cmsis: add core_ca9 for backward compatibility

cmsis 5 does not include it but as mbed 2 requires this, we will bring this file
back. This brings back few other dependencies, that we add only for cortex-a.

Once cortex-a gets cmsis5 and rtx2 support it will be updated.
pull/4566/head
Martin Kojtal 2017-06-15 12:30:11 +01:00
parent 0f61af58a2
commit dad71c4268
6 changed files with 4201 additions and 0 deletions

View File

@ -0,0 +1,276 @@
/**************************************************************************//**
* @file core_ca9.h
* @brief CMSIS Cortex-A9 Core Peripheral Access Layer Header File
* @version
* @date 25 March 2013
*
* @note
*
******************************************************************************/
/* Copyright (c) 2009 - 2012 ARM LIMITED
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
- Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
- Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
- Neither the name of ARM nor the names of its contributors may be used
to endorse or promote products derived from this software without
specific prior written permission.
*
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL COPYRIGHT HOLDERS AND CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.
---------------------------------------------------------------------------*/
#if defined ( __ICCARM__ )
#pragma system_include /* treat file as system include file for MISRA check */
#endif
#ifdef __cplusplus
extern "C" {
#endif
#ifndef __CORE_CA9_H_GENERIC
#define __CORE_CA9_H_GENERIC
/** \page CMSIS_MISRA_Exceptions MISRA-C:2004 Compliance Exceptions
CMSIS violates the following MISRA-C:2004 rules:
\li Required Rule 8.5, object/function definition in header file.<br>
Function definitions in header files are used to allow 'inlining'.
\li Required Rule 18.4, declaration of union type or object of union type: '{...}'.<br>
Unions are used for effective representation of core registers.
\li Advisory Rule 19.7, Function-like macro defined.<br>
Function-like macros are used to allow more efficient code.
*/
/*******************************************************************************
* CMSIS definitions
******************************************************************************/
/** \ingroup Cortex_A9
@{
*/
/* CMSIS CA9 definitions */
#define __CA9_CMSIS_VERSION_MAIN (0x03) /*!< [31:16] CMSIS HAL main version */
#define __CA9_CMSIS_VERSION_SUB (0x10) /*!< [15:0] CMSIS HAL sub version */
#define __CA9_CMSIS_VERSION ((__CA9_CMSIS_VERSION_MAIN << 16) | \
__CA9_CMSIS_VERSION_SUB ) /*!< CMSIS HAL version number */
#define __CORTEX_A (0x09) /*!< Cortex-A Core */
#if defined ( __CC_ARM )
#define __ASM __asm /*!< asm keyword for ARM Compiler */
#define __INLINE __inline /*!< inline keyword for ARM Compiler */
#define __STATIC_INLINE static __inline
#define __STATIC_ASM static __asm
#elif defined ( __ICCARM__ )
#define __ASM __asm /*!< asm keyword for IAR Compiler */
#define __INLINE inline /*!< inline keyword for IAR Compiler. Only available in High optimization mode! */
#define __STATIC_INLINE static inline
#define __STATIC_ASM static __asm
#include <stdint.h>
inline uint32_t __get_PSR(void) {
__ASM("mrs r0, cpsr");
}
#elif defined ( __TMS470__ )
#define __ASM __asm /*!< asm keyword for TI CCS Compiler */
#define __STATIC_INLINE static inline
#define __STATIC_ASM static __asm
#elif defined ( __GNUC__ )
#define __ASM __asm /*!< asm keyword for GNU Compiler */
#define __INLINE inline /*!< inline keyword for GNU Compiler */
#define __STATIC_INLINE static inline
#define __STATIC_ASM static __asm
#elif defined ( __TASKING__ )
#define __ASM __asm /*!< asm keyword for TASKING Compiler */
#define __INLINE inline /*!< inline keyword for TASKING Compiler */
#define __STATIC_INLINE static inline
#define __STATIC_ASM static __asm
#endif
/** __FPU_USED indicates whether an FPU is used or not. For this, __FPU_PRESENT has to be checked prior to making use of FPU specific registers and functions.
*/
#if defined ( __CC_ARM )
#if defined __TARGET_FPU_VFP
#if (__FPU_PRESENT == 1)
#define __FPU_USED 1
#else
#warning "Compiler generates FPU instructions for a device without an FPU (check __FPU_PRESENT)"
#define __FPU_USED 0
#endif
#else
#define __FPU_USED 0
#endif
#elif defined ( __ICCARM__ )
#if defined __ARMVFP__
#if (__FPU_PRESENT == 1)
#define __FPU_USED 1
#else
#warning "Compiler generates FPU instructions for a device without an FPU (check __FPU_PRESENT)"
#define __FPU_USED 0
#endif
#else
#define __FPU_USED 0
#endif
#elif defined ( __TMS470__ )
#if defined __TI_VFP_SUPPORT__
#if (__FPU_PRESENT == 1)
#define __FPU_USED 1
#else
#warning "Compiler generates FPU instructions for a device without an FPU (check __FPU_PRESENT)"
#define __FPU_USED 0
#endif
#else
#define __FPU_USED 0
#endif
#elif defined ( __GNUC__ )
#if defined (__VFP_FP__) && !defined(__SOFTFP__)
#if (__FPU_PRESENT == 1)
#define __FPU_USED 1
#else
#warning "Compiler generates FPU instructions for a device without an FPU (check __FPU_PRESENT)"
#define __FPU_USED 0
#endif
#else
#define __FPU_USED 0
#endif
#elif defined ( __TASKING__ )
#if defined __FPU_VFP__
#if (__FPU_PRESENT == 1)
#define __FPU_USED 1
#else
#error "Compiler generates FPU instructions for a device without an FPU (check __FPU_PRESENT)"
#define __FPU_USED 0
#endif
#else
#define __FPU_USED 0
#endif
#endif
#include <stdint.h> /*!< standard types definitions */
#include "core_caInstr.h" /*!< Core Instruction Access */
#include "core_caFunc.h" /*!< Core Function Access */
#include "core_cm4_simd.h" /*!< Compiler specific SIMD Intrinsics */
#endif /* __CORE_CA9_H_GENERIC */
#ifndef __CMSIS_GENERIC
#ifndef __CORE_CA9_H_DEPENDANT
#define __CORE_CA9_H_DEPENDANT
/* check device defines and use defaults */
#if defined __CHECK_DEVICE_DEFINES
#ifndef __CA9_REV
#define __CA9_REV 0x0000
#warning "__CA9_REV not defined in device header file; using default!"
#endif
#ifndef __FPU_PRESENT
#define __FPU_PRESENT 1
#warning "__FPU_PRESENT not defined in device header file; using default!"
#endif
#ifndef __Vendor_SysTickConfig
#define __Vendor_SysTickConfig 1
#endif
#if __Vendor_SysTickConfig == 0
#error "__Vendor_SysTickConfig set to 0, but vendor systick timer must be supplied for Cortex-A9"
#endif
#endif
/* IO definitions (access restrictions to peripheral registers) */
/**
\defgroup CMSIS_glob_defs CMSIS Global Defines
<strong>IO Type Qualifiers</strong> are used
\li to specify the access to peripheral variables.
\li for automatic generation of peripheral register debug information.
*/
#ifdef __cplusplus
#define __I volatile /*!< Defines 'read only' permissions */
#else
#define __I volatile const /*!< Defines 'read only' permissions */
#endif
#define __O volatile /*!< Defines 'write only' permissions */
#define __IO volatile /*!< Defines 'read / write' permissions */
/*@} end of group Cortex_A9 */
/*******************************************************************************
* Register Abstraction
******************************************************************************/
/** \defgroup CMSIS_core_register Defines and Type Definitions
\brief Type definitions and defines for Cortex-A processor based devices.
*/
/** \ingroup CMSIS_core_register
\defgroup CMSIS_CORE Status and Control Registers
\brief Core Register type definitions.
@{
*/
/** \brief Union type to access the Application Program Status Register (APSR).
*/
typedef union
{
struct
{
uint32_t _reserved0:16; /*!< bit: 0..15 Reserved */
uint32_t GE:4; /*!< bit: 16..19 Greater than or Equal flags */
uint32_t reserved1:7; /*!< bit: 20..23 Reserved */
uint32_t Q:1; /*!< bit: 27 Saturation condition flag */
uint32_t V:1; /*!< bit: 28 Overflow condition code flag */
uint32_t C:1; /*!< bit: 29 Carry condition code flag */
uint32_t Z:1; /*!< bit: 30 Zero condition code flag */
uint32_t N:1; /*!< bit: 31 Negative condition code flag */
} b; /*!< Structure used for bit access */
uint32_t w; /*!< Type used for word access */
} APSR_Type;
/*@} end of group CMSIS_CORE */
/*@} end of CMSIS_Core_FPUFunctions */
#endif /* __CORE_CA9_H_GENERIC */
#endif /* __CMSIS_GENERIC */
#ifdef __cplusplus
}
#endif

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,45 @@
/**************************************************************************//**
* @file core_caInstr.h
* @brief CMSIS Cortex-A9 Core Peripheral Access Layer Header File
* @version
* @date 04. December 2012
*
* @note
*
******************************************************************************/
/* Copyright (c) 2009 - 2012 ARM LIMITED
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
- Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
- Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
- Neither the name of ARM nor the names of its contributors may be used
to endorse or promote products derived from this software without
specific prior written permission.
