Merge pull request #9808 from ARMmbed/feature-iar8

IAR 8 feature branch merge
pull/9867/head
Cruz Monrreal 2019-02-26 15:30:27 -06:00 committed by GitHub
commit d29312e7ac
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
17 changed files with 1125 additions and 1547 deletions

View File

@ -1,296 +0,0 @@
/* mbed Microcontroller Library
* Copyright (c) 2018 ARM Limited
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "greentea-client/test_env.h"
#include "unity.h"
#include "utest.h"
#include "QSPIFBlockDevice.h"
#include "mbed_trace.h"
#include "rtos/Thread.h"
#include <stdlib.h>
using namespace utest::v1;
#define TEST_BLOCK_COUNT 10
#define TEST_ERROR_MASK 16
#define QSPIF_TEST_NUM_OF_THREADS 5
const struct {
const char *name;
bd_size_t (BlockDevice::*method)() const;
} ATTRS[] = {
{"read size", &BlockDevice::get_read_size},
{"program size", &BlockDevice::get_program_size},
{"erase size", &BlockDevice::get_erase_size},
{"total size", &BlockDevice::size},
};
static SingletonPtr<PlatformMutex> _mutex;
// Mutex is protecting rand() per srand for buffer writing and verification.
// Mutex is also protecting printouts for clear logs.
// Mutex is NOT protecting Block Device actions: erase/program/read - which is the purpose of the multithreaded test!
void basic_erase_program_read_test(QSPIFBlockDevice &blockD, bd_size_t block_size, uint8_t *write_block,
uint8_t *read_block, unsigned addrwidth)
{
int err = 0;
_mutex->lock();
static unsigned block_seed = 1;
srand(block_seed++);
// Find a random block
bd_addr_t block = (rand() * block_size) % blockD.size();
// Use next random number as temporary seed to keep
// the address progressing in the pseudorandom sequence
unsigned seed = rand();
// Fill with random sequence
srand(seed);
for (bd_size_t i_ind = 0; i_ind < block_size; i_ind++) {
write_block[i_ind] = 0xff & rand();
}
// Write, sync, and read the block
utest_printf("\ntest %0*llx:%llu...", addrwidth, block, block_size);
_mutex->unlock();
err = blockD.erase(block, block_size);
TEST_ASSERT_EQUAL(0, err);
err = blockD.program(write_block, block, block_size);
TEST_ASSERT_EQUAL(0, err);
err = blockD.read(read_block, block, block_size);
TEST_ASSERT_EQUAL(0, err);
_mutex->lock();
// Check that the data was unmodified
srand(seed);
int val_rand;
for (bd_size_t i_ind = 0; i_ind < block_size; i_ind++) {
val_rand = rand();
if ((0xff & val_rand) != read_block[i_ind]) {
utest_printf("\n Assert Failed Buf Read - block:size: %llx:%llu \n", block, block_size);
utest_printf("\n pos: %llu, exp: %02x, act: %02x, wrt: %02x \n", i_ind, (0xff & val_rand), read_block[i_ind],
write_block[i_ind]);
}
TEST_ASSERT_EQUAL(0xff & val_rand, read_block[i_ind]);
}
_mutex->unlock();
}
void test_qspif_random_program_read_erase()
{
utest_printf("\nTest Random Program Read Erase Starts..\n");
QSPIFBlockDevice blockD(QSPI_FLASH1_IO0, QSPI_FLASH1_IO1, QSPI_FLASH1_IO2, QSPI_FLASH1_IO3,
QSPI_FLASH1_SCK, QSPI_FLASH1_CSN, QSPIF_POLARITY_MODE_0, MBED_CONF_QSPIF_QSPI_FREQ);
int err = blockD.init();
TEST_ASSERT_EQUAL(0, err);
for (unsigned atr = 0; atr < sizeof(ATTRS) / sizeof(ATTRS[0]); atr++) {
static const char *prefixes[] = {"", "k", "M", "G"};
for (int i_ind = 3; i_ind >= 0; i_ind--) {
bd_size_t size = (blockD.*ATTRS[atr].method)();
if (size >= (1ULL << 10 * i_ind)) {
utest_printf("%s: %llu%sbytes (%llubytes)\n",
ATTRS[atr].name, size >> 10 * i_ind, prefixes[i_ind], size);
break;
}
}
}
bd_size_t block_size = blockD.get_erase_size();
unsigned addrwidth = ceil(log(float(blockD.size() - 1)) / log(float(16))) + 1;
uint8_t *write_block = new (std::nothrow) uint8_t[block_size];
uint8_t *read_block = new (std::nothrow) uint8_t[block_size];
if (!write_block || !read_block) {
utest_printf("\n Not enough memory for test");
goto end;
}
for (int b = 0; b < TEST_BLOCK_COUNT; b++) {
basic_erase_program_read_test(blockD, block_size, write_block, read_block, addrwidth);
}
err = blockD.deinit();
TEST_ASSERT_EQUAL(0, err);
end:
delete[] write_block;
delete[] read_block;
}
void test_qspif_unaligned_erase()
{
utest_printf("\nTest Unaligned Erase Starts..\n");
QSPIFBlockDevice blockD(QSPI_FLASH1_IO0, QSPI_FLASH1_IO1, QSPI_FLASH1_IO2, QSPI_FLASH1_IO3,
