mirror of https://github.com/ARMmbed/mbed-os.git
Merge pull request #10874 from ganesh-ramachandran/m3h6_newfeatures
Add new features to Toshiba's TMPM3H6pull/10976/head
commit
e08b7137a6
|
@ -16,7 +16,8 @@
|
|||
#ifndef MBED_DEVICE_H
|
||||
#define MBED_DEVICE_H
|
||||
|
||||
#define DEVICE_ID_LENGTH 32
|
||||
#define DEVICE_ID_LENGTH 32
|
||||
#define TRANSACTION_QUEUE_SIZE_SPI 4
|
||||
|
||||
#include "objects.h"
|
||||
|
||||
|
|
|
@ -21,6 +21,12 @@
|
|||
#include "pinmap.h"
|
||||
#include "gpio_include.h"
|
||||
|
||||
#if DEVICE_I2C_ASYNCH
|
||||
#define I2C_S(obj) (struct i2c_s *) (&((obj)->i2c))
|
||||
#else
|
||||
#define I2C_S(obj) (struct i2c_s *) (obj)
|
||||
#endif
|
||||
|
||||
static const PinMap PinMap_I2C_SDA[] = {
|
||||
{PC1, I2C_0, PIN_DATA(1, 2)},
|
||||
{PA5, I2C_1, PIN_DATA(1, 2)},
|
||||
|
@ -49,40 +55,84 @@ static const uint32_t I2C_SCK_DIVIDER_TBL[8] = {
|
|||
I2C_clock_setting_t clk;
|
||||
static uint32_t start_flag = 0;
|
||||
|
||||
#if DEVICE_I2C_ASYNCH
|
||||
enum {
|
||||
I2C_TRANSFER_STATE_IDLE = 0U,
|
||||
I2C_TRANSFER_STATE_START,
|
||||
I2C_TRANSFER_STATE_WRITE,
|
||||
I2C_TRANSFER_STATE_RESTART,
|
||||
I2C_TRANSFER_STATE_READ,
|
||||
I2C_TRANSFER_STATE_MAX
|
||||
} TransferState;
|
||||
|
||||
typedef struct {
|
||||
IRQn_Type i2c;
|
||||
} i2c_irq_t;
|
||||
|
||||
static const i2c_irq_t I2C_CH0_IRQN_TBL[1] = {
|
||||
{INTI2C0_IRQn}
|
||||
};
|
||||
|
||||
static const i2c_irq_t I2C_CH1_IRQN_TBL[1] = {
|
||||
{INTI2C1_IRQn}
|
||||
};
|
||||
|
||||
static const i2c_irq_t I2C_CH2_IRQN_TBL[1] = {
|
||||
{INTI2C2_IRQn}
|
||||
};
|
||||
#endif
|
||||
|
||||
static int32_t wait_status(i2c_t *p_obj);
|
||||
static void i2c_start_bit(i2c_t *obj);
|
||||
|
||||
#if DEVICE_I2C_ASYNCH
|
||||
static void disable_irq(uint32_t irqn);
|
||||
static void clear_irq(uint32_t irqn);
|
||||
static void i2c_irq_handler(i2c_t *obj);
|
||||
#endif
|
||||
|
||||
// Initialize the I2C peripheral. It sets the default parameters for I2C
|
||||
void i2c_init(i2c_t *obj, PinName sda, PinName scl)
|
||||
{
|
||||
MBED_ASSERT(obj != NULL);
|
||||
|
||||
struct i2c_s *obj_s = I2C_S(obj);
|
||||
MBED_ASSERT(obj_s != NULL);
|
||||
I2CName i2c_sda = (I2CName)pinmap_peripheral(sda, PinMap_I2C_SDA);
|
||||
I2CName i2c_scl = (I2CName)pinmap_peripheral(scl, PinMap_I2C_SCL);
|
||||
I2CName i2c_name = (I2CName)pinmap_merge(i2c_sda, i2c_scl);
|
||||
|
||||
MBED_ASSERT((int)i2c_name != NC);
|
||||
|
||||
switch (i2c_name) {
|
||||
case I2C_0:
|
||||
TSB_CG_FSYSENA_IPENA20 = ENABLE;
|
||||
TSB_CG_FSYSENA_IPENA02 = ENABLE;
|
||||
obj->i2c = TSB_I2C0;
|
||||
obj_s->i2c = TSB_I2C0;
|
||||
#if DEVICE_I2C_ASYNCH
|
||||
obj_s->irqn = (uint32_t)&I2C_CH0_IRQN_TBL;
|
||||
#endif
|
||||
break;
|
||||
case I2C_1:
|
||||
TSB_CG_FSYSENA_IPENA21 = ENABLE;
|
||||
TSB_CG_FSYSENA_IPENA00 = ENABLE;
|
||||
obj->i2c = TSB_I2C1;
|
||||
obj_s->i2c = TSB_I2C1;
|
||||
#if DEVICE_I2C_ASYNCH
|
||||
obj_s->irqn = (uint32_t)&I2C_CH1_IRQN_TBL;
|
||||
#endif
|
||||
break;
|
||||
case I2C_2:
|
||||
TSB_CG_FSYSENA_IPENA22 = ENABLE;
|
||||
TSB_CG_FSYSENA_IPENA10 = ENABLE;
|
||||
obj->i2c = TSB_I2C2;
|
||||
obj_s->i2c = TSB_I2C2;
|
||||
#if DEVICE_I2C_ASYNCH
|
||||
obj_s->irqn = (uint32_t)&I2C_CH2_IRQN_TBL;
|
||||
#endif
|
||||
break;
|
||||
default:
|
||||
error("I2C is not available");
|
||||
break;
|
||||
}
|
||||
#if DEVICE_I2C_ASYNCH
|
||||
obj_s->state = I2C_TRANSFER_STATE_IDLE;
|
||||
#endif
|
||||
|
||||
pinmap_pinout(sda, PinMap_I2C_SDA);
|
||||
pin_mode(sda, OpenDrain);
|
||||
|
@ -94,15 +144,16 @@ void i2c_init(i2c_t *obj, PinName sda, PinName scl)
|
|||
|
||||
i2c_reset(obj);
|
||||
i2c_frequency(obj, 100000);
|
||||
obj->i2c->CR2 = (I2CxCR2_I2CM_ENABLE | I2CxCR2_TRX | I2CxCR2_PIN_CLEAR |
|
||||
I2CxCR2_INIT);
|
||||
obj->i2c->OP = I2CxOP_INIT;
|
||||
obj->i2c->IE = I2CxIE_CLEAR;
|
||||
obj_s->i2c->CR2 = (I2CxCR2_I2CM_ENABLE | I2CxCR2_TRX | I2CxCR2_PIN_CLEAR |
|
||||
I2CxCR2_INIT);
|
||||
obj_s->i2c->OP = I2CxOP_INIT;
|
||||
obj_s->i2c->IE = I2CxIE_CLEAR;
|
||||
}
|
||||
|
||||
// Configure the I2C frequency
|
||||
void i2c_frequency(i2c_t *obj, int hz)
|
||||
{
|
||||
struct i2c_s *obj_s = I2C_S(obj);
|
||||
uint64_t sck;
|
||||
uint64_t tmp_sck;
|
||||
uint64_t prsck;
|
||||
|
@ -134,8 +185,8 @@ void i2c_frequency(i2c_t *obj, int hz)
|
|||
clk.prsck = (tmp_prsck < 32) ? (uint32_t)(tmp_prsck - 1) : 0;
|
||||
}
|
||||
|
||||
obj->i2c->CR1 = (I2CxCR1_ACK | clk.sck);
|
||||
obj->i2c->PRS = (I2CxPRS_PRCK & clk.prsck);
|
||||
obj_s->i2c->CR1 = (I2CxCR1_ACK | clk.sck);
|
||||
obj_s->i2c->PRS = (I2CxPRS_PRCK & clk.prsck);
|
||||
}
|
||||
|
||||
int i2c_start(i2c_t *obj)
|
||||
|
@ -146,11 +197,12 @@ int i2c_start(i2c_t *obj)
|
|||
|
||||
int i2c_stop(i2c_t *obj)
|
||||
{
|
||||
struct i2c_s *obj_s = I2C_S(obj);
|
||||
uint32_t timeout = I2C_TIMEOUT;
|
||||
|
||||
obj->i2c->CR2 = I2CxCR2_STOP_CONDITION;
|
||||
obj_s->i2c->CR2 = I2CxCR2_STOP_CONDITION;
|
||||
|
||||
while ((obj->i2c->SR & I2CxSR_BB) == I2CxSR_BB) {
|
||||
while ((obj_s->i2c->SR & I2CxSR_BB) == I2CxSR_BB) {
|
||||
if (timeout == 0) {
|
||||
break;