*
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL COPYRIGHT HOLDERS AND CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.
---------------------------------------------------------------------------*/
#ifndef __CORE_CAINSTR_H__
#define __CORE_CAINSTR_H__
#define __CORTEX_M 0x3
#include "core_cmInstr.h"
#undef __CORTEX_M
#endif

View File

@ -0,0 +1,847 @@
;/**************************************************************************//**
; * @file core_ca_mmu.h
; * @brief MMU Startup File for A9_MP Device Series
; * @version V1.01
; * @date 10 Sept 2014
; *
; * @note
; *
; ******************************************************************************/
;/* Copyright (c) 2012-2014 ARM LIMITED
;
; All rights reserved.
; Redistribution and use in source and binary forms, with or without
; modification, are permitted provided that the following conditions are met:
; - Redistributions of source code must retain the above copyright
; notice, this list of conditions and the following disclaimer.
; - Redistributions in binary form must reproduce the above copyright
; notice, this list of conditions and the following disclaimer in the
; documentation and/or other materials provided with the distribution.
; - Neither the name of ARM nor the names of its contributors may be used
; to endorse or promote products derived from this software without
; specific prior written permission.
; *
; THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
; AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
; IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
; ARE DISCLAIMED. IN NO EVENT SHALL COPYRIGHT HOLDERS AND CONTRIBUTORS BE
; LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
; CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
; SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
; INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
; CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
; ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
; POSSIBILITY OF SUCH DAMAGE.
; ---------------------------------------------------------------------------*/
#ifdef __cplusplus
extern "C" {
#endif
#ifndef _MMU_FUNC_H
#define _MMU_FUNC_H
#define SECTION_DESCRIPTOR (0x2)
#define SECTION_MASK (0xFFFFFFFC)
#define SECTION_TEXCB_MASK (0xFFFF8FF3)
#define SECTION_B_SHIFT (2)
#define SECTION_C_SHIFT (3)
#define SECTION_TEX0_SHIFT (12)
#define SECTION_TEX1_SHIFT (13)
#define SECTION_TEX2_SHIFT (14)
#define SECTION_XN_MASK (0xFFFFFFEF)
#define SECTION_XN_SHIFT (4)
#define SECTION_DOMAIN_MASK (0xFFFFFE1F)
#define SECTION_DOMAIN_SHIFT (5)
#define SECTION_P_MASK (0xFFFFFDFF)
#define SECTION_P_SHIFT (9)
#define SECTION_AP_MASK (0xFFFF73FF)
#define SECTION_AP_SHIFT (10)
#define SECTION_AP2_SHIFT (15)
#define SECTION_S_MASK (0xFFFEFFFF)
#define SECTION_S_SHIFT (16)
#define SECTION_NG_MASK (0xFFFDFFFF)
#define SECTION_NG_SHIFT (17)
#define SECTION_NS_MASK (0xFFF7FFFF)
#define SECTION_NS_SHIFT (19)
#define PAGE_L1_DESCRIPTOR (0x1)
#define PAGE_L1_MASK (0xFFFFFFFC)
#define PAGE_L2_4K_DESC (0x2)
#define PAGE_L2_4K_MASK (0xFFFFFFFD)
#define PAGE_L2_64K_DESC (0x1)
#define PAGE_L2_64K_MASK (0xFFFFFFFC)
#define PAGE_4K_TEXCB_MASK (0xFFFFFE33)
#define PAGE_4K_B_SHIFT (2)
#define PAGE_4K_C_SHIFT (3)
#define PAGE_4K_TEX0_SHIFT (6)
#define PAGE_4K_TEX1_SHIFT (7)
#define PAGE_4K_TEX2_SHIFT (8)
#define PAGE_64K_TEXCB_MASK (0xFFFF8FF3)
#define PAGE_64K_B_SHIFT (2)
#define PAGE_64K_C_SHIFT (3)
#define PAGE_64K_TEX0_SHIFT (12)
#define PAGE_64K_TEX1_SHIFT (13)
#define PAGE_64K_TEX2_SHIFT (14)
#define PAGE_TEXCB_MASK (0xFFFF8FF3)
#define PAGE_B_SHIFT (2)
#define PAGE_C_SHIFT (3)
#define PAGE_TEX_SHIFT (12)
#define PAGE_XN_4K_MASK (0xFFFFFFFE)
#define PAGE_XN_4K_SHIFT (0)
#define PAGE_XN_64K_MASK (0xFFFF7FFF)
#define PAGE_XN_64K_SHIFT (15)
#define PAGE_DOMAIN_MASK (0xFFFFFE1F)
#define PAGE_DOMAIN_SHIFT (5)
#define PAGE_P_MASK (0xFFFFFDFF)
#define PAGE_P_SHIFT (9)
#define PAGE_AP_MASK (0xFFFFFDCF)
#define PAGE_AP_SHIFT (4)
#define PAGE_AP2_SHIFT (9)
#define PAGE_S_MASK (0xFFFFFBFF)
#define PAGE_S_SHIFT (10)
#define PAGE_NG_MASK (0xFFFFF7FF)
#define PAGE_NG_SHIFT (11)
#define PAGE_NS_MASK (0xFFFFFFF7)
#define PAGE_NS_SHIFT (3)
#define OFFSET_1M (0x00100000)
#define OFFSET_64K (0x00010000)
#define OFFSET_4K (0x00001000)
#define DESCRIPTOR_FAULT (0x00000000)
/* ########################### MMU Function Access ########################### */
/** \ingroup MMU_FunctionInterface
\defgroup MMU_Functions MMU Functions Interface
@{
*/
/* Attributes enumerations */
/* Region size attributes */
typedef enum
{
SECTION,
PAGE_4k,
PAGE_64k,
} mmu_region_size_Type;
/* Region type attributes */
typedef enum
{
NORMAL,
DEVICE,
SHARED_DEVICE,
NON_SHARED_DEVICE,
STRONGLY_ORDERED
} mmu_memory_Type;
/* Region cacheability attributes */
typedef enum
{
NON_CACHEABLE,
WB_WA,
WT,
WB_NO_WA,
} mmu_cacheability_Type;
/* Region parity check attributes */
typedef enum
{
ECC_DISABLED,
ECC_ENABLED,
} mmu_ecc_check_Type;
/* Region execution attributes */
typedef enum
{
EXECUTE,
NON_EXECUTE,
} mmu_execute_Type;
/* Region global attributes */
typedef enum
{
GLOBAL,
NON_GLOBAL,
} mmu_global_Type;
/* Region shareability attributes */
typedef enum
{
NON_SHARED,
SHARED,
} mmu_shared_Type;
/* Region security attributes */
typedef enum
{
SECURE,
NON_SECURE,
} mmu_secure_Type;
/* Region access attributes */
typedef enum
{
NO_ACCESS,
RW,
READ,
} mmu_access_Type;
/* Memory Region definition */
typedef struct RegionStruct {
mmu_region_size_Type rg_t;
mmu_memory_Type mem_t;
uint8_t domain;
mmu_cacheability_Type inner_norm_t;
mmu_cacheability_Type outer_norm_t;
mmu_ecc_check_Type e_t;
mmu_execute_Type xn_t;
mmu_global_Type g_t;
mmu_secure_Type sec_t;
mmu_access_Type priv_t;
mmu_access_Type user_t;
mmu_shared_Type sh_t;
} mmu_region_attributes_Type;
/** \brief Set section execution-never attribute
The function sets section execution-never attribute
\param [out] descriptor_l1 L1 descriptor.
\param [in] xn Section execution-never attribute : EXECUTE , NON_EXECUTE.
\return 0
*/
__STATIC_INLINE int __xn_section(uint32_t *descriptor_l1, mmu_execute_Type xn)
{
*descriptor_l1 &= SECTION_XN_MASK;
*descriptor_l1 |= ((xn & 0x1) << SECTION_XN_SHIFT);
return 0;
}
/** \brief Set section domain
The function sets section domain
\param [out] descriptor_l1 L1 descriptor.
\param [in] domain Section domain
\return 0
*/
__STATIC_INLINE int __domain_section(uint32_t *descriptor_l1, uint8_t domain)
{
*descriptor_l1 &= SECTION_DOMAIN_MASK;
*descriptor_l1 |= ((domain & 0xF) << SECTION_DOMAIN_SHIFT);
return 0;
}
/** \brief Set section parity check
The function sets section parity check
\param [out] descriptor_l1 L1 descriptor.
\param [in] p_bit Parity check: ECC_DISABLED, ECC_ENABLED
\return 0
*/
__STATIC_INLINE int __p_section(uint32_t *descriptor_l1, mmu_ecc_check_Type p_bit)
{
*descriptor_l1 &= SECTION_P_MASK;
*descriptor_l1 |= ((p_bit & 0x1) << SECTION_P_SHIFT);
return 0;
}
/** \brief Set section access privileges
The function sets section access privileges
\param [out] descriptor_l1 L1 descriptor.