QSPI_FLASH1_SCK, QSPI_FLASH1_CSN, QSPIF_POLARITY_MODE_0, MBED_CONF_QSPIF_QSPI_FREQ);
int err = blockD.init();
TEST_ASSERT_EQUAL(0, err);
for (unsigned atr = 0; atr < sizeof(ATTRS) / sizeof(ATTRS[0]); atr++) {
static const char *prefixes[] = {"", "k", "M", "G"};
for (int i_ind = 3; i_ind >= 0; i_ind--) {
bd_size_t size = (blockD.*ATTRS[atr].method)();
if (size >= (1ULL << 10 * i_ind)) {
utest_printf("%s: %llu%sbytes (%llubytes)\n",
ATTRS[atr].name, size >> 10 * i_ind, prefixes[i_ind], size);
break;
}
}
}
bd_addr_t addr = 0;
bd_size_t sector_erase_size = blockD.get_erase_size(addr);
unsigned addrwidth = ceil(log(float(blockD.size() - 1)) / log(float(16))) + 1;
utest_printf("\ntest %0*llx:%llu...", addrwidth, addr, sector_erase_size);
//unaligned start address
addr += 1;
err = blockD.erase(addr, sector_erase_size - 1);
TEST_ASSERT_EQUAL(QSPIF_BD_ERROR_INVALID_ERASE_PARAMS, err);
err = blockD.erase(addr, sector_erase_size);
TEST_ASSERT_EQUAL(QSPIF_BD_ERROR_INVALID_ERASE_PARAMS, err);
err = blockD.erase(addr, 1);
TEST_ASSERT_EQUAL(QSPIF_BD_ERROR_INVALID_ERASE_PARAMS, err);
//unaligned end address
addr = 0;
err = blockD.erase(addr, 1);
TEST_ASSERT_EQUAL(QSPIF_BD_ERROR_INVALID_ERASE_PARAMS, err);
err = blockD.erase(addr, sector_erase_size + 1);
TEST_ASSERT_EQUAL(QSPIF_BD_ERROR_INVALID_ERASE_PARAMS, err);
//erase size exceeds flash device size
err = blockD.erase(addr, blockD.size() + 1);
TEST_ASSERT_EQUAL(QSPIF_BD_ERROR_INVALID_ERASE_PARAMS, err);
// Valid erase
err = blockD.erase(addr, sector_erase_size);
TEST_ASSERT_EQUAL(QSPIF_BD_ERROR_OK, err);
err = blockD.deinit();
TEST_ASSERT_EQUAL(0, err);
}
static void test_qspif_thread_job(void *vBlockD/*, int thread_num*/)
{
static int thread_num = 0;
thread_num++;
QSPIFBlockDevice *blockD = (QSPIFBlockDevice *)vBlockD;
utest_printf("\n Thread %d Started \n", thread_num);
bd_size_t block_size = blockD->get_erase_size();
unsigned addrwidth = ceil(log(float(blockD->size() - 1)) / log(float(16))) + 1;
uint8_t *write_block = new (std::nothrow) uint8_t[block_size];
uint8_t *read_block = new (std::nothrow) uint8_t[block_size];
if (!write_block || !read_block) {
utest_printf("\n Not enough memory for test");
goto end;
}
for (int b = 0; b < TEST_BLOCK_COUNT; b++) {
basic_erase_program_read_test((*blockD), block_size, write_block, read_block, addrwidth);
}
end:
delete[] write_block;
delete[] read_block;
}
void test_qspif_multi_threads()
{
utest_printf("\nTest Multi Threaded Erase/Program/Read Starts..\n");
QSPIFBlockDevice blockD(QSPI_FLASH1_IO0, QSPI_FLASH1_IO1, QSPI_FLASH1_IO2, QSPI_FLASH1_IO3,
QSPI_FLASH1_SCK, QSPI_FLASH1_CSN, QSPIF_POLARITY_MODE_0, MBED_CONF_QSPIF_QSPI_FREQ);
int err = blockD.init();
TEST_ASSERT_EQUAL(0, err);
for (unsigned atr = 0; atr < sizeof(ATTRS) / sizeof(ATTRS[0]); atr++) {
static const char *prefixes[] = {"", "k", "M", "G"};
for (int i_ind = 3; i_ind >= 0; i_ind--) {
bd_size_t size = (blockD.*ATTRS[atr].method)();
if (size >= (1ULL << 10 * i_ind)) {
utest_printf("%s: %llu%sbytes (%llubytes)\n",
ATTRS[atr].name, size >> 10 * i_ind, prefixes[i_ind], size);
break;
}
}
}
rtos::Thread qspif_bd_thread[QSPIF_TEST_NUM_OF_THREADS];
osStatus threadStatus;
int i_ind;
for (i_ind = 0; i_ind < QSPIF_TEST_NUM_OF_THREADS; i_ind++) {
threadStatus = qspif_bd_thread[i_ind].start(test_qspif_thread_job, (void *)&blockD);
if (threadStatus != 0) {
utest_printf("\n Thread %d Start Failed!", i_ind + 1);
}
}
for (i_ind = 0; i_ind < QSPIF_TEST_NUM_OF_THREADS; i_ind++) {
qspif_bd_thread[i_ind].join();
}
err = blockD.deinit();
TEST_ASSERT_EQUAL(0, err);
}
// Test setup
utest::v1::status_t test_setup(const size_t number_of_cases)
{
GREENTEA_SETUP(60, "default_auto");
return verbose_test_setup_handler(number_of_cases);
}
Case cases[] = {
Case("Testing unaligned erase blocks", test_qspif_unaligned_erase),
Case("Testing read write random blocks", test_qspif_random_program_read_erase),
Case("Testing Multi Threads Erase Program Read", test_qspif_multi_threads)
};
Specification specification(test_setup, cases);
int main()
{
mbed_trace_init();
utest_printf("MAIN STARTS\n");
return !Harness::run(specification);
}

