Merge pull request #5513 from bcostm/fix_adc_inited

STM32: Initialize ADC peripheral for each AnalogIn object creation
pull/5526/head
Jimmy Brisson 2017-11-22 10:16:14 -06:00 committed by GitHub
commit ced2f74f16
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
11 changed files with 470 additions and 626 deletions

View File

@ -33,12 +33,13 @@
#include "mbed_wait_api.h"
#include "cmsis.h"
#include "pinmap.h"
#include "PeripheralPins.h"
#include "mbed_error.h"
#include "PeripheralPins.h"
#include <stdbool.h>
int adc_inited = 0;
void analogin_init(analogin_t *obj, PinName pin) {
void analogin_init(analogin_t *obj, PinName pin)
{
static bool adc_calibrated = false;
uint32_t function = (uint32_t)NC;
// ADC Internal Channels "pins" (Temperature, Vref, Vbat, ...)
@ -47,14 +48,14 @@ void analogin_init(analogin_t *obj, PinName pin) {
if ((pin < 0xF0) || (pin >= 0x100)) {
// Normal channels
// Get the peripheral name from the pin and assign it to the object
obj->handle.Instance = (ADC_TypeDef *) pinmap_peripheral(pin, PinMap_ADC);
obj->handle.Instance = (ADC_TypeDef *)pinmap_peripheral(pin, PinMap_ADC);
// Get the functions (adc channel) from the pin and assign it to the object
function = pinmap_function(pin, PinMap_ADC);
// Configure GPIO
pinmap_pinout(pin, PinMap_ADC);
} else {
// Internal channels
obj->handle.Instance = (ADC_TypeDef *) pinmap_peripheral(pin, PinMap_ADC_Internal);
obj->handle.Instance = (ADC_TypeDef *)pinmap_peripheral(pin, PinMap_ADC_Internal);
function = pinmap_function(pin, PinMap_ADC_Internal);
// No GPIO configuration for internal channels
}
@ -66,40 +67,38 @@ void analogin_init(analogin_t *obj, PinName pin) {
// Save pin number for the read function
obj->pin = pin;
// The ADC initialization is done once
if (adc_inited == 0) {
adc_inited = 1;
// Configure ADC object structures
obj->handle.State = HAL_ADC_STATE_RESET;
obj->handle.Init.ClockPrescaler = ADC_CLOCK_SYNC_PCLK_DIV4;
obj->handle.Init.Resolution = ADC_RESOLUTION_12B;
obj->handle.Init.DataAlign = ADC_DATAALIGN_RIGHT;
obj->handle.Init.ScanConvMode = ADC_SCAN_DIRECTION_FORWARD;
obj->handle.Init.EOCSelection = EOC_SINGLE_CONV;
obj->handle.Init.LowPowerAutoWait = DISABLE;
obj->handle.Init.LowPowerAutoPowerOff = DISABLE;
obj->handle.Init.ContinuousConvMode = DISABLE;
obj->handle.Init.DiscontinuousConvMode = DISABLE;
obj->handle.Init.ExternalTrigConv = ADC_SOFTWARE_START;
obj->handle.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE;
obj->handle.Init.DMAContinuousRequests = DISABLE;
obj->handle.Init.Overrun = OVR_DATA_OVERWRITTEN;
// Enable ADC clock
__ADC1_CLK_ENABLE();
__HAL_RCC_ADC1_CLK_ENABLE();
// Configure ADC
obj->handle.State = HAL_ADC_STATE_RESET;
obj->handle.Init.ClockPrescaler = ADC_CLOCK_SYNC_PCLK_DIV4;
obj->handle.Init.Resolution = ADC_RESOLUTION12b;
obj->handle.Init.DataAlign = ADC_DATAALIGN_RIGHT;
obj->handle.Init.ScanConvMode = ADC_SCAN_DIRECTION_FORWARD;
obj->handle.Init.EOCSelection = EOC_SINGLE_CONV;
obj->handle.Init.LowPowerAutoWait = DISABLE;
obj->handle.Init.LowPowerAutoPowerOff = DISABLE;
obj->handle.Init.ContinuousConvMode = DISABLE;
obj->handle.Init.DiscontinuousConvMode = DISABLE;
obj->handle.Init.ExternalTrigConv = ADC_SOFTWARE_START;
obj->handle.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE;
obj->handle.Init.DMAContinuousRequests = DISABLE;
obj->handle.Init.Overrun = OVR_DATA_OVERWRITTEN;
if (HAL_ADC_Init(&obj->handle) != HAL_OK) {
error("Cannot initialize ADC");
}
// Run the ADC calibration
if (HAL_ADCEx_Calibration_Start(&obj->handle) != HAL_OK) {
error("Cannot Start ADC_Calibration");
}
if (HAL_ADC_Init(&obj->handle) != HAL_OK) {
error("Cannot initialize ADC");
}
// ADC calibration is done only once
if (!adc_calibrated) {
adc_calibrated = true;
HAL_ADCEx_Calibration_Start(&obj->handle);
}
}
static inline uint16_t adc_read(analogin_t *obj) {
ADC_ChannelConfTypeDef sConfig;
uint16_t adc_read(analogin_t *obj)
{
ADC_ChannelConfTypeDef sConfig = {0};
// Configure ADC channel
sConfig.Rank = ADC_RANK_CHANNEL_NUMBER;
@ -182,22 +181,10 @@ static inline uint16_t adc_read(analogin_t *obj) {
// Wait end of conversion and get value
if (HAL_ADC_PollForConversion(&obj->handle, 10) == HAL_OK) {
return (HAL_ADC_GetValue(&obj->handle));
return (uint16_t)HAL_ADC_GetValue(&obj->handle);
} else {
return 0;
}
}
uint16_t analogin_read_u16(analogin_t *obj) {
uint16_t value = adc_read(obj);
// 12-bit to 16-bit conversion
value = ((value << 4) & (uint16_t)0xFFF0) | ((value >> 8) & (uint16_t)0x000F);
return value;
}
float analogin_read(analogin_t *obj) {
uint16_t value = adc_read(obj);
return (float)value * (1.0f / (float)0xFFF); // 12 bits range
}
#endif

