mirror of https://github.com/ARMmbed/mbed-os.git
Merge commit '98af79f087e8d95b28614e982a144a122f2dcbda' as 'littlefs'
commit
c9062594b5
|
@ -0,0 +1,4 @@
|
|||
script:
|
||||
- CFLAGS="-DLFS_READ_SIZE=16 -DLFS_PROG_SIZE=16" make test
|
||||
- CFLAGS="-DLFS_READ_SIZE=1 -DLFS_PROG_SIZE=1" make test
|
||||
- CFLAGS="-DLFS_READ_SIZE=512 -DLFS_PROG_SIZE=512" make test
|
|
@ -0,0 +1,973 @@
|
|||
## The design of the little filesystem
|
||||
|
||||
The littlefs is a little fail-safe filesystem designed for embedded systems.
|
||||
|
||||
```
|
||||
| | | .---._____
|
||||
.-----. | |
|
||||
--|o |---| littlefs |
|
||||
--| |---| |
|
||||
'-----' '----------'
|
||||
| | |
|
||||
```
|
||||
|
||||
For a bit of backstory, the littlefs was developed with the goal of learning
|
||||
more about filesystem design by tackling the relative unsolved problem of
|
||||
managing a robust filesystem resilient to power loss on devices
|
||||
with limited RAM and ROM.
|
||||
|
||||
The embedded systems the littlefs is targeting are usually 32bit
|
||||
microcontrollers with around 32Kbytes of RAM and 512Kbytes of ROM. These are
|
||||
often paired with SPI NOR flash chips with about 4Mbytes of flash storage.
|
||||
|
||||
Flash itself is a very interesting piece of technology with quite a bit of
|
||||
nuance. Unlike most other forms of storage, writing to flash requires two
|
||||
operations: erasing and programming. The programming operation is relatively
|
||||
cheap, and can be very granular. For NOR flash specifically, byte-level
|
||||
programs are quite common. Erasing, however, requires an expensive operation
|
||||
that forces the state of large blocks of memory to reset in a destructive
|
||||
reaction that gives flash its name. The [Wikipedia entry](https://en.wikipedia.org/wiki/Flash_memory)
|
||||
has more information if you are interesting in how this works.
|
||||
|
||||
This leaves us with an interesting set of limitations that can be simplified
|
||||
to three strong requirements:
|
||||
|
||||
1. **Fail-safe** - This is actually the main goal of the littlefs and the focus
|
||||
of this project. Embedded systems are usually designed without a shutdown
|
||||
routine and a notable lack of user interface for recovery, so filesystems
|
||||
targeting embedded systems should be prepared to lose power an any given
|
||||
time.
|
||||
|
||||
Despite this state of things, there are very few embedded filesystems that
|
||||
handle power loss in a reasonable manner, and can become corrupted if the
|
||||
user is unlucky enough.
|
||||
|
||||
2. **Wear awareness** - Due to the destructive nature of flash, most flash
|
||||
chips have a limited number of erase cycles, usually in the order of around
|
||||
100,000 erases per block for NOR flash. Filesystems that don't take wear
|
||||
into account can easily burn through blocks used to store frequently updated
|
||||
metadata.
|
||||
|
||||
Consider the [FAT filesystem](https://en.wikipedia.org/wiki/Design_of_the_FAT_file_system),
|
||||
which stores a file allocation table (FAT) at a specific offset from the
|
||||
beginning of disk. Every block allocation will update this table, and after
|
||||
100,000 updates, the block will likely go bad, rendering the filesystem
|
||||
unusable even if there are many more erase cycles available on the storage.
|
||||
|
||||
3. **Bounded RAM/ROM** - Even with the design difficulties presented by the
|
||||
previous two limitations, we have already seen several flash filesystems
|
||||
developed on PCs that handle power loss just fine, such as the
|
||||
logging filesystems. However, these filesystems take advantage of the
|
||||
relatively cheap access to RAM, and use some rather... opportunistic...
|
||||
techniques, such as reconstructing the entire directory structure in RAM.
|
||||
These operations make perfect sense when the filesystem's only concern is
|
||||
erase cycles, but the idea is a bit silly on embedded systems.
|
||||
|
||||
To cater to embedded systems, the littlefs has the simple limitation of
|
||||
using only a bounded amount of RAM and ROM. That is, no matter what is
|
||||
written to the filesystem, and no matter how large the underlying storage
|
||||
is, the littlefs will always use the same amount of RAM and ROM. This
|
||||
presents a very unique challenge, and makes presumably simple operations,
|
||||
such as iterating through the directory tree, surprisingly difficult.
|
||||
|
||||
## Existing designs?
|
||||
|
||||
There are of course, many different existing filesystem. Heres a very rough
|
||||
summary of the general ideas behind some of them.
|
||||
|
||||
Most of the existing filesystems fall into the one big category of filesystem
|
||||
designed in the early days of spinny magnet disks. While there is a vast amount
|
||||
of interesting technology and ideas in this area, the nature of spinny magnet
|
||||
disks encourage properties such as grouping writes near each other, that don't
|
||||
make as much sense on recent storage types. For instance, on flash, write
|
||||
locality is not as important and can actually increase wear destructively.
|
||||
|
||||
One of the most popular designs for flash filesystems is called the
|
||||
[logging filesystem](https://en.wikipedia.org/wiki/Log-structured_file_system).
|
||||
The flash filesystems [jffs](https://en.wikipedia.org/wiki/JFFS)
|
||||
and [yaffs](https://en.wikipedia.org/wiki/YAFFS) are good examples. In
|
||||
logging filesystem, data is not store in a data structure on disk, but instead
|
||||
the changes to the files are stored on disk. This has several neat advantages,
|
||||
such as the fact that the data is written in a cyclic log format naturally
|
||||
wear levels as a side effect. And, with a bit of error detection, the entire
|
||||
filesystem can easily be designed to be resilient to power loss. The
|
||||
journalling component of most modern day filesystems is actually a reduced
|
||||
form of a logging filesystem. However, logging filesystems have a difficulty
|
||||
scaling as the size of storage increases. And most filesystems compensate by
|
||||
caching large parts of the filesystem in RAM, a strategy that is unavailable
|
||||
for embedded systems.