View File

@ -1,291 +0,0 @@
/* mbed Microcontroller Library
* Copyright (c) 2018 ARM Limited
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "greentea-client/test_env.h"
#include "unity.h"
#include "utest.h"
#include "SPIFBlockDevice.h"
#include "mbed_trace.h"
#include "rtos/Thread.h"
#include <stdlib.h>
using namespace utest::v1;
#define TEST_BLOCK_COUNT 10
#define TEST_ERROR_MASK 16
#define SPIF_TEST_NUM_OF_THREADS 5
const struct {
const char *name;
bd_size_t (BlockDevice::*method)() const;
} ATTRS[] = {
{"read size", &BlockDevice::get_read_size},
{"program size", &BlockDevice::get_program_size},
{"erase size", &BlockDevice::get_erase_size},
{"total size", &BlockDevice::size},
};
static SingletonPtr<PlatformMutex> _mutex;
// Mutex is protecting rand() per srand for buffer writing and verification.
// Mutex is also protecting printouts for clear logs.
// Mutex is NOT protecting Block Device actions: erase/program/read - which is the purpose of the multithreaded test!
void basic_erase_program_read_test(SPIFBlockDevice &block_device, bd_size_t block_size, uint8_t *write_block,
uint8_t *read_block, unsigned addrwidth)
{
int err = 0;
_mutex->lock();
// Make sure block address per each test is unique
static unsigned block_seed = 1;
srand(block_seed++);
// Find a random block
bd_addr_t block = (rand() * block_size) % block_device.size();
// Use next random number as temporary seed to keep
// the address progressing in the pseudorandom sequence
unsigned seed = rand();
// Fill with random sequence
srand(seed);
for (bd_size_t i_ind = 0; i_ind < block_size; i_ind++) {
write_block[i_ind] = 0xff & rand();
}
// Write, sync, and read the block
utest_printf("\ntest %0*llx:%llu...", addrwidth, block, block_size);
_mutex->unlock();
err = block_device.erase(block, block_size);
TEST_ASSERT_EQUAL(0, err);
err = block_device.program(write_block, block, block_size);
TEST_ASSERT_EQUAL(0, err);
err = block_device.read(read_block, block, block_size);
TEST_ASSERT_EQUAL(0, err);
_mutex->lock();
// Check that the data was unmodified
srand(seed);
int val_rand;
for (bd_size_t i_ind = 0; i_ind < block_size; i_ind++) {
val_rand = rand();
if ((0xff & val_rand) != read_block[i_ind]) {
utest_printf("\n Assert Failed Buf Read - block:size: %llx:%llu \n", block, block_size);
utest_printf("\n pos: %llu, exp: %02x, act: %02x, wrt: %02x \n", i_ind, (0xff & val_rand), read_block[i_ind],
write_block[i_ind]);
}
TEST_ASSERT_EQUAL(0xff & val_rand, read_block[i_ind]);
}
_mutex->unlock();
}
void test_spif_random_program_read_erase()
{
utest_printf("\nTest Random Program Read Erase Starts..\n");
SPIFBlockDevice block_device(MBED_CONF_SPIF_DRIVER_SPI_MOSI, MBED_CONF_SPIF_DRIVER_SPI_MISO,
MBED_CONF_SPIF_DRIVER_SPI_CLK,
MBED_CONF_SPIF_DRIVER_SPI_CS);
int err = block_device.init();
TEST_ASSERT_EQUAL(0, err);
for (unsigned atr = 0; atr < sizeof(ATTRS) / sizeof(ATTRS[0]); atr++) {
static const char *prefixes[] = {"", "k", "M", "G"};
for (int i_ind = 3; i_ind >= 0; i_ind--) {
bd_size_t size = (block_device.*ATTRS[atr].method)();
if (size >= (1ULL << 10 * i_ind)) {
utest_printf("%s: %llu%sbytes (%llubytes)\n",
ATTRS[atr].name, size >> 10 * i_ind, prefixes[i_ind], size);
break;
}
}
}
bd_size_t block_size = block_device.get_erase_size();
unsigned addrwidth = ceil(log(float(block_device.size() - 1)) / log(float(16))) + 1;
uint8_t *write_block = new (std::nothrow) uint8_t[block_size];
uint8_t *read_block = new (std::nothrow) uint8_t[block_size];
if (!write_block || !read_block) {
utest_printf("\n Not enough memory for test");
goto end;
}
for (int b = 0; b < TEST_BLOCK_COUNT; b++) {
basic_erase_program_read_test(block_device, block_size, write_block, read_block, addrwidth);
}
err = block_device.deinit();
TEST_ASSERT_EQUAL(0, err);
end:
delete[] write_block;
delete[] read_block;
}
void test_spif_unaligned_erase()
{
utest_printf("\nTest Unaligned Erase Starts..\n");
SPIFBlockDevice block_device(MBED_CONF_SPIF_DRIVER_SPI_MOSI, MBED_CONF_SPIF_DRIVER_SPI_MISO,
MBED_CONF_SPIF_DRIVER_SPI_CLK,
MBED_CONF_SPIF_DRIVER_SPI_CS);
int err = block_device.init();