View File

@ -35,11 +35,11 @@
#include "pinmap.h"
#include "mbed_error.h"
#include "PeripheralPins.h"
int adc_inited = 0;
#include <stdbool.h>
void analogin_init(analogin_t *obj, PinName pin)
{
static bool adc_calibrated = false;
RCC_PeriphCLKInitTypeDef PeriphClkInit;
uint32_t function = (uint32_t)NC;
@ -49,14 +49,14 @@ void analogin_init(analogin_t *obj, PinName pin)
if ((pin < 0xF0) || (pin >= 0x100)) {
// Normal channels
// Get the peripheral name from the pin and assign it to the object
obj->handle.Instance = (ADC_TypeDef *) pinmap_peripheral(pin, PinMap_ADC);
obj->handle.Instance = (ADC_TypeDef *)pinmap_peripheral(pin, PinMap_ADC);
// Get the functions (adc channel) from the pin and assign it to the object
function = pinmap_function(pin, PinMap_ADC);
// Configure GPIO
pinmap_pinout(pin, PinMap_ADC);
} else {
// Internal channels
obj->handle.Instance = (ADC_TypeDef *) pinmap_peripheral(pin, PinMap_ADC_Internal);
obj->handle.Instance = (ADC_TypeDef *)pinmap_peripheral(pin, PinMap_ADC_Internal);
function = pinmap_function(pin, PinMap_ADC_Internal);
// No GPIO configuration for internal channels
}
@ -68,13 +68,26 @@ void analogin_init(analogin_t *obj, PinName pin)
// Save pin number for the read function
obj->pin = pin;
// The ADC initialization is done once
if (adc_inited == 0) {
adc_inited = 1;
// Enable ADC clock
__HAL_RCC_ADC1_CLK_ENABLE();
// Enable ADC clock
__HAL_RCC_ADC1_CLK_ENABLE();
// Configure ADC object structures
obj->handle.State = HAL_ADC_STATE_RESET;
obj->handle.Init.DataAlign = ADC_DATAALIGN_RIGHT;
obj->handle.Init.ScanConvMode = DISABLE;
obj->handle.Init.ContinuousConvMode = DISABLE;
obj->handle.Init.NbrOfConversion = 1;
obj->handle.Init.DiscontinuousConvMode = DISABLE;
obj->handle.Init.NbrOfDiscConversion = 0;
obj->handle.Init.ExternalTrigConv = ADC_SOFTWARE_START;
if (HAL_ADC_Init(&obj->handle) != HAL_OK) {
error("Cannot initialize ADC");
}
// This section is done only once
if (!adc_calibrated) {
adc_calibrated = true;
// Configure ADC clock prescaler
// Caution: On STM32F1, ADC clock frequency max is 14 MHz (refer to device datasheet).
// Therefore, ADC clock prescaler must be configured in function
@ -84,29 +97,14 @@ void analogin_init(analogin_t *obj, PinName pin)
PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_ADC;
PeriphClkInit.AdcClockSelection = RCC_ADCPCLK2_DIV6;
HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit);
// Configure ADC
obj->handle.State = HAL_ADC_STATE_RESET;
obj->handle.Init.DataAlign = ADC_DATAALIGN_RIGHT;
obj->handle.Init.ScanConvMode = DISABLE;
obj->handle.Init.ContinuousConvMode = DISABLE;
obj->handle.Init.NbrOfConversion = 1;
obj->handle.Init.DiscontinuousConvMode = DISABLE;
obj->handle.Init.NbrOfDiscConversion = 0;
obj->handle.Init.ExternalTrigConv = ADC_SOFTWARE_START;
if (HAL_ADC_Init(&obj->handle) != HAL_OK) {
error("Cannot initialize ADC\n");
}
// Calibrate ADC
// Calibration
HAL_ADCEx_Calibration_Start(&obj->handle);
}
}
static inline uint16_t adc_read(analogin_t *obj)
uint16_t adc_read(analogin_t *obj)
{
ADC_ChannelConfTypeDef sConfig;
ADC_ChannelConfTypeDef sConfig = {0};
// Configure ADC channel
sConfig.Rank = 1;
@ -177,24 +175,10 @@ static inline uint16_t adc_read(analogin_t *obj)
// Wait end of conversion and get value
if (HAL_ADC_PollForConversion(&obj->handle, 10) == HAL_OK) {
return (HAL_ADC_GetValue(&obj->handle));
return (uint16_t)HAL_ADC_GetValue(&obj->handle);
} else {
return 0;
}
}
uint16_t analogin_read_u16(analogin_t *obj)
{
uint16_t value = adc_read(obj);
// 12-bit to 16-bit conversion
value = ((value << 4) & (uint16_t)0xFFF0) | ((value >> 8) & (uint16_t)0x000F);
return value;
}
float analogin_read(analogin_t *obj)
{
uint16_t value = adc_read(obj);
return (float)value * (1.0f / (float)0xFFF); // 12 bits range
}
#endif

View File

@ -40,29 +40,20 @@ void analogin_init(analogin_t *obj, PinName pin)
{
uint32_t function = (uint32_t)NC;
#if defined(ADC1)
static int adc1_inited = 0;
#endif
#if defined(ADC2)
static int adc2_inited = 0;
#endif
#if defined(ADC3)
static int adc3_inited = 0;
#endif
// ADC Internal Channels "pins" (Temperature, Vref, Vbat, ...)
// are described in PinNames.h and PeripheralPins.c
// Pin value must be between 0xF0 and 0xFF
if ((pin < 0xF0) || (pin >= 0x100)) {
// Normal channels
// Get the peripheral name from the pin and assign it to the object
obj->handle.Instance = (ADC_TypeDef *) pinmap_peripheral(pin, PinMap_ADC);
obj->handle.Instance = (ADC_TypeDef *)pinmap_peripheral(pin, PinMap_ADC);
// Get the functions (adc channel) from the pin and assign it to the object
function = pinmap_function(pin, PinMap_ADC);
// Configure GPIO
pinmap_pinout(pin, PinMap_ADC);
} else {
// Internal channels
obj->handle.Instance = (ADC_TypeDef *) pinmap_peripheral(pin, PinMap_ADC_Internal);
obj->handle.Instance = (ADC_TypeDef *)pinmap_peripheral(pin, PinMap_ADC_Internal);
function = pinmap_function(pin, PinMap_ADC_Internal);
// No GPIO configuration for internal channels
}
@ -74,33 +65,10 @@ void analogin_init(analogin_t *obj, PinName pin)
// Save pin number for the read function
obj->pin = pin;
// Check if ADC is already initialized
// Enable ADC clock
#if defined(ADC1)
if (((ADCName)obj->handle.Instance == ADC_1) && adc1_inited) return;
if ((ADCName)obj->handle.Instance == ADC_1) {
__ADC1_CLK_ENABLE();
adc1_inited = 1;
}
#endif
#if defined(ADC2)
if (((ADCName)obj->handle.Instance == ADC_2) && adc2_inited) return;
if ((ADCName)obj->handle.Instance == ADC_2) {
__ADC2_CLK_ENABLE();
adc2_inited = 1;
}
#endif
#if defined(ADC3)
if (((ADCName)obj->handle.Instance == ADC_3) && adc3_inited) return;
if ((ADCName)obj->handle.Instance == ADC_3) {
__ADC3_CLK_ENABLE();
adc3_inited = 1;
}
#endif
// Configure ADC
// Configure ADC object structures
obj->handle.State = HAL_ADC_STATE_RESET;
obj->handle.Init.ClockPrescaler = ADC_CLOCKPRESCALER_PCLK_DIV2;
obj->handle.Init.Resolution = ADC_RESOLUTION12b;
obj->handle.Init.ClockPrescaler = ADC_CLOCK_SYNC_PCLK_DIV2;
obj->handle.Init.Resolution = ADC_RESOLUTION_12B;
obj->handle.Init.ScanConvMode = DISABLE;
obj->handle.Init.ContinuousConvMode = DISABLE;
obj->handle.Init.DiscontinuousConvMode = DISABLE;
@ -111,18 +79,35 @@ void analogin_init(analogin_t *obj, PinName pin)
obj->handle.Init.NbrOfConversion = 1;
obj->handle.Init.DMAContinuousRequests = DISABLE;
obj->handle.Init.EOCSelection = DISABLE;
#if defined(ADC1)
if ((ADCName)obj->handle.Instance == ADC_1) {
__HAL_RCC_ADC1_CLK_ENABLE();
}
#endif
#if defined(ADC2)
if ((ADCName)obj->handle.Instance == ADC_2) {
__HAL_RCC_ADC2_CLK_ENABLE();
}
#endif
#if defined(ADC3)
if ((ADCName)obj->handle.Instance == ADC_3) {
__HAL_RCC_ADC3_CLK_ENABLE();
}
#endif
if (HAL_ADC_Init(&obj->handle) != HAL_OK) {
error("Cannot initialize ADC\n");
error("Cannot initialize ADC");
}
}
static inline uint16_t adc_read(analogin_t *obj)
uint16_t adc_read(analogin_t *obj)
{
ADC_ChannelConfTypeDef sConfig = {0};
// Configure ADC channel
sConfig.Rank = 1;
sConfig.SamplingTime = ADC_SAMPLETIME_3CYCLES;
sConfig.SamplingTime = ADC_SAMPLETIME_15CYCLES;
sConfig.Offset = 0;
switch (obj->channel) {
@ -193,24 +178,10 @@ static inline uint16_t adc_read(analogin_t *obj)
// Wait end of conversion and get value
if (HAL_ADC_PollForConversion(&obj->handle, 10) == HAL_OK) {
return (HAL_ADC_GetValue(&obj->handle));
return (uint16_t)HAL_ADC_GetValue(&obj->handle);
} else {
return 0;
}
}
uint16_t analogin_read_u16(analogin_t *obj)
{
uint16_t value = adc_read(obj);
// 12-bit to 16-bit conversion
value = ((value << 4) & (uint16_t)0xFFF0) | ((value >> 8) & (uint16_t)0x000F);
return value;
}
float analogin_read(analogin_t *obj)
{
uint16_t value = adc_read(obj);
return (float)value * (1.0f / (float)0xFFF); // 12 bits range
}
#endif