|
||||
|
||||
Another interesting filesystem design technique that the littlefs borrows the
|
||||
most from, is the [copy-on-write (COW)](https://en.wikipedia.org/wiki/Copy-on-write).
|
||||
A good example of this is the [btrfs](https://en.wikipedia.org/wiki/Btrfs)
|
||||
filesystem. COW filesystems can easily recover from corrupted blocks and have
|
||||
natural protection against power loss. However, if they are not designed with
|
||||
wear in mind, a COW filesystem could unintentionally wear down the root block
|
||||
where the COW data structures are synchronized.
|
||||
|
||||
## Metadata pairs
|
||||
|
||||
The core piece of technology that provides the backbone for the littlefs is
|
||||
the concept of metadata pairs. The key idea here, is that any metadata that
|
||||
needs to be updated atomically is stored on a pair of blocks tagged with
|
||||
a revision count and checksum. Every update alternates between these two
|
||||
pairs, so that at any time there is always a backup containing the previous
|
||||
state of the metadata.
|
||||
|
||||
Consider a small example where each metadata pair has a revision count,
|
||||
a number as data, and the xor of the block as a quick checksum. If
|
||||
we update the data to a value of 9, and then to a value of 5, here is
|
||||
what the pair of blocks may look like after each update:
|
||||
```
|
||||
block 1 block 2 block 1 block 2 block 1 block 2
|
||||
.---------.---------. .---------.---------. .---------.---------.
|
||||
| rev: 1 | rev: 0 | | rev: 1 | rev: 2 | | rev: 3 | rev: 2 |
|
||||
| data: 3 | data: 0 | -> | data: 3 | data: 9 | -> | data: 5 | data: 9 |
|
||||
| xor: 2 | xor: 0 | | xor: 2 | xor: 11 | | xor: 6 | xor: 11 |
|
||||
'---------'---------' '---------'---------' '---------'---------'
|
||||
let data = 9 let data = 5
|
||||
```
|
||||
|
||||
After each update, we can find the most up to date value of data by looking
|
||||
at the revision count.
|
||||
|
||||
Now consider what the blocks may look like if we suddenly loss power while
|
||||
changing the value of data to 5:
|
||||
```
|
||||
block 1 block 2 block 1 block 2 block 1 block 2
|
||||
.---------.---------. .---------.---------. .---------.---------.
|
||||
| rev: 1 | rev: 0 | | rev: 1 | rev: 2 | | rev: 3 | rev: 2 |
|
||||
| data: 3 | data: 0 | -> | data: 3 | data: 9 | -x | data: 3 | data: 9 |
|
||||
| xor: 2 | xor: 0 | | xor: 2 | xor: 11 | | xor: 2 | xor: 11 |
|
||||
'---------'---------' '---------'---------' '---------'---------'
|
||||
let data = 9 let data = 5
|
||||
powerloss!!!
|
||||
```
|
||||
|
||||
In this case, block 1 was partially written with a new revision count, but
|
||||
the littlefs hadn't made it to updating the value of data. However, if we
|
||||
check our checksum we notice that block 1 was corrupted. So we fall back to
|
||||
block 2 and use the value 9.
|
||||
|
||||
Using this concept, the littlefs is able to update metadata blocks atomically.
|
||||
There are a few other tweaks, such as using a 32bit crc and using sequence
|
||||
arithmetic to handle revision count overflow, but the basic concept
|
||||
is the same. These metadata pairs define the backbone of the littlefs, and the
|
||||
rest of the filesystem is built on top of these atomic updates.
|
||||
|
||||
## Files
|
||||
|
||||
Now, the metadata pairs do come with some drawbacks. Most notably, each pair
|
||||
requires two blocks for each block of data. I'm sure users would be very
|
||||
unhappy if their storage was suddenly cut in half! Instead of storing
|
||||
everything in these metadata blocks, the littlefs uses a COW data structure
|
||||
for files which is in turn pointed to by a metadata block. When
|
||||
we update a file, we create a copies of any blocks that are modified until
|
||||
the metadata blocks are updated with the new copy. Once the metadata block
|
||||
points to the new copy, we deallocate the old blocks that are no longer in use.
|
||||
|
||||
Here is what updating a one-block file may look like:
|
||||
```
|
||||
block 1 block 2 block 1 block 2 block 1 block 2
|
||||
.---------.---------. .---------.---------. .---------.---------.
|
||||
| rev: 1 | rev: 0 | | rev: 1 | rev: 0 | | rev: 1 | rev: 2 |
|
||||
| file: 4 | file: 0 | -> | file: 4 | file: 0 | -> | file: 4 | file: 5 |
|
||||
| xor: 5 | xor: 0 | | xor: 5 | xor: 0 | | xor: 5 | xor: 7 |
|
||||
'---------'---------' '---------'---------' '---------'---------'
|
||||
| | |
|
||||
v v v
|
||||
block 4 block 4 block 5 block 4 block 5
|
||||
.--------. .--------. .--------. .--------. .--------.
|
||||
| old | | old | | new | | old | | new |
|
||||
| data | | data | | data | | data | | data |
|
||||
| | | | | | | | | |
|
||||
'--------' '--------' '--------' '--------' '--------'
|
||||
update data in file update metadata pair
|
||||
```
|
||||
|
||||
It doesn't matter if we lose power while writing block 5 with the new data,
|
||||
since the old data remains unmodified in block 4. This example also
|
||||
highlights how the atomic updates of the metadata blocks provide a
|
||||
synchronization barrier for the rest of the littlefs.
|
||||
|
||||
At this point, it may look like we are wasting an awfully large amount
|
||||
of space on the metadata. Just looking at that example, we are using
|
||||
three blocks to represent a file that fits comfortably in one! So instead
|
||||
of giving each file a metadata pair, we actually store the metadata for
|
||||
all files contained in a single directory in a single metadata block.
|
||||
|
||||
Now we could just leave files here, copying the entire file on write
|
||||
provides the synchronization without the duplicated memory requirements
|
||||
of the metadata blocks. However, we can do a bit better.