TEST_ASSERT_EQUAL(0, err);
for (unsigned atr = 0; atr < sizeof(ATTRS) / sizeof(ATTRS[0]); atr++) {
static const char *prefixes[] = {"", "k", "M", "G"};
for (int i_ind = 3; i_ind >= 0; i_ind--) {
bd_size_t size = (block_device.*ATTRS[atr].method)();
if (size >= (1ULL << 10 * i_ind)) {
utest_printf("%s: %llu%sbytes (%llubytes)\n",
ATTRS[atr].name, size >> 10 * i_ind, prefixes[i_ind], size);
break;
}
}
}
bd_addr_t addr = 0;
bd_size_t sector_erase_size = block_device.get_erase_size(addr);
unsigned addrwidth = ceil(log(float(block_device.size() - 1)) / log(float(16))) + 1;
utest_printf("\ntest %0*llx:%llu...", addrwidth, addr, sector_erase_size);
//unaligned start address
addr += 1;
err = block_device.erase(addr, sector_erase_size - 1);
TEST_ASSERT_EQUAL(SPIF_BD_ERROR_INVALID_ERASE_PARAMS, err);
err = block_device.erase(addr, sector_erase_size);
TEST_ASSERT_EQUAL(SPIF_BD_ERROR_INVALID_ERASE_PARAMS, err);
err = block_device.erase(addr, 1);
TEST_ASSERT_EQUAL(SPIF_BD_ERROR_INVALID_ERASE_PARAMS, err);
//unaligned end address
addr = 0;
err = block_device.erase(addr, 1);
TEST_ASSERT_EQUAL(SPIF_BD_ERROR_INVALID_ERASE_PARAMS, err);
err = block_device.erase(addr, sector_erase_size + 1);
TEST_ASSERT_EQUAL(SPIF_BD_ERROR_INVALID_ERASE_PARAMS, err);
//erase size exceeds flash device size
err = block_device.erase(addr, block_device.size() + 1);
TEST_ASSERT_EQUAL(SPIF_BD_ERROR_INVALID_ERASE_PARAMS, err);
// Valid erase
err = block_device.erase(addr, sector_erase_size);
TEST_ASSERT_EQUAL(SPIF_BD_ERROR_OK, err);
err = block_device.deinit();
TEST_ASSERT_EQUAL(0, err);
}
static void test_spif_thread_job(void *block_device_ptr/*, int thread_num*/)
{
static int thread_num = 0;
thread_num++;
SPIFBlockDevice *block_device = (SPIFBlockDevice *)block_device_ptr;
utest_printf("\n Thread %d Started \n", thread_num);
bd_size_t block_size = block_device->get_erase_size();
unsigned addrwidth = ceil(log(float(block_device->size() - 1)) / log(float(16))) + 1;
uint8_t *write_block = new (std::nothrow) uint8_t[block_size];
uint8_t *read_block = new (std::nothrow) uint8_t[block_size];
if (!write_block || !read_block) {
utest_printf("\n Not enough memory for test");
goto end;
}
for (int b = 0; b < TEST_BLOCK_COUNT; b++) {
basic_erase_program_read_test((*block_device), block_size, write_block, read_block, addrwidth);
}
end:
delete[] write_block;
delete[] read_block;
}
void test_spif_multi_threads()
{
utest_printf("\nTest Multi Threaded Erase/Program/Read Starts..\n");
SPIFBlockDevice block_device(MBED_CONF_SPIF_DRIVER_SPI_MOSI, MBED_CONF_SPIF_DRIVER_SPI_MISO,
MBED_CONF_SPIF_DRIVER_SPI_CLK,
MBED_CONF_SPIF_DRIVER_SPI_CS);
int err = block_device.init();
TEST_ASSERT_EQUAL(0, err);
for (unsigned atr = 0; atr < sizeof(ATTRS) / sizeof(ATTRS[0]); atr++) {
static const char *prefixes[] = {"", "k", "M", "G"};
for (int i_ind = 3; i_ind >= 0; i_ind--) {
bd_size_t size = (block_device.*ATTRS[atr].method)();
if (size >= (1ULL << 10 * i_ind)) {
utest_printf("%s: %llu%sbytes (%llubytes)\n",
ATTRS[atr].name, size >> 10 * i_ind, prefixes[i_ind], size);
break;
}
}
}
rtos::Thread spif_bd_thread[SPIF_TEST_NUM_OF_THREADS];
osStatus threadStatus;
int i_ind;
for (i_ind = 0; i_ind < SPIF_TEST_NUM_OF_THREADS; i_ind++) {
threadStatus = spif_bd_thread[i_ind].start(test_spif_thread_job, (void *)&block_device);
if (threadStatus != 0) {
utest_printf("\n Thread %d Start Failed!", i_ind + 1);
}
}
for (i_ind = 0; i_ind < SPIF_TEST_NUM_OF_THREADS; i_ind++) {
spif_bd_thread[i_ind].join();
}
err = block_device.deinit();
TEST_ASSERT_EQUAL(0, err);
}
// Test setup
utest::v1::status_t test_setup(const size_t number_of_cases)
{
GREENTEA_SETUP(60, "default_auto");
return verbose_test_setup_handler(number_of_cases);
}
Case cases[] = {
Case("Testing unaligned erase blocks", test_spif_unaligned_erase),
Case("Testing read write random blocks", test_spif_random_program_read_erase),
Case("Testing Multi Threads Erase Program Read", test_spif_multi_threads)
};
Specification specification(test_setup, cases);
int main()
{
mbed_trace_init();
utest_printf("MAIN STARTS\n");
return !Harness::run(specification);
}