View File

@ -35,23 +35,11 @@
#include "pinmap.h"
#include "mbed_error.h"
#include "PeripheralPins.h"
#include <stdbool.h>
void analogin_init(analogin_t *obj, PinName pin)
{
#if defined(ADC1)
static int adc1_inited = 0;
#endif
#if defined(ADC2)
static int adc2_inited = 0;
#endif
#if defined(ADC3)
static int adc3_inited = 0;
#endif
#if defined(ADC4)
static int adc4_inited = 0;
#endif
static bool adc_calibrated = false;
uint32_t function = (uint32_t)NC;
// ADC Internal Channels "pins" (Temperature, Vref, Vbat, ...)
@ -60,14 +48,14 @@ void analogin_init(analogin_t *obj, PinName pin)
if ((pin < 0xF0) || (pin >= 0x100)) {
// Normal channels
// Get the peripheral name from the pin and assign it to the object
obj->handle.Instance = (ADC_TypeDef *) pinmap_peripheral(pin, PinMap_ADC);
obj->handle.Instance = (ADC_TypeDef *)pinmap_peripheral(pin, PinMap_ADC);
// Get the functions (adc channel) from the pin and assign it to the object
function = pinmap_function(pin, PinMap_ADC);
// Configure GPIO
pinmap_pinout(pin, PinMap_ADC);
} else {
// Internal channels
obj->handle.Instance = (ADC_TypeDef *) pinmap_peripheral(pin, PinMap_ADC_Internal);
obj->handle.Instance = (ADC_TypeDef *)pinmap_peripheral(pin, PinMap_ADC_Internal);
function = pinmap_function(pin, PinMap_ADC_Internal);
// No GPIO configuration for internal channels
}
@ -79,41 +67,10 @@ void analogin_init(analogin_t *obj, PinName pin)
// Save pin number for the read function
obj->pin = pin;
// Check if ADC is already initialized
// Enable ADC clock
#if defined(ADC1)
if (((ADCName)obj->handle.Instance == ADC_1) && adc1_inited) return;
if ((ADCName)obj->handle.Instance == ADC_1) {
__ADC1_CLK_ENABLE();
adc1_inited = 1;
}
#endif
#if defined(ADC2)
if (((ADCName)obj->handle.Instance == ADC_2) && adc2_inited) return;
if ((ADCName)obj->handle.Instance == ADC_2) {
__ADC2_CLK_ENABLE();
adc2_inited = 1;
}
#endif
#if defined(ADC3)
if (((ADCName)obj->handle.Instance == ADC_3) && adc3_inited) return;
if ((ADCName)obj->handle.Instance == ADC_3) {
__ADC34_CLK_ENABLE();
adc3_inited = 1;
}
#endif
#if defined(ADC4)
if (((ADCName)obj->handle.Instance == ADC_4) && adc4_inited) return;
if ((ADCName)obj->handle.Instance == ADC_4) {
__ADC34_CLK_ENABLE();
adc4_inited = 1;
}
#endif
// Configure ADC
// Configure ADC object structures
obj->handle.State = HAL_ADC_STATE_RESET;
obj->handle.Init.ClockPrescaler = ADC_CLOCKPRESCALER_PCLK_DIV2;
obj->handle.Init.Resolution = ADC_RESOLUTION12b;
obj->handle.Init.ClockPrescaler = ADC_CLOCK_SYNC_PCLK_DIV2;
obj->handle.Init.Resolution = ADC_RESOLUTION_12B;
obj->handle.Init.DataAlign = ADC_DATAALIGN_RIGHT;
obj->handle.Init.ScanConvMode = DISABLE;
obj->handle.Init.EOCSelection = EOC_SINGLE_CONV;
@ -127,15 +84,39 @@ void analogin_init(analogin_t *obj, PinName pin)
obj->handle.Init.DMAContinuousRequests = DISABLE;
obj->handle.Init.Overrun = OVR_DATA_OVERWRITTEN;
#if defined(ADC1)
if ((ADCName)obj->handle.Instance == ADC_1) {
__HAL_RCC_ADC1_CLK_ENABLE();
}
#endif
#if defined(ADC2)
if ((ADCName)obj->handle.Instance == ADC_2) {
__HAL_RCC_ADC2_CLK_ENABLE();
}
#endif
#if defined(ADC3)
if ((ADCName)obj->handle.Instance == ADC_3) {
__HAL_RCC_ADC34_CLK_ENABLE();
}
#endif
#if defined(ADC4)
if ((ADCName)obj->handle.Instance == ADC_4) {
__HAL_RCC_ADC34_CLK_ENABLE();
}
#endif
if (HAL_ADC_Init(&obj->handle) != HAL_OK) {
error("Cannot initialize ADC");
}
// Calibrate ADC
HAL_ADCEx_Calibration_Start(&obj->handle, ADC_SINGLE_ENDED);
// ADC calibration is done only once
if (!adc_calibrated) {
adc_calibrated = true;
HAL_ADCEx_Calibration_Start(&obj->handle, ADC_SINGLE_ENDED);
}
}
static inline uint16_t adc_read(analogin_t *obj)
uint16_t adc_read(analogin_t *obj)
{
ADC_ChannelConfTypeDef sConfig = {0};
@ -211,24 +192,10 @@ static inline uint16_t adc_read(analogin_t *obj)
// Wait end of conversion and get value
if (HAL_ADC_PollForConversion(&obj->handle, 10) == HAL_OK) {
return (HAL_ADC_GetValue(&obj->handle));
return (uint16_t)HAL_ADC_GetValue(&obj->handle);
} else {
return 0;
}
}
uint16_t analogin_read_u16(analogin_t *obj)
{
uint16_t value = adc_read(obj);
// 12-bit to 16-bit conversion
value = ((value << 4) & (uint16_t)0xFFF0) | ((value >> 8) & (uint16_t)0x000F);
return value;
}
float analogin_read(analogin_t *obj)
{
uint16_t value = adc_read(obj);
return (float)value * (1.0f / (float)0xFFF); // 12 bits range
}
#endif