|
||||
|
||||
## CTZ linked-lists
|
||||
|
||||
There are many different data structures for representing the actual
|
||||
files in filesystems. Of these, the littlefs uses a rather unique [COW](https://upload.wikimedia.org/wikipedia/commons/0/0c/Cow_female_black_white.jpg)
|
||||
data structure that allows the filesystem to reuse unmodified parts of the
|
||||
file without additional metadata pairs.
|
||||
|
||||
First lets consider storing files in a simple linked-list. What happens when
|
||||
append a block? We have to change the last block in the linked-list to point
|
||||
to this new block, which means we have to copy out the last block, and change
|
||||
the second-to-last block, and then the third-to-last, and so on until we've
|
||||
copied out the entire file.
|
||||
|
||||
```
|
||||
Exhibit A: A linked-list
|
||||
.--------. .--------. .--------. .--------. .--------. .--------.
|
||||
| data 0 |->| data 1 |->| data 2 |->| data 4 |->| data 5 |->| data 6 |
|
||||
| | | | | | | | | | | |
|
||||
| | | | | | | | | | | |
|
||||
'--------' '--------' '--------' '--------' '--------' '--------'
|
||||
```
|
||||
|
||||
To get around this, the littlefs, at its heart, stores files backwards. Each
|
||||
block points to its predecessor, with the first block containing no pointers.
|
||||
If you think about this, it makes a bit of sense. Appending blocks just point
|
||||
to their predecessor and no other blocks need to be updated. If we update
|
||||
a block in the middle, we will need to copy out the blocks that follow,
|
||||
but can reuse the blocks before the modified block. Since most file operations
|
||||
either reset the file each write or append to files, this design avoids
|
||||
copying the file in the most common cases.
|
||||
|
||||
```
|
||||
Exhibit B: A backwards linked-list
|
||||
.--------. .--------. .--------. .--------. .--------. .--------.
|
||||
| data 0 |<-| data 1 |<-| data 2 |<-| data 4 |<-| data 5 |<-| data 6 |
|
||||
| | | | | | | | | | | |
|
||||
| | | | | | | | | | | |
|
||||
'--------' '--------' '--------' '--------' '--------' '--------'
|
||||
```
|
||||
|
||||
However, a backwards linked-list does come with a rather glaring problem.
|
||||
Iterating over a file _in order_ has a runtime of O(n^2). Gah! A quadratic
|
||||
runtime to just _read_ a file? That's awful. Keep in mind reading files are
|
||||
usually the most common filesystem operation.
|
||||
|
||||
To avoid this problem, the littlefs uses a multilayered linked-list. For
|
||||
every block that is divisible by a power of two, the block contains an
|
||||
additional pointer that points back by that power of two. Another way of
|
||||
thinking about this design is that there are actually many linked-lists
|
||||
threaded together, with each linked-lists skipping an increasing number
|
||||
of blocks. If you're familiar with data-structures, you may have also
|
||||
recognized that this is a deterministic skip-list.
|
||||
|
||||
To find the power of two factors efficiently, we can use the instruction
|
||||
[count trailing zeros (CTZ)](https://en.wikipedia.org/wiki/Count_trailing_zeros),
|
||||
which is where this linked-list's name comes from.
|
||||
|
||||
```
|
||||
Exhibit C: A backwards CTZ linked-list
|
||||
.--------. .--------. .--------. .--------. .--------. .--------.
|
||||
| data 0 |<-| data 1 |<-| data 2 |<-| data 3 |<-| data 4 |<-| data 5 |
|
||||
| |<-| |--| |<-| |--| | | |
|
||||
| |<-| |--| |--| |--| | | |
|
||||
'--------' '--------' '--------' '--------' '--------' '--------'
|
||||
```
|
||||
|
||||
Taking exhibit C for example, here is the path from data block 5 to data
|
||||
block 1. You can see how data block 3 was completely skipped:
|
||||
```
|
||||
.--------. .--------. .--------. .--------. .--------. .--------.
|
||||
| data 0 | | data 1 |<-| data 2 | | data 3 | | data 4 |<-| data 5 |
|
||||
| | | | | |<-| |--| | | |
|
||||
| | | | | | | | | | | |
|
||||
'--------' '--------' '--------' '--------' '--------' '--------'
|
||||
```
|
||||
|
||||
The path to data block 0 is even more quick, requiring only two jumps:
|
||||
```
|
||||
.--------. .--------. .--------. .--------. .--------. .--------.
|
||||
| data 0 | | data 1 | | data 2 | | data 3 | | data 4 |<-| data 5 |
|
||||
| | | | | | | | | | | |
|
||||
| |<-| |--| |--| |--| | | |
|
||||
'--------' '--------' '--------' '--------' '--------' '--------'
|
||||
```
|
||||
|
||||
The CTZ linked-list has quite a few interesting properties. All of the pointers
|
||||
in the block can be found by just knowing the index in the list of the current
|
||||
block, and, with a bit of math, the amortized overhead for the linked-list is
|
||||
only two pointers per block. Most importantly, the CTZ linked-list has a
|
||||
worst case lookup runtime of O(logn), which brings the runtime of reading a
|
||||
file down to O(n logn). Given that the constant runtime is divided by the
|
||||
amount of data we can store in a block, this is pretty reasonable.
|
||||
|
||||
Here is what it might look like to update a file stored with a CTZ linked-list:
|
||||
```
|
||||
block 1 block 2
|
||||
.---------.---------.
|
||||
| rev: 1 | rev: 0 |
|
||||
| file: 6 | file: 0 |
|
||||
| size: 4 | size: 0 |
|
||||
| xor: 3 | xor: 0 |
|
||||
'---------'---------'
|
||||
|
|
||||
v
|
||||
block 3 block 4 block 5 block 6
|
||||
.--------. .--------. .--------. .--------.
|
||||
| data 0 |<-| data 1 |<-| data 2 |<-| data 3 |
|
||||
| |<-| |--| | | |
|
||||
| | | | | | | |
|
||||
'--------' '--------' '--------' '--------'
|
||||
|
||||
| update data in file
|
||||
v
|
||||
|
||||
block 1 block 2
|
||||
.---------.---------.
|
||||
| rev: 1 | rev: 0 |
|
||||
| file: 6 | file: 0 |
|
||||
| size: 4 | size: 0 |
|
||||
| xor: 3 | xor: 0 |
|
||||
'---------'---------'
|
||||
|
|
||||
v
|
||||
block 3 block 4 block 5 block 6
|
||||
.--------. .--------. .--------. .--------.