\param [in] user User Level Access: NO_ACCESS, RW, READ
\param [in] priv Privilege Level Access: NO_ACCESS, RW, READ
\param [in] afe Access flag enable
\return 0
*/
__STATIC_INLINE int __ap_section(uint32_t *descriptor_l1, mmu_access_Type user, mmu_access_Type priv, uint32_t afe)
{
uint32_t ap = 0;
if (afe == 0) { //full access
if ((priv == NO_ACCESS) && (user == NO_ACCESS)) { ap = 0x0; }
else if ((priv == RW) && (user == NO_ACCESS)) { ap = 0x1; }
else if ((priv == RW) && (user == READ)) { ap = 0x2; }
else if ((priv == RW) && (user == RW)) { ap = 0x3; }
else if ((priv == READ) && (user == NO_ACCESS)) { ap = 0x5; }
else if ((priv == READ) && (user == READ)) { ap = 0x7; }
}
else { //Simplified access
if ((priv == RW) && (user == NO_ACCESS)) { ap = 0x1; }
else if ((priv == RW) && (user == RW)) { ap = 0x3; }
else if ((priv == READ) && (user == NO_ACCESS)) { ap = 0x5; }
else if ((priv == READ) && (user == READ)) { ap = 0x7; }
}
*descriptor_l1 &= SECTION_AP_MASK;
*descriptor_l1 |= (ap & 0x3) << SECTION_AP_SHIFT;
*descriptor_l1 |= ((ap & 0x4)>>2) << SECTION_AP2_SHIFT;
return 0;
}
/** \brief Set section shareability
The function sets section shareability
\param [out] descriptor_l1 L1 descriptor.
\param [in] s_bit Section shareability: NON_SHARED, SHARED
\return 0
*/
__STATIC_INLINE int __shared_section(uint32_t *descriptor_l1, mmu_shared_Type s_bit)
{
*descriptor_l1 &= SECTION_S_MASK;
*descriptor_l1 |= ((s_bit & 0x1) << SECTION_S_SHIFT);
return 0;
}
/** \brief Set section Global attribute
The function sets section Global attribute
\param [out] descriptor_l1 L1 descriptor.
\param [in] g_bit Section attribute: GLOBAL, NON_GLOBAL
\return 0
*/
__STATIC_INLINE int __global_section(uint32_t *descriptor_l1, mmu_global_Type g_bit)
{
*descriptor_l1 &= SECTION_NG_MASK;
*descriptor_l1 |= ((g_bit & 0x1) << SECTION_NG_SHIFT);
return 0;
}
/** \brief Set section Security attribute
The function sets section Global attribute
\param [out] descriptor_l1 L1 descriptor.
\param [in] s_bit Section Security attribute: SECURE, NON_SECURE
\return 0
*/
__STATIC_INLINE int __secure_section(uint32_t *descriptor_l1, mmu_secure_Type s_bit)
{
*descriptor_l1 &= SECTION_NS_MASK;
*descriptor_l1 |= ((s_bit & 0x1) << SECTION_NS_SHIFT);
return 0;
}
/* Page 4k or 64k */
/** \brief Set 4k/64k page execution-never attribute
The function sets 4k/64k page execution-never attribute
\param [out] descriptor_l2 L2 descriptor.
\param [in] xn Page execution-never attribute : EXECUTE , NON_EXECUTE.
\param [in] page Page size: PAGE_4k, PAGE_64k,
\return 0
*/
__STATIC_INLINE int __xn_page(uint32_t *descriptor_l2, mmu_execute_Type xn, mmu_region_size_Type page)
{
if (page == PAGE_4k)
{
*descriptor_l2 &= PAGE_XN_4K_MASK;
*descriptor_l2 |= ((xn & 0x1) << PAGE_XN_4K_SHIFT);
}
else
{
*descriptor_l2 &= PAGE_XN_64K_MASK;
*descriptor_l2 |= ((xn & 0x1) << PAGE_XN_64K_SHIFT);
}
return 0;
}
/** \brief Set 4k/64k page domain
The function sets 4k/64k page domain
\param [out] descriptor_l1 L1 descriptor.
\param [in] domain Page domain
\return 0
*/
__STATIC_INLINE int __domain_page(uint32_t *descriptor_l1, uint8_t domain)
{
*descriptor_l1 &= PAGE_DOMAIN_MASK;
*descriptor_l1 |= ((domain & 0xf) << PAGE_DOMAIN_SHIFT);
return 0;
}
/** \brief Set 4k/64k page parity check
The function sets 4k/64k page parity check
\param [out] descriptor_l1 L1 descriptor.
\param [in] p_bit Parity check: ECC_DISABLED, ECC_ENABLED
\return 0
*/
__STATIC_INLINE int __p_page(uint32_t *descriptor_l1, mmu_ecc_check_Type p_bit)
{
*descriptor_l1 &= SECTION_P_MASK;
*descriptor_l1 |= ((p_bit & 0x1) << SECTION_P_SHIFT);
return 0;
}
/** \brief Set 4k/64k page access privileges
The function sets 4k/64k page access privileges
\param [out] descriptor_l2 L2 descriptor.
\param [in] user User Level Access: NO_ACCESS, RW, READ
\param [in] priv Privilege Level Access: NO_ACCESS, RW, READ
\param [in] afe Access flag enable
\return 0
*/
__STATIC_INLINE int __ap_page(uint32_t *descriptor_l2, mmu_access_Type user, mmu_access_Type priv, uint32_t afe)
{
uint32_t ap = 0;
if (afe == 0) { //full access
if ((priv == NO_ACCESS) && (user == NO_ACCESS)) { ap = 0x0; }
else if ((priv == RW) && (user == NO_ACCESS)) { ap = 0x1; }
else if ((priv == RW) && (user == READ)) { ap = 0x2; }
else if ((priv == RW) && (user == RW)) { ap = 0x3; }
else if ((priv == READ) && (user == NO_ACCESS)) { ap = 0x5; }
else if ((priv == READ) && (user == READ)) { ap = 0x6; }
}
else { //Simplified access
if ((priv == RW) && (user == NO_ACCESS)) { ap = 0x1; }
else if ((priv == RW) && (user == RW)) { ap = 0x3; }
else if ((priv == READ) && (user == NO_ACCESS)) { ap = 0x5; }
else if ((priv == READ) && (user == READ)) { ap = 0x7; }
}
*descriptor_l2 &= PAGE_AP_MASK;
*descriptor_l2 |= (ap & 0x3) << PAGE_AP_SHIFT;
*descriptor_l2 |= ((ap & 0x4)>>2) << PAGE_AP2_SHIFT;
return 0;
}
/** \brief Set 4k/64k page shareability
The function sets 4k/64k page shareability
\param [out] descriptor_l2 L2 descriptor.
\param [in] s_bit 4k/64k page shareability: NON_SHARED, SHARED
\return 0
*/
__STATIC_INLINE int __shared_page(uint32_t *descriptor_l2, mmu_shared_Type s_bit)
{
*descriptor_l2 &= PAGE_S_MASK;
*descriptor_l2 |= ((s_bit & 0x1) << PAGE_S_SHIFT);
return 0;
}
/** \brief Set 4k/64k page Global attribute
The function sets 4k/64k page Global attribute
\param [out] descriptor_l2 L2 descriptor.
\param [in] g_bit 4k/64k page attribute: GLOBAL, NON_GLOBAL
\return 0
*/
__STATIC_INLINE int __global_page(uint32_t *descriptor_l2, mmu_global_Type g_bit)
{
*descriptor_l2 &= PAGE_NG_MASK;
*descriptor_l2 |= ((g_bit & 0x1) << PAGE_NG_SHIFT);
return 0;
}
/** \brief Set 4k/64k page Security attribute
The function sets 4k/64k page Global attribute
\param [out] descriptor_l1 L1 descriptor.
\param [in] s_bit 4k/64k page Security attribute: SECURE, NON_SECURE
\return 0
*/
__STATIC_INLINE int __secure_page(uint32_t *descriptor_l1, mmu_secure_Type s_bit)
{
*descriptor_l1 &= PAGE_NS_MASK;
*descriptor_l1 |= ((s_bit & 0x1) << PAGE_NS_SHIFT);
return 0;
}
/** \brief Set Section memory attributes
The function sets section memory attributes
\param [out] descriptor_l1 L1 descriptor.
\param [in] mem Section memory type: NORMAL, DEVICE, SHARED_DEVICE, NON_SHARED_DEVICE, STRONGLY_ORDERED
\param [in] outer Outer cacheability: NON_CACHEABLE, WB_WA, WT, WB_NO_WA,
\param [in] inner Inner cacheability: NON_CACHEABLE, WB_WA, WT, WB_NO_WA,
\return 0
*/
__STATIC_INLINE int __memory_section(uint32_t *descriptor_l1, mmu_memory_Type mem, mmu_cacheability_Type outer, mmu_cacheability_Type inner)
{
*descriptor_l1 &= SECTION_TEXCB_MASK;
if (STRONGLY_ORDERED == mem)
{
return 0;
}
else if (SHARED_DEVICE == mem)
{
*descriptor_l1 |= (1 << SECTION_B_SHIFT);
}
else if (NON_SHARED_DEVICE == mem)
{
*descriptor_l1 |= (1 << SECTION_TEX1_SHIFT);
}
else if (NORMAL == mem)
{
*descriptor_l1 |= 1 << SECTION_TEX2_SHIFT;
switch(inner)
{
case NON_CACHEABLE:
break;
case WB_WA:
*descriptor_l1 |= (1 << SECTION_B_SHIFT);
break;
case WT:
*descriptor_l1 |= 1 << SECTION_C_SHIFT;
break;
case WB_NO_WA:
*descriptor_l1 |= (1 << SECTION_B_SHIFT) | (1 << SECTION_C_SHIFT);
break;
}
switch(outer)
{
case NON_CACHEABLE:
break;
case WB_WA:
*descriptor_l1 |= (1 << SECTION_TEX0_SHIFT);
break;
case WT:
*descriptor_l1 |= 1 << SECTION_TEX1_SHIFT;
break;
case WB_NO_WA:
*descriptor_l1 |= (1 << SECTION_TEX0_SHIFT) | (1 << SECTION_TEX0_SHIFT);
break;
}
}
return 0;
}
/** \brief Set 4k/64k page memory attributes
The function sets 4k/64k page memory attributes
\param [out] descriptor_l2 L2 descriptor.