View File

@ -40,29 +40,20 @@ void analogin_init(analogin_t *obj, PinName pin)
{
uint32_t function = (uint32_t)NC;
#if defined(ADC1)
static int adc1_inited = 0;
#endif
#if defined(ADC2)
static int adc2_inited = 0;
#endif
#if defined(ADC3)
static int adc3_inited = 0;
#endif
// ADC Internal Channels "pins" (Temperature, Vref, Vbat, ...)
// are described in PinNames.h and PeripheralPins.c
// Pin value must be between 0xF0 and 0xFF
if ((pin < 0xF0) || (pin >= 0x100)) {
// Normal channels
// Get the peripheral name from the pin and assign it to the object
obj->handle.Instance = (ADC_TypeDef *) pinmap_peripheral(pin, PinMap_ADC);
obj->handle.Instance = (ADC_TypeDef *)pinmap_peripheral(pin, PinMap_ADC);
// Get the functions (adc channel) from the pin and assign it to the object
function = pinmap_function(pin, PinMap_ADC);
// Configure GPIO
pinmap_pinout(pin, PinMap_ADC);
} else {
// Internal channels
obj->handle.Instance = (ADC_TypeDef *) pinmap_peripheral(pin, PinMap_ADC_Internal);
obj->handle.Instance = (ADC_TypeDef *)pinmap_peripheral(pin, PinMap_ADC_Internal);
function = pinmap_function(pin, PinMap_ADC_Internal);
// No GPIO configuration for internal channels
}
@ -74,30 +65,7 @@ void analogin_init(analogin_t *obj, PinName pin)
// Save pin number for the read function
obj->pin = pin;
// Check if ADC is already initialized
// Enable ADC clock
#if defined(ADC1)
if (((ADCName)obj->handle.Instance == ADC_1) && adc1_inited) return;
if ((ADCName)obj->handle.Instance == ADC_1) {
__HAL_RCC_ADC1_CLK_ENABLE();
adc1_inited = 1;
}
#endif
#if defined(ADC2)
if (((ADCName)obj->handle.Instance == ADC_2) && adc2_inited) return;
if ((ADCName)obj->handle.Instance == ADC_2) {
__HAL_RCC_ADC2_CLK_ENABLE();
adc2_inited = 1;
}
#endif
#if defined(ADC3)
if (((ADCName)obj->handle.Instance == ADC_3) && adc3_inited) return;
if ((ADCName)obj->handle.Instance == ADC_3) {
__HAL_RCC_ADC3_CLK_ENABLE();
adc3_inited = 1;
}
#endif
// Configure ADC
// Configure ADC object structures
obj->handle.State = HAL_ADC_STATE_RESET;
obj->handle.Init.ClockPrescaler = ADC_CLOCK_SYNC_PCLK_DIV2;
obj->handle.Init.Resolution = ADC_RESOLUTION_12B;
@ -112,12 +80,28 @@ void analogin_init(analogin_t *obj, PinName pin)
obj->handle.Init.DMAContinuousRequests = DISABLE;
obj->handle.Init.EOCSelection = DISABLE;
#if defined(ADC1)
if ((ADCName)obj->handle.Instance == ADC_1) {
__HAL_RCC_ADC1_CLK_ENABLE();
}
#endif
#if defined(ADC2)
if ((ADCName)obj->handle.Instance == ADC_2) {
__HAL_RCC_ADC2_CLK_ENABLE();
}
#endif
#if defined(ADC3)
if ((ADCName)obj->handle.Instance == ADC_3) {
__HAL_RCC_ADC3_CLK_ENABLE();
}
#endif
if (HAL_ADC_Init(&obj->handle) != HAL_OK) {
error("Cannot initialize ADC\n");
error("Cannot initialize ADC");
}
}
static inline uint16_t adc_read(analogin_t *obj)
uint16_t adc_read(analogin_t *obj)
{
ADC_ChannelConfTypeDef sConfig = {0};
@ -210,18 +194,4 @@ static inline uint16_t adc_read(analogin_t *obj)
}
}
uint16_t analogin_read_u16(analogin_t *obj)
{
uint16_t value = adc_read(obj);
// 12-bit to 16-bit conversion
value = ((value << 4) & (uint16_t)0xFFF0) | ((value >> 8) & (uint16_t)0x000F);
return value;
}
float analogin_read(analogin_t *obj)
{
uint16_t value = adc_read(obj);
return (float)value * (1.0f / (float)0xFFF); // 12 bits range
}
#endif

