Moved ticker timer to a PIT channel + adjusted namings

The timer which creates interrupts is now also done using one of the PIT
channels. Since also here no chaining is possible we still need to do
some bits in software, but 32-bit without prescaling is still better
than 16-bit with.

Also some code was moved around and naming conventions changes, since no
lptmr is used anymore, and calling both pit-timer would get confusing
pull/264/head
Sissors 2014-04-17 22:36:03 +02:00
parent ee658aa3e1
commit ccdfed52eb
1 changed files with 65 additions and 110 deletions

View File

@ -18,29 +18,30 @@
#include "PeripheralNames.h"
#include "clk_freqs.h"
static void pit_init(void);
static void lptmr_init(void);
#define PIT_TIMER PIT->CHANNEL[0]
#define PIT_TIMER_IRQ PIT0_IRQn
#define PIT_TICKER PIT->CHANNEL[1]
#define PIT_TICKER_IRQ PIT1_IRQn
static void timer_init(void);
static void ticker_init(void);
static int us_ticker_inited = 0;
static uint32_t pit_ldval = 0;
static uint32_t clk_mhz;
void us_ticker_init(void) {
if (us_ticker_inited)
return;
us_ticker_inited = 1;
SIM->SCGC6 |= SIM_SCGC6_PIT_MASK; // Clock PIT
PIT->MCR = 0; // Enable PIT
clk_mhz = bus_frequency() / 1000000;
pit_init();
lptmr_init();
}
static volatile uint32_t pit_msb_counter = 0;
static uint32_t pit_division; //Division used to get LSB bits
void pit0_isr(void) {
pit_msb_counter++;
PIT->CHANNEL[0].LDVAL = pit_ldval;
PIT->CHANNEL[0].TFLG = 1;
timer_init();
ticker_init();
}
/******************************************************************************
@ -50,20 +51,24 @@ void pit0_isr(void) {
* to chain timers, which is why a software timer is required to get 32-bit
* word length.
******************************************************************************/
static void pit_init(void) {
SIM->SCGC6 |= SIM_SCGC6_PIT_MASK; // Clock PIT
PIT->MCR = 0; // Enable PIT
pit_division = bus_frequency() / 1000000;
//CLZ counts the leading zeros, returning number of bits not used by pit_division
pit_ldval = pit_division << __CLZ(pit_division);
static volatile uint32_t msb_counter = 0;
static uint32_t timer_ldval = 0;
PIT->CHANNEL[0].LDVAL = pit_ldval; // 1us
PIT->CHANNEL[0].TCTRL |= PIT_TCTRL_TIE_MASK;
PIT->CHANNEL[0].TCTRL |= PIT_TCTRL_TEN_MASK; // Start timer 1
static void timer_isr(void) {
msb_counter++;
PIT_TIMER.TFLG = 1;
}
NVIC_SetVector(PIT0_IRQn, (uint32_t)pit0_isr);
NVIC_EnableIRQ(PIT0_IRQn);
static void timer_init(void) {
//CLZ counts the leading zeros, returning number of bits not used by clk_mhz
timer_ldval = clk_mhz << __CLZ(clk_mhz);
PIT_TIMER.LDVAL = timer_ldval; // 1us
PIT_TIMER.TCTRL |= PIT_TCTRL_TIE_MASK;
PIT_TIMER.TCTRL |= PIT_TCTRL_TEN_MASK; // Start timer 0
NVIC_SetVector(PIT_TIMER_IRQ, (uint32_t)timer_isr);
NVIC_EnableIRQ(PIT_TIMER_IRQ);
}
uint32_t us_ticker_read() {
@ -72,14 +77,14 @@ uint32_t us_ticker_read() {
uint32_t retval;
__disable_irq();
retval = (pit_ldval - PIT->CHANNEL[0].CVAL) / pit_division; //Hardware bits
retval |= pit_msb_counter << __CLZ(pit_division); //Software bits
retval = (timer_ldval - PIT_TIMER.CVAL) / clk_mhz; //Hardware bits
retval |= msb_counter << __CLZ(clk_mhz); //Software bits
if (PIT->CHANNEL[0].TFLG == 1) { //If overflow bit is set, force it to be handled
pit0_isr(); //Handle IRQ, read again to make sure software/hardware bits are synced
NVIC_ClearPendingIRQ(PIT0_IRQn);
if (PIT_TIMER.TFLG == 1) { //If overflow bit is set, force it to be handled
timer_isr(); //Handle IRQ, read again to make sure software/hardware bits are synced
NVIC_ClearPendingIRQ(PIT_TIMER_IRQ);
return us_ticker_read();
}
}
__enable_irq();
return retval;
@ -89,57 +94,19 @@ uint32_t us_ticker_read() {
* Timer Event
*
* It schedules interrupts at given (32bit)us interval of time.