View File

@ -183,7 +183,7 @@ static BlockDevice *get_bd_instance(uint8_t bd_type)
// Mutex is also protecting printouts for clear logs.
// Mutex is NOT protecting Block Device actions: erase/program/read - which is the purpose of the multithreaded test!
void basic_erase_program_read_test(BlockDevice *block_device, bd_size_t block_size, uint8_t *write_block,
uint8_t *read_block, unsigned addrwidth)
uint8_t *read_block, unsigned addrwidth, int thread_num)
{
int err = 0;
_mutex->lock();
@ -193,7 +193,13 @@ void basic_erase_program_read_test(BlockDevice *block_device, bd_size_t block_si
srand(block_seed++);
// Find a random block
bd_addr_t block = (rand() * block_size) % (block_device->size());
int threaded_rand_number = (rand() * TEST_NUM_OF_THREADS) + thread_num;
bd_addr_t block = (threaded_rand_number * block_size) % block_device->size();
// Flashiap boards with inconsistent sector size will not align with random start addresses
if (bd_arr[test_iteration] == flashiap) {
block = 0;
}
// Use next random number as temporary seed to keep
// the address progressing in the pseudorandom sequence
@ -206,7 +212,11 @@ void basic_erase_program_read_test(BlockDevice *block_device, bd_size_t block_si
}
// Write, sync, and read the block
utest_printf("test %0*llx:%llu...\n", addrwidth, block, block_size);
_mutex->unlock();
// Thread test for flashiap write to the same sector, so all write/read/erase actions should be locked
if (bd_arr[test_iteration] != flashiap) {
_mutex->unlock();
}
err = block_device->erase(block, block_size);
TEST_ASSERT_EQUAL(0, err);
@ -217,7 +227,10 @@ void basic_erase_program_read_test(BlockDevice *block_device, bd_size_t block_si
err = block_device->read(read_block, block, block_size);
TEST_ASSERT_EQUAL(0, err);
_mutex->lock();
if (bd_arr[test_iteration] != flashiap) {
_mutex->lock();
}
// Check that the data was unmodified
srand(seed);
int val_rand;
@ -276,7 +289,7 @@ void test_random_program_read_erase()
}
for (int b = 0; b < TEST_BLOCK_COUNT; b++) {
basic_erase_program_read_test(block_device, block_size, write_block, read_block, addrwidth);
basic_erase_program_read_test(block_device, block_size, write_block, read_block, addrwidth, 0);
}
end:
@ -287,7 +300,9 @@ end:
static void test_thread_job(void *block_device_ptr)
{
static int thread_num = 0;
thread_num++;
_mutex->lock();
int block_num = thread_num++;
_mutex->unlock();
BlockDevice *block_device = (BlockDevice *)block_device_ptr;
bd_size_t block_size = block_device->get_erase_size();
@ -302,7 +317,7 @@ static void test_thread_job(void *block_device_ptr)
}
for (int b = 0; b < TEST_BLOCK_COUNT; b++) {
basic_erase_program_read_test(block_device, block_size, write_block, read_block, addrwidth);
basic_erase_program_read_test(block_device, block_size, write_block, read_block, addrwidth, block_num);
}
end:
@ -384,6 +399,11 @@ void test_erase_functionality()
start_address -= start_address % erase_size; // align with erase_block
utest_printf("start_address=0x%016" PRIx64 "\n", start_address);
// Flashiap boards with inconsistent sector size will not align with random start addresses
if (bd_arr[test_iteration] == flashiap) {
start_address = 0;
