInitStructure.TIM_OutputNState = TIM_OutputNState_Enable;
TIM_OCInitStructure.TIM_OCNPolarity = TIM_OCNPolarity_High;
switch (obj->pin) {
// Channels 1
case PA_4:
case PA_6:
case PB_1:
case PB_4:
case PB_8:
case PB_9:
case PB_14:
case PC_6:
TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;
TIM_OC1PreloadConfig(tim, TIM_OCPreload_Enable);
TIM_OC1Init(tim, &TIM_OCInitStructure);
}
// Configure channel 2
if (obj->pin == PC_7) {
break;
// Channels 1N
case PB_6:
case PB_7:
TIM_OCInitStructure.TIM_OutputNState = TIM_OutputNState_Enable;
TIM_OC1PreloadConfig(tim, TIM_OCPreload_Enable);
TIM_OC1Init(tim, &TIM_OCInitStructure);
break;
// Channels 2
case PA_7:
case PB_5:
case PC_7:
TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;
TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High;
TIM_OC2PreloadConfig(tim, TIM_OCPreload_Enable);
TIM_OC2Init(tim, &TIM_OCInitStructure);
break;
// Channels 3
case PB_0:
case PC_8:
TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;
TIM_OC3PreloadConfig(tim, TIM_OCPreload_Enable);
TIM_OC3Init(tim, &TIM_OCInitStructure);
break;
// Channels 4
// case PB_1:
case PC_9:
TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;
TIM_OC4PreloadConfig(tim, TIM_OCPreload_Enable);
TIM_OC4Init(tim, &TIM_OCInitStructure);
break;
default:
return;
}
TIM_CtrlPWMOutputs(tim, ENABLE);
}
float pwmout_read(pwmout_t* obj) {
@ -160,3 +211,5 @@ void pwmout_pulsewidth_us(pwmout_t* obj, int us) {
float value = (float)us / (float)obj->period;
pwmout_write(obj, value);
}
#endif

View File

@ -29,41 +29,77 @@
*/
#include "rtc_api.h"
#if DEVICE_RTC
#include "wait_api.h"
#define LSE_STARTUP_TIMEOUT ((uint16_t)500) // delay in ms
static int rtc_inited = 0;
void rtc_init(void) {
uint32_t StartUpCounter = 0;
uint32_t LSEStatus = 0;
uint32_t rtc_freq = 0;
RCC_APB1PeriphClockCmd(RCC_APB1Periph_PWR, ENABLE); // Enable PWR clock
PWR_BackupAccessCmd(ENABLE); // Enable access to RTC
PWR_BackupAccessCmd(ENABLE); // Enable access to Backup domain
// Note: the LSI is used as RTC source clock
// The RTC Clock may vary due to LSI frequency dispersion.
// Reset back up registers
RCC_BackupResetCmd(ENABLE);
RCC_BackupResetCmd(DISABLE);
// Enable LSE clock
RCC_LSEConfig(RCC_LSE_ON);
// Wait till LSE is ready
do {
LSEStatus = RCC_GetFlagStatus(RCC_FLAG_LSERDY);
wait_ms(1);
StartUpCounter++;
} while ((LSEStatus == 0) && (StartUpCounter <= LSE_STARTUP_TIMEOUT));
if (StartUpCounter > LSE_STARTUP_TIMEOUT) {
// The LSE has not started, use LSI instead.
// The RTC Clock may vary due to LSI frequency dispersion.
RCC_LSEConfig(RCC_LSE_OFF);
RCC_LSICmd(ENABLE); // Enable LSI
while (RCC_GetFlagStatus(RCC_FLAG_LSIRDY) == RESET) {} // Wait until ready
RCC_RTCCLKConfig(RCC_RTCCLKSource_LSI); // Select LSI as RTC Clock Source
RCC_RTCCLKConfig(RCC_RTCCLKSource_LSI); // Select the RTC Clock Source
rtc_freq = 40000; // [TODO] To be measured precisely using a timer input capture
} else {
// The LSE has correctly started
RCC_RTCCLKConfig(RCC_RTCCLKSource_LSE); // Select the RTC Clock Source
rtc_freq = LSE_VALUE;
}
RCC_RTCCLKCmd(ENABLE); // Enable RTC Clock
RTC_WaitForSynchro(); // Wait for RTC registers synchronization
uint32_t lsi_freq = 40000; // *** TODO** To be measured precisely using a timer input capture
RTC_InitTypeDef RTC_InitStructure;
RTC_InitStructure.RTC_AsynchPrediv = 127;
RTC_InitStructure.RTC_SynchPrediv = (lsi_freq / 128) - 1;
RTC_InitStructure.RTC_SynchPrediv = (rtc_freq / 128) - 1;
RTC_InitStructure.RTC_HourFormat = RTC_HourFormat_24;
RTC_Init(&RTC_InitStructure);
PWR_BackupAccessCmd(DISABLE); // Disable access to RTC
PWR_BackupAccessCmd(DISABLE); // Disable access to Backup domain
rtc_inited = 1;
}
void rtc_free(void) {
RCC_DeInit(); // Resets the RCC clock configuration to the default reset state
// Reset RTC
PWR_BackupAccessCmd(ENABLE); // Enable access to Backup Domain
RTC_DeInit();
RCC_BackupResetCmd(ENABLE);
RCC_BackupResetCmd(DISABLE);
// Disable RTC, LSE and LSI clocks
RCC_RTCCLKCmd(DISABLE);
RCC_LSEConfig(RCC_LSE_OFF);
RCC_LSICmd(DISABLE);
rtc_inited = 0;
}
@ -135,3 +171,5 @@ void rtc_write(time_t t) {
RTC_SetTime(RTC_Format_BIN, &timeStruct);
PWR_BackupAccessCmd(DISABLE); // Disable access to RTC
}
#endif