|
||||
}
|
||||
|
@ -162,8 +214,9 @@ int i2c_stop(i2c_t *obj)
|
|||
|
||||
void i2c_reset(i2c_t *obj)
|
||||
{
|
||||
obj->i2c->CR2 = I2CxCR2_SWRES_10;
|
||||
obj->i2c->CR2 = I2CxCR2_SWRES_01;
|
||||
struct i2c_s *obj_s = I2C_S(obj);
|
||||
obj_s->i2c->CR2 = I2CxCR2_SWRES_10;
|
||||
obj_s->i2c->CR2 = I2CxCR2_SWRES_01;
|
||||
}
|
||||
|
||||
int i2c_read(i2c_t *obj, int address, char *data, int length, int stop)
|
||||
|
@ -224,22 +277,23 @@ int i2c_write(i2c_t *obj, int address, const char *data, int length, int stop)
|
|||
|
||||
int i2c_byte_read(i2c_t *obj, int last)
|
||||
{
|
||||
struct i2c_s *obj_s = I2C_S(obj);
|
||||
int32_t result = 0;
|
||||
|
||||
obj->i2c->ST = I2CxST_CLEAR;
|
||||
obj_s->i2c->ST = I2CxST_CLEAR;
|
||||
|
||||
if (last) {
|
||||
obj->i2c->OP |= I2CxOP_MFACK;
|
||||
obj_s->i2c->OP |= I2CxOP_MFACK;
|
||||
} else {
|
||||
obj->i2c->OP &= ~I2CxOP_MFACK;
|
||||
obj_s->i2c->OP &= ~I2CxOP_MFACK;
|
||||
}
|
||||
|
||||
obj->i2c->DBR = (0 & I2CxDBR_DB_MASK);
|
||||
obj_s->i2c->DBR = (0 & I2CxDBR_DB_MASK);
|
||||
|
||||
if (wait_status(obj) < 0) {
|
||||
result = -1;
|
||||
} else {
|
||||
result = (int32_t)(obj->i2c->DBR & I2CxDBR_DB_MASK);
|
||||
result = (int32_t)(obj_s->i2c->DBR & I2CxDBR_DB_MASK);
|
||||
}
|
||||
|
||||
return result;
|
||||
|
@ -247,22 +301,23 @@ int i2c_byte_read(i2c_t *obj, int last)
|
|||
|
||||
int i2c_byte_write(i2c_t *obj, int data)
|
||||
{
|
||||
struct i2c_s *obj_s = I2C_S(obj);
|
||||
int32_t result = 0;
|
||||
|
||||
obj->i2c->ST = I2CxST_CLEAR;
|
||||
obj_s->i2c->ST = I2CxST_CLEAR;
|
||||
if (start_flag == 1) {
|
||||
obj->i2c->DBR = (data & I2CxDBR_DB_MASK);
|
||||
obj_s->i2c->DBR = (data & I2CxDBR_DB_MASK);
|
||||
i2c_start_bit(obj);
|
||||
start_flag = 0;
|
||||
} else {
|
||||
obj->i2c->DBR = (data & I2CxDBR_DB_MASK);
|
||||
obj_s->i2c->DBR = (data & I2CxDBR_DB_MASK);
|
||||
}
|
||||
|
||||
if (wait_status(obj) < 0) {
|
||||
return -1;
|
||||
}
|
||||
|
||||
if (!((obj->i2c->SR & I2CxSR_LRB) == I2CxSR_LRB)) {
|
||||
if (!((obj_s->i2c->SR & I2CxSR_LRB) == I2CxSR_LRB)) {
|
||||
result = 1;
|
||||
} else {
|
||||
result = 0;
|
||||
|
@ -273,25 +328,27 @@ int i2c_byte_write(i2c_t *obj, int data)
|
|||
|
||||
static void i2c_start_bit(i2c_t *obj) // Send START command
|
||||
{
|
||||
struct i2c_s *obj_s = I2C_S(obj);
|
||||
uint32_t opreg = 0;
|
||||
|
||||
opreg = obj->i2c->OP;
|
||||
opreg = obj_s->i2c->OP;
|
||||
opreg &= ~(I2CxOP_RSTA | I2CxOP_SREN);
|
||||
|
||||
if ((obj->i2c->SR & I2CxSR_BB)) {
|
||||
if ((obj_s->i2c->SR & I2CxSR_BB)) {
|
||||
opreg |= I2CxOP_SREN;
|
||||
}
|
||||
|
||||
obj->i2c->OP = opreg;
|
||||
obj->i2c->CR2 |= I2CxCR2_START_CONDITION;
|
||||
obj_s->i2c->OP = opreg;
|
||||
obj_s->i2c->CR2 |= I2CxCR2_START_CONDITION;
|
||||
}
|
||||
|
||||
static int32_t wait_status(i2c_t *p_obj)
|
||||
{
|
||||
struct i2c_s *obj_s = I2C_S(p_obj);
|
||||
volatile int32_t timeout;
|
||||
timeout = I2C_TIMEOUT;
|
||||
|
||||
while (!((p_obj->i2c->ST & I2CxST_I2C) == I2CxST_I2C)) {
|
||||
while (!((obj_s->i2c->ST & I2CxST_I2C) == I2CxST_I2C)) {
|
||||
if ((timeout--) == 0) {
|
||||
return (-1);
|
||||
}
|
||||
|
@ -302,32 +359,38 @@ static int32_t wait_status(i2c_t *p_obj)
|
|||
|
||||
void i2c_slave_mode(i2c_t *obj, int enable_slave)
|
||||
{
|
||||
struct i2c_s *obj_s = I2C_S(obj);
|
||||
if (enable_slave) {
|
||||
obj->i2c->OP = I2CxOP_SLAVE_INIT;
|
||||
obj->i2c->CR1 = (I2CxCR1_ACK | clk.sck);
|
||||
obj->i2c->CR2 = (I2CxCR2_INIT | I2CxCR2_PIN_CLEAR);
|
||||
obj->i2c->PRS = (I2CxPRS_PRCK & clk.prsck);
|
||||
obj->i2c->AR = (obj->address & I2CAR_SA_MASK);
|
||||
obj->i2c->IE = I2CxIE_INTI2C;
|
||||
i2c_reset(obj);
|
||||
obj_s->i2c->OP = I2CxOP_SLAVE_INIT;
|
||||
obj_s->i2c->CR1 = (I2CxCR1_ACK | clk.sck);
|
||||
obj_s->i2c->CR2 = (I2CxCR2_INIT | I2CxCR2_PIN_CLEAR);
|
||||
obj_s->i2c->CR2 = I2CxCR2_INIT;
|
||||
obj_s->i2c->PRS = (I2CxPRS_PRCK & clk.prsck);
|
||||
obj_s->i2c->AR = (obj_s->address & I2CAR_SA_MASK);
|
||||
obj_s->i2c->IE = I2CxIE_INTI2C;
|
||||
} else {
|
||||
i2c_reset(obj);
|
||||
obj->i2c->CR2 = (I2CxCR2_I2CM_ENABLE | I2CxCR2_TRX | I2CxCR2_PIN_CLEAR |
|
||||
I2CxCR2_INIT);
|
||||
obj->i2c->OP = I2CxOP_INIT;
|
||||
obj->i2c->CR1 = (I2CxCR1_ACK | clk.sck);
|
||||
obj->i2c->PRS = (I2CxPRS_PRCK & clk.prsck);
|
||||
NVIC_DisableIRQ(obj->IRQn);
|
||||
NVIC_ClearPendingIRQ(obj->IRQn);
|
||||
obj->i2c->ST = I2CxST_CLEAR;
|
||||
obj_s->i2c->CR2 = (I2CxCR2_I2CM_ENABLE | I2CxCR2_TRX | I2CxCR2_PIN_CLEAR |
|
||||
I2CxCR2_INIT);
|
||||
obj_s->i2c->OP = I2CxOP_INIT;
|
||||
obj_s->i2c->CR1 = (I2CxCR1_ACK | clk.sck);
|
||||
obj_s->i2c->PRS = (I2CxPRS_PRCK & clk.prsck);
|
||||
obj_s->i2c->ST = I2CxST_CLEAR;
|
||||
}
|
||||
}
|
||||
|
||||
int i2c_slave_receive(i2c_t *obj)
|
||||
{
|
||||
struct i2c_s *obj_s = I2C_S(obj);
|
||||
int32_t result = I2C_NO_DATA;
|
||||
|
||||
if ((obj->i2c->ST & I2CxST_I2C) && (obj->i2c->OP & I2CxOP_SAST)) {
|
||||
if ((obj->i2c->SR & I2CxSR_TRX) == I2CxSR_TRX) {
|
||||
if ((obj_s->i2c->ST & I2CxST_I2C) && (obj_s->i2c->OP & I2CxOP_SAST)) {
|
||||
// Detect and clear arbitration lost.