\param [in] mem 4k/64k page memory type: NORMAL, DEVICE, SHARED_DEVICE, NON_SHARED_DEVICE, STRONGLY_ORDERED
\param [in] outer Outer cacheability: NON_CACHEABLE, WB_WA, WT, WB_NO_WA,
\param [in] inner Inner cacheability: NON_CACHEABLE, WB_WA, WT, WB_NO_WA,
\return 0
*/
__STATIC_INLINE int __memory_page(uint32_t *descriptor_l2, mmu_memory_Type mem, mmu_cacheability_Type outer, mmu_cacheability_Type inner, mmu_region_size_Type page)
{
*descriptor_l2 &= PAGE_4K_TEXCB_MASK;
if (page == PAGE_64k)
{
//same as section
__memory_section(descriptor_l2, mem, outer, inner);
}
else
{
if (STRONGLY_ORDERED == mem)
{
return 0;
}
else if (SHARED_DEVICE == mem)
{
*descriptor_l2 |= (1 << PAGE_4K_B_SHIFT);
}
else if (NON_SHARED_DEVICE == mem)
{
*descriptor_l2 |= (1 << PAGE_4K_TEX1_SHIFT);
}
else if (NORMAL == mem)
{
*descriptor_l2 |= 1 << PAGE_4K_TEX2_SHIFT;
switch(inner)
{
case NON_CACHEABLE:
break;
case WB_WA:
*descriptor_l2 |= (1 << PAGE_4K_B_SHIFT);
break;
case WT:
*descriptor_l2 |= 1 << PAGE_4K_C_SHIFT;
break;
case WB_NO_WA:
*descriptor_l2 |= (1 << PAGE_4K_B_SHIFT) | (1 << PAGE_4K_C_SHIFT);
break;
}
switch(outer)
{
case NON_CACHEABLE:
break;
case WB_WA:
*descriptor_l2 |= (1 << PAGE_4K_TEX0_SHIFT);
break;
case WT:
*descriptor_l2 |= 1 << PAGE_4K_TEX1_SHIFT;
break;
case WB_NO_WA:
*descriptor_l2 |= (1 << PAGE_4K_TEX0_SHIFT) | (1 << PAGE_4K_TEX0_SHIFT);
break;
}
}
}
return 0;
}
/** \brief Create a L1 section descriptor
The function creates a section descriptor.
Assumptions:
- 16MB super sections not supported
- TEX remap disabled, so memory type and attributes are described directly by bits in the descriptor
- Functions always return 0
\param [out] descriptor L1 descriptor
\param [out] descriptor2 L2 descriptor
\param [in] reg Section attributes
\return 0
*/
__STATIC_INLINE int __get_section_descriptor(uint32_t *descriptor, mmu_region_attributes_Type reg)
{
*descriptor = 0;
__memory_section(descriptor, reg.mem_t, reg.outer_norm_t, reg.inner_norm_t);
__xn_section(descriptor,reg.xn_t);
__domain_section(descriptor, reg.domain);
__p_section(descriptor, reg.e_t);
__ap_section(descriptor, reg.priv_t, reg.user_t, 1);
__shared_section(descriptor,reg.sh_t);
__global_section(descriptor,reg.g_t);
__secure_section(descriptor,reg.sec_t);
*descriptor &= SECTION_MASK;
*descriptor |= SECTION_DESCRIPTOR;
return 0;
}
/** \brief Create a L1 and L2 4k/64k page descriptor
The function creates a 4k/64k page descriptor.
Assumptions:
- TEX remap disabled, so memory type and attributes are described directly by bits in the descriptor
- Functions always return 0
\param [out] descriptor L1 descriptor
\param [out] descriptor2 L2 descriptor
\param [in] reg 4k/64k page attributes
\return 0
*/
__STATIC_INLINE int __get_page_descriptor(uint32_t *descriptor, uint32_t *descriptor2, mmu_region_attributes_Type reg)
{
*descriptor = 0;
*descriptor2 = 0;
switch (reg.rg_t)
{
case PAGE_4k:
__memory_page(descriptor2, reg.mem_t, reg.outer_norm_t, reg.inner_norm_t, PAGE_4k);
__xn_page(descriptor2, reg.xn_t, PAGE_4k);
__domain_page(descriptor, reg.domain);
__p_page(descriptor, reg.e_t);
__ap_page(descriptor2, reg.priv_t, reg.user_t, 1);
__shared_page(descriptor2,reg.sh_t);
__global_page(descriptor2,reg.g_t);
__secure_page(descriptor,reg.sec_t);
*descriptor &= PAGE_L1_MASK;
*descriptor |= PAGE_L1_DESCRIPTOR;
*descriptor2 &= PAGE_L2_4K_MASK;
*descriptor2 |= PAGE_L2_4K_DESC;
break;
case PAGE_64k:
__memory_page(descriptor2, reg.mem_t, reg.outer_norm_t, reg.inner_norm_t, PAGE_64k);
__xn_page(descriptor2, reg.xn_t, PAGE_64k);
__domain_page(descriptor, reg.domain);
__p_page(descriptor, reg.e_t);
__ap_page(descriptor2, reg.priv_t, reg.user_t, 1);
__shared_page(descriptor2,reg.sh_t);
__global_page(descriptor2,reg.g_t);
__secure_page(descriptor,reg.sec_t);
*descriptor &= PAGE_L1_MASK;
*descriptor |= PAGE_L1_DESCRIPTOR;
*descriptor2 &= PAGE_L2_64K_MASK;
*descriptor2 |= PAGE_L2_64K_DESC;
break;
case SECTION:
//error
break;
}
return 0;
}
/** \brief Create a 1MB Section
\param [in] ttb Translation table base address
\param [in] base_address Section base address
\param [in] count Number of sections to create
\param [in] descriptor_l1 L1 descriptor (region attributes)
*/
__STATIC_INLINE void __TTSection(uint32_t *ttb, uint32_t base_address, uint32_t count, uint32_t descriptor_l1)
{
uint32_t offset;
uint32_t entry;
uint32_t i;
offset = base_address >> 20;
entry = (base_address & 0xFFF00000) | descriptor_l1;
//4 bytes aligned
ttb = ttb + offset;
for (i = 0; i < count; i++ )
{
//4 bytes aligned
*ttb++ = entry;
entry += OFFSET_1M;
}
}
/** \brief Create a 4k page entry
\param [in] ttb L1 table base address
\param [in] base_address 4k base address
\param [in] count Number of 4k pages to create
\param [in] descriptor_l1 L1 descriptor (region attributes)
\param [in] ttb_l2 L2 table base address
\param [in] descriptor_l2 L2 descriptor (region attributes)
*/
__STATIC_INLINE void __TTPage_4k(uint32_t *ttb, uint32_t base_address, uint32_t count, uint32_t descriptor_l1, uint32_t *ttb_l2, uint32_t descriptor_l2 )
{
uint32_t offset, offset2;
uint32_t entry, entry2;
uint32_t i;
offset = base_address >> 20;
entry = ((int)ttb_l2 & 0xFFFFFC00) | descriptor_l1;
//4 bytes aligned
ttb += offset;
//create l1_entry
*ttb = entry;
offset2 = (base_address & 0xff000) >> 12;
ttb_l2 += offset2;
entry2 = (base_address & 0xFFFFF000) | descriptor_l2;
for (i = 0; i < count; i++ )
{
//4 bytes aligned
*ttb_l2++ = entry2;
entry2 += OFFSET_4K;
}
}
/** \brief Create a 64k page entry
\param [in] ttb L1 table base address
\param [in] base_address 64k base address
\param [in] count Number of 64k pages to create
\param [in] descriptor_l1 L1 descriptor (region attributes)
\param [in] ttb_l2 L2 table base address
\param [in] descriptor_l2 L2 descriptor (region attributes)
*/
__STATIC_INLINE void __TTPage_64k(uint32_t *ttb, uint32_t base_address, uint32_t count, uint32_t descriptor_l1, uint32_t *ttb_l2, uint32_t descriptor_l2 )
{
uint32_t offset, offset2;
uint32_t entry, entry2;
uint32_t i,j;
offset = base_address >> 20;
entry = ((int)ttb_l2 & 0xFFFFFC00) | descriptor_l1;
//4 bytes aligned
ttb += offset;
//create l1_entry
*ttb = entry;
offset2 = (base_address & 0xff000) >> 12;
ttb_l2 += offset2;
entry2 = (base_address & 0xFFFF0000) | descriptor_l2;
for (i = 0; i < count; i++ )
{
//create 16 entries
for (j = 0; j < 16; j++)
//4 bytes aligned
*ttb_l2++ = entry2;
entry2 += OFFSET_64K;
}
}
/*@} end of MMU_Functions */
#endif
#ifdef __cplusplus
}
#endif

View File

@ -0,0 +1,673 @@
/**************************************************************************//**
* @file core_cm4_simd.h
* @brief CMSIS Cortex-M4 SIMD Header File
* @version V3.20
* @date 25. February 2013
*
* @note
*
******************************************************************************/
/* Copyright (c) 2009 - 2013 ARM LIMITED
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
- Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
- Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
- Neither the name of ARM nor the names of its contributors may be used
to endorse or promote products derived from this software without
specific prior written permission.