View File

@ -33,35 +33,27 @@
#include "mbed_wait_api.h"
#include "cmsis.h"
#include "pinmap.h"
#include "PeripheralPins.h"
#include "mbed_error.h"
#include "PeripheralPins.h"
void analogin_init(analogin_t *obj, PinName pin)
{
uint32_t function = (uint32_t)NC;
#if defined(ADC1)
static int adc1_inited = 0;
#endif
#if defined(ADC2)
static int adc2_inited = 0;
#endif
#if defined(ADC3)
static int adc3_inited = 0;
#endif
// ADC Internal Channels "pins" (Temperature, Vref, Vbat, ...)
// are described in PinNames.h and PeripheralPins.c
// Pin value must be between 0xF0 and 0xFF
if ((pin < 0xF0) || (pin >= 0x100)) {
// Normal channels
// Get the peripheral name from the pin and assign it to the object
obj->handle.Instance = (ADC_TypeDef *) pinmap_peripheral(pin, PinMap_ADC);
obj->handle.Instance = (ADC_TypeDef *)pinmap_peripheral(pin, PinMap_ADC);
// Get the functions (adc channel) from the pin and assign it to the object
function = pinmap_function(pin, PinMap_ADC);
// Configure GPIO
pinmap_pinout(pin, PinMap_ADC);
} else {
// Internal channels
obj->handle.Instance = (ADC_TypeDef *) pinmap_peripheral(pin, PinMap_ADC_Internal);
obj->handle.Instance = (ADC_TypeDef *)pinmap_peripheral(pin, PinMap_ADC_Internal);
function = pinmap_function(pin, PinMap_ADC_Internal);
// No GPIO configuration for internal channels
}
@ -73,33 +65,9 @@ void analogin_init(analogin_t *obj, PinName pin)
// Save pin number for the read function
obj->pin = pin;
// Check if ADC is already initialized
// Enable ADC clock
#if defined(ADC1)
if (((ADCName)obj->handle.Instance == ADC_1) && adc1_inited) return;
if ((ADCName)obj->handle.Instance == ADC_1) {
__HAL_RCC_ADC1_CLK_ENABLE();
adc1_inited = 1;
}
#endif
#if defined(ADC2)
if (((ADCName)obj->handle.Instance == ADC_2) && adc2_inited) return;
if ((ADCName)obj->handle.Instance == ADC_2) {
__HAL_RCC_ADC2_CLK_ENABLE();
adc2_inited = 1;
}
#endif
#if defined(ADC3)
if (((ADCName)obj->handle.Instance == ADC_3) && adc3_inited) return;
if ((ADCName)obj->handle.Instance == ADC_3) {
__HAL_RCC_ADC3_CLK_ENABLE();
adc3_inited = 1;
}
#endif
// Configure ADC
// Configure ADC object structures
obj->handle.State = HAL_ADC_STATE_RESET;
obj->handle.Init.ClockPrescaler = ADC_CLOCKPRESCALER_PCLK_DIV4;
obj->handle.Init.ClockPrescaler = ADC_CLOCK_SYNC_PCLK_DIV4;
obj->handle.Init.Resolution = ADC_RESOLUTION_12B;
obj->handle.Init.ScanConvMode = DISABLE;
obj->handle.Init.ContinuousConvMode = DISABLE;
@ -112,12 +80,28 @@ void analogin_init(analogin_t *obj, PinName pin)
obj->handle.Init.DMAContinuousRequests = DISABLE;
obj->handle.Init.EOCSelection = DISABLE;
#if defined(ADC1)
if ((ADCName)obj->handle.Instance == ADC_1) {
__HAL_RCC_ADC1_CLK_ENABLE();
}
#endif
#if defined(ADC2)
if ((ADCName)obj->handle.Instance == ADC_2) {
__HAL_RCC_ADC2_CLK_ENABLE();
}
#endif
#if defined(ADC3)
if ((ADCName)obj->handle.Instance == ADC_3) {
__HAL_RCC_ADC3_CLK_ENABLE();
}
#endif
if (HAL_ADC_Init(&obj->handle) != HAL_OK) {
error("Cannot initialize ADC");
}
}
static inline uint16_t adc_read(analogin_t *obj)
uint16_t adc_read(analogin_t *obj)
{
ADC_ChannelConfTypeDef sConfig = {0};
@ -188,33 +172,16 @@ static inline uint16_t adc_read(analogin_t *obj)
return 0;
}
if (HAL_ADC_ConfigChannel(&obj->handle, &sConfig) != HAL_OK) {
error("Cannot configure ADC channel");
}
HAL_ADC_ConfigChannel(&obj->handle, &sConfig);
HAL_ADC_Start(&obj->handle); // Start conversion
// Wait end of conversion and get value
HAL_ADC_PollForConversion(&obj->handle, 10);
if (HAL_ADC_GetState(&obj->handle) & HAL_ADC_STATE_EOC_REG) {
return (HAL_ADC_GetValue(&obj->handle));
if (HAL_ADC_PollForConversion(&obj->handle, 10) == HAL_OK) {
return (uint16_t)HAL_ADC_GetValue(&obj->handle);
} else {
return 0;
}
}
uint16_t analogin_read_u16(analogin_t *obj)
{
uint16_t value = adc_read(obj);
// 12-bit to 16-bit conversion
value = ((value << 4) & (uint16_t)0xFFF0) | ((value >> 8) & (uint16_t)0x000F);
return value;
}
float analogin_read(analogin_t *obj)
{
uint16_t value = adc_read(obj);
return (float)value * (1.0f / (float)0xFFF); // 12 bits range
}
#endif

View File

@ -35,13 +35,12 @@
#include "pinmap.h"
#include "mbed_error.h"
#include "PeripheralPins.h"
int adc_inited = 0;
#include <stdbool.h>
void analogin_init(analogin_t *obj, PinName pin)
{
static bool adc_calibrated = false;
uint32_t function = (uint32_t)NC;
obj->handle.Instance = (ADC_TypeDef *)NC;
// ADC Internal Channels "pins" (Temperature, Vref, Vbat, ...)
// are described in PinNames.h and PeripheralPins.c
@ -68,44 +67,41 @@ void analogin_init(analogin_t *obj, PinName pin)
// Save pin number for the read function
obj->pin = pin;
// The ADC initialization is done once
if (adc_inited == 0) {
adc_inited = 1;
// Configure ADC object structures
obj->handle.State = HAL_ADC_STATE_RESET;
obj->handle.Init.OversamplingMode = DISABLE;
obj->handle.Init.ClockPrescaler = ADC_CLOCK_SYNC_PCLK_DIV1;
obj->handle.Init.Resolution = ADC_RESOLUTION_12B;
obj->handle.Init.SamplingTime = ADC_SAMPLETIME_239CYCLES_5;
obj->handle.Init.ScanConvMode = ADC_SCAN_DIRECTION_FORWARD;
obj->handle.Init.DataAlign = ADC_DATAALIGN_RIGHT;
obj->handle.Init.ContinuousConvMode = DISABLE;
obj->handle.Init.DiscontinuousConvMode = DISABLE;
obj->handle.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIG_EDGE_NONE;
obj->handle.Init.ExternalTrigConv = ADC_EXTERNALTRIG0_T6_TRGO; // Not used here
obj->handle.Init.DMAContinuousRequests = DISABLE;
obj->handle.Init.EOCSelection = EOC_SINGLE_CONV;
obj->handle.Init.Overrun = OVR_DATA_OVERWRITTEN;
obj->handle.Init.LowPowerAutoWait = ENABLE;
obj->handle.Init.LowPowerFrequencyMode = DISABLE; // To be enabled only if ADC clock < 2.8 MHz
obj->handle.Init.LowPowerAutoPowerOff = DISABLE;
obj->handle.State = HAL_ADC_STATE_RESET;
// Enable ADC clock
__ADC1_CLK_ENABLE();
__HAL_RCC_ADC1_CLK_ENABLE();
// Configure ADC
obj->handle.Init.OversamplingMode = DISABLE;
obj->handle.Init.ClockPrescaler = ADC_CLOCKPRESCALER_PCLK_DIV1;
obj->handle.Init.Resolution = ADC_RESOLUTION12b;
obj->handle.Init.SamplingTime = ADC_SAMPLETIME_239CYCLES_5;
obj->handle.Init.ScanConvMode = ADC_SCAN_DIRECTION_FORWARD;
obj->handle.Init.DataAlign = ADC_DATAALIGN_RIGHT;
obj->handle.Init.ContinuousConvMode = DISABLE;
obj->handle.Init.DiscontinuousConvMode = DISABLE;
obj->handle.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIG_EDGE_NONE;
obj->handle.Init.ExternalTrigConv = ADC_EXTERNALTRIG0_T6_TRGO; // Not used here
obj->handle.Init.DMAContinuousRequests = DISABLE;
obj->handle.Init.EOCSelection = EOC_SINGLE_CONV;
obj->handle.Init.Overrun = OVR_DATA_OVERWRITTEN;
obj->handle.Init.LowPowerAutoWait = ENABLE;
obj->handle.Init.LowPowerFrequencyMode = DISABLE; // To be enabled only if ADC clock < 2.8 MHz
obj->handle.Init.LowPowerAutoPowerOff = DISABLE;
if (HAL_ADC_Init(&obj->handle) != HAL_OK) {
error("Cannot initialize ADC");
}
// Calibration
HAL_ADCEx_Calibration_Start(&obj->handle, ADC_SINGLE_ENDED);
__HAL_ADC_ENABLE(&obj->handle);
if (HAL_ADC_Init(&obj->handle) != HAL_OK) {
error("Cannot initialize ADC");
}
// ADC calibration is done only once
if (!adc_calibrated) {
adc_calibrated = true;
HAL_ADCEx_Calibration_Start(&obj->handle, ADC_SINGLE_ENDED);
}
__HAL_ADC_ENABLE(&obj->handle);
}
static inline uint16_t adc_read(analogin_t *obj)
uint16_t adc_read(analogin_t *obj)
{
ADC_ChannelConfTypeDef sConfig = {0};
@ -182,24 +178,10 @@ static inline uint16_t adc_read(analogin_t *obj)
// Wait end of conversion and get value
if (HAL_ADC_PollForConversion(&obj->handle, 10) == HAL_OK) {
return (HAL_ADC_GetValue(&obj->handle));
return (uint16_t)HAL_ADC_GetValue(&obj->handle);
} else {
return 0;
}
}
uint16_t analogin_read_u16(analogin_t *obj)
{
uint16_t value = adc_read(obj);
// 12-bit to 16-bit conversion
value = ((value << 4) & (uint16_t)0xFFF0) | ((value >> 8) & (uint16_t)0x000F);
return value;
}
float analogin_read(analogin_t *obj)
{
uint16_t value = adc_read(obj);
return (float)value * (1.0f / (float)0xFFF); // 12 bits range
}
#endif