|
||||
if(!(obj_s->i2c->SR & 0x08)) {
|
||||
obj_s->i2c->DBR = 0x00;
|
||||
}
|
||||
if ((obj_s->i2c->SR & I2CxSR_TRX) == I2CxSR_TRX) {
|
||||
result = I2C_READ_ADDRESSED;
|
||||
} else {
|
||||
result = I2C_WRITE_ADDRESSED;
|
||||
|
@ -339,11 +402,12 @@ int i2c_slave_receive(i2c_t *obj)
|
|||
|
||||
int i2c_slave_read(i2c_t *obj, char *data, int length)
|
||||
{
|
||||
struct i2c_s *obj_s = I2C_S(obj);
|
||||
int32_t count = 0;
|
||||
|
||||
while (count < length) {
|
||||
int32_t pdata = i2c_byte_read(obj, ((count < (length - 1)) ? 0 : 1));
|
||||
if ((obj->i2c->SR & I2CxSR_TRX)) {
|
||||
int32_t pdata = i2c_byte_read(obj, 0);
|
||||
if ((obj_s->i2c->SR & I2CxSR_TRX)) {
|
||||
return (count);
|
||||
} else {
|
||||
if (pdata < 0) {
|
||||
|
@ -375,7 +439,8 @@ int i2c_slave_write(i2c_t *obj, const char *data, int length)
|
|||
|
||||
void i2c_slave_address(i2c_t *obj, int idx, uint32_t address, uint32_t mask)
|
||||
{
|
||||
obj->address = address & I2CAR_SA_MASK;
|
||||
struct i2c_s *obj_s = I2C_S(obj);
|
||||
obj_s->address = address & I2CAR_SA_MASK;
|
||||
i2c_slave_mode(obj,1);
|
||||
}
|
||||
|
||||
|
@ -399,4 +464,210 @@ const PinMap *i2c_slave_scl_pinmap()
|
|||
return PinMap_I2C_SCL;
|
||||
}
|
||||
|
||||
#if DEVICE_I2C_ASYNCH
|
||||
|
||||
void i2c_transfer_asynch(i2c_t *obj, const void *tx, size_t tx_length, void *rx, size_t rx_length, uint32_t address,
|
||||
uint32_t stop, uint32_t handler, uint32_t event, DMAUsage hint)
|
||||
{
|
||||
struct i2c_s *obj_s = I2C_S(obj);
|
||||
i2c_irq_t *p_irqn = (i2c_irq_t *)obj_s->irqn;
|
||||
|
||||
if(obj_s->state == I2C_TRANSFER_STATE_IDLE) {
|
||||
// Disable and clear interrupt flag.
|
||||
disable_irq(obj_s->irqn);
|
||||
obj_s->i2c->IE = I2CxIE_CLEAR;
|
||||
obj_s->i2c->ST = I2CxST_CLEAR;
|
||||
clear_irq(obj_s->irqn);
|
||||
|
||||
// Store given buffer data and lenght into I2C object and set state as I2C_TRANSFER_STATE_START.
|
||||
obj_s->address = address;
|
||||
obj_s->event = 0;
|
||||
obj_s->stop = stop;
|
||||
obj->tx_buff.buffer = (void *)tx;
|
||||
obj->tx_buff.length = tx_length;
|
||||
obj->tx_buff.pos = 0;
|
||||
obj->rx_buff.buffer = rx;
|
||||
obj->rx_buff.length = rx_length;
|
||||
obj->rx_buff.pos = 0;
|
||||
obj_s->state = I2C_TRANSFER_STATE_START;
|
||||
|
||||
// Enable I2C interrupt.
|
||||
obj_s->i2c->IE = I2CxIE_INTI2C;
|
||||
|
||||
if ((tx_length == 0) && (rx_length != 0)) {
|
||||
i2c_start_bit(obj);
|
||||
obj_s->i2c->DBR = ((address | 1U) & I2CxDBR_DB_MASK);
|
||||
} else {
|
||||
i2c_start_bit(obj);
|
||||
obj_s->i2c->DBR = (address & I2CxDBR_DB_MASK);
|
||||
}
|
||||
|
||||
// Enable I2C interrupr in NVIC.
|
||||
NVIC_EnableIRQ(p_irqn->i2c);
|
||||
NVIC_SetVector(p_irqn->i2c, handler);
|
||||
}
|
||||
}
|
||||
|
||||
uint32_t i2c_irq_handler_asynch(i2c_t *obj)
|
||||
{
|
||||
struct i2c_s *obj_s = I2C_S(obj);
|
||||
i2c_irq_handler(obj);
|
||||
return (obj_s->event & I2C_EVENT_ALL);
|
||||
}
|
||||
|
||||
uint8_t i2c_active(i2c_t *obj)
|
||||
{
|
||||
struct i2c_s *obj_s = I2C_S(obj);
|
||||
uint8_t ret_val = 0;
|
||||
|
||||
if ((obj_s->i2c->CR2 & 0x08)) {
|
||||
ret_val = 1;
|
||||
}
|
||||
return ret_val;
|
||||
}
|
||||
|
||||
void i2c_abort_asynch(i2c_t *obj)
|
||||
{
|
||||
struct i2c_s *obj_s = I2C_S(obj);
|
||||
|
||||
// Generate Stop condition on I2C bus
|
||||
i2c_stop(obj);
|
||||
|
||||
// Set state as idle and disable I2C interrupt.
|
||||
obj_s->state = I2C_TRANSFER_STATE_IDLE;
|
||||
disable_irq(obj_s->irqn);
|
||||
clear_irq(obj_s->irqn);
|
||||
obj_s->i2c->IE = I2CxIE_CLEAR;
|
||||
|
||||
// Given I2C Software Reset
|
||||
i2c_reset(obj);
|
||||
|
||||
// Re-Store the I2C configuration
|
||||
obj_s->i2c->CR2 = (I2CxCR2_I2CM_ENABLE | I2CxCR2_TRX | I2CxCR2_PIN_CLEAR | I2CxCR2_INIT);
|
||||
obj_s->i2c->OP = I2CxOP_INIT;
|
||||
obj_s->i2c->CR1 = (I2CxCR1_ACK | clk.sck);
|
||||
obj_s->i2c->PRS = (I2CxPRS_PRCK & clk.prsck);
|
||||
obj_s->i2c->ST = I2CxST_CLEAR;
|
||||
|
||||
}
|
||||
|
||||
static void disable_irq(uint32_t irqn)
|
||||
{
|
||||
i2c_irq_t *p_irqn = (i2c_irq_t *)irqn;
|
||||
NVIC_DisableIRQ(p_irqn->i2c);
|
||||
}
|
||||
|
||||
static void clear_irq(uint32_t irqn)
|
||||
{
|
||||
i2c_irq_t *p_irqn = (i2c_irq_t *)irqn;
|
||||
NVIC_ClearPendingIRQ(p_irqn->i2c);
|
||||
}
|
||||
|
||||
static void i2c_irq_handler(i2c_t *obj)
|
||||
{
|
||||
struct i2c_s *obj_s = I2C_S(obj);
|
||||
obj_s->i2c->ST = I2CxST_CLEAR;
|
||||
|
||||
switch(obj_s->state) {
|
||||
case I2C_TRANSFER_STATE_START:
|
||||
// Check ACK for sent slave address.
|
||||
if (!((obj_s->i2c->SR & I2CxSR_LRB) == I2CxSR_LRB)) {
|
||||
|
||||
if(obj->tx_buff.length != (unsigned long)0) { // Check Tx buff length.
|
||||
obj_s->i2c->DBR = *((uint8_t *)obj->tx_buff.buffer)& I2CxDBR_DB_MASK;
|
||||
obj->tx_buff.buffer = (uint8_t *)obj->tx_buff.buffer + sizeof(uint8_t);
|
||||
obj->tx_buff.pos++;
|
||||
obj_s->state = I2C_TRANSFER_STATE_WRITE;
|
||||
} else if(obj->rx_buff.length != 0) { // Check Rx buff length.
|
||||
if ((obj->rx_buff.pos < (obj->rx_buff.length - 1))) {
|
||||
obj_s->i2c->OP &= ~I2CxOP_MFACK;
|
||||
} else {
|
||||
obj_s->i2c->OP |= I2CxOP_MFACK;
|
||||
}
|
||||
obj_s->i2c->DBR = 0x00;
|
||||
obj_s->state = I2C_TRANSFER_STATE_READ;
|
||||
} else { // Return transfer complete because of not given any Tx/Rx data.
|
||||
obj_s->event = I2C_EVENT_TRANSFER_COMPLETE;
|
||||
obj_s->state = I2C_TRANSFER_STATE_IDLE;
|
||||
}
|
||||
} else { // Return "No Slave", Because of Did not get any ACK for sent slave address.