*
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL COPYRIGHT HOLDERS AND CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.
---------------------------------------------------------------------------*/
#ifdef __cplusplus
extern "C" {
#endif
#ifndef __CORE_CM4_SIMD_H
#define __CORE_CM4_SIMD_H
/*******************************************************************************
* Hardware Abstraction Layer
******************************************************************************/
/* ################### Compiler specific Intrinsics ########################### */
/** \defgroup CMSIS_SIMD_intrinsics CMSIS SIMD Intrinsics
Access to dedicated SIMD instructions
@{
*/
#if defined ( __CC_ARM ) /*------------------RealView Compiler -----------------*/
/* ARM armcc specific functions */
/*------ CM4 SIMD Intrinsics -----------------------------------------------------*/
#define __SADD8 __sadd8
#define __QADD8 __qadd8
#define __SHADD8 __shadd8
#define __UADD8 __uadd8
#define __UQADD8 __uqadd8
#define __UHADD8 __uhadd8
#define __SSUB8 __ssub8
#define __QSUB8 __qsub8
#define __SHSUB8 __shsub8
#define __USUB8 __usub8
#define __UQSUB8 __uqsub8
#define __UHSUB8 __uhsub8
#define __SADD16 __sadd16
#define __QADD16 __qadd16
#define __SHADD16 __shadd16
#define __UADD16 __uadd16
#define __UQADD16 __uqadd16
#define __UHADD16 __uhadd16
#define __SSUB16 __ssub16
#define __QSUB16 __qsub16
#define __SHSUB16 __shsub16
#define __USUB16 __usub16
#define __UQSUB16 __uqsub16
#define __UHSUB16 __uhsub16
#define __SASX __sasx
#define __QASX __qasx
#define __SHASX __shasx
#define __UASX __uasx
#define __UQASX __uqasx
#define __UHASX __uhasx
#define __SSAX __ssax
#define __QSAX __qsax
#define __SHSAX __shsax
#define __USAX __usax
#define __UQSAX __uqsax
#define __UHSAX __uhsax
#define __USAD8 __usad8
#define __USADA8 __usada8
#define __SSAT16 __ssat16
#define __USAT16 __usat16
#define __UXTB16 __uxtb16
#define __UXTAB16 __uxtab16
#define __SXTB16 __sxtb16
#define __SXTAB16 __sxtab16
#define __SMUAD __smuad
#define __SMUADX __smuadx
#define __SMLAD __smlad
#define __SMLADX __smladx
#define __SMLALD __smlald
#define __SMLALDX __smlaldx
#define __SMUSD __smusd
#define __SMUSDX __smusdx
#define __SMLSD __smlsd
#define __SMLSDX __smlsdx
#define __SMLSLD __smlsld
#define __SMLSLDX __smlsldx
#define __SEL __sel
#define __QADD __qadd
#define __QSUB __qsub
#define __PKHBT(ARG1,ARG2,ARG3) ( ((((uint32_t)(ARG1)) ) & 0x0000FFFFUL) | \
((((uint32_t)(ARG2)) << (ARG3)) & 0xFFFF0000UL) )
#define __PKHTB(ARG1,ARG2,ARG3) ( ((((uint32_t)(ARG1)) ) & 0xFFFF0000UL) | \
((((uint32_t)(ARG2)) >> (ARG3)) & 0x0000FFFFUL) )
#define __SMMLA(ARG1,ARG2,ARG3) ( (int32_t)((((int64_t)(ARG1) * (ARG2)) + \
((int64_t)(ARG3) << 32) ) >> 32))
/*-- End CM4 SIMD Intrinsics -----------------------------------------------------*/
#elif defined ( __ICCARM__ ) /*------------------ ICC Compiler -------------------*/
/* IAR iccarm specific functions */
/*------ CM4 SIMD Intrinsics -----------------------------------------------------*/
#include <cmsis_iar.h>
/*-- End CM4 SIMD Intrinsics -----------------------------------------------------*/
#elif defined ( __TMS470__ ) /*---------------- TI CCS Compiler ------------------*/
/* TI CCS specific functions */
/*------ CM4 SIMD Intrinsics -----------------------------------------------------*/
#include <cmsis_ccs.h>
/*-- End CM4 SIMD Intrinsics -----------------------------------------------------*/
#elif defined ( __GNUC__ ) /*------------------ GNU Compiler ---------------------*/
/* GNU gcc specific functions */
/*------ CM4 SIMD Intrinsics -----------------------------------------------------*/
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SADD8(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("sadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __QADD8(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("qadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SHADD8(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("shadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UADD8(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("uadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UQADD8(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("uqadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UHADD8(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("uhadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SSUB8(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("ssub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __QSUB8(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("qsub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SHSUB8(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("shsub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __USUB8(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("usub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UQSUB8(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("uqsub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UHSUB8(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("uhsub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SADD16(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("sadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __QADD16(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("qadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SHADD16(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("shadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UADD16(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("uadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UQADD16(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("uqadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UHADD16(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("uhadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SSUB16(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("ssub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __QSUB16(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("qsub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SHSUB16(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("shsub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __USUB16(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("usub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UQSUB16(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("uqsub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UHSUB16(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("uhsub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SASX(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("sasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __QASX(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("qasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SHASX(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("shasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UASX(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("uasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UQASX(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("uqasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UHASX(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("uhasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SSAX(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("ssax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __QSAX(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("qsax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SHSAX(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("shsax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __USAX(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("usax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UQSAX(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("uqsax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UHSAX(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("uhsax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __USAD8(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("usad8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __USADA8(uint32_t op1, uint32_t op2, uint32_t op3)
{
uint32_t result;
__ASM volatile ("usada8 %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) );
return(result);
}
#define __SSAT16(ARG1,ARG2) \
({ \
uint32_t __RES, __ARG1 = (ARG1); \
__ASM ("ssat16 %0, %1, %2" : "=r" (__RES) : "I" (ARG2), "r" (__ARG1) ); \
__RES; \
})
#define __USAT16(ARG1,ARG2) \
({ \
uint32_t __RES, __ARG1 = (ARG1); \
__ASM ("usat16 %0, %1, %2" : "=r" (__RES) : "I" (ARG2), "r" (__ARG1) ); \
__RES; \
})
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UXTB16(uint32_t op1)
{
uint32_t result;
__ASM volatile ("uxtb16 %0, %1" : "=r" (result) : "r" (op1));
return(result);
}
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UXTAB16(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("uxtab16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SXTB16(uint32_t op1)
{
uint32_t result;
__ASM volatile ("sxtb16 %0, %1" : "=r" (result) : "r" (op1));
return(result);
}
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SXTAB16(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("sxtab16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SMUAD (uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("smuad %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SMUADX (uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("smuadx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SMLAD (uint32_t op1, uint32_t op2, uint32_t op3)
{
uint32_t result;
__ASM volatile ("smlad %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) );
return(result);
}
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SMLADX (uint32_t op1, uint32_t op2, uint32_t op3)
{
uint32_t result;
__ASM volatile ("smladx %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) );
return(result);
}
#define __SMLALD(ARG1,ARG2,ARG3) \
({ \
uint32_t __ARG1 = (ARG1), __ARG2 = (ARG2), __ARG3_H = (uint32_t)((uint64_t)(ARG3) >> 32), __ARG3_L = (uint32_t)((uint64_t)(ARG3) & 0xFFFFFFFFUL); \