* It is implemented used the 16bit Low Power Timer that remains powered in all
* power modes.
* It is implemented using PIT channel 1, since no prescaler is available,
* some bits are implemented in software.
******************************************************************************/
static void lptmr_isr(void);
static void lptmr_init(void) {
/* Clock the timer */
SIM->SCGC5 |= SIM_SCGC5_LPTIMER_MASK;
/* Reset */
LPTMR0->CSR = 0;
static void ticker_isr(void);
static void ticker_init(void) {
/* Set interrupt handler */
NVIC_SetVector(LPTimer_IRQn, (uint32_t)lptmr_isr);
NVIC_EnableIRQ(LPTimer_IRQn);
/* Clock at (1)MHz -> (1)tick/us */
/* Check if the external oscillator can be divided to 1MHz */
uint32_t extosc = extosc_frequency();
if (extosc != 0) { //If external oscillator found
OSC0->CR |= OSC_CR_ERCLKEN_MASK;
if (extosc % 1000000u == 0) { //If it is a multiple if 1MHz
extosc /= 1000000;
if (extosc == 1) { //1MHz, set timerprescaler in bypass mode
LPTMR0->PSR = LPTMR_PSR_PCS(3) | LPTMR_PSR_PBYP_MASK;
return;
} else { //See if we can divide it to 1MHz
uint32_t divider = 0;
extosc >>= 1;
while (1) {
if (extosc == 1) {
LPTMR0->PSR = LPTMR_PSR_PCS(3) | LPTMR_PSR_PRESCALE(divider);
return;
}
if (extosc % 2 != 0) //If we can't divide by two anymore
break;
divider++;
extosc >>= 1;
}
}
}
}
//No suitable external oscillator clock -> Use fast internal oscillator (4MHz)
MCG->C1 |= MCG_C1_IRCLKEN_MASK;
MCG->C2 |= MCG_C2_IRCS_MASK;
LPTMR0->PSR = LPTMR_PSR_PCS(0) | LPTMR_PSR_PRESCALE(1);
NVIC_SetVector(PIT_TICKER_IRQ, (uint32_t)ticker_isr);
NVIC_EnableIRQ(PIT_TICKER_IRQ);
}
void us_ticker_disable_interrupt(void) {
LPTMR0->CSR &= ~LPTMR_CSR_TIE_MASK;
PIT_TICKER.TCTRL &= ~PIT_TCTRL_TIE_MASK;
}
void us_ticker_clear_interrupt(void) {
@ -147,40 +114,24 @@ void us_ticker_clear_interrupt(void) {
}
static uint32_t us_ticker_int_counter = 0;
static uint16_t us_ticker_int_remainder = 0;
static void lptmr_set(unsigned short count) {
/* Reset */
LPTMR0->CSR = 0;
/* Set the compare register */
LPTMR0->CMR = count;
/* Enable interrupt */
LPTMR0->CSR |= LPTMR_CSR_TIE_MASK;
/* Start the timer */
LPTMR0->CSR |= LPTMR_CSR_TEN_MASK;
inline static void ticker_set(uint32_t count) {
PIT_TICKER.TCTRL = 0;
PIT_TICKER.LDVAL = count;
PIT_TICKER.TCTRL = PIT_TCTRL_TIE_MASK | PIT_TCTRL_TEN_MASK;
}
static void lptmr_isr(void) {
// write 1 to TCF to clear the LPT timer compare flag
LPTMR0->CSR |= LPTMR_CSR_TCF_MASK;
static void ticker_isr(void) {
// Clear IRQ flag
PIT_TICKER.TFLG = 1;
if (us_ticker_int_counter > 0) {
lptmr_set(0xFFFF);
ticker_set(0xFFFFFFFF);
us_ticker_int_counter--;
} else {
if (us_ticker_int_remainder > 0) {
lptmr_set(us_ticker_int_remainder);
us_ticker_int_remainder = 0;
} else {
// This function is going to disable the interrupts if there are
// no other events in the queue
us_ticker_irq_handler();
}
// This function is going to disable the interrupts if there are
// no other events in the queue
us_ticker_irq_handler();
}
}
@ -192,13 +143,17 @@ void us_ticker_set_interrupt(unsigned int timestamp) {
return;
}
us_ticker_int_counter = (uint32_t)(delta >> 16);
us_ticker_int_remainder = (uint16_t)(0xFFFF & delta);
if (us_ticker_int_counter > 0) {
lptmr_set(0xFFFF);
//Calculate how much falls outside the 32-bit after multiplying with clk_mhz
//We shift twice 16-bit to keep everything within the 32-bit variable
us_ticker_int_counter = (uint32_t)(delta >> 16);
us_ticker_int_counter *= clk_mhz;
us_ticker_int_counter >>= 16;
uint32_t us_ticker_int_remainder = (uint32_t)delta * clk_mhz;
if (us_ticker_int_remainder == 0) {
ticker_set(0xFFFFFFFF);
us_ticker_int_counter--;
} else {
lptmr_set(us_ticker_int_remainder);
us_ticker_int_remainder = 0;
ticker_set(us_ticker_int_remainder);
}
}