}
// Allocate buffer for write test data
uint8_t *data_buf = (uint8_t *)malloc(data_buf_size);
TEST_SKIP_UNLESS_MESSAGE(data_buf, "Not enough memory for test.\n");
@ -446,6 +466,11 @@ void test_contiguous_erase_write_read()
TEST_SKIP_UNLESS_MESSAGE(block_device != NULL, "no block device found.");
// Flashiap boards with inconsistent sector size will not align with random start addresses
if (bd_arr[test_iteration] == flashiap) {
return;
}
// Test flow:
// 1. Erase whole test area
// - Tests contiguous erase
@ -622,6 +647,65 @@ void test_program_read_small_data_sizes()
delete buff_block_device;
}
void test_unaligned_erase_blocks()
{
utest_printf("\nTest Unaligned Erase Starts..\n");
TEST_SKIP_UNLESS_MESSAGE(block_device != NULL, "no block device found.");
TEST_SKIP_UNLESS_MESSAGE(block_device->get_erase_value() != -1, "block device has no erase functionality.");
bd_addr_t addr = 0;
bd_size_t sector_erase_size = block_device->get_erase_size(addr);
unsigned addrwidth = ceil(log(float(block_device->size() - 1)) / log(float(16))) + 1;
utest_printf("\ntest %0*llx:%llu...", addrwidth, addr, sector_erase_size);
//unaligned start address
addr += 1;
int err = block_device->erase(addr, sector_erase_size - 1);
TEST_ASSERT_NOT_EQUAL(0, err);
err = block_device->erase(addr, sector_erase_size);
TEST_ASSERT_NOT_EQUAL(0, err);
err = block_device->erase(addr, 1);
TEST_ASSERT_NOT_EQUAL(0, err);
//unaligned end address
addr = 0;
err = block_device->erase(addr, 1);
TEST_ASSERT_NOT_EQUAL(0, err);
err = block_device->erase(addr, sector_erase_size + 1);
TEST_ASSERT_NOT_EQUAL(0, err);
//erase size exceeds flash device size
err = block_device->erase(addr, block_device->size() + 1);
TEST_ASSERT_NOT_EQUAL(0, err);
// Valid erase
err = block_device->erase(addr, sector_erase_size);
TEST_ASSERT_EQUAL(0, err);
}
void test_deinit_bd()
{
utest_printf("\nTest deinit block device.\n");
test_iteration++;
TEST_SKIP_UNLESS_MESSAGE(block_device != NULL, "no block device found.");
int err = block_device->deinit();
TEST_ASSERT_EQUAL(0, err);
block_device = NULL;
}
void test_get_type_functionality()
{
utest_printf("\nTest get blockdevice type..\n");
@ -645,20 +729,6 @@ void test_get_type_functionality()
#endif
}
void test_deinit_bd()
{
utest_printf("\nTest deinit block device.\n");
test_iteration++;
TEST_SKIP_UNLESS_MESSAGE(block_device != NULL, "no block device found.");
int err = block_device->deinit();
TEST_ASSERT_EQUAL(0, err);
block_device = NULL;
}
utest::v1::status_t greentea_failure_handler(const Case *const source, const failure_t reason)
{
greentea_case_failure_abort_handler(source, reason);
@ -678,6 +748,7 @@ template_case_t template_cases[] = {
{"Testing contiguous erase, write and read", test_contiguous_erase_write_read, greentea_failure_handler},
{"Testing BlockDevice erase functionality", test_erase_functionality, greentea_failure_handler},
{"Testing program read small data sizes", test_program_read_small_data_sizes, greentea_failure_handler},
{"Testing unaligned erase blocks", test_unaligned_erase_blocks, greentea_failure_handler},
{"Testing Deinit block device", test_deinit_bd, greentea_failure_handler},
};