__ASM volatile ("smlald %0, %1, %2, %3" : "=r" (__ARG3_L), "=r" (__ARG3_H) : "r" (__ARG1), "r" (__ARG2), "0" (__ARG3_L), "1" (__ARG3_H) ); \
(uint64_t)(((uint64_t)__ARG3_H << 32) | __ARG3_L); \
})
#define __SMLALDX(ARG1,ARG2,ARG3) \
({ \
uint32_t __ARG1 = (ARG1), __ARG2 = (ARG2), __ARG3_H = (uint32_t)((uint64_t)(ARG3) >> 32), __ARG3_L = (uint32_t)((uint64_t)(ARG3) & 0xFFFFFFFFUL); \
__ASM volatile ("smlaldx %0, %1, %2, %3" : "=r" (__ARG3_L), "=r" (__ARG3_H) : "r" (__ARG1), "r" (__ARG2), "0" (__ARG3_L), "1" (__ARG3_H) ); \
(uint64_t)(((uint64_t)__ARG3_H << 32) | __ARG3_L); \
})
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SMUSD (uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("smusd %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SMUSDX (uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("smusdx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SMLSD (uint32_t op1, uint32_t op2, uint32_t op3)
{
uint32_t result;
__ASM volatile ("smlsd %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) );
return(result);
}
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SMLSDX (uint32_t op1, uint32_t op2, uint32_t op3)
{
uint32_t result;
__ASM volatile ("smlsdx %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) );
return(result);
}
#define __SMLSLD(ARG1,ARG2,ARG3) \
({ \
uint32_t __ARG1 = (ARG1), __ARG2 = (ARG2), __ARG3_H = (uint32_t)((ARG3) >> 32), __ARG3_L = (uint32_t)((ARG3) & 0xFFFFFFFFUL); \
__ASM volatile ("smlsld %0, %1, %2, %3" : "=r" (__ARG3_L), "=r" (__ARG3_H) : "r" (__ARG1), "r" (__ARG2), "0" (__ARG3_L), "1" (__ARG3_H) ); \
(uint64_t)(((uint64_t)__ARG3_H << 32) | __ARG3_L); \
})
#define __SMLSLDX(ARG1,ARG2,ARG3) \
({ \
uint32_t __ARG1 = (ARG1), __ARG2 = (ARG2), __ARG3_H = (uint32_t)((ARG3) >> 32), __ARG3_L = (uint32_t)((ARG3) & 0xFFFFFFFFUL); \
__ASM volatile ("smlsldx %0, %1, %2, %3" : "=r" (__ARG3_L), "=r" (__ARG3_H) : "r" (__ARG1), "r" (__ARG2), "0" (__ARG3_L), "1" (__ARG3_H) ); \
(uint64_t)(((uint64_t)__ARG3_H << 32) | __ARG3_L); \
})
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SEL (uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("sel %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __QADD(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("qadd %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __QSUB(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("qsub %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
#define __PKHBT(ARG1,ARG2,ARG3) \
({ \
uint32_t __RES, __ARG1 = (ARG1), __ARG2 = (ARG2); \
__ASM ("pkhbt %0, %1, %2, lsl %3" : "=r" (__RES) : "r" (__ARG1), "r" (__ARG2), "I" (ARG3) ); \
__RES; \
})
#define __PKHTB(ARG1,ARG2,ARG3) \
({ \
uint32_t __RES, __ARG1 = (ARG1), __ARG2 = (ARG2); \
if (ARG3 == 0) \
__ASM ("pkhtb %0, %1, %2" : "=r" (__RES) : "r" (__ARG1), "r" (__ARG2) ); \
else \
__ASM ("pkhtb %0, %1, %2, asr %3" : "=r" (__RES) : "r" (__ARG1), "r" (__ARG2), "I" (ARG3) ); \
__RES; \
})
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SMMLA (int32_t op1, int32_t op2, int32_t op3)
{
int32_t result;
__ASM volatile ("smmla %0, %1, %2, %3" : "=r" (result): "r" (op1), "r" (op2), "r" (op3) );
return(result);
}
/*-- End CM4 SIMD Intrinsics -----------------------------------------------------*/
#elif defined ( __TASKING__ ) /*------------------ TASKING Compiler --------------*/
/* TASKING carm specific functions */
/*------ CM4 SIMD Intrinsics -----------------------------------------------------*/
/* not yet supported */
/*-- End CM4 SIMD Intrinsics -----------------------------------------------------*/
#endif
/*@} end of group CMSIS_SIMD_intrinsics */
#endif /* __CORE_CM4_SIMD_H */
#ifdef __cplusplus
}
#endif

View File

@ -0,0 +1,916 @@
/**************************************************************************//**
* @file core_cmInstr.h
* @brief CMSIS Cortex-M Core Instruction Access Header File
* @version V4.10
* @date 18. March 2015
*
* @note
*
******************************************************************************/
/* Copyright (c) 2009 - 2014 ARM LIMITED
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
- Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
- Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
- Neither the name of ARM nor the names of its contributors may be used
to endorse or promote products derived from this software without
specific prior written permission.
*
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL COPYRIGHT HOLDERS AND CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.
---------------------------------------------------------------------------*/
#ifndef __CORE_CMINSTR_H
#define __CORE_CMINSTR_H
/* ########################## Core Instruction Access ######################### */
/** \defgroup CMSIS_Core_InstructionInterface CMSIS Core Instruction Interface
Access to dedicated instructions
@{
*/
#if defined ( __CC_ARM ) /*------------------RealView Compiler -----------------*/
/* ARM armcc specific functions */
#if (__ARMCC_VERSION < 400677)
#error "Please use ARM Compiler Toolchain V4.0.677 or later!"
#endif
/** \brief No Operation
No Operation does nothing. This instruction can be used for code alignment purposes.
*/
#define __NOP __nop
/** \brief Wait For Interrupt
Wait For Interrupt is a hint instruction that suspends execution
until one of a number of events occurs.
*/
#define __WFI __wfi
/** \brief Wait For Event
Wait For Event is a hint instruction that permits the processor to enter
a low-power state until one of a number of events occurs.
*/
#define __WFE __wfe
/** \brief Send Event
Send Event is a hint instruction. It causes an event to be signaled to the CPU.
*/
#define __SEV __sev
/** \brief Instruction Synchronization Barrier
Instruction Synchronization Barrier flushes the pipeline in the processor,
so that all instructions following the ISB are fetched from cache or
memory, after the instruction has been completed.
*/
#define __ISB() do {\
__schedule_barrier();\
__isb(0xF);\
__schedule_barrier();\
} while (0)
/** \brief Data Synchronization Barrier
This function acts as a special kind of Data Memory Barrier.
It completes when all explicit memory accesses before this instruction complete.
*/
#define __DSB() do {\
__schedule_barrier();\
__dsb(0xF);\
__schedule_barrier();\
} while (0)
/** \brief Data Memory Barrier
This function ensures the apparent order of the explicit memory operations before
and after the instruction, without ensuring their completion.
*/
#define __DMB() do {\
__schedule_barrier();\
__dmb(0xF);\
__schedule_barrier();\
} while (0)
/** \brief Reverse byte order (32 bit)
This function reverses the byte order in integer value.
\param [in] value Value to reverse
\return Reversed value
*/
#define __REV __rev
/** \brief Reverse byte order (16 bit)
This function reverses the byte order in two unsigned short values.
\param [in] value Value to reverse
\return Reversed value
*/
#ifndef __NO_EMBEDDED_ASM
__attribute__((section(".rev16_text"))) __STATIC_INLINE __ASM uint32_t __REV16(uint32_t value)
{
rev16 r0, r0
bx lr
}
#endif
/** \brief Reverse byte order in signed short value
This function reverses the byte order in a signed short value with sign extension to integer.
\param [in] value Value to reverse
\return Reversed value
*/
#ifndef __NO_EMBEDDED_ASM
__attribute__((section(".revsh_text"))) __STATIC_INLINE __ASM int32_t __REVSH(int32_t value)
{
revsh r0, r0
bx lr
}
#endif
/** \brief Rotate Right in unsigned value (32 bit)
This function Rotate Right (immediate) provides the value of the contents of a register rotated by a variable number of bits.
\param [in] value Value to rotate
\param [in] value Number of Bits to rotate
\return Rotated value
*/
#define __ROR __ror
/** \brief Breakpoint
This function causes the processor to enter Debug state.
Debug tools can use this to investigate system state when the instruction at a particular address is reached.
\param [in] value is ignored by the processor.
If required, a debugger can use it to store additional information about the breakpoint.
*/
#define __BKPT(value) __breakpoint(value)
/** \brief Reverse bit order of value
This function reverses the bit order of the given value.
\param [in] value Value to reverse
\return Reversed value
*/
#if (__CORTEX_M >= 0x03) || (__CORTEX_SC >= 300)
#define __RBIT __rbit
#else
__attribute__((always_inline)) __STATIC_INLINE uint32_t __RBIT(uint32_t value)
{
uint32_t result;
int32_t s = 4 /*sizeof(v)*/ * 8 - 1; // extra shift needed at end
result = value; // r will be reversed bits of v; first get LSB of v
for (value >>= 1; value; value >>= 1)
{
result <<= 1;
result |= value & 1;
s--;
}
result <<= s; // shift when v's highest bits are zero
return(result);
}
#endif
/** \brief Count leading zeros
This function counts the number of leading zeros of a data value.
\param [in] value Value to count the leading zeros
\return number of leading zeros in value
*/
#define __CLZ __clz
#if (__CORTEX_M >= 0x03) || (__CORTEX_SC >= 300)
/** \brief LDR Exclusive (8 bit)
This function executes a exclusive LDR instruction for 8 bit value.
\param [in] ptr Pointer to data
\return value of type uint8_t at (*ptr)
*/
#define __LDREXB(ptr) ((uint8_t ) __ldrex(ptr))
/** \brief LDR Exclusive (16 bit)
This function executes a exclusive LDR instruction for 16 bit values.
\param [in] ptr Pointer to data
\return value of type uint16_t at (*ptr)
*/
#define __LDREXH(ptr) ((uint16_t) __ldrex(ptr))
/** \brief LDR Exclusive (32 bit)
This function executes a exclusive LDR instruction for 32 bit values.
\param [in] ptr Pointer to data
\return value of type uint32_t at (*ptr)
*/
#define __LDREXW(ptr) ((uint32_t ) __ldrex(ptr))
/** \brief STR Exclusive (8 bit)
This function executes a exclusive STR instruction for 8 bit values.
\param [in] value Value to store
\param [in] ptr Pointer to location
\return 0 Function succeeded
\return 1 Function failed
*/
#define __STREXB(value, ptr) __strex(value, ptr)
/** \brief STR Exclusive (16 bit)
This function executes a exclusive STR instruction for 16 bit values.