View File

@ -35,11 +35,11 @@
#include "pinmap.h"
#include "mbed_error.h"
#include "PeripheralPins.h"
int adc_inited = 0;
#include <stdbool.h>
void analogin_init(analogin_t *obj, PinName pin)
{
static bool adc_hsi_inited = false;
RCC_OscInitTypeDef RCC_OscInitStruct;
uint32_t function = (uint32_t)NC;
@ -49,14 +49,14 @@ void analogin_init(analogin_t *obj, PinName pin)
if ((pin < 0xF0) || (pin >= 0x100)) {
// Normal channels
// Get the peripheral name from the pin and assign it to the object
obj->handle.Instance = (ADC_TypeDef *) pinmap_peripheral(pin, PinMap_ADC);
obj->handle.Instance = (ADC_TypeDef *)pinmap_peripheral(pin, PinMap_ADC);
// Get the functions (adc channel) from the pin and assign it to the object
function = pinmap_function(pin, PinMap_ADC);
// Configure GPIO
pinmap_pinout(pin, PinMap_ADC);
} else {
// Internal channels
obj->handle.Instance = (ADC_TypeDef *) pinmap_peripheral(pin, PinMap_ADC_Internal);
obj->handle.Instance = (ADC_TypeDef *)pinmap_peripheral(pin, PinMap_ADC_Internal);
function = pinmap_function(pin, PinMap_ADC_Internal);
// No GPIO configuration for internal channels
}
@ -68,45 +68,43 @@ void analogin_init(analogin_t *obj, PinName pin)
// Save pin number for the read function
obj->pin = pin;
// The ADC initialization is done once
if (adc_inited == 0) {
adc_inited = 1;
// Configure ADC object structures
obj->handle.State = HAL_ADC_STATE_RESET;
obj->handle.Init.ClockPrescaler = ADC_CLOCK_ASYNC_DIV4;
obj->handle.Init.Resolution = ADC_RESOLUTION_12B;
obj->handle.Init.DataAlign = ADC_DATAALIGN_RIGHT;
obj->handle.Init.ScanConvMode = DISABLE; // Sequencer disabled (ADC conversion on only 1 channel: channel set on rank 1)
obj->handle.Init.EOCSelection = EOC_SINGLE_CONV; // On STM32L1xx ADC, overrun detection is enabled only if EOC selection is set to each conversion (or transfer by DMA enabled, this is not the case in this example).
obj->handle.Init.LowPowerAutoWait = ADC_AUTOWAIT_UNTIL_DATA_READ; // Enable the dynamic low power Auto Delay: new conversion start only when the previous conversion (for regular group) or previous sequence (for injected group) has been treated by user software.
obj->handle.Init.LowPowerAutoPowerOff = ADC_AUTOPOWEROFF_IDLE_PHASE; // Enable the auto-off mode: the ADC automatically powers-off after a conversion and automatically wakes-up when a new conversion is triggered (with startup time between trigger and start of sampling).
obj->handle.Init.ChannelsBank = ADC_CHANNELS_BANK_A;
obj->handle.Init.ContinuousConvMode = DISABLE; // Continuous mode disabled to have only 1 conversion at each conversion trig
obj->handle.Init.NbrOfConversion = 1; // Parameter discarded because sequencer is disabled
obj->handle.Init.DiscontinuousConvMode = DISABLE; // Parameter discarded because sequencer is disabled
obj->handle.Init.NbrOfDiscConversion = 1; // Parameter discarded because sequencer is disabled
obj->handle.Init.ExternalTrigConv = 0; // Not used
obj->handle.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE;
obj->handle.Init.DMAContinuousRequests = DISABLE;
__HAL_RCC_ADC1_CLK_ENABLE();
if (HAL_ADC_Init(&obj->handle) != HAL_OK) {
error("Cannot initialize ADC");
}
// This section is done only once
if (!adc_hsi_inited) {
adc_hsi_inited = true;
// Enable the HSI (to clock the ADC)
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;
RCC_OscInitStruct.HSIState = RCC_HSI_ON;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_NONE;
RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT;
HAL_RCC_OscConfig(&RCC_OscInitStruct);
obj->handle.State = HAL_ADC_STATE_RESET;
// Enable ADC clock
__ADC1_CLK_ENABLE();
// Configure ADC
obj->handle.Init.ClockPrescaler = ADC_CLOCK_ASYNC_DIV4;
obj->handle.Init.Resolution = ADC_RESOLUTION12b;
obj->handle.Init.DataAlign = ADC_DATAALIGN_RIGHT;
obj->handle.Init.ScanConvMode = DISABLE; // Sequencer disabled (ADC conversion on only 1 channel: channel set on rank 1)
obj->handle.Init.EOCSelection = EOC_SINGLE_CONV; // On STM32L1xx ADC, overrun detection is enabled only if EOC selection is set to each conversion (or transfer by DMA enabled, this is not the case in this example).
obj->handle.Init.LowPowerAutoWait = ADC_AUTOWAIT_UNTIL_DATA_READ; // Enable the dynamic low power Auto Delay: new conversion start only when the previous conversion (for regular group) or previous sequence (for injected group) has been treated by user software.
obj->handle.Init.LowPowerAutoPowerOff = ADC_AUTOPOWEROFF_IDLE_PHASE; // Enable the auto-off mode: the ADC automatically powers-off after a conversion and automatically wakes-up when a new conversion is triggered (with startup time between trigger and start of sampling).
obj->handle.Init.ChannelsBank = ADC_CHANNELS_BANK_A;
obj->handle.Init.ContinuousConvMode = DISABLE; // Continuous mode disabled to have only 1 conversion at each conversion trig
obj->handle.Init.NbrOfConversion = 1; // Parameter discarded because sequencer is disabled
obj->handle.Init.DiscontinuousConvMode = DISABLE; // Parameter discarded because sequencer is disabled
obj->handle.Init.NbrOfDiscConversion = 1; // Parameter discarded because sequencer is disabled
obj->handle.Init.ExternalTrigConv = 0; // Not used
obj->handle.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE;
obj->handle.Init.DMAContinuousRequests = DISABLE;
if (HAL_ADC_Init(&obj->handle) != HAL_OK) {
error("Cannot initialize ADC");
}
}
}
static inline uint16_t adc_read(analogin_t *obj)
uint16_t adc_read(analogin_t *obj)
{
ADC_ChannelConfTypeDef sConfig = {0};
@ -231,24 +229,10 @@ static inline uint16_t adc_read(analogin_t *obj)
// Wait end of conversion and get value
if (HAL_ADC_PollForConversion(&obj->handle, 10) == HAL_OK) {
return (HAL_ADC_GetValue(&obj->handle));
return (uint16_t)HAL_ADC_GetValue(&obj->handle);
} else {
return 0;
}
}
uint16_t analogin_read_u16(analogin_t *obj)
{
uint16_t value = adc_read(obj);
// 12-bit to 16-bit conversion
value = ((value << 4) & (uint16_t)0xFFF0) | ((value >> 8) & (uint16_t)0x000F);
return value;
}
float analogin_read(analogin_t *obj)
{
uint16_t value = adc_read(obj);
return (float)value * (1.0f / (float)0xFFF); // 12 bits range
}
#endif