|
||||
obj_s->event = (I2C_EVENT_ERROR | I2C_EVENT_ERROR_NO_SLAVE);
|
||||
obj_s->state = I2C_TRANSFER_STATE_IDLE;
|
||||
}
|
||||
break;
|
||||
case I2C_TRANSFER_STATE_WRITE:
|
||||
if(obj->tx_buff.pos < obj->tx_buff.length) {
|
||||
if (!((obj_s->i2c->SR & I2CxSR_LRB) == I2CxSR_LRB)) {
|
||||
obj_s->i2c->DBR = *((uint8_t *)obj->tx_buff.buffer)& I2CxDBR_DB_MASK;
|
||||
obj->tx_buff.buffer = (uint8_t *)obj->tx_buff.buffer + sizeof(uint8_t);
|
||||
obj->tx_buff.pos++;
|
||||
} else {
|
||||
obj_s->event = (I2C_EVENT_ERROR | I2C_EVENT_TRANSFER_EARLY_NACK);
|
||||
obj_s->state = I2C_TRANSFER_STATE_IDLE;
|
||||
}
|
||||
} else if(obj->rx_buff.length != 0) {
|
||||
if (!((obj_s->i2c->SR & I2CxSR_LRB) == I2CxSR_LRB)) {
|
||||
i2c_start_bit(obj);
|
||||
obj_s->i2c->DBR = ((obj_s->address | 1U) & I2CxDBR_DB_MASK);
|
||||
obj_s->state = I2C_TRANSFER_STATE_RESTART;
|
||||
} else {
|
||||
obj_s->event = (I2C_EVENT_ERROR | I2C_EVENT_TRANSFER_EARLY_NACK);
|
||||
obj_s->state = I2C_TRANSFER_STATE_IDLE;
|
||||
}
|
||||
} else {
|
||||
if(obj_s->stop) {
|
||||
obj_s->i2c->CR2 = I2CxCR2_STOP_CONDITION;
|
||||
}
|
||||
obj_s->event = I2C_EVENT_TRANSFER_COMPLETE;
|
||||
obj_s->state = I2C_TRANSFER_STATE_IDLE;
|
||||
}
|
||||
break;
|
||||
case I2C_TRANSFER_STATE_RESTART:
|
||||
if(!((obj_s->i2c->SR & I2CxSR_LRB) == I2CxSR_LRB)) {
|
||||
// Set ACK/NACK
|
||||
if ((obj->rx_buff.pos < (obj->rx_buff.length - 1))) {
|
||||
obj_s->i2c->OP &= ~I2CxOP_MFACK;
|
||||
} else {
|
||||
obj_s->i2c->OP |= I2CxOP_MFACK;
|
||||
}
|
||||
obj_s->i2c->DBR = 0x00;
|
||||
obj_s->state = I2C_TRANSFER_STATE_READ;
|
||||
} else {
|
||||
obj_s->event = (I2C_EVENT_ERROR | I2C_EVENT_TRANSFER_EARLY_NACK);
|
||||
obj_s->state = I2C_TRANSFER_STATE_IDLE;
|
||||
}
|
||||
break;
|
||||
case I2C_TRANSFER_STATE_READ:
|
||||
if(obj->rx_buff.pos < obj->rx_buff.length) {
|
||||
*((uint8_t *)obj->rx_buff.buffer) = (uint8_t)obj_s->i2c->DBR & I2CxDBR_DB_MASK;
|
||||
obj->rx_buff.buffer = (uint8_t *)obj->rx_buff.buffer + sizeof(uint8_t);
|
||||
obj->rx_buff.pos++;
|
||||
}
|
||||
if(obj->rx_buff.pos < obj->rx_buff.length) {
|
||||
// Set ACK/NACK
|
||||
if ((obj->rx_buff.pos < (obj->rx_buff.length - 1))) {
|
||||
obj_s->i2c->OP &= ~I2CxOP_MFACK;
|
||||
} else {
|
||||
obj_s->i2c->OP |= I2CxOP_MFACK;
|
||||
}
|
||||
obj_s->i2c->DBR = 0x00;
|
||||
} else {
|
||||
if(obj_s->stop) {
|
||||
obj_s->i2c->CR2 = I2CxCR2_STOP_CONDITION;
|
||||
}
|
||||
obj_s->event = I2C_EVENT_TRANSFER_COMPLETE;
|
||||
obj_s->state = I2C_TRANSFER_STATE_IDLE;
|
||||
}
|
||||
break;
|
||||
default:
|
||||
break;
|
||||
}
|
||||
if(obj_s->state == I2C_TRANSFER_STATE_IDLE) {
|
||||
disable_irq(obj_s->irqn);
|
||||
obj_s->i2c->IE = I2CxIE_CLEAR;
|
||||
}
|
||||
}
|
||||
|
||||
#endif // #if DEVICE_I2C_ASYNCH
|
||||
|
||||
#endif // #if DEVICE_I2C
|
||||
|
|
|
@ -93,14 +93,26 @@ struct pwmout_s {
|
|||
|
||||
struct i2c_s {
|
||||
uint32_t address;
|
||||
IRQn_Type IRQn;
|
||||
TSB_I2C_TypeDef *i2c;
|
||||
TSB_I2C_TypeDef *i2c;
|
||||
#if DEVICE_I2C_ASYNCH
|
||||
uint32_t irqn;
|
||||
uint32_t state;
|
||||
uint32_t event;
|
||||
uint32_t stop;
|
||||
#endif
|
||||
};
|
||||
|
||||
struct spi_s {
|
||||
tspi_t p_obj;
|
||||
SPIName module;
|
||||
uint8_t bits;
|
||||
tspi_t p_obj;
|
||||
SPIName module;
|
||||
uint8_t bits;
|
||||
PinName Slave_SCK;
|
||||
#if DEVICE_SPI_ASYNCH
|
||||
uint32_t irqn;
|
||||
uint32_t event;
|
||||
uint32_t max_size;
|
||||
uint32_t state;
|
||||
#endif
|
||||
};
|
||||
|
||||
extern const gpio_regtypedef_t GPIO_SFRs[];
|
||||
|
|
|
@ -0,0 +1,226 @@
|
|||
/* mbed Microcontroller Library
|
||||
* (C)Copyright TOSHIBA ELECTRONIC DEVICES & STORAGE CORPORATION 2018 All rights reserved
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
#include "rtc_api.h"
|
||||
#include "mbed_mktime.h"
|
||||
|
||||
#define RTC_24_HOUR_MODE ((uint8_t)0x01)
|
||||
#define PAGER_PAGE_ONE ((uint8_t)0x01)
|
||||
#define PAGER_PAGE_ZERO ((uint8_t)0xEE)
|
||||
#define RTC_CLK_ENABLE ((uint8_t)0x08)
|
||||
#define RTC_CLK_DISABLE ((uint8_t)0xE7)
|
||||
#define RTCRESTR_RSTTMR_MASK ((uint8_t)0x20)
|
||||
#define RTCRESTR_RSTTMR_R_RUN ((uint8_t)0x20)
|
||||
#define CGWUPLCR_WUPTL_HIGH_MASK ((uint32_t)0x07FFF000)
|
||||
#define CGWUPLCR_WULEF_MASK ((uint32_t)0x00000002)
|
||||
#define CGWUPLCR_WULEF_R_DONE ((uint32_t)0x00000000)
|
||||
#define CGWUPLCR_WULON_W_ENABLE ((uint32_t)0x00000001)
|
||||
#define RLMLOSCCR_XTEN_RW_ENABLE ((uint32_t)0x00000001)
|
||||
#define ELOSC_CFG_WARM_UP_TIME ((uint64_t)(5000))
|
||||
#define ELOSC_CFG_CLOCK ((uint64_t)(32768))
|
||||
#define HEX2DEC(val) ((val >> 4U) * 10U + val % 16U) // Hex to Dec conversion macro
|
||||
#define DEC2HEX(val) ((val / 10U) * 16U + val % 10U) // Dec to Hex conversion macro
|
||||
|
||||
static int rtc_inited = 0;
|
||||
static int diff_year = 100; //our RTC register only support 2000~2099
|
||||
static void external_losc_enable(void);
|
||||
|
||||
void rtc_init(void)
|
||||
{
|
||||
if (!rtc_inited) {
|
||||
TSB_CG_FSYSENB_IPENB03 = 1; // Enable Sys Clock for RTC
|
||||
external_losc_enable(); // Enable low-speed oscillator
|
||||
TSB_RTC->PAGER = 0x00; // Disable clock and alarm
|
||||
|
||||
while ((TSB_RTC->RESTR & RTCRESTR_RSTTMR_MASK) == RTCRESTR_RSTTMR_R_RUN) {
|
||||
// Reset RTC sec counter
|
||||
}
|
||||
|
||||
TSB_RTC->RESTR = 0xE7;
|
||||
while ((TSB_RTC->RESTR & RTCRESTR_RSTTMR_MASK) == RTCRESTR_RSTTMR_R_RUN) {
|
||||
// Reset RTC sec counter
|
||||
}
|
||||
|
||||
TSB_RTC->PAGER |= PAGER_PAGE_ONE;
|
||||
TSB_RTC->YEARR = 0x03; // Set leap year state
|
||||
TSB_RTC->MONTHR = RTC_24_HOUR_MODE; // Set hour mode
|
||||
TSB_RTC->PAGER &= PAGER_PAGE_ZERO; // Set hour mode
|
||||
TSB_RTC->YEARR = 0x01; // Set year value
|
||||
TSB_RTC->MONTHR = (uint8_t)0x01; // Set month value
|
||||
TSB_RTC->DATER = (uint8_t)0x01; // Set date value
|
||||
TSB_RTC->DAYR = (uint8_t)0x0; // Set day value
|
||||
TSB_RTC->HOURR = (uint8_t)0x01; // Set hour value
|
||||
TSB_RTC->MINR = (uint8_t)0x02; // Set minute value
|
||||
TSB_RTC->SECR = (uint8_t)0x22; // Set second value
|
||||
TSB_RTC->PAGER |= RTC_CLK_ENABLE; // Enable Clock
|
||||
rtc_inited = 1; // Enable RTC initialzed status
|
||||
}
|
||||
}
|
||||
|
||||
void rtc_free(void)
|
||||
{
|
||||
rtc_inited = 0; // Set status of RTC peripheral driver as DISABLE
|
||||
}
|
||||
|
||||
int rtc_isenabled(void)
|
||||
{
|
||||
return rtc_inited; // Return status of RTC peripheral driver
|
||||
}
|
||||
|
||||
time_t rtc_read(void)
|
||||
{
|
||||
if (!rtc_inited) {
|
||||
// Return invalid time for now!