\param [in] value Value to store
\param [in] ptr Pointer to location
\return 0 Function succeeded
\return 1 Function failed
*/
#define __STREXH(value, ptr) __strex(value, ptr)
/** \brief STR Exclusive (32 bit)
This function executes a exclusive STR instruction for 32 bit values.
\param [in] value Value to store
\param [in] ptr Pointer to location
\return 0 Function succeeded
\return 1 Function failed
*/
#define __STREXW(value, ptr) __strex(value, ptr)
/** \brief Remove the exclusive lock
This function removes the exclusive lock which is created by LDREX.
*/
#define __CLREX __clrex
/** \brief Signed Saturate
This function saturates a signed value.
\param [in] value Value to be saturated
\param [in] sat Bit position to saturate to (1..32)
\return Saturated value
*/
#define __SSAT __ssat
/** \brief Unsigned Saturate
This function saturates an unsigned value.
\param [in] value Value to be saturated
\param [in] sat Bit position to saturate to (0..31)
\return Saturated value
*/
#define __USAT __usat
/** \brief Rotate Right with Extend (32 bit)
This function moves each bit of a bitstring right by one bit.
The carry input is shifted in at the left end of the bitstring.
\param [in] value Value to rotate
\return Rotated value
*/
#ifndef __NO_EMBEDDED_ASM
__attribute__((section(".rrx_text"))) __STATIC_INLINE __ASM uint32_t __RRX(uint32_t value)
{
rrx r0, r0
bx lr
}
#endif
/** \brief LDRT Unprivileged (8 bit)
This function executes a Unprivileged LDRT instruction for 8 bit value.
\param [in] ptr Pointer to data
\return value of type uint8_t at (*ptr)
*/
#define __LDRBT(ptr) ((uint8_t ) __ldrt(ptr))
/** \brief LDRT Unprivileged (16 bit)
This function executes a Unprivileged LDRT instruction for 16 bit values.
\param [in] ptr Pointer to data
\return value of type uint16_t at (*ptr)
*/
#define __LDRHT(ptr) ((uint16_t) __ldrt(ptr))
/** \brief LDRT Unprivileged (32 bit)
This function executes a Unprivileged LDRT instruction for 32 bit values.
\param [in] ptr Pointer to data
\return value of type uint32_t at (*ptr)
*/
#define __LDRT(ptr) ((uint32_t ) __ldrt(ptr))
/** \brief STRT Unprivileged (8 bit)
This function executes a Unprivileged STRT instruction for 8 bit values.
\param [in] value Value to store
\param [in] ptr Pointer to location
*/
#define __STRBT(value, ptr) __strt(value, ptr)
/** \brief STRT Unprivileged (16 bit)
This function executes a Unprivileged STRT instruction for 16 bit values.
\param [in] value Value to store
\param [in] ptr Pointer to location
*/
#define __STRHT(value, ptr) __strt(value, ptr)
/** \brief STRT Unprivileged (32 bit)
This function executes a Unprivileged STRT instruction for 32 bit values.
\param [in] value Value to store
\param [in] ptr Pointer to location
*/
#define __STRT(value, ptr) __strt(value, ptr)
#endif /* (__CORTEX_M >= 0x03) || (__CORTEX_SC >= 300) */
#elif defined ( __GNUC__ ) /*------------------ GNU Compiler ---------------------*/
/* GNU gcc specific functions */
/* Define macros for porting to both thumb1 and thumb2.
* For thumb1, use low register (r0-r7), specified by constrant "l"
* Otherwise, use general registers, specified by constrant "r" */
#if defined (__thumb__) && !defined (__thumb2__)
#define __CMSIS_GCC_OUT_REG(r) "=l" (r)
#define __CMSIS_GCC_USE_REG(r) "l" (r)
#else
#define __CMSIS_GCC_OUT_REG(r) "=r" (r)
#define __CMSIS_GCC_USE_REG(r) "r" (r)
#endif
/** \brief No Operation
No Operation does nothing. This instruction can be used for code alignment purposes.
*/
__attribute__((always_inline)) __STATIC_INLINE void __NOP(void)
{
__ASM volatile ("nop");
}
/** \brief Wait For Interrupt
Wait For Interrupt is a hint instruction that suspends execution
until one of a number of events occurs.
*/
__attribute__((always_inline)) __STATIC_INLINE void __WFI(void)
{
__ASM volatile ("wfi");
}
/** \brief Wait For Event
Wait For Event is a hint instruction that permits the processor to enter
a low-power state until one of a number of events occurs.
*/
__attribute__((always_inline)) __STATIC_INLINE void __WFE(void)
{
__ASM volatile ("wfe");
}
/** \brief Send Event
Send Event is a hint instruction. It causes an event to be signaled to the CPU.
*/
__attribute__((always_inline)) __STATIC_INLINE void __SEV(void)
{
__ASM volatile ("sev");
}
/** \brief Instruction Synchronization Barrier
Instruction Synchronization Barrier flushes the pipeline in the processor,
so that all instructions following the ISB are fetched from cache or
memory, after the instruction has been completed.
*/
__attribute__((always_inline)) __STATIC_INLINE void __ISB(void)
{
__ASM volatile ("isb 0xF":::"memory");
}
/** \brief Data Synchronization Barrier
This function acts as a special kind of Data Memory Barrier.
It completes when all explicit memory accesses before this instruction complete.
*/
__attribute__((always_inline)) __STATIC_INLINE void __DSB(void)
{
__ASM volatile ("dsb 0xF":::"memory");
}
/** \brief Data Memory Barrier
This function ensures the apparent order of the explicit memory operations before
and after the instruction, without ensuring their completion.
*/
__attribute__((always_inline)) __STATIC_INLINE void __DMB(void)
{
__ASM volatile ("dmb 0xF":::"memory");
}
/** \brief Reverse byte order (32 bit)
This function reverses the byte order in integer value.
\param [in] value Value to reverse
\return Reversed value
*/
__attribute__((always_inline)) __STATIC_INLINE uint32_t __REV(uint32_t value)
{
#if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 5)
return __builtin_bswap32(value);
#else
uint32_t result;
__ASM volatile ("rev %0, %1" : __CMSIS_GCC_OUT_REG (result) : __CMSIS_GCC_USE_REG (value) );
return(result);
#endif
}
/** \brief Reverse byte order (16 bit)
This function reverses the byte order in two unsigned short values.
\param [in] value Value to reverse
\return Reversed value
*/
__attribute__((always_inline)) __STATIC_INLINE uint32_t __REV16(uint32_t value)
{
uint32_t result;
__ASM volatile ("rev16 %0, %1" : __CMSIS_GCC_OUT_REG (result) : __CMSIS_GCC_USE_REG (value) );
return(result);
}
/** \brief Reverse byte order in signed short value
This function reverses the byte order in a signed short value with sign extension to integer.
\param [in] value Value to reverse
\return Reversed value
*/
__attribute__((always_inline)) __STATIC_INLINE int32_t __REVSH(int32_t value)
{
#if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8)
return (short)__builtin_bswap16(value);
#else
uint32_t result;
__ASM volatile ("revsh %0, %1" : __CMSIS_GCC_OUT_REG (result) : __CMSIS_GCC_USE_REG (value) );
return(result);
#endif
}
/** \brief Rotate Right in unsigned value (32 bit)
This function Rotate Right (immediate) provides the value of the contents of a register rotated by a variable number of bits.
\param [in] value Value to rotate
\param [in] value Number of Bits to rotate
\return Rotated value
*/
__attribute__((always_inline)) __STATIC_INLINE uint32_t __ROR(uint32_t op1, uint32_t op2)
{
return (op1 >> op2) | (op1 << (32 - op2));
}
/** \brief Breakpoint
This function causes the processor to enter Debug state.
Debug tools can use this to investigate system state when the instruction at a particular address is reached.
\param [in] value is ignored by the processor.
If required, a debugger can use it to store additional information about the breakpoint.
*/
#define __BKPT(value) __ASM volatile ("bkpt "#value)
/** \brief Reverse bit order of value
This function reverses the bit order of the given value.
\param [in] value Value to reverse
\return Reversed value
*/
__attribute__((always_inline)) __STATIC_INLINE uint32_t __RBIT(uint32_t value)
{
uint32_t result;
#if (__CORTEX_M >= 0x03) || (__CORTEX_SC >= 300)
__ASM volatile ("rbit %0, %1" : "=r" (result) : "r" (value) );
#else
int32_t s = 4 /*sizeof(v)*/ * 8 - 1; // extra shift needed at end
result = value; // r will be reversed bits of v; first get LSB of v
for (value >>= 1; value; value >>= 1)
{
result <<= 1;
result |= value & 1;
s--;
}
result <<= s; // shift when v's highest bits are zero
#endif
return(result);
}
/** \brief Count leading zeros
This function counts the number of leading zeros of a data value.
\param [in] value Value to count the leading zeros
\return number of leading zeros in value
*/
#define __CLZ __builtin_clz
#if (__CORTEX_M >= 0x03) || (__CORTEX_SC >= 300)
/** \brief LDR Exclusive (8 bit)
This function executes a exclusive LDR instruction for 8 bit value.