View File

@ -29,19 +29,25 @@
*/
#include "mbed_assert.h"
#include "serial_api.h"
#if DEVICE_SERIAL
#include "cmsis.h"
#include "pinmap.h"
#include <string.h>
static const PinMap PinMap_UART_TX[] = {
{PA_9, UART_1, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_1)},
{PA_2, UART_2, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_1)},
{PA_9, UART_1, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_1)},
{PB_6, UART_1, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_0)},
{NC, NC, 0}
};
static const PinMap PinMap_UART_RX[] = {
{PA_10, UART_1, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_1)},
{PA_3, UART_2, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_1)},
{PA_10, UART_1, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_1)},
{PA_15, UART_2, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_1)},
{PB_7, UART_1, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_0)},
{NC, NC, 0}
};
@ -83,9 +89,11 @@ void serial_init(serial_t *obj, PinName tx, PinName rx) {
// Enable USART clock
if (obj->uart == UART_1) {
RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1, ENABLE);
obj->index = 0;
}
if (obj->uart == UART_2) {
RCC_APB1PeriphClockCmd(RCC_APB1Periph_USART2, ENABLE);
obj->index = 1;
}
// Configure the UART pins
@ -100,11 +108,10 @@ void serial_init(serial_t *obj, PinName tx, PinName rx) {
obj->stopbits = USART_StopBits_1;
obj->parity = USART_Parity_No;
init_usart(obj);
obj->pin_tx = tx;
obj->pin_rx = rx;
// The index is used by irq
if (obj->uart == UART_1) obj->index = 0;
if (obj->uart == UART_2) obj->index = 1;
init_usart(obj);
// For stdio management
if (obj->uart == STDIO_UART) {
@ -115,6 +122,22 @@ void serial_init(serial_t *obj, PinName tx, PinName rx) {
}
void serial_free(serial_t *obj) {
// Reset UART and disable clock
if (obj->uart == UART_1) {
RCC_APB2PeriphResetCmd(RCC_APB2Periph_USART1, ENABLE);
RCC_APB2PeriphResetCmd(RCC_APB2Periph_USART1, DISABLE);
RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1, DISABLE);
}
if (obj->uart == UART_2) {
RCC_APB1PeriphResetCmd(RCC_APB1Periph_USART2, ENABLE);
RCC_APB1PeriphResetCmd(RCC_APB1Periph_USART2, DISABLE);
RCC_APB1PeriphClockCmd(RCC_APB1Periph_USART2, DISABLE);
}
// Configure GPIOs
pin_function(obj->pin_tx, STM_PIN_DATA(GPIO_Mode_IN, 0, GPIO_PuPd_NOPULL, 0xFF));
pin_function(obj->pin_rx, STM_PIN_DATA(GPIO_Mode_IN, 0, GPIO_PuPd_NOPULL, 0xFF));
serial_irq_ids[obj->index] = 0;
}
@ -126,8 +149,7 @@ void serial_baud(serial_t *obj, int baudrate) {
void serial_format(serial_t *obj, int data_bits, SerialParity parity, int stop_bits) {
if (data_bits == 8) {
obj->databits = USART_WordLength_8b;
}
else {
} else {
obj->databits = USART_WordLength_9b;
}
@ -147,8 +169,7 @@ void serial_format(serial_t *obj, int data_bits, SerialParity parity, int stop_b
if (stop_bits == 2) {
obj->stopbits = USART_StopBits_2;
}
else {
} else {
obj->stopbits = USART_StopBits_1;
}
@ -173,8 +194,12 @@ static void uart_irq(USART_TypeDef* usart, int id) {
}
}
static void uart1_irq(void) {uart_irq((USART_TypeDef*)UART_1, 0);}
static void uart2_irq(void) {uart_irq((USART_TypeDef*)UART_2, 1);}
static void uart1_irq(void) {
uart_irq((USART_TypeDef*)UART_1, 0);
}
static void uart2_irq(void) {
uart_irq((USART_TypeDef*)UART_2, 1);
}
void serial_irq_handler(serial_t *obj, uart_irq_handler handler, uint32_t id) {
irq_handler = handler;
@ -200,8 +225,7 @@ void serial_irq_set(serial_t *obj, SerialIrq irq, uint32_t enable) {
if (irq == RxIrq) {
USART_ITConfig(usart, USART_IT_RXNE, ENABLE);
}
else { // TxIrq
} else { // TxIrq
USART_ITConfig(usart, USART_IT_TC, ENABLE);
}
@ -216,8 +240,7 @@ void serial_irq_set(serial_t *obj, SerialIrq irq, uint32_t enable) {
USART_ITConfig(usart, USART_IT_RXNE, DISABLE);
// Check if TxIrq is disabled too
if ((usart->CR1 & USART_CR1_TXEIE) == 0) all_disabled = 1;
}
else { // TxIrq
} else { // TxIrq
USART_ITConfig(usart, USART_IT_TXE, DISABLE);
// Check if RxIrq is disabled too
if ((usart->CR1 & USART_CR1_RXNEIE) == 0) all_disabled = 1;
@ -275,3 +298,5 @@ void serial_break_set(serial_t *obj) {
void serial_break_clear(serial_t *obj) {
}
#endif