|
||||
| data 0 |<-| data 1 |<-| old |<-| old |
|
||||
| |<-| |--| data 2 | | data 3 |
|
||||
| | | | | | | |
|
||||
'--------' '--------' '--------' '--------'
|
||||
^ ^ ^
|
||||
| | | block 7 block 8 block 9 block 10
|
||||
| | | .--------. .--------. .--------. .--------.
|
||||
| | '----| new |<-| new |<-| new |<-| new |
|
||||
| '----------------| data 2 |<-| data 3 |--| data 4 | | data 5 |
|
||||
'------------------| |--| |--| | | |
|
||||
'--------' '--------' '--------' '--------'
|
||||
|
||||
| update metadata pair
|
||||
v
|
||||
|
||||
block 1 block 2
|
||||
.---------.---------.
|
||||
| rev: 1 | rev: 2 |
|
||||
| file: 6 | file: 10|
|
||||
| size: 4 | size: 6 |
|
||||
| xor: 3 | xor: 14 |
|
||||
'---------'---------'
|
||||
|
|
||||
|
|
||||
block 3 block 4 block 5 block 6 |
|
||||
.--------. .--------. .--------. .--------. |
|
||||
| data 0 |<-| data 1 |<-| old |<-| old | |
|
||||
| |<-| |--| data 2 | | data 3 | |
|
||||
| | | | | | | | |
|
||||
'--------' '--------' '--------' '--------' |
|
||||
^ ^ ^ v
|
||||
| | | block 7 block 8 block 9 block 10
|
||||
| | | .--------. .--------. .--------. .--------.
|
||||
| | '----| new |<-| new |<-| new |<-| new |
|
||||
| '----------------| data 2 |<-| data 3 |--| data 4 | | data 5 |
|
||||
'------------------| |--| |--| | | |
|
||||
'--------' '--------' '--------' '--------'
|
||||
```
|
||||
|
||||
## Block allocation
|
||||
|
||||
So those two ideas provide the grounds for the filesystem. The metadata pairs
|
||||
give us directories, and the CTZ linked-lists give us files. But this leaves
|
||||
one big [elephant](https://upload.wikimedia.org/wikipedia/commons/3/37/African_Bush_Elephant.jpg)
|
||||
of a question. How do we get those blocks in the first place?
|
||||
|
||||
One common strategy is to store unallocated blocks in a big free list, and
|
||||
initially the littlefs was designed with this in mind. By storing a reference
|
||||
to the free list in every single metadata pair, additions to the free list
|
||||
could be updated atomically at the same time the replacement blocks were
|
||||
stored in the metadata pair. During boot, every metadata pair had to be
|
||||
scanned to find the most recent free list, but once the list was found the
|
||||
state of all free blocks becomes known.
|
||||
|
||||
However, this approach had several issues:
|
||||
- There was a lot of nuanced logic for adding blocks to the free list without
|
||||
modifying the blocks, since the blocks remain active until the metadata is
|
||||
updated.
|
||||
- The free list had to support both additions and removals in fifo order while
|
||||
minimizing block erases.
|
||||
- The free list had to handle the case where the file system completely ran
|
||||
out of blocks and may no longer be able to add blocks to the free list.
|
||||
- If we used a revision count to track the most recently updated free list,
|
||||
metadata blocks that were left unmodified were ticking time bombs that would
|
||||
cause the system to go haywire if the revision count overflowed
|
||||
- Every single metadata block wasted space to store these free list references.
|
||||
|
||||
Actually, to simplify, this approach had one massive glaring issue: complexity.
|
||||
|
||||
> Complexity leads to fallibility.
|
||||
> Fallibility leads to unmaintainability.
|
||||
> Unmaintainability leads to suffering.
|
||||
|
||||
Or at least, complexity leads to increased code size, which is a problem
|
||||
for embedded systems.
|
||||
|
||||
In the end, the littlefs adopted more of a "drop it on the floor" strategy.
|
||||
That is, the littlefs doesn't actually store information about which blocks
|
||||
are free on the storage. The littlefs already stores which files _are_ in
|
||||
use, so to find a free block, the littlefs just takes all of the blocks that
|
||||
exist and subtract the blocks that are in use.
|
||||
|
||||
Of course, it's not quite that simple. Most filesystems that adopt this "drop
|
||||
it on the floor" strategy either rely on some properties inherent to the
|
||||
filesystem, such as the cyclic-buffer structure of logging filesystems,
|
||||
or use a bitmap or table stored in RAM to track free blocks, which scales
|
||||
with the size of storage and is problematic when you have limited RAM. You
|
||||
could iterate through every single block in storage and check it against
|
||||
every single block in the filesystem on every single allocation, but that
|
||||
would have an abhorrent runtime.
|
||||
|
||||
So the littlefs compromises. It doesn't store a bitmap the size of the storage,
|
||||
but it does store a little bit-vector that contains a fixed set lookahead
|
||||
for block allocations. During a block allocation, the lookahead vector is
|
||||
checked for any free blocks, if there are none, the lookahead region jumps
|
||||
forward and the entire filesystem is scanned for free blocks.
|
||||
|
||||
Here's what it might look like to allocate 4 blocks on a decently busy
|
||||
filesystem with a 32bit lookahead and a total of
|
||||
128 blocks (512Kbytes of storage if blocks are 4Kbyte):
|
||||
```
|
||||
boot... lookahead:
|
||||
fs blocks: fffff9fffffffffeffffffffffff0000
|
||||
scanning... lookahead: fffff9ff
|
||||
fs blocks: fffff9fffffffffeffffffffffff0000
|
||||
alloc = 21 lookahead: fffffdff
|
||||
fs blocks: fffffdfffffffffeffffffffffff0000
|
||||
alloc = 22 lookahead: ffffffff
|
||||
fs blocks: fffffffffffffffeffffffffffff0000
|
||||
scanning... lookahead: fffffffe
|
||||
fs blocks: fffffffffffffffeffffffffffff0000
|
||||
alloc = 63 lookahead: ffffffff
|
||||
fs blocks: ffffffffffffffffffffffffffff0000
|
||||
scanning... lookahead: ffffffff
|
||||
fs blocks: ffffffffffffffffffffffffffff0000
|
||||
scanning... lookahead: ffffffff
|
||||
fs blocks: ffffffffffffffffffffffffffff0000
|
||||
scanning... lookahead: ffff0000
|
||||
fs blocks: ffffffffffffffffffffffffffff0000
|
||||
alloc = 112 lookahead: ffff8000
|
||||
fs blocks: ffffffffffffffffffffffffffff8000
|
||||
```
|
||||
|
||||
While this lookahead approach still has an asymptotic runtime of O(n^2) to
|
||||
scan all of storage, the lookahead reduces the practical runtime to a
|
||||
reasonable amount. Bit-vectors are surprisingly compact, given only 16 bytes,
|
||||
the lookahead could track 128 blocks. For a 4Mbyte flash chip with 4Kbyte
|
||||
blocks, the littlefs would only need 8 passes to scan the entire storage.