View File

@ -1,204 +0,0 @@
/* mbed Microcontroller Library
* Copyright (c) 2016, STMicroelectronics
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* 3. Neither the name of STMicroelectronics nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "mbed_assert.h"
#include "analogin_api.h"
#if DEVICE_ANALOGIN
#include "mbed_wait_api.h"
#include "cmsis.h"
#include "pinmap.h"
#include "mbed_error.h"
#include "PeripheralPins.h"
int adc_inited = 0;
void analogin_init(analogin_t *obj, PinName pin)
{
uint32_t function = (uint32_t)NC;
// ADC Internal Channels "pins" (Temperature, Vref, Vbat, ...)
// are described in PinNames.h and PeripheralPins.c
// Pin value must be between 0xF0 and 0xFF
if ((pin < 0xF0) || (pin >= 0x100)) {
// Normal channels
// Get the peripheral name from the pin and assign it to the object
obj->handle.Instance = (ADC_TypeDef *) pinmap_peripheral(pin, PinMap_ADC);
// Get the functions (adc channel) from the pin and assign it to the object
function = pinmap_function(pin, PinMap_ADC);
// Configure GPIO
pinmap_pinout(pin, PinMap_ADC);
} else {
// Internal channels
obj->handle.Instance = (ADC_TypeDef *) pinmap_peripheral(pin, PinMap_ADC_Internal);
function = pinmap_function(pin, PinMap_ADC_Internal);
// No GPIO configuration for internal channels
}
MBED_ASSERT(obj->handle.Instance != (ADC_TypeDef *)NC);
MBED_ASSERT(function != (uint32_t)NC);
obj->channel = STM_PIN_CHANNEL(function);
// Save pin number for the read function
obj->pin = pin;
// The ADC initialization is done once
if (adc_inited == 0) {
adc_inited = 1;
// Enable ADC clock
__HAL_RCC_ADC_CLK_ENABLE();
__HAL_RCC_ADC_CONFIG(RCC_ADCCLKSOURCE_SYSCLK);
obj->handle.State = HAL_ADC_STATE_RESET;
// Configure ADC
obj->handle.Init.ClockPrescaler = ADC_CLOCK_ASYNC_DIV2; // Asynchronous clock mode, input ADC clock
obj->handle.Init.Resolution = ADC_RESOLUTION_12B;
obj->handle.Init.DataAlign = ADC_DATAALIGN_RIGHT;
obj->handle.Init.ScanConvMode = DISABLE; // Sequencer disabled (ADC conversion on only 1 channel: channel set on rank 1)
obj->handle.Init.EOCSelection = ADC_EOC_SINGLE_CONV; // On STM32L1xx ADC, overrun detection is enabled only if EOC selection is set to each conversion (or transfer by DMA enabled, this is not the case in this example).
obj->handle.Init.LowPowerAutoWait = DISABLE;
obj->handle.Init.ContinuousConvMode = DISABLE; // Continuous mode disabled to have only 1 conversion at each conversion trig
obj->handle.Init.NbrOfConversion = 1; // Parameter discarded because sequencer is disabled
obj->handle.Init.DiscontinuousConvMode = DISABLE; // Parameter discarded because sequencer is disabled
obj->handle.Init.NbrOfDiscConversion = 1; // Parameter discarded because sequencer is disabled
obj->handle.Init.ExternalTrigConv = ADC_SOFTWARE_START; // Software start to trig the 1st conversion manually, without external event
obj->handle.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE;
obj->handle.Init.DMAContinuousRequests = DISABLE;
obj->handle.Init.Overrun = ADC_OVR_DATA_OVERWRITTEN; // DR register is overwritten with the last conversion result in case of overrun
obj->handle.Init.OversamplingMode = DISABLE; // No oversampling
if (HAL_ADC_Init(&obj->handle) != HAL_OK) {
error("Cannot initialize ADC\n");
}
// Calibrate ADC
HAL_ADCEx_Calibration_Start(&obj->handle, ADC_SINGLE_ENDED);
}
}
static inline uint16_t adc_read(analogin_t *obj)
{
ADC_ChannelConfTypeDef sConfig = {0};
// Configure ADC channel
switch (obj->channel) {
case 0:
sConfig.Channel = ADC_CHANNEL_VREFINT;
break;
case 1:
sConfig.Channel = ADC_CHANNEL_1;
break;
case 2:
sConfig.Channel = ADC_CHANNEL_2;
break;
case 3:
sConfig.Channel = ADC_CHANNEL_3;
break;
case 4:
sConfig.Channel = ADC_CHANNEL_4;
break;
case 5:
sConfig.Channel = ADC_CHANNEL_5;
break;
case 6:
sConfig.Channel = ADC_CHANNEL_6;
break;
case 7:
sConfig.Channel = ADC_CHANNEL_7;
break;
case 8:
sConfig.Channel = ADC_CHANNEL_8;
break;
case 9:
sConfig.Channel = ADC_CHANNEL_9;
break;
case 10:
sConfig.Channel = ADC_CHANNEL_10;
break;
case 11:
sConfig.Channel = ADC_CHANNEL_11;
break;
case 12:
sConfig.Channel = ADC_CHANNEL_12;
break;
case 13:
sConfig.Channel = ADC_CHANNEL_13;
break;
case 14:
sConfig.Channel = ADC_CHANNEL_14;
break;
case 15:
sConfig.Channel = ADC_CHANNEL_15;
break;
case 16:
sConfig.Channel = ADC_CHANNEL_16;
break;
case 17:
sConfig.Channel = ADC_CHANNEL_TEMPSENSOR;
break;
case 18:
sConfig.Channel = ADC_CHANNEL_VBAT;
break;
default:
return 0;
}
sConfig.Rank = ADC_REGULAR_RANK_1;
sConfig.SamplingTime = ADC_SAMPLETIME_47CYCLES_5;
sConfig.SingleDiff = ADC_SINGLE_ENDED;
sConfig.OffsetNumber = ADC_OFFSET_NONE;
sConfig.Offset = 0;
HAL_ADC_ConfigChannel(&obj->handle, &sConfig);
HAL_ADC_Start(&obj->handle); // Start conversion
// Wait end of conversion and get value
if (HAL_ADC_PollForConversion(&obj->handle, 10) == HAL_OK) {
return (HAL_ADC_GetValue(&obj->handle));
} else {
return 0;
}
}
uint16_t analogin_read_u16(analogin_t *obj)
{
uint16_t value = adc_read(obj);
// 12-bit to 16-bit conversion
value = ((value << 4) & (uint16_t)0xFFF0) | ((value >> 8) & (uint16_t)0x000F);
return value;
}
float analogin_read(analogin_t *obj)
{
uint16_t value = adc_read(obj);
return (float)value * (1.0f / (float)0xFFF); // 12 bits range
}
#endif