\param [in] ptr Pointer to data
\return value of type uint8_t at (*ptr)
*/
__attribute__((always_inline)) __STATIC_INLINE uint8_t __LDREXB(volatile uint8_t *addr)
{
uint32_t result;
#if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8)
__ASM volatile ("ldrexb %0, %1" : "=r" (result) : "Q" (*addr) );
#else
/* Prior to GCC 4.8, "Q" will be expanded to [rx, #0] which is not
accepted by assembler. So has to use following less efficient pattern.
*/
__ASM volatile ("ldrexb %0, [%1]" : "=r" (result) : "r" (addr) : "memory" );
#endif
return ((uint8_t) result); /* Add explicit type cast here */
}
/** \brief LDR Exclusive (16 bit)
This function executes a exclusive LDR instruction for 16 bit values.
\param [in] ptr Pointer to data
\return value of type uint16_t at (*ptr)
*/
__attribute__((always_inline)) __STATIC_INLINE uint16_t __LDREXH(volatile uint16_t *addr)
{
uint32_t result;
#if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8)
__ASM volatile ("ldrexh %0, %1" : "=r" (result) : "Q" (*addr) );
#else
/* Prior to GCC 4.8, "Q" will be expanded to [rx, #0] which is not
accepted by assembler. So has to use following less efficient pattern.
*/
__ASM volatile ("ldrexh %0, [%1]" : "=r" (result) : "r" (addr) : "memory" );
#endif
return ((uint16_t) result); /* Add explicit type cast here */
}
/** \brief LDR Exclusive (32 bit)
This function executes a exclusive LDR instruction for 32 bit values.
\param [in] ptr Pointer to data
\return value of type uint32_t at (*ptr)
*/
__attribute__((always_inline)) __STATIC_INLINE uint32_t __LDREXW(volatile uint32_t *addr)
{
uint32_t result;
__ASM volatile ("ldrex %0, %1" : "=r" (result) : "Q" (*addr) );
return(result);
}
/** \brief STR Exclusive (8 bit)
This function executes a exclusive STR instruction for 8 bit values.
\param [in] value Value to store
\param [in] ptr Pointer to location
\return 0 Function succeeded
\return 1 Function failed
*/
__attribute__((always_inline)) __STATIC_INLINE uint32_t __STREXB(uint8_t value, volatile uint8_t *addr)
{
uint32_t result;
__ASM volatile ("strexb %0, %2, %1" : "=&r" (result), "=Q" (*addr) : "r" ((uint32_t)value) );
return(result);
}
/** \brief STR Exclusive (16 bit)
This function executes a exclusive STR instruction for 16 bit values.
\param [in] value Value to store
\param [in] ptr Pointer to location
\return 0 Function succeeded
\return 1 Function failed
*/
__attribute__((always_inline)) __STATIC_INLINE uint32_t __STREXH(uint16_t value, volatile uint16_t *addr)
{
uint32_t result;
__ASM volatile ("strexh %0, %2, %1" : "=&r" (result), "=Q" (*addr) : "r" ((uint32_t)value) );
return(result);
}
/** \brief STR Exclusive (32 bit)
This function executes a exclusive STR instruction for 32 bit values.
\param [in] value Value to store
\param [in] ptr Pointer to location
\return 0 Function succeeded
\return 1 Function failed
*/
__attribute__((always_inline)) __STATIC_INLINE uint32_t __STREXW(uint32_t value, volatile uint32_t *addr)
{
uint32_t result;
__ASM volatile ("strex %0, %2, %1" : "=&r" (result), "=Q" (*addr) : "r" (value) );
return(result);
}
/** \brief Remove the exclusive lock
This function removes the exclusive lock which is created by LDREX.
*/
__attribute__((always_inline)) __STATIC_INLINE void __CLREX(void)
{
__ASM volatile ("clrex" ::: "memory");
}
/** \brief Signed Saturate
This function saturates a signed value.
\param [in] value Value to be saturated
\param [in] sat Bit position to saturate to (1..32)
\return Saturated value
*/
#define __SSAT(ARG1,ARG2) \
({ \
uint32_t __RES, __ARG1 = (ARG1); \
__ASM ("ssat %0, %1, %2" : "=r" (__RES) : "I" (ARG2), "r" (__ARG1) ); \
__RES; \
})
/** \brief Unsigned Saturate
This function saturates an unsigned value.
\param [in] value Value to be saturated
\param [in] sat Bit position to saturate to (0..31)
\return Saturated value
*/
#define __USAT(ARG1,ARG2) \
({ \
uint32_t __RES, __ARG1 = (ARG1); \
__ASM ("usat %0, %1, %2" : "=r" (__RES) : "I" (ARG2), "r" (__ARG1) ); \
__RES; \
})
/** \brief Rotate Right with Extend (32 bit)
This function moves each bit of a bitstring right by one bit.
The carry input is shifted in at the left end of the bitstring.
\param [in] value Value to rotate
\return Rotated value
*/
__attribute__((always_inline)) __STATIC_INLINE uint32_t __RRX(uint32_t value)
{
uint32_t result;
__ASM volatile ("rrx %0, %1" : __CMSIS_GCC_OUT_REG (result) : __CMSIS_GCC_USE_REG (value) );
return(result);
}
/** \brief LDRT Unprivileged (8 bit)
This function executes a Unprivileged LDRT instruction for 8 bit value.
\param [in] ptr Pointer to data
\return value of type uint8_t at (*ptr)
*/
__attribute__((always_inline)) __STATIC_INLINE uint8_t __LDRBT(volatile uint8_t *addr)
{
uint32_t result;
#if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8)
__ASM volatile ("ldrbt %0, %1" : "=r" (result) : "Q" (*addr) );
#else
/* Prior to GCC 4.8, "Q" will be expanded to [rx, #0] which is not
accepted by assembler. So has to use following less efficient pattern.
*/
__ASM volatile ("ldrbt %0, [%1]" : "=r" (result) : "r" (addr) : "memory" );
#endif
return ((uint8_t) result); /* Add explicit type cast here */
}
/** \brief LDRT Unprivileged (16 bit)
This function executes a Unprivileged LDRT instruction for 16 bit values.
\param [in] ptr Pointer to data
\return value of type uint16_t at (*ptr)
*/
__attribute__((always_inline)) __STATIC_INLINE uint16_t __LDRHT(volatile uint16_t *addr)
{
uint32_t result;
#if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8)
__ASM volatile ("ldrht %0, %1" : "=r" (result) : "Q" (*addr) );
#else
/* Prior to GCC 4.8, "Q" will be expanded to [rx, #0] which is not
accepted by assembler. So has to use following less efficient pattern.
*/
__ASM volatile ("ldrht %0, [%1]" : "=r" (result) : "r" (addr) : "memory" );
#endif
return ((uint16_t) result); /* Add explicit type cast here */
}
/** \brief LDRT Unprivileged (32 bit)
This function executes a Unprivileged LDRT instruction for 32 bit values.
\param [in] ptr Pointer to data
\return value of type uint32_t at (*ptr)
*/
__attribute__((always_inline)) __STATIC_INLINE uint32_t __LDRT(volatile uint32_t *addr)
{
uint32_t result;
__ASM volatile ("ldrt %0, %1" : "=r" (result) : "Q" (*addr) );
return(result);
}
/** \brief STRT Unprivileged (8 bit)
This function executes a Unprivileged STRT instruction for 8 bit values.
\param [in] value Value to store
\param [in] ptr Pointer to location
*/
__attribute__((always_inline)) __STATIC_INLINE void __STRBT(uint8_t value, volatile uint8_t *addr)
{
__ASM volatile ("strbt %1, %0" : "=Q" (*addr) : "r" ((uint32_t)value) );
}
/** \brief STRT Unprivileged (16 bit)
This function executes a Unprivileged STRT instruction for 16 bit values.
\param [in] value Value to store
\param [in] ptr Pointer to location
*/
__attribute__((always_inline)) __STATIC_INLINE void __STRHT(uint16_t value, volatile uint16_t *addr)
{
__ASM volatile ("strht %1, %0" : "=Q" (*addr) : "r" ((uint32_t)value) );
}
/** \brief STRT Unprivileged (32 bit)
This function executes a Unprivileged STRT instruction for 32 bit values.
\param [in] value Value to store
\param [in] ptr Pointer to location
*/
__attribute__((always_inline)) __STATIC_INLINE void __STRT(uint32_t value, volatile uint32_t *addr)
{
__ASM volatile ("strt %1, %0" : "=Q" (*addr) : "r" (value) );
}
#endif /* (__CORTEX_M >= 0x03) || (__CORTEX_SC >= 300) */
#elif defined ( __ICCARM__ ) /*------------------ ICC Compiler -------------------*/
/* IAR iccarm specific functions */
#include <cmsis_iar.h>
#elif defined ( __TMS470__ ) /*---------------- TI CCS Compiler ------------------*/
/* TI CCS specific functions */
#include <cmsis_ccs.h>
#elif defined ( __TASKING__ ) /*------------------ TASKING Compiler --------------*/
/* TASKING carm specific functions */
/*
* The CMSIS functions have been implemented as intrinsics in the compiler.
* Please use "carm -?i" to get an up to date list of all intrinsics,
* Including the CMSIS ones.
*/
#elif defined ( __CSMC__ ) /*------------------ COSMIC Compiler -------------------*/
/* Cosmic specific functions */
#include <cmsis_csm.h>
#endif
/*@}*/ /* end of group CMSIS_Core_InstructionInterface */
#endif /* __CORE_CMINSTR_H */