|
||||
|
||||
The real benefit of this approach is just how much it simplified the design
|
||||
of the littlefs. Deallocating blocks is as simple as simply forgetting they
|
||||
exist, and there is absolutely no concern of bugs in the deallocation code
|
||||
causing difficult to detect memory leaks.
|
||||
|
||||
## Directories
|
||||
|
||||
Now we just need directories to store our files. Since we already have
|
||||
metadata blocks that store information about files, lets just use these
|
||||
metadata blocks as the directories. Maybe turn the directories into linked
|
||||
lists of metadata blocks so it isn't limited by the number of files that fit
|
||||
in a single block. Add entries that represent other nested directories.
|
||||
Drop "." and ".." entries, cause who needs them. Dust off our hands and
|
||||
we now have a directory tree.
|
||||
|
||||
```
|
||||
.--------.
|
||||
|root dir|
|
||||
| pair 0 |
|
||||
| |
|
||||
'--------'
|
||||
.-' '-------------------------.
|
||||
v v
|
||||
.--------. .--------. .--------.
|
||||
| dir A |------->| dir A | | dir B |
|
||||
| pair 0 | | pair 1 | | pair 0 |
|
||||
| | | | | |
|
||||
'--------' '--------' '--------'
|
||||
.-' '-. | .-' '-.
|
||||
v v v v v
|
||||
.--------. .--------. .--------. .--------. .--------.
|
||||
| file C | | file D | | file E | | file F | | file G |
|
||||
| | | | | | | | | |
|
||||
| | | | | | | | | |
|
||||
'--------' '--------' '--------' '--------' '--------'
|
||||
```
|
||||
|
||||
Unfortunately it turns out it's not that simple. See, iterating over a
|
||||
directory tree isn't actually all that easy, especially when you're trying
|
||||
to fit in a bounded amount of RAM, which rules out any recursive solution.
|
||||
And since our block allocator involves iterating over the entire filesystem
|
||||
tree, possibly multiple times in a single allocation, iteration needs to be
|
||||
efficient.
|
||||
|
||||
So, as a solution, the littlefs adopted a sort of threaded tree. Each
|
||||
directory not only contains pointers to all of its children, but also a
|
||||
pointer to the next directory. These pointers create a linked-list that
|
||||
is threaded through all of the directories in the filesystem. Since we
|
||||
only use this linked list to check for existance, the order doesn't actually
|
||||
matter. As an added plus, we can repurpose the pointer for the individual
|
||||
directory linked-lists and avoid using any additional space.
|
||||
|
||||
```
|
||||
.--------.
|
||||
|root dir|-.
|
||||
| pair 0 | |
|
||||
.--------| |-'
|
||||
| '--------'
|
||||
| .-' '-------------------------.
|
||||
| v v
|
||||
| .--------. .--------. .--------.
|
||||
'->| dir A |------->| dir A |------->| dir B |
|
||||
| pair 0 | | pair 1 | | pair 0 |
|
||||
| | | | | |
|
||||
'--------' '--------' '--------'
|
||||
.-' '-. | .-' '-.
|
||||
v v v v v
|
||||
.--------. .--------. .--------. .--------. .--------.
|
||||
| file C | | file D | | file E | | file F | | file G |
|
||||
| | | | | | | | | |
|
||||
| | | | | | | | | |
|
||||
'--------' '--------' '--------' '--------' '--------'
|
||||
```
|
||||
|
||||
This threaded tree approach does come with a few tradeoffs. Now, anytime we
|
||||
want to manipulate the directory tree, we find ourselves having to update two
|
||||
pointers instead of one. For anyone familiar with creating atomic data
|
||||
structures this should set off a whole bunch of red flags.
|
||||
|
||||
But unlike the data structure guys, we can update a whole block atomically! So
|
||||
as long as we're really careful (and cheat a little bit), we can still
|
||||
manipulate the directory tree in a way that is resilient to power loss.
|
||||
|
||||
Consider how we might add a new directory. Since both pointers that reference
|
||||
it can come from the same directory, we only need a single atomic update to
|
||||
finagle the directory into the filesystem:
|
||||
```
|
||||
.--------.
|
||||
|root dir|-.
|
||||
| pair 0 | |
|
||||
.--| |-'
|
||||
| '--------'
|
||||
| |
|
||||
| v
|
||||
| .--------.
|
||||
'->| dir A |
|
||||
| pair 0 |
|
||||
| |
|
||||
'--------'
|
||||
|
||||
| create the new directory block
|
||||
v
|
||||
|
||||
.--------.
|
||||
|root dir|-.
|
||||
| pair 0 | |
|
||||
.--| |-'
|
||||
| '--------'
|
||||
| |
|
||||
| v
|
||||
| .--------.
|
||||
.--------. '->| dir A |
|
||||
| dir B |---->| pair 0 |
|
||||
| pair 0 | | |
|
||||
| | '--------'
|
||||
'--------'
|
||||
|
||||
| update root to point to directory B
|
||||
v
|
||||
|
||||
.--------.
|
||||
|root dir|-.
|
||||
| pair 0 | |
|
||||
.--------| |-'
|
||||
| '--------'
|
||||
| .-' '-.
|
||||
| v v
|
||||
| .--------. .--------.