View File

@ -0,0 +1,188 @@
/* mbed Microcontroller Library
* Copyright (c) 2016, STMicroelectronics
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* 3. Neither the name of STMicroelectronics nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "mbed_assert.h"
#include "analogin_api.h"
#if DEVICE_ANALOGIN
#include "mbed_wait_api.h"
#include "cmsis.h"
#include "pinmap.h"
#include "mbed_error.h"
#include "PeripheralPins.h"
#include <stdbool.h>
void analogin_init(analogin_t *obj, PinName pin)
{
static bool adc_calibrated = false;
uint32_t function = (uint32_t)NC;
// ADC Internal Channels "pins" (Temperature, Vref, Vbat, ...)
// are described in PinNames.h and PeripheralPins.c
// Pin value must be between 0xF0 and 0xFF
if ((pin < 0xF0) || (pin >= 0x100)) {
// Normal channels
// Get the peripheral name from the pin and assign it to the object
obj->handle.Instance = (ADC_TypeDef *)pinmap_peripheral(pin, PinMap_ADC);
// Get the functions (adc channel) from the pin and assign it to the object
function = pinmap_function(pin, PinMap_ADC);
// Configure GPIO
pinmap_pinout(pin, PinMap_ADC);
} else {
// Internal channels
obj->handle.Instance = (ADC_TypeDef *)pinmap_peripheral(pin, PinMap_ADC_Internal);
function = pinmap_function(pin, PinMap_ADC_Internal);
// No GPIO configuration for internal channels
}
MBED_ASSERT(obj->handle.Instance != (ADC_TypeDef *)NC);
MBED_ASSERT(function != (uint32_t)NC);
obj->channel = STM_PIN_CHANNEL(function);
// Save pin number for the read function
obj->pin = pin;
// Configure ADC object structures
obj->handle.State = HAL_ADC_STATE_RESET;
obj->handle.Init.ClockPrescaler = ADC_CLOCK_ASYNC_DIV2; // Asynchronous clock mode, input ADC clock
obj->handle.Init.Resolution = ADC_RESOLUTION_12B;
obj->handle.Init.DataAlign = ADC_DATAALIGN_RIGHT;
obj->handle.Init.ScanConvMode = DISABLE; // Sequencer disabled (ADC conversion on only 1 channel: channel set on rank 1)
obj->handle.Init.EOCSelection = ADC_EOC_SINGLE_CONV; // On STM32L1xx ADC, overrun detection is enabled only if EOC selection is set to each conversion (or transfer by DMA enabled, this is not the case in this example).
obj->handle.Init.LowPowerAutoWait = DISABLE;
obj->handle.Init.ContinuousConvMode = DISABLE; // Continuous mode disabled to have only 1 conversion at each conversion trig
obj->handle.Init.NbrOfConversion = 1; // Parameter discarded because sequencer is disabled
obj->handle.Init.DiscontinuousConvMode = DISABLE; // Parameter discarded because sequencer is disabled
obj->handle.Init.NbrOfDiscConversion = 1; // Parameter discarded because sequencer is disabled
obj->handle.Init.ExternalTrigConv = ADC_SOFTWARE_START; // Software start to trig the 1st conversion manually, without external event
obj->handle.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE;
obj->handle.Init.DMAContinuousRequests = DISABLE;
obj->handle.Init.Overrun = ADC_OVR_DATA_OVERWRITTEN; // DR register is overwritten with the last conversion result in case of overrun
obj->handle.Init.OversamplingMode = DISABLE; // No oversampling
// Enable ADC clock
__HAL_RCC_ADC_CLK_ENABLE();
__HAL_RCC_ADC_CONFIG(RCC_ADCCLKSOURCE_SYSCLK);
if (HAL_ADC_Init(&obj->handle) != HAL_OK) {
error("Cannot initialize ADC");
}
// ADC calibration is done only once
if (!adc_calibrated) {
adc_calibrated = true;
HAL_ADCEx_Calibration_Start(&obj->handle, ADC_SINGLE_ENDED);
}
}
uint16_t adc_read(analogin_t *obj)
{
ADC_ChannelConfTypeDef sConfig = {0};
// Configure ADC channel
switch (obj->channel) {
case 0:
sConfig.Channel = ADC_CHANNEL_VREFINT;
break;
case 1:
sConfig.Channel = ADC_CHANNEL_1;
break;
case 2:
sConfig.Channel = ADC_CHANNEL_2;
break;
case 3:
sConfig.Channel = ADC_CHANNEL_3;
break;
case 4:
sConfig.Channel = ADC_CHANNEL_4;
break;
case 5:
sConfig.Channel = ADC_CHANNEL_5;
break;
case 6:
sConfig.Channel = ADC_CHANNEL_6;
break;
case 7:
sConfig.Channel = ADC_CHANNEL_7;
break;
case 8:
sConfig.Channel = ADC_CHANNEL_8;
break;
case 9:
sConfig.Channel = ADC_CHANNEL_9;
break;
case 10:
sConfig.Channel = ADC_CHANNEL_10;
break;
case 11:
sConfig.Channel = ADC_CHANNEL_11;
break;
case 12:
sConfig.Channel = ADC_CHANNEL_12;
break;
case 13:
sConfig.Channel = ADC_CHANNEL_13;
break;
case 14:
sConfig.Channel = ADC_CHANNEL_14;
break;
case 15:
sConfig.Channel = ADC_CHANNEL_15;
break;
case 16:
sConfig.Channel = ADC_CHANNEL_16;
break;
case 17:
sConfig.Channel = ADC_CHANNEL_TEMPSENSOR;
break;
case 18:
sConfig.Channel = ADC_CHANNEL_VBAT;
break;
default:
return 0;
}
sConfig.Rank = ADC_REGULAR_RANK_1;
sConfig.SamplingTime = ADC_SAMPLETIME_47CYCLES_5;
sConfig.SingleDiff = ADC_SINGLE_ENDED;
sConfig.OffsetNumber = ADC_OFFSET_NONE;
sConfig.Offset = 0;
HAL_ADC_ConfigChannel(&obj->handle, &sConfig);
HAL_ADC_Start(&obj->handle); // Start conversion
// Wait end of conversion and get value
if (HAL_ADC_PollForConversion(&obj->handle, 10) == HAL_OK) {
return (uint16_t)HAL_ADC_GetValue(&obj->handle);
} else {
return 0;
}
}
#endif

View File

@ -0,0 +1,48 @@
/* mbed Microcontroller Library
* Copyright (c) 2017, STMicroelectronics
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* 3. Neither the name of STMicroelectronics nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "analogin_api.h"
#if DEVICE_ANALOGIN
uint16_t adc_read(analogin_t *obj);
uint16_t analogin_read_u16(analogin_t *obj)
{
uint16_t value = adc_read(obj);
// 12-bit to 16-bit conversion
value = ((value << 4) & (uint16_t)0xFFF0) | ((value >> 8) & (uint16_t)0x000F);
return value;
}
float analogin_read(analogin_t *obj)
{
uint16_t value = adc_read(obj);
return (float)value * (1.0f / (float)0xFFF); // 12 bits range
}
#endif