View File

@ -28,10 +28,12 @@
*******************************************************************************
*/
#include "sleep_api.h"
#if DEVICE_SLEEP
#include "cmsis.h"
void sleep(void)
{
void sleep(void) {
// Disable us_ticker update interrupt
TIM_ITConfig(TIM1, TIM_IT_Update, DISABLE);
@ -44,11 +46,15 @@ void sleep(void)
// MCU STOP mode
// Wake-up with external interrupt
void deepsleep(void)
{
void deepsleep(void) {
// Enable PWR clock
RCC_APB1PeriphClockCmd(RCC_APB1Periph_PWR, ENABLE);
// Request to enter STOP mode with regulator in low power mode
PWR_EnterSTOPMode(PWR_Regulator_LowPower, PWR_STOPEntry_WFI);
// After wake-up from STOP reconfigure the PLL
SetSysClock();
}
#endif

View File

@ -38,22 +38,30 @@
static const PinMap PinMap_SPI_MOSI[] = {
{PA_7, SPI_1, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_NOPULL, GPIO_AF_0)},
{PB_5, SPI_1, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_NOPULL, GPIO_AF_0)},
{PB_15, SPI_2, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_NOPULL, GPIO_AF_0)},
{NC, NC, 0}
};
static const PinMap PinMap_SPI_MISO[] = {
{PA_6, SPI_1, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_NOPULL, GPIO_AF_0)},
{PB_4, SPI_1, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_NOPULL, GPIO_AF_0)},
{PB_14, SPI_2, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_NOPULL, GPIO_AF_0)},
{NC, NC, 0}
};
static const PinMap PinMap_SPI_SCLK[] = {
{PA_5, SPI_1, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_NOPULL, GPIO_AF_0)},
{PB_3, SPI_1, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_NOPULL, GPIO_AF_0)},
{PB_13, SPI_2, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_NOPULL, GPIO_AF_0)},
{NC, NC, 0}
};
// Only used in Slave mode
static const PinMap PinMap_SPI_SSEL[] = {
{PB_6, SPI_1, STM_PIN_DATA(GPIO_Mode_IN, GPIO_OType_PP, GPIO_PuPd_NOPULL, 0)}, // Generic IO, not real H/W NSS pin
{PA_4, SPI_1, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_NOPULL, 0)},
{PA_15, SPI_1, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_NOPULL, 0)},
{PB_12, SPI_2, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_NOPULL, 0)},
{NC, NC, 0}
};
@ -111,31 +119,50 @@ void spi_init(spi_t *obj, PinName mosi, PinName miso, PinName sclk, PinName ssel
obj->cpha = SPI_CPHA_1Edge;
obj->br_presc = SPI_BaudRatePrescaler_8; // 1 MHz
obj->pin_miso = miso;
obj->pin_mosi = mosi;
obj->pin_sclk = sclk;
obj->pin_ssel = ssel;
if (ssel == NC) { // Master
obj->mode = SPI_Mode_Master;
obj->nss = SPI_NSS_Soft;
}
else { // Slave
} else { // Slave
pinmap_pinout(ssel, PinMap_SPI_SSEL);