|
||||
'->| dir B |->| dir A |
|
||||
| pair 0 | | pair 0 |
|
||||
| | | |
|
||||
'--------' '--------'
|
||||
```
|
||||
|
||||
Note that even though directory B was added after directory A, we insert
|
||||
directory B before directory A in the linked-list because it is convenient.
|
||||
|
||||
Now how about removal:
|
||||
```
|
||||
.--------. .--------.
|
||||
|root dir|------->|root dir|-.
|
||||
| pair 0 | | pair 1 | |
|
||||
.--------| |--------| |-'
|
||||
| '--------' '--------'
|
||||
| .-' '-. |
|
||||
| v v v
|
||||
| .--------. .--------. .--------.
|
||||
'->| dir A |->| dir B |->| dir C |
|
||||
| pair 0 | | pair 0 | | pair 0 |
|
||||
| | | | | |
|
||||
'--------' '--------' '--------'
|
||||
|
||||
| update root to no longer contain directory B
|
||||
v
|
||||
|
||||
.--------. .--------.
|
||||
|root dir|------------->|root dir|-.
|
||||
| pair 0 | | pair 1 | |
|
||||
.--| |--------------| |-'
|
||||
| '--------' '--------'
|
||||
| | |
|
||||
| v v
|
||||
| .--------. .--------. .--------.
|
||||
'->| dir A |->| dir B |->| dir C |
|
||||
| pair 0 | | pair 0 | | pair 0 |
|
||||
| | | | | |
|
||||
'--------' '--------' '--------'
|
||||
|
||||
| remove directory B from the linked-list
|
||||
v
|
||||
|
||||
.--------. .--------.
|
||||
|root dir|->|root dir|-.
|
||||
| pair 0 | | pair 1 | |
|
||||
.--| |--| |-'
|
||||
| '--------' '--------'
|
||||
| | |
|
||||
| v v
|
||||
| .--------. .--------.
|
||||
'->| dir A |->| dir C |
|
||||
| pair 0 | | pair 0 |
|
||||
| | | |
|
||||
'--------' '--------'
|
||||
```
|
||||
|
||||
Wait, wait, wait, wait, wait, that's not atomic at all! If power is lost after
|
||||
removing directory B from the root, directory B is still in the linked-list.
|
||||
We've just created a memory leak!
|
||||
|
||||
And to be honest, I don't have a clever solution for this case. As a
|
||||
side-effect of using multiple pointers in the threaded tree, the littlefs
|
||||
can end up with orphan blocks that have no parents and should have been
|
||||
removed.
|
||||
|
||||
To keep these orphan blocks from becoming a problem, the littlefs has a
|
||||
deorphan step that simply iterates through every directory in the linked-list
|
||||
and checks it against every directory entry in the filesystem to see if it
|
||||
has a parent. The deorphan step occurs on the first block allocation after
|
||||
boot, so orphans should never cause the littlefs to run out of storage
|
||||
prematurely.
|
||||
|
||||
And for my final trick, moving a directory:
|
||||
```
|
||||
.--------.
|
||||
|root dir|-.
|
||||
| pair 0 | |
|
||||
.--------| |-'
|
||||
| '--------'
|
||||
| .-' '-.
|
||||
| v v
|
||||
| .--------. .--------.
|
||||
'->| dir A |->| dir B |
|
||||
| pair 0 | | pair 0 |
|
||||
| | | |
|
||||
'--------' '--------'
|
||||
|
||||
| update directory B to point to directory A
|
||||
v
|
||||
|
||||
.--------.
|
||||
|root dir|-.
|
||||
| pair 0 | |
|
||||
.--------| |-'
|
||||
| '--------'
|
||||
| .-----' '-.
|
||||
| | v
|
||||
| | .--------.
|
||||
| | .->| dir B |
|
||||
| | | | pair 0 |
|
||||
| | | | |
|
||||
| | | '--------'
|
||||
| | .-------'
|
||||
| v v |
|
||||
| .--------. |
|
||||
'->| dir A |-'
|
||||
| pair 0 |
|
||||
| |
|
||||
'--------'
|
||||
|
||||
| update root to no longer contain directory A
|
||||
v
|
||||
.--------.
|
||||
|root dir|-.
|
||||
| pair 0 | |
|
||||
.----| |-'
|
||||
| '--------'
|
||||
| |
|
||||
| v
|
||||
| .--------.
|
||||
| .->| dir B |
|
||||
| | | pair 0 |
|
||||
| '--| |-.
|
||||
| '--------' |
|
||||
| | |
|
||||
| v |
|
||||
| .--------. |
|
||||
'--->| dir A |-'
|
||||
| pair 0 |
|
||||
| |
|
||||
'--------'
|
||||
```
|
||||
|
||||
Note that once again we don't care about the ordering of directories in the
|
||||
linked-list, so we can simply leave directories in their old positions. This
|
||||
does make the diagrams a bit hard to draw, but the littlefs doesn't really
|
||||
care.
|
||||
|
||||
It's also worth noting that once again we have an operation that isn't actually
|
||||
atomic. After we add directory A to directory B, we could lose power, leaving
|
||||
directory A as a part of both the root directory and directory B. However,
|
||||
there isn't anything inherent to the littlefs that prevents a directory from
|
||||
having multiple parents, so in this case, we just allow that to happen. Extra
|
||||
care is taken to only remove a directory from the linked-list if there are
|
||||
no parents left in the filesystem.
|
||||
|
||||
## Wear awareness
|
||||
|
||||
So now that we have all of the pieces of a filesystem, we can look at a more
|
||||
subtle attribute of embedded storage: The wear down of flash blocks.
|
||||
|
||||
The first concern for the littlefs, is that prefectly valid blocks can suddenly
|
||||
become unusable. As a nice side-effect of using a COW data-structure for files,
|
||||
we can simply move on to a different block when a file write fails. All
|
||||
modifications to files are performed in copies, so we will only replace the
|
||||
old file when we are sure none of the new file has errors. Directories, on
|
||||
the other hand, need a different strategy.
|
||||
|
||||
The solution to directory corruption in the littlefs relies on the redundant
|
||||
nature of the metadata pairs. If an error is detected during a write to one
|
||||
of the metadata pairs, we seek out a new block to take its place. Once we find
|
||||
a block without errors, we iterate through the directory tree, updating any
|
||||
references to the corrupted metadata pair to point to the new metadata block.