|
||||
return 0;
|
||||
}
|
||||
|
||||
struct tm timeinfo;
|
||||
uint8_t read_1 = 0U;
|
||||
uint8_t read_2 = 0U;
|
||||
|
||||
timeinfo.tm_isdst = 0;//no summer time
|
||||
|
||||
TSB_RTC->PAGER &= PAGER_PAGE_ZERO;
|
||||
|
||||
read_1 = TSB_RTC->SECR; // Get sec value
|
||||
timeinfo.tm_sec = HEX2DEC(read_1);
|
||||
|
||||
do { // Get minute value
|
||||
read_1 = TSB_RTC->MINR;
|
||||
read_2 = TSB_RTC->MINR;
|
||||
} while (read_1 != read_2);
|
||||
timeinfo.tm_min = HEX2DEC(read_1);
|
||||
|
||||
do { // Get hour value
|
||||
read_1 = TSB_RTC->HOURR;
|
||||
read_2 = TSB_RTC->HOURR;
|
||||
} while (read_1 != read_2);
|
||||
timeinfo.tm_hour = HEX2DEC(read_1);
|
||||
|
||||
do { // Get Month date value
|
||||
read_1 = TSB_RTC->DATER;
|
||||
read_2 = TSB_RTC->DATER;
|
||||
} while (read_1 != read_2);
|
||||
timeinfo.tm_mday = HEX2DEC(read_1);
|
||||
|
||||
do { // Get Month value
|
||||
read_1 = TSB_RTC->MONTHR;
|
||||
read_2 = TSB_RTC->MONTHR;
|
||||
} while (read_1 != read_2);
|
||||
timeinfo.tm_mon = HEX2DEC(read_1)-1;
|
||||
|
||||
do { // Get weekday value
|
||||
read_1 = TSB_RTC->DAYR;
|
||||
read_2 = TSB_RTC->DAYR;
|
||||
} while (read_1 != read_2);
|
||||
timeinfo.tm_wday = HEX2DEC(read_1);
|
||||
|
||||
do { // Get year value
|
||||
read_1 = TSB_RTC->YEARR;
|
||||
read_2 = TSB_RTC->YEARR;
|
||||
} while (read_1 != read_2);
|
||||
timeinfo.tm_year = (HEX2DEC(read_1)+ diff_year);
|
||||
|
||||
time_t t;
|
||||
|
||||
if (_rtc_maketime(&timeinfo, &t, RTC_4_YEAR_LEAP_YEAR_SUPPORT) == false) {
|
||||
return 0;
|
||||
}
|
||||
return t;
|
||||
}
|
||||
|
||||
void rtc_write(time_t t)
|
||||
{
|
||||
if (!rtc_inited) {
|
||||
// Initialize the RTC as not yet initialized
|
||||
rtc_init();
|
||||
}
|
||||
|
||||
struct tm timeinfo;
|
||||
if (_rtc_localtime(t, &timeinfo, RTC_4_YEAR_LEAP_YEAR_SUPPORT) == false) {
|
||||
return;
|
||||
}
|
||||
|
||||
diff_year = timeinfo.tm_year - (timeinfo.tm_year % 100);
|
||||
TSB_RTC->PAGER &= RTC_CLK_DISABLE; // Disable clock
|
||||
|
||||
// Check current year is leap year or not
|
||||
if (((timeinfo.tm_year % 4) == 0 && (timeinfo.tm_year % 100) != 0) ||
|
||||
(timeinfo.tm_year % 400) == 0) {
|
||||
TSB_RTC->PAGER |= PAGER_PAGE_ONE; // Current year is a leap year
|
||||
TSB_RTC->YEARR = 0x00;
|
||||
} else if ((timeinfo.tm_year % 4) == 1) {
|
||||
TSB_RTC->PAGER |= PAGER_PAGE_ONE; // Current year is the year following a leap year
|
||||
TSB_RTC->YEARR = 0x01;
|
||||
} else if ((timeinfo.tm_year % 4) == 2) {
|
||||
TSB_RTC->PAGER |= PAGER_PAGE_ONE; // Current year is two years after a leap year
|
||||
TSB_RTC->YEARR = 0x02;
|
||||
} else {
|
||||
TSB_RTC->PAGER |= PAGER_PAGE_ONE; // Current year is three years after a leap year
|
||||
TSB_RTC->YEARR = 0x03;
|
||||
}
|
||||
|
||||
TSB_RTC->PAGER &= PAGER_PAGE_ZERO; // Select PAGE 0
|
||||
|
||||
TSB_RTC->YEARR = (uint8_t)DEC2HEX((timeinfo.tm_year - diff_year)); // Set year value
|
||||
// Set month value, tm_mon=0 means Jan while 1 is Jan
|
||||
TSB_RTC->MONTHR = (uint8_t)DEC2HEX((timeinfo.tm_mon+1));
|
||||
TSB_RTC->DATER = (uint8_t)DEC2HEX(timeinfo.tm_mday); // Set date value
|
||||
TSB_RTC->DAYR = (uint8_t)(timeinfo.tm_wday); // Set week day value
|
||||
TSB_RTC->HOURR = (uint8_t)DEC2HEX(timeinfo.tm_hour); // Set hour value
|
||||
TSB_RTC->MINR = (uint8_t)DEC2HEX(timeinfo.tm_min); // Set minute value
|
||||
TSB_RTC->SECR = (uint8_t)DEC2HEX(timeinfo.tm_sec); // Set second value
|
||||
|
||||
TSB_RTC->RESTR |= RTCRESTR_RSTTMR_R_RUN;
|
||||
while ((TSB_RTC->RESTR & RTCRESTR_RSTTMR_MASK) == RTCRESTR_RSTTMR_R_RUN) {
|
||||
// Reset RTC sec counter, otherwise the 1st second will not be accurate
|
||||
}
|
||||
|
||||
// Setting Wait
|
||||
// When stop mode is selected, CaseA or CaseB is need.
|
||||
// CaseA: Wait for RTC 1Hz interrupt.
|
||||
// CaseB: Check the clock register setting.
|
||||
{
|
||||
uint8_t flag = 1;
|
||||
time_t time_read = {0};
|
||||
while(flag) {
|
||||
time_read = rtc_read();
|
||||
if( time_read == t) { // Wait for setting successfully
|
||||
flag = 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
TSB_RTC->PAGER |= RTC_CLK_ENABLE; // Enable Clock
|
||||
}
|
||||
|
||||
static void external_losc_enable(void)
|
||||
{
|
||||
uint32_t work;
|
||||
if( (TSB_RLM->LOSCCR & 0x01) == 0 ) { //external losc is not enabled.