View File

@ -1502,6 +1502,7 @@
},
"SDT64B": {
"inherits": ["K64F"],
"components_add": ["FLASHIAP"],
"extra_labels_add": ["K64F"],
"extra_labels_remove": ["FRDM"],
"components_remove": ["SD"],
@ -2200,6 +2201,7 @@
},
"NUCLEO_F207ZG": {
"inherits": ["FAMILY_STM32"],
"components_add": ["FLASHIAP"],
"supported_form_factors": ["ARDUINO", "MORPHO"],
"core": "Cortex-M3",
"extra_labels_add": ["STM32F2", "STM32F207ZG", "STM_EMAC"],
@ -2479,6 +2481,7 @@
},
"MTB_MXCHIP_EMW3166": {
"inherits": ["FAMILY_STM32"],
"supported_toolchains": ["ARM", "GCC_ARM", "IAR"],
"core": "Cortex-M4F",
"extra_labels_add": [
"STM32F4",
@ -2511,6 +2514,7 @@
},
"USI_WM_BN_BM_22": {
"inherits": ["FAMILY_STM32"],
"supported_toolchains": ["ARM", "GCC_ARM", "IAR"],
"components_add": ["SPIF", "FLASHIAP"],
"core": "Cortex-M4F",
"extra_labels_add": [
@ -2563,7 +2567,7 @@
}
},
"DISCO_F413ZH": {
"components_add": ["QSPIF"],
"components_add": ["QSPIF", "FLASHIAP"],
"inherits": ["FAMILY_STM32"],
"supported_form_factors": ["ARDUINO"],
"core": "Cortex-M4F",
@ -2929,6 +2933,7 @@
},
"NUCLEO_F767ZI": {
"inherits": ["FAMILY_STM32"],
"components_add": ["FLASHIAP"],
"core": "Cortex-M7FD",
"extra_labels_add": [
"STM32F7",
@ -3794,7 +3799,7 @@
"STM32F746NG",
"STM_EMAC"
],
"components_add": ["QSPIF"],
"components_add": ["QSPIF", "FLASHIAP"],
"supported_form_factors": ["ARDUINO"],
"config": {
"clock_source": {
@ -4302,7 +4307,7 @@
"release_versions": ["5"],
"device_has_remove": [],
"extra_labels_add": ["PSA"],
"components_add": ["FLASHIAP"],
"components_add": ["SD", "FLASHIAP"],
"macros_add": [
"MBEDTLS_PSA_CRYPTO_C"
],
@ -4388,6 +4393,7 @@
},
"UBLOX_C030_U201": {
"inherits": ["UBLOX_C030"],
"components_add": ["SD", "FLASHIAP"],
"release_versions": ["5"]
},
"UBLOX_C030_N211": {
@ -5210,6 +5216,7 @@
},
"GR_LYCHEE": {
"inherits": ["RZ_A1XX"],
"components_add": ["SD", "FLASHIAP"],
"supported_form_factors": ["ARDUINO"],
"extra_labels_add": ["RZA1UL", "MBRZA1LU"],
"components_add": ["SD"],
@ -6973,6 +6980,7 @@
},
"NUMAKER_PFM_NUC472": {
"core": "Cortex-M4F",
"components_add": ["SD", "FLASHIAP"],
"default_toolchain": "ARM",
"extra_labels": [
"NUVOTON",
@ -7290,12 +7298,12 @@
"FLASH"
],
"public": false,
"supported_toolchains": ["GCC_ARM", "ARM", "IAR"],
"supported_toolchains": ["GCC_ARM", "ARM"],
"post_binary_hook": {
"function": "RTL8195ACode.binary_hook",
"toolchains": ["ARM_STD", "GCC_ARM", "IAR"]
},
"release_versions": ["5"],
"release_versions": [],
"overrides": {
"network-default-interface-type": "WIFI"
}
@ -7545,10 +7553,12 @@
},
"NUMAKER_PFM_M487": {
"inherits": ["MCU_M480"],
"components_add": ["SD", "FLASHIAP"],
"device_name": "M487JIDAE"
},
"NUMAKER_IOT_M487": {
"inherits": ["MCU_M480"],
"components_add": ["FLASHIAP"],
"device_name": "M487JIDAE"
},
"TMPM066": {
@ -7841,7 +7851,7 @@
"inherits": ["Target"],
"macros": ["MBED_MPU_CUSTOM"],
"default_toolchain": "GCC_ARM",
"supported_toolchains": ["GCC_ARM", "IAR", "ARM"],
"supported_toolchains": ["GCC_ARM", "ARM", "IAR"],
"core": "Cortex-M4F",
"OUTPUT_EXT": "hex",
"device_has": [
@ -7887,6 +7897,8 @@
"inherits": ["MCU_PSOC6_M4"],
"features": ["BLE"],
"supported_form_factors": ["ARDUINO"],
"supported_toolchains": ["GCC_ARM", "ARM"],
"release_versions": ["5"],
"extra_labels_add": ["PSOC6_01", "WICED", "CYW43XXX", "CYW4343X", "CORDIO"],
"macros_add": ["CY8C6247BZI_D54", "PSOC6_DYNSRM_DISABLE=1"],
"detect_code": ["1900"],
@ -7902,6 +7914,8 @@
"inherits": ["MCU_PSOC6_M4"],
"features": ["BLE"],
"device_has_remove": ["ANALOGOUT"],
"supported_toolchains": ["GCC_ARM", "ARM"],
"release_versions": ["5"],
"extra_labels_add": ["PSOC6_02", "WICED", "CYW43XXX", "CYW4343X", "CORDIO"],
"macros_add": ["CY8C624ABZI_D44", "PSOC6_DYNSRM_DISABLE=1"],
"public": false,
@ -7930,6 +7944,8 @@
},
"CY8CKIT_062_4343W": {
"inherits": ["MCU_PSOC6_M4"],
"supported_toolchains": ["GCC_ARM", "ARM"],
"release_versions": ["5"],
"features": ["BLE"],
"supported_form_factors": ["ARDUINO"],
"device_has_remove": ["ANALOGOUT"],
@ -7947,6 +7963,8 @@
"CYW943012P6EVB_01": {
"inherits": ["MCU_PSOC6_M4"],
"features": ["BLE"],
"supported_toolchains": ["GCC_ARM", "ARM"],
"release_versions": ["5"],
"extra_labels_add": ["PSOC6_01", "WICED", "CYW43XXX", "CYW43012", "CORDIO"],
"macros_add": ["CY8C6247BZI_D54", "PSOC6_DYNSRM_DISABLE=1"],
"detect_code": ["1906"],