obj->mode = SPI_Mode_Slave;
obj->nss = SPI_NSS_Soft;
obj->nss = SPI_NSS_Hard;
}
init_spi(obj);
}
void spi_free(spi_t *obj) {
SPI_TypeDef *spi = (SPI_TypeDef *)(obj->spi);
SPI_I2S_DeInit(spi);
// Reset SPI and disable clock
if (obj->spi == SPI_1) {
RCC_APB2PeriphResetCmd(RCC_APB2Periph_SPI1, ENABLE);
RCC_APB2PeriphResetCmd(RCC_APB2Periph_SPI1, DISABLE);
RCC_APB2PeriphClockCmd(RCC_APB2Periph_SPI1, DISABLE);
}
if (obj->spi == SPI_2) {
RCC_APB1PeriphResetCmd(RCC_APB1Periph_SPI2, ENABLE);
RCC_APB1PeriphResetCmd(RCC_APB1Periph_SPI2, DISABLE);
RCC_APB1PeriphClockCmd(RCC_APB1Periph_SPI2, DISABLE);
}
// Configure GPIOs
pin_function(obj->pin_miso, STM_PIN_DATA(GPIO_Mode_IN, 0, GPIO_PuPd_NOPULL, 0xFF));
pin_function(obj->pin_mosi, STM_PIN_DATA(GPIO_Mode_IN, 0, GPIO_PuPd_NOPULL, 0xFF));
pin_function(obj->pin_sclk, STM_PIN_DATA(GPIO_Mode_IN, 0, GPIO_PuPd_NOPULL, 0xFF));
pin_function(obj->pin_ssel, STM_PIN_DATA(GPIO_Mode_IN, 0, GPIO_PuPd_NOPULL, 0xFF));
}
void spi_format(spi_t *obj, int bits, int mode, int slave) {
// Save new values
if (bits == 8) {
obj->bits = SPI_DataSize_8b;
}
else {
if (bits == 16) {
obj->bits = SPI_DataSize_16b;
} else {
obj->bits = SPI_DataSize_8b;
}
switch (mode) {
@ -160,8 +187,7 @@ void spi_format(spi_t *obj, int bits, int mode, int slave) {
if (slave == 0) {
obj->mode = SPI_Mode_Master;
obj->nss = SPI_NSS_Soft;
}
else {
} else {
obj->mode = SPI_Mode_Slave;
obj->nss = SPI_NSS_Hard;
}
@ -170,26 +196,24 @@ void spi_format(spi_t *obj, int bits, int mode, int slave) {
}
void spi_frequency(spi_t *obj, int hz) {
// Get SPI clock frequency
uint32_t PCLK = SystemCoreClock;
// Choose the baud rate divisor (between 2 and 256)
uint32_t divisor = PCLK / hz;
// Find the nearest power-of-2
divisor = (divisor > 0 ? divisor-1 : 0);
divisor |= divisor >> 1;
divisor |= divisor >> 2;
divisor |= divisor >> 4;
divisor |= divisor >> 8;
divisor |= divisor >> 16;
divisor++;
uint32_t baud_rate = __builtin_ffs(divisor) - 2;
// Save new value
obj->br_presc = ((baud_rate > 7) ? (7 << 3) : (baud_rate << 3));
// Note: The frequencies are obtained with SPI clock = 48 MHz (APB1 & APB2 clocks)
if (hz < 300000) {
obj->br_presc = SPI_BaudRatePrescaler_256; // 188 kHz
} else if ((hz >= 300000) && (hz < 700000)) {
obj->br_presc = SPI_BaudRatePrescaler_128; // 375 kHz
} else if ((hz >= 700000) && (hz < 1000000)) {
obj->br_presc = SPI_BaudRatePrescaler_64; // 750 kHz
} else if ((hz >= 1000000) && (hz < 3000000)) {
obj->br_presc = SPI_BaudRatePrescaler_32; // 1.5 MHz
} else if ((hz >= 3000000) && (hz < 6000000)) {