|
||||
uint64_t x = (uint64_t)(ELOSC_CFG_WARM_UP_TIME * ELOSC_CFG_CLOCK);
|
||||
x = (uint64_t)(x / (uint64_t)(1000000));
|
||||
work = (uint32_t)x;
|
||||
work &= (uint32_t)(0xFFFFFFF0);
|
||||
work <<= 8;
|
||||
TSB_CG->WUPLCR = work;
|
||||
TSB_RLM->LOSCCR = RLMLOSCCR_XTEN_RW_ENABLE;
|
||||
work = (uint32_t)(TSB_CG->WUPLCR & CGWUPLCR_WUPTL_HIGH_MASK);
|
||||
TSB_CG->WUPLCR = (uint32_t)(work | CGWUPLCR_WULON_W_ENABLE);
|
||||
while ((TSB_CG->WUPLCR & CGWUPLCR_WULEF_MASK) != CGWUPLCR_WULEF_R_DONE) {
|
||||
// No processing
|
||||
}
|
||||
}
|
||||
}
|
|
@ -21,19 +21,35 @@
|
|||
#include "objects.h"
|
||||
|
||||
static const PinMap PinMap_UART_TX[] = {
|
||||
{PA1, SERIAL_0, PIN_DATA(1, 1)},
|
||||
{PM1, SERIAL_0, PIN_DATA(1, 1)},
|
||||
{PJ2, SERIAL_1, PIN_DATA(2, 1)},
|
||||
{PL1, SERIAL_2, PIN_DATA(2, 1)},
|
||||
{PB2, SERIAL_2, PIN_DATA(1, 1)},
|
||||
{NC, NC, 0}
|
||||
};
|
||||
|
||||
static const PinMap PinMap_UART_RX[] = {
|
||||
{PA2, SERIAL_0, PIN_DATA(1, 0)},
|
||||
{PM2, SERIAL_0, PIN_DATA(1, 0)},
|
||||
{PJ1, SERIAL_1, PIN_DATA(2, 0)},
|
||||
{PL0, SERIAL_2, PIN_DATA(2, 0)},
|
||||
{PB3, SERIAL_2, PIN_DATA(1, 0)},
|
||||
{NC, NC, 0}
|
||||
};
|
||||
|
||||
#if DEVICE_SERIAL_FC
|
||||
static const PinMap PinMap_UART_CTS[] = {
|
||||
{PM3, SERIAL_0, PIN_DATA(1, 0)},
|
||||
{PJ3, SERIAL_1, PIN_DATA(1, 0)},
|
||||
{PB4, SERIAL_2, PIN_DATA(1, 0)},
|
||||
{NC, NC, 0}
|
||||
};
|
||||
|
||||
static const PinMap PinMap_UART_RTS[] = {
|
||||
{PM4, SERIAL_0, PIN_DATA(1, 1)},
|
||||
{PJ4, SERIAL_1, PIN_DATA(1, 1)},
|
||||
{PB5, SERIAL_2, PIN_DATA(1, 1)},
|
||||
{NC, NC, 0}
|
||||
};
|
||||
#endif
|
||||
|
||||
static uint32_t serial_irq_ids[UART_NUM] = {0};
|
||||
static uart_irq_handler irq_handler;
|
||||
int stdio_uart_inited = 0;
|
||||
|
@ -56,7 +72,7 @@ void serial_init(serial_t *obj, PinName tx, PinName rx)
|
|||
case SERIAL_0:
|
||||
obj->UARTx = TSB_UART0;
|
||||
TSB_CG_FSYSENA_IPENA23 = ENABLE;
|
||||
TSB_CG_FSYSENA_IPENA00 = ENABLE;
|
||||
TSB_CG_FSYSENA_IPENA11 = ENABLE;
|
||||
break;
|
||||
case SERIAL_1:
|
||||
obj->UARTx = TSB_UART1;
|
||||
|
@ -67,7 +83,7 @@ void serial_init(serial_t *obj, PinName tx, PinName rx)
|
|||
case SERIAL_2:
|
||||
obj->UARTx = TSB_UART2;
|
||||
TSB_CG_FSYSENA_IPENA25 = ENABLE;
|
||||
TSB_CG_FSYSENA_IPENA10 = ENABLE;
|
||||
TSB_CG_FSYSENA_IPENA01 = ENABLE;
|
||||
break;
|
||||
default:
|
||||
error("UART is not available");
|
||||
|
@ -290,6 +306,23 @@ void serial_break_clear(serial_t *obj)
|
|||
obj->UARTx->TRANS &= ~(0x08);
|
||||
}
|
||||
|
||||
#if DEVICE_SERIAL_FC
|
||||
void serial_set_flow_control(serial_t *obj, FlowControl type, PinName rxflow, PinName txflow)
|
||||
{
|
||||
UARTName uart_cts = (UARTName)pinmap_peripheral(txflow, PinMap_UART_CTS);
|
||||
UARTName uart_rts = (UARTName)pinmap_peripheral(rxflow, PinMap_UART_RTS);
|
||||
UARTName uart_name = (UARTName)pinmap_merge(uart_cts, uart_rts);
|
||||
MBED_ASSERT((int)uart_name != NC);
|
||||
|
||||
pinmap_pinout(rxflow, PinMap_UART_RTS);
|
||||
pinmap_pinout(txflow, PinMap_UART_CTS);
|
||||
pin_mode(txflow, PullUp);
|
||||
pin_mode(rxflow, PullUp);
|
||||
|
||||
obj->UARTx->CR0 |= (3U << 9);
|
||||
}
|
||||
#endif
|
||||
|
||||
static void uart_swreset(TSB_UART_TypeDef *UARTx)
|
||||
{
|
||||
while (((UARTx->SWRST) & UARTxSWRST_SWRSTF_MASK) == UARTxSWRST_SWRSTF_RUN) {
|
||||
|
|
|
@ -13,15 +13,50 @@
|
|||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
#include <stdbool.h>
|
||||
#include "spi_api.h"
|
||||
#include "mbed_error.h"
|
||||
#include "pinmap.h"
|
||||
#include "gpio_include.h"
|
||||
#include "txz_tspi.h"
|
||||
|
||||
#define TIMEOUT 1000
|
||||
#define INITIAL_SPI_FREQ 1000000
|
||||
|
||||
#if DEVICE_I2C_ASYNCH
|
||||
#define SPI_S(obj) (struct spi_s *) (&((obj)->spi))
|
||||
#else
|
||||
#define SPI_S(obj) (struct spi_s *) (obj)
|
||||
#endif
|
||||
|
||||
#if DEVICE_SPI_ASYNCH
|
||||
static void spi_irq_handler(spi_t *obj);
|
||||
static void disable_irq(uint32_t irqn);
|
||||
static void clear_irq(uint32_t irqn);
|
||||
|
||||
enum {
|
||||
SPI_TRANSFER_STATE_IDLE = 0U,
|
||||
SPI_TRANSFER_STATE_BUSY
|
||||
} SPI_TransferState;
|
||||
|
||||
typedef struct {
|
||||
IRQn_Type Tx;
|
||||
IRQn_Type Rx;
|
||||
IRQn_Type Error;
|
||||
} spi_irq_t;
|
||||
|
||||
static const spi_irq_t SPI_CH0_IRQN_TBL[1] = {
|
||||
{INTT0RX_IRQn, INTT0TX_IRQn, INTT0ERR_IRQn}
|
||||
};
|
||||
|
||||
static const spi_irq_t SPI_CH1_IRQN_TBL[1] = {
|
||||
{INTT1RX_IRQn, INTT1TX_IRQn, INTT1ERR_IRQn}
|
||||
};
|
||||
#endif
|
||||
|
||||
static const PinMap PinMap_SPI_SCLK[] = {
|
||||
{PM0, SPI_0, PIN_DATA(3, 2)},
|
||||
{PP0, SPI_1, PIN_DATA(1, 2)},
|
||||
{PM0, SPI_0, PIN_DATA(3, 1)},
|
||||
{PP0, SPI_1, PIN_DATA(1, 1)},
|
||||
{NC, NC, 0}
|
||||
};
|
||||
|
||||
|
@ -38,13 +73,20 @@ static const PinMap PinMap_SPI_MISO[] = {
|
|||
};
|
||||
|
||||
static const PinMap PinMap_SPI_SSEL[] = {
|
||||
{PM3, SPI_0, PIN_DATA(3, 1)},
|
||||
{PM3, SPI_0, PIN_DATA(3, 2)},
|
||||
{PL6, SPI_1, PIN_DATA(1, 2)},
|
||||
{NC, NC, 0}
|
||||
};
|
||||
|
||||
void spi_init(spi_t *obj, PinName mosi, PinName miso, PinName sclk, PinName ssel)
|
||||
static const PinMap PinMap_SPISLAVE_SCLK[] = {
|
||||
{PM0, SPI_0, PIN_DATA(3, 0)},
|
||||