|
||||
Just like when we remove directories, we can lose power during this operation
|
||||
and end up with a desynchronized metadata pair in our filesystem. And just like
|
||||
when we remove directories, we leave the possibility of a desynchronized
|
||||
metadata pair up to the deorphan step to clean up.
|
||||
|
||||
Here's what encountering a directory error may look like with all of
|
||||
the directories and directory pointers fully expanded:
|
||||
```
|
||||
root dir
|
||||
block 1 block 2
|
||||
.---------.---------.
|
||||
| rev: 1 | rev: 0 |--.
|
||||
| | |-.|
|
||||
.------| | |-|'
|
||||
|.-----| | |-'
|
||||
|| '---------'---------'
|
||||
|| |||||'--------------------------------------------------.
|
||||
|| ||||'-----------------------------------------. |
|
||||
|| |||'-----------------------------. | |
|
||||
|| ||'--------------------. | | |
|
||||
|| |'-------. | | | |
|
||||
|| v v v v v v
|
||||
|| dir A dir B dir C
|
||||
|| block 3 block 4 block 5 block 6 block 7 block 8
|
||||
|| .---------.---------. .---------.---------. .---------.---------.
|
||||
|'->| rev: 1 | rev: 0 |->| rev: 1 | rev: 0 |->| rev: 1 | rev: 0 |
|
||||
'-->| | |->| | |->| | |
|
||||
| | | | | | |
|
||||
| | | | | | | | |
|
||||
'---------'---------' '---------'---------' '---------'---------'
|
||||
|
||||
| update directory B
|
||||
v
|
||||
|
||||
root dir
|
||||
block 1 block 2
|
||||
.---------.---------.
|
||||
| rev: 1 | rev: 0 |--.
|
||||
| | |-.|
|
||||
.------| | |-|'
|
||||
|.-----| | |-'
|
||||
|| '---------'---------'
|
||||
|| |||||'--------------------------------------------------.
|
||||
|| ||||'-----------------------------------------. |
|
||||
|| |||'-----------------------------. | |
|
||||
|| ||'--------------------. | | |
|
||||
|| |'-------. | | | |
|
||||
|| v v v v v v
|
||||
|| dir A dir B dir C
|
||||
|| block 3 block 4 block 5 block 6 block 7 block 8
|
||||
|| .---------.---------. .---------.---------. .---------.---------.
|
||||
|'->| rev: 1 | rev: 0 |->| rev: 1 | rev: 2 |->| rev: 1 | rev: 0 |
|
||||
'-->| | |->| | corrupt!|->| | |
|
||||
| | | | | corrupt!| | | |
|
||||
| | | | | corrupt!| | | |
|
||||
'---------'---------' '---------'---------' '---------'---------'
|
||||
|
||||
| oh no! corruption detected
|
||||
v allocate a replacement block
|
||||
|
||||
root dir
|
||||
block 1 block 2
|
||||
.---------.---------.
|
||||
| rev: 1 | rev: 0 |--.
|
||||
| | |-.|
|
||||
.------| | |-|'
|
||||
|.-----| | |-'
|
||||
|| '---------'---------'
|
||||
|| |||||'----------------------------------------------------.
|
||||
|| ||||'-------------------------------------------. |
|
||||
|| |||'-----------------------------. | |
|
||||
|| ||'--------------------. | | |
|
||||
|| |'-------. | | | |
|
||||
|| v v v v v v
|
||||
|| dir A dir B dir C
|
||||
|| block 3 block 4 block 5 block 6 block 7 block 8
|
||||
|| .---------.---------. .---------.---------. .---------.---------.
|
||||
|'->| rev: 1 | rev: 0 |->| rev: 1 | rev: 2 |--->| rev: 1 | rev: 0 |
|
||||
'-->| | |->| | corrupt!|--->| | |
|
||||
| | | | | corrupt!| .->| | |
|
||||
| | | | | corrupt!| | | | |
|
||||
'---------'---------' '---------'---------' | '---------'---------'
|
||||
block 9 |
|
||||
.---------. |
|
||||
| rev: 2 |-'
|
||||
| |
|
||||
| |
|
||||
| |
|
||||
'---------'
|
||||
|
||||
| update root directory to contain block 9
|
||||
v
|
||||
|
||||
root dir
|
||||
block 1 block 2
|
||||
.---------.---------.
|
||||
| rev: 1 | rev: 2 |--.
|
||||
| | |-.|
|
||||
.-----| | |-|'
|
||||
|.----| | |-'
|
||||
|| '---------'---------'
|
||||
|| .--------'||||'----------------------------------------------.
|
||||
|| | |||'-------------------------------------. |
|
||||
|| | ||'-----------------------. | |
|
||||
|| | |'------------. | | |
|
||||
|| | | | | | |
|
||||
|| v v v v v v
|
||||
|| dir A dir B dir C
|
||||
|| block 3 block 4 block 5 block 9 block 7 block 8
|
||||
|| .---------.---------. .---------. .---------. .---------.---------.
|
||||
|'->| rev: 1 | rev: 0 |-->| rev: 1 |-| rev: 2 |--->| rev: 1 | rev: 0 |
|
||||
'-->| | |-. | | | |--->| | |
|
||||
| | | | | | | | .->| | |
|
||||
| | | | | | | | | | | |
|
||||
'---------'---------' | '---------' '---------' | '---------'---------'
|
||||
| block 6 |
|
||||
| .---------. |
|
||||
'------------>| rev: 2 |-'
|
||||
| corrupt!|
|
||||
| corrupt!|
|
||||
| corrupt!|
|
||||
'---------'
|
||||
|
||||
| remove corrupted block from linked-list
|
||||
v
|
||||
|
||||
root dir
|
||||
block 1 block 2
|
||||
.---------.---------.
|
||||
| rev: 1 | rev: 2 |--.
|
||||
| | |-.|
|
||||
.-----| | |-|'
|
||||
|.----| | |-'
|
||||
|| '---------'---------'
|
||||
|| .--------'||||'-----------------------------------------.