obj->br_presc = SPI_BaudRatePrescaler_16; // 3 MHz
} else if ((hz >= 6000000) && (hz < 12000000)) {
obj->br_presc = SPI_BaudRatePrescaler_8; // 6 MHz
} else if ((hz >= 12000000) && (hz < 24000000)) {
obj->br_presc = SPI_BaudRatePrescaler_4; // 12 MHz
} else { // >= 24000000
obj->br_presc = SPI_BaudRatePrescaler_2; // 24 MHz
}
init_spi(obj);
}
@ -212,19 +236,21 @@ static inline int ssp_writeable(spi_t *obj) {
static inline void ssp_write(spi_t *obj, int value) {
SPI_TypeDef *spi = (SPI_TypeDef *)(obj->spi);
while (!ssp_writeable(obj));
if(obj->bits == SPI_DataSize_8b) // 8 bit mode
if (obj->bits == SPI_DataSize_8b) {
SPI_SendData8(spi, (uint8_t)value);
else
} else { // 16-bit
SPI_I2S_SendData16(spi, (uint16_t)value);
}
}
static inline int ssp_read(spi_t *obj) {
SPI_TypeDef *spi = (SPI_TypeDef *)(obj->spi);
while (!ssp_readable(obj));
if(obj->bits == SPI_DataSize_8b) // 8 bit mode
if (obj->bits == SPI_DataSize_8b) {
return (int)SPI_ReceiveData8(spi);
else // 16 bit mode
} else { // 16-bit
return (int)SPI_I2S_ReceiveData16(spi);
}
}
static inline int ssp_busy(spi_t *obj) {
@ -240,24 +266,26 @@ int spi_master_write(spi_t *obj, int value) {
}
int spi_slave_receive(spi_t *obj) {
return (ssp_readable(obj) && !ssp_busy(obj)) ? (1) : (0);
return ((ssp_readable(obj) && !ssp_busy(obj)) ? 1 : 0);
};
int spi_slave_read(spi_t *obj) {
SPI_TypeDef *spi = (SPI_TypeDef *)(obj->spi);
if(obj->bits == SPI_DataSize_8b) // 8 bit mode
if (obj->bits == SPI_DataSize_8b) {
return (int)SPI_ReceiveData8(spi);
else
} else { // 16-bit
return (int)SPI_I2S_ReceiveData16(spi);
}
}
void spi_slave_write(spi_t *obj, int value) {
SPI_TypeDef *spi = (SPI_TypeDef *)(obj->spi);
while (!ssp_writeable(obj));
if(obj->bits == SPI_DataSize_8b) // 8 bit mode
if (obj->bits == SPI_DataSize_8b) {
SPI_SendData8(spi, (uint8_t)value);
else
} else { // 16-bit
SPI_I2S_SendData16(spi, (uint16_t)value);
}
}
int spi_busy(spi_t *obj) {

View File

@ -67,14 +67,12 @@ static void tim_oc_irq_handler(void) {
if (oc_rem_part > 0) {
set_compare(oc_rem_part); // Finish the remaining time left
oc_rem_part = 0;
}
else {
} else {
if (oc_int_part > 0) {
set_compare(0xFFFF);
oc_rem_part = cval; // To finish the counter loop the next time
oc_int_part--;
}
else {
} else {
us_ticker_irq_handler();
}
}
@ -139,8 +137,7 @@ void us_ticker_set_interrupt(unsigned int timestamp) {
if (delta <= 0) { // This event was in the past
us_ticker_irq_handler();
}
else {
} else {
oc_int_part = (uint32_t)(delta >> 16);
oc_rem_part = (uint16_t)(delta & 0xFFFF);
if (oc_rem_part <= (0xFFFF - cval)) {