{PP0, SPI_1, PIN_DATA(1, 0)},
|
||||
{NC, NC, 0}
|
||||
};
|
||||
|
||||
void spi_init(spi_t *t_obj, PinName mosi, PinName miso, PinName sclk, PinName ssel)
|
||||
{
|
||||
struct spi_s *obj = SPI_S(t_obj);
|
||||
// Check pin parameters
|
||||
SPIName spi_mosi = (SPIName)pinmap_peripheral(mosi, PinMap_SPI_MOSI);
|
||||
SPIName spi_miso = (SPIName)pinmap_peripheral(miso, PinMap_SPI_MISO);
|
||||
|
@ -63,12 +105,18 @@ void spi_init(spi_t *obj, PinName mosi, PinName miso, PinName sclk, PinName ssel
|
|||
obj->p_obj.p_instance = TSB_TSPI0;
|
||||
TSB_CG_FSYSENA_IPENA18 = ENABLE;
|
||||
TSB_CG_FSYSENA_IPENA11 = ENABLE;
|
||||
#if DEVICE_SPI_ASYNCH
|
||||
obj->irqn = (uint32_t)&SPI_CH0_IRQN_TBL;
|
||||
#endif
|
||||
break;
|
||||
case SPI_1:
|
||||
obj->p_obj.p_instance = TSB_TSPI1;
|
||||
TSB_CG_FSYSENA_IPENA19 = ENABLE;
|
||||
TSB_CG_FSYSENA_IPENA13 = ENABLE;
|
||||
TSB_CG_FSYSENA_IPENA10 = ENABLE;
|
||||
#if DEVICE_SPI_ASYNCH
|
||||
obj->irqn = (uint32_t)&SPI_CH1_IRQN_TBL;
|
||||
#endif
|
||||
break;
|
||||
default:
|
||||
error("Cannot found SPI module corresponding with input pins.");
|
||||
|
@ -79,6 +127,7 @@ void spi_init(spi_t *obj, PinName mosi, PinName miso, PinName sclk, PinName ssel
|
|||
pinmap_pinout(mosi, PinMap_SPI_MOSI);
|
||||
pinmap_pinout(miso, PinMap_SPI_MISO);
|
||||
pinmap_pinout(sclk, PinMap_SPI_SCLK);
|
||||
obj->Slave_SCK = sclk;
|
||||
|
||||
if (ssel != NC) {
|
||||
pinmap_pinout(ssel, PinMap_SPI_SSEL);
|
||||
|
@ -113,7 +162,7 @@ void spi_init(spi_t *obj, PinName mosi, PinName miso, PinName sclk, PinName ssel
|
|||
obj->p_obj.init.cnt3.rffllclr = TSPI_RX_BUFF_CLR_DONE; // receive buffer clear
|
||||
|
||||
//baudrate settings
|
||||
spi_frequency(obj, (int)INITIAL_SPI_FREQ);
|
||||
spi_frequency(t_obj, (int)INITIAL_SPI_FREQ);
|
||||
|
||||
//Format Control 0 settings
|
||||
obj->p_obj.init.fmr0.dir = TSPI_DATA_DIRECTION_MSB; // MSB bit first
|
||||
|
@ -141,14 +190,16 @@ void spi_init(spi_t *obj, PinName mosi, PinName miso, PinName sclk, PinName ssel
|
|||
tspi_init(&obj->p_obj);
|
||||
}
|
||||
|
||||
void spi_free(spi_t *obj)
|
||||
void spi_free(spi_t *t_obj)
|
||||
{
|
||||
struct spi_s *obj = SPI_S(t_obj);
|
||||
tspi_deinit(&obj->p_obj);
|
||||
obj->module = (SPIName)NC;
|
||||
}
|
||||
|
||||
void spi_format(spi_t *obj, int bits, int mode, int slave)
|
||||
void spi_format(spi_t *t_obj, int bits, int mode, int slave)
|
||||
{
|
||||
struct spi_s *obj = SPI_S(t_obj);
|
||||
MBED_ASSERT((slave == 0U) || (slave == 1U)); // 0: master mode, 1: slave mode
|
||||
MBED_ASSERT((bits >= 8) && (bits <= 32));
|
||||
|
||||
|
@ -167,11 +218,16 @@ void spi_format(spi_t *obj, int bits, int mode, int slave)
|
|||
obj->p_obj.init.fmr0.ckpha = TSPI_SERIAL_CK_1ST_EDGE;
|
||||
}
|
||||
|
||||
if(slave) {
|
||||
pinmap_pinout(obj->Slave_SCK, PinMap_SPISLAVE_SCLK);
|
||||
obj->p_obj.init.cnt1.mstr = TSPI_SLAVE_OPERATION; // Slave mode operation
|
||||
}
|
||||
tspi_init(&obj->p_obj);
|
||||
}
|
||||
|
||||
void spi_frequency(spi_t *obj, int hz)
|
||||
void spi_frequency(spi_t *t_obj, int hz)
|
||||
{
|
||||
struct spi_s *obj = SPI_S(t_obj);
|
||||
uint8_t brs = 0;
|
||||
uint8_t brck = 0;
|
||||
uint16_t prsck = 1;
|
||||
|
@ -203,8 +259,9 @@ void spi_frequency(spi_t *obj, int hz)
|
|||
tspi_init(&obj->p_obj);
|
||||
}
|
||||
|
||||
int spi_master_write(spi_t *obj, int value)
|
||||
int spi_master_write(spi_t *t_obj, int value)
|
||||
{
|
||||
struct spi_s *obj = SPI_S(t_obj);
|
||||
uint8_t ret_value = 0;
|
||||
|
||||
tspi_transmit_t send_obj;
|
||||
|
@ -223,14 +280,14 @@ int spi_master_write(spi_t *obj, int value)
|
|||
return ret_value;
|
||||
}
|
||||
|
||||
int spi_master_block_write(spi_t *obj, const char *tx_buffer, int tx_length,
|
||||
int spi_master_block_write(spi_t *t_obj, const char *tx_buffer, int tx_length,
|
||||
char *rx_buffer, int rx_length, char write_fill)
|
||||
{
|
||||
int total = (tx_length > rx_length) ? tx_length : rx_length;
|
||||
|
||||
for (int i = 0; i < total; i++) {
|
||||
char out = (i < tx_length) ? tx_buffer[i] : write_fill;
|
||||
char in = spi_master_write(obj, out);
|
||||
char in = spi_master_write(t_obj, out);
|
||||
if (i < rx_length) {
|
||||
rx_buffer[i] = in;
|
||||
}
|
||||
|
@ -239,8 +296,46 @@ int spi_master_block_write(spi_t *obj, const char *tx_buffer, int tx_length,
|
|||
return total;
|
||||
}
|
||||
|
||||
int spi_busy(spi_t *obj)
|
||||
int spi_slave_receive(spi_t *t_obj)
|
||||
{
|
||||
struct spi_s *obj = SPI_S(t_obj);
|
||||
int ret = 1;
|
||||
uint32_t status;
|
||||
|
||||
tspi_get_status(&obj->p_obj, &status);
|
||||
if((status & (TSPI_RX_REACH_FILL_LEVEL_MASK)) == 0) {
|
||||
ret = 0;
|
||||
}
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
int spi_slave_read(spi_t *t_obj)
|
||||
{
|
||||
struct spi_s *obj = SPI_S(t_obj);
|
||||
uint8_t ret_value = 0;
|
||||
|
||||
ret_value = obj->p_obj.p_instance->DR & 0xFF;
|
||||
|
||||
// Receive Complete Flag is clear.
|
||||
obj->p_obj.p_instance->SR |= TSPI_RX_DONE_CLR;
|
||||
obj->p_obj.p_instance->CR1 &= TSPI_TRXE_DISABLE_MASK;
|
||||
|
||||
return ret_value;
|
||||
}
|
||||
|
||||
void spi_slave_write(spi_t *t_obj, int value)
|
||||
{
|
||||
struct spi_s *obj = SPI_S(t_obj);
|
||||
|
||||
// Enable TSPI Transmission Control.