View File

@ -193,7 +193,7 @@ def is_official_target(target_name, version):
elif version == '5':
# For version 5, ARM, GCC_ARM, and IAR toolchain support is required
required_toolchains = [
set(['ARM', 'GCC_ARM', 'IAR']),
set(['ARM', 'GCC_ARM']),
set(['ARMC6'])
]
supported_toolchains = set(target.supported_toolchains)

View File

@ -86,8 +86,9 @@ class IAR(Exporter):
"CExtraOptionsCheck": 0,
"CExtraOptions": "",
"CMSISDAPJtagSpeedList": 0,
"DSPExtension": 0,
"TrustZone": 0,
}
iar_defaults.update(device_info)
IARdevice = namedtuple('IARdevice', iar_defaults.keys())
return IARdevice(**iar_defaults)
@ -126,6 +127,10 @@ class IAR(Exporter):
except TargetNotSupportedException:
debugger = "CMSISDAP"
trustZoneMode = 0
if self.toolchain.target.core.endswith("-NS"):
trustZoneMode = 1
ctx = {
'name': self.project_name,
'groups': self.iar_groups(self.format_src(srcs)),
@ -134,6 +139,7 @@ class IAR(Exporter):
'device': self.iar_device(),
'ewp': sep+self.project_name + ".ewp",
'debugger': debugger,
'trustZoneMode': trustZoneMode,
}
ctx.update(flags)

File diff suppressed because it is too large Load Diff

View File

@ -340,6 +340,7 @@
"GFPUCoreSlave2": 39
},
"M2351KIAAEES": {
"OGChipSelectEditMenu": "M2351 series\tNuvoton M2351 series"
"OGChipSelectEditMenu": "M2351 series\tNuvoton M2351 series",
"TrustZone": 1
}
}

View File

@ -74,7 +74,7 @@ def test_arm_version_check(_run_cmd):
def test_iar_version_check(_run_cmd):
set_targets_json_location()
_run_cmd.return_value = ("""
IAR ANSI C/C++ Compiler V7.80.1.28/LNX for ARM
IAR ANSI C/C++ Compiler V8.32.1/LNX for ARM
""", "", 0)
notifier = MockNotifier()
toolchain = TOOLCHAIN_CLASSES["IAR"](TARGET_MAP["K64F"], notify=notifier)

View File

@ -33,7 +33,7 @@ class IAR(mbedToolchain):
DIAGNOSTIC_PATTERN = re.compile('"(?P<file>[^"]+)",(?P<line>[\d]+)\s+(?P<severity>Warning|Error|Fatal error)(?P<message>.+)')
INDEX_PATTERN = re.compile('(?P<col>\s*)\^')
IAR_VERSION_RE = re.compile(b"IAR ANSI C/C\+\+ Compiler V(\d+\.\d+)")
IAR_VERSION = LooseVersion("7.80")
IAR_VERSION = LooseVersion("8.32")
@staticmethod
def check_executable():