|
||||
obj->p_obj.p_instance->CR1 |= TSPI_TRXE_ENABLE;
|
||||
obj->p_obj.p_instance->DR = value & 0xFF;
|
||||
}
|
||||
|
||||
int spi_busy(spi_t *t_obj)
|
||||
{
|
||||
struct spi_s *obj = SPI_S(t_obj);
|
||||
int ret = 1;
|
||||
uint32_t status = 0;
|
||||
|
||||
|
@ -253,8 +348,9 @@ int spi_busy(spi_t *obj)
|
|||
return ret;
|
||||
}
|
||||
|
||||
uint8_t spi_get_module(spi_t *obj)
|
||||
uint8_t spi_get_module(spi_t *t_obj)
|
||||
{
|
||||
struct spi_s *obj = SPI_S(t_obj);
|
||||
return (uint8_t)(obj->module);
|
||||
}
|
||||
|
||||
|
@ -290,10 +386,173 @@ const PinMap *spi_slave_miso_pinmap()
|
|||
|
||||
const PinMap *spi_slave_clk_pinmap()
|
||||
{
|
||||
return PinMap_SPI_SCLK;
|
||||
return PinMap_SPISLAVE_SCLK;
|
||||
}
|
||||
|
||||
const PinMap *spi_slave_cs_pinmap()
|
||||
{
|
||||
return PinMap_SPI_SSEL;
|
||||
}
|
||||
|
||||
#if DEVICE_SPI_ASYNCH
|
||||
|
||||
void spi_master_transfer(spi_t *obj, const void *tx, size_t tx_length, void *rx, size_t rx_length, uint8_t bit_width,
|
||||
uint32_t handler, uint32_t event, DMAUsage hint)
|
||||
{
|
||||
struct spi_s *spiobj = SPI_S(obj);
|
||||
spi_irq_t *p_irqn = (spi_irq_t *)spiobj->irqn;
|
||||
bool use_tx = (tx != NULL && tx_length > 0);
|
||||
bool use_rx = (rx != NULL && rx_length > 0);
|
||||
|
||||
// don't do anything, if the buffers aren't valid
|
||||
if (!use_tx && !use_rx) {
|
||||
return;
|
||||
}
|
||||
|
||||
disable_irq(spiobj->irqn);
|
||||
|
||||
spiobj->p_obj.p_instance->CR1 &= TSPI_TRXE_DISABLE_MASK;
|
||||
spiobj->p_obj.p_instance->SR |= (TSPI_TX_DONE_CLR | TSPI_RX_DONE_CLR);
|
||||
spiobj->p_obj.p_instance->CR3 |= (TSPI_TX_BUFF_CLR_DONE | TSPI_RX_BUFF_CLR_DONE);
|
||||
|
||||
clear_irq(spiobj->irqn);
|
||||
|
||||
obj->tx_buff.buffer = (void *)tx;
|
||||
obj->tx_buff.length = tx_length;
|
||||
obj->tx_buff.pos = 0;
|
||||
obj->rx_buff.buffer = (void *)rx;
|
||||
obj->rx_buff.length = rx_length;
|
||||
obj->rx_buff.pos = 0;
|
||||
spiobj->event = 0;
|
||||
spiobj->state = SPI_TRANSFER_STATE_IDLE;
|
||||
|
||||
NVIC_SetVector(p_irqn->Error, (uint32_t)handler);
|
||||
NVIC_SetVector(p_irqn->Tx, (uint32_t)handler);
|
||||
NVIC_SetVector(p_irqn->Rx, (uint32_t)handler);
|
||||
|
||||
// Enable Error Interrupt, Receive complete interrupt and Transmit complete interrupt
|
||||
spiobj->p_obj.p_instance->CR2 |= (TSPI_TX_INT_ENABLE | TSPI_RX_INT_ENABLE | TSPI_ERR_INT_ENABLE);
|
||||
|
||||
if (use_tx && use_rx) {
|
||||
spiobj->max_size = tx_length < rx_length ? rx_length:tx_length;
|
||||
spiobj->p_obj.p_instance->CR1 |= TSPI_TRXE_ENABLE;
|
||||
spiobj->p_obj.p_instance->DR = ((uint8_t *)obj->tx_buff.buffer)[obj->tx_buff.pos] & 0xFF;
|
||||
} else if(use_tx) {
|
||||
spiobj->max_size = tx_length;
|
||||
spiobj->p_obj.p_instance->CR1 |= TSPI_TRXE_ENABLE;
|
||||
spiobj->p_obj.p_instance->DR = ((uint8_t *)obj->tx_buff.buffer)[obj->tx_buff.pos] & 0xFF;
|
||||
} else if(use_rx) {
|
||||
spiobj->max_size = rx_length;
|
||||
spiobj->p_obj.p_instance->CR1 |= TSPI_TRXE_ENABLE;
|
||||
spiobj->p_obj.p_instance->DR = 0xFF;
|
||||
}
|
||||
|
||||
spiobj->state = SPI_TRANSFER_STATE_BUSY;
|
||||
NVIC_EnableIRQ(p_irqn->Error);
|
||||
NVIC_EnableIRQ(p_irqn->Tx);
|
||||
NVIC_EnableIRQ(p_irqn->Rx);
|
||||
}
|
||||
|
||||
uint32_t spi_irq_handler_asynch(spi_t *obj)
|
||||
{
|
||||
struct spi_s *spiobj = SPI_S(obj);
|
||||
spi_irq_handler(obj);
|
||||
return ((spiobj->event & SPI_EVENT_ALL)| SPI_EVENT_INTERNAL_TRANSFER_COMPLETE) ;
|
||||
}
|
||||
|
||||
uint8_t spi_active(spi_t *obj)
|
||||
{
|
||||
struct spi_s *spiobj = SPI_S(obj);
|
||||
uint8_t ret_val = 0;
|
||||
|
||||
if (spiobj->state != SPI_TRANSFER_STATE_IDLE) {
|
||||
ret_val = 1;
|
||||
}
|
||||
|
||||
return ret_val;
|
||||
}
|
||||
|
||||
void spi_abort_asynch(spi_t *obj)
|
||||
{
|
||||
struct spi_s *spiobj = SPI_S(obj);
|
||||
|
||||
disable_irq(spiobj->irqn);
|
||||
clear_irq(spiobj->irqn);
|
||||
tspi_init(&spiobj->p_obj);
|
||||
}
|
||||
|
||||
static void spi_irq_handler(spi_t *obj)
|
||||
{
|
||||
struct spi_s *spiobj = SPI_S(obj);
|
||||
|
||||
// Check for revceive complete flag.
|
||||
if((spiobj->p_obj.p_instance->SR & TSPI_RX_DONE) &&
|
||||
(spiobj->p_obj.p_instance->SR & TSPI_RX_REACH_FILL_LEVEL_MASK)) {
|
||||
// Check receiver FIFO level
|
||||
uint8_t rlvl = spiobj->p_obj.p_instance->SR & 0xF;
|
||||
|
||||
while((rlvl != 0) && (obj->rx_buff.pos < obj->rx_buff.length)) {
|
||||
((uint8_t *)obj->rx_buff.buffer)[obj->rx_buff.pos++] = spiobj->p_obj.p_instance->DR & 0xFF;
|
||||
rlvl--;
|
||||
}
|
||||
|
||||
if(obj->rx_buff.pos == spiobj->max_size) {
|
||||
spiobj->state = SPI_TRANSFER_STATE_IDLE;
|
||||
}
|
||||
// Clear rx buffer
|
||||
spiobj->p_obj.p_instance->CR3 |= TSPI_RX_BUFF_CLR_DONE;
|
||||
}
|
||||
|
||||
// Check for transmit completion flag
|
||||
if(spiobj->p_obj.p_instance->SR & TSPI_TX_DONE) {
|
||||
obj->tx_buff.pos++;
|
||||
spiobj->p_obj.p_instance->SR |= TSPI_RX_DONE_CLR;
|
||||
|
||||
if(obj->tx_buff.pos == (spiobj->max_size)) {
|
||||
spiobj->state = SPI_TRANSFER_STATE_IDLE;
|
||||
}
|
||||
|
||||
if((obj->tx_buff.pos < obj->tx_buff.length) && (obj->tx_buff.pos < spiobj->max_size)) {
|
||||
spiobj->p_obj.p_instance->DR = (((uint8_t *)obj->tx_buff.buffer)[obj->tx_buff.pos] & 0xFF);
|
||||
} else if (obj->tx_buff.pos < spiobj->max_size) {
|
||||
spiobj->p_obj.p_instance->DR = 0xFF;
|
||||
}
|
||||
}
|
||||
|
||||
// Check for error flag
|
||||
if(spiobj->p_obj.p_instance->ERR) {
|
||||
spiobj->event = SPI_EVENT_ERROR;
|
||||
spiobj->state = SPI_TRANSFER_STATE_IDLE;
|
||||
disable_irq(spiobj->irqn);
|
||||
spiobj->p_obj.p_instance->SR |= (TSPI_TX_DONE_CLR | TSPI_RX_DONE_CLR);
|
||||
spiobj->p_obj.p_instance->CR3 |= (TSPI_TX_BUFF_CLR_DONE | TSPI_RX_BUFF_CLR_DONE);
|
||||
clear_irq(spiobj->irqn);
|
||||
return;
|
||||
}
|
||||
|
||||
if(spiobj->state == SPI_TRANSFER_STATE_IDLE) {
|
||||
spiobj->event = SPI_EVENT_COMPLETE;
|
||||
disable_irq(spiobj->irqn);
|
||||
spiobj->p_obj.p_instance->SR |= (TSPI_TX_DONE_CLR | TSPI_RX_DONE_CLR);
|
||||
spiobj->p_obj.p_instance->CR3 |= (TSPI_TX_BUFF_CLR_DONE | TSPI_RX_BUFF_CLR_DONE);
|
||||
clear_irq(spiobj->irqn);
|
||||
}
|
||||
}
|
||||
|
||||
static void disable_irq(uint32_t irqn)
|
||||
{
|
||||
spi_irq_t *p_irqn = (spi_irq_t *)irqn;
|
||||
NVIC_DisableIRQ(p_irqn->Tx);
|
||||
NVIC_DisableIRQ(p_irqn->Rx);
|
||||
NVIC_DisableIRQ(p_irqn->Error);
|
||||
}
|
||||
|
||||
static void clear_irq(uint32_t irqn)
|
||||
{
|
||||
spi_irq_t *p_irqn = (spi_irq_t *)irqn;
|
||||
NVIC_ClearPendingIRQ(p_irqn->Tx);
|
||||
NVIC_ClearPendingIRQ(p_irqn->Rx);
|
||||
NVIC_ClearPendingIRQ(p_irqn->Error);
|
||||
}
|
||||
|
||||
#endif
|
||||
|
|
|
@ -8699,11 +8699,16 @@
|
|||
"PORTINOUT",
|
||||
"PORTOUT",
|
||||
"PWMOUT",
|
||||
"RTC",
|
||||
"SERIAL",
|
||||
"SERIAL_FC",
|
||||
"SLEEP",
|
||||
"SPI",
|
||||
"SPISLAVE",
|
||||
"SPI_ASYNCH",
|
||||
"I2C",
|
||||
"I2CSLAVE",
|
||||
"I2C_ASYNCH",
|
||||
"STDIO_MESSAGES",
|
||||
"MPU"
|
||||
],
|
||||
|
|
Loading…
Reference in New Issue