|
||||
|| | |||'--------------------------------. |
|
||||
|| | ||'--------------------. | |
|
||||
|| | |'-----------. | | |
|
||||
|| | | | | | |
|
||||
|| v v v v v v
|
||||
|| dir A dir B dir C
|
||||
|| block 3 block 4 block 5 block 9 block 7 block 8
|
||||
|| .---------.---------. .---------.---------. .---------.---------.
|
||||
|'->| rev: 1 | rev: 2 |->| rev: 1 | rev: 2 |->| rev: 1 | rev: 0 |
|
||||
'-->| | |->| | |->| | |
|
||||
| | | | | | | | |
|
||||
| | | | | | | | |
|
||||
'---------'---------' '---------'---------' '---------'---------'
|
||||
```
|
||||
|
||||
Also one question I've been getting is, what about the root directory?
|
||||
It can't move so wouldn't the filesystem die as soon as the root blocks
|
||||
develop errors? And you would be correct. So instead of storing the root
|
||||
in the first few blocks of the storage, the root is actually pointed to
|
||||
by the superblock. The superblock contains a few bits of static data, but
|
||||
outside of when the filesystem is formatted, it is only updated when the root
|
||||
develops errors and needs to be moved.
|
||||
|
||||
## Wear leveling
|
||||
|
||||
The second concern for the littlefs, is that blocks in the filesystem may wear
|
||||
unevenly. In this situation, a filesystem may meet an early demise where
|
||||
there are no more non-corrupted blocks that aren't in use. It may be entirely
|
||||
possible that files were written once and left unmodified, wasting the
|
||||
potential erase cycles of the blocks it sits on.
|
||||
|
||||
Wear leveling is a term that describes distributing block writes evenly to
|
||||
avoid the early termination of a flash part. There are typically two levels
|
||||
of wear leveling:
|
||||
1. Dynamic wear leveling - Blocks are distributed evenly during blocks writes.
|
||||
Note that the issue with write-once files still exists in this case.
|
||||
2. Static wear leveling - Unmodified blocks are evicted for new block writes.
|
||||
This provides the longest lifetime for a flash device.
|
||||
|
||||
Now, it's possible to use the revision count on metadata pairs to approximate
|
||||
the wear of a metadata block. And combined with the COW nature of files, the
|
||||
littlefs could provide a form of dynamic wear leveling.
|
||||
|
||||
However, the littlefs does not. This is for a few reasons. Most notably, even
|
||||
if the littlefs did implement dynamic wear leveling, this would still not
|
||||
handle the case of write-once files, and near the end of the lifetime of a
|
||||
flash device, you would likely end up with uneven wear on the blocks anyways.
|
||||
|
||||
As a flash device reaches the end of its life, the metadata blocks will
|
||||
naturally be the first to go since they are updated most often. In this
|
||||
situation, the littlefs is designed to simply move on to another set of
|
||||
metadata blocks. This travelling means that at the end of a flash device's
|
||||
life, the filesystem will have worn the device down as evenly as a dynamic
|
||||
wear leveling filesystem could anyways. Simply put, if the lifetime of flash
|
||||
is a serious concern, static wear leveling is the only valid solution.
|
||||
|
||||
This is a very important takeaway to note. If your storage stack uses highly
|
||||
sensitive storage such as NAND flash. In most cases you are going to be better
|
||||
off just using a [flash translation layer (FTL)](https://en.wikipedia.org/wiki/Flash_translation_layer).
|
||||
NAND flash already has many limitations that make it poorly suited for an
|
||||
embedded system: low erase cycles, very large blocks, errors that can develop
|
||||
even during reads, errors that can develop during writes of neighboring blocks.
|
||||
Managing sensitive storage such as NAND flash is out of scope for the littlefs.
|
||||
The littlefs does have some properties that may be beneficial on top of a FTL,
|
||||
such as limiting the number of writes where possible. But if you have the
|
||||
storage requirements that necessitate the need of NAND flash, you should have
|
||||
the RAM to match and just use an FTL or flash filesystem.
|
||||
|
||||
## Summary
|
||||
|
||||
So, to summarize:
|
||||
|
||||
1. The littlefs is composed of directory blocks
|
||||
2. Each directory is a linked-list of metadata pairs
|
||||
3. These metadata pairs can be updated atomically by alternative which
|
||||
metadata block is active
|
||||
4. Directory blocks contain either references to other directories or files
|
||||
5. Files are represented by copy-on-write CTZ linked-lists
|
||||
6. The CTZ linked-lists support appending in O(1) and reading in O(n logn)
|
||||
7. Blocks are allocated by scanning the filesystem for used blocks in a
|
||||
fixed-size lookahead region is that stored in a bit-vector
|
||||
8. To facilitate scanning the filesystem, all directories are part of a
|
||||
linked-list that is threaded through the entire filesystem
|
||||
9. If a block develops an error, the littlefs allocates a new block, and
|
||||
moves the data and references of the old block to the new.
|
||||
10. Any case where an atomic operation is not possible, it is taken care of
|
||||
by a deorphan step that occurs on the first allocation after boot
|
||||
|
||||
Welp, that's the little filesystem. Thanks for reading!
|
||||
|
|
@ -0,0 +1,165 @@
|
|||
Apache License
|
||||
Version 2.0, January 2004
|
||||
http://www.apache.org/licenses/
|
||||
|
||||
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
||||
|
||||
1. Definitions.
|
||||
|
||||
"License" shall mean the terms and conditions for use, reproduction, and
|
||||
distribution as defined by Sections 1 through 9 of this document.
|
||||
|
||||
"Licensor" shall mean the copyright owner or entity authorized by the copyright
|
||||
owner that is granting the License.
|
||||
|
||||
"Legal Entity" shall mean the union of the acting entity and all other entities
|
||||
that control, are controlled by, or are under common control with that entity.
|
||||
For the purposes of this definition, "control" means (i) the power, direct or
|
||||
indirect, to cause the direction or management of such entity, whether by
|
||||
contract or otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
||||
outstanding shares, or (iii) beneficial ownership of such entity.
|
||||
|
||||
"You" (or "Your") shall mean an individual or Legal Entity exercising
|
||||
permissions granted by this License.
|
||||
|
||||
"Source" form shall mean the preferred form for making modifications, including
|
||||
but not limited to software source code, documentation source, and configuration
|
||||
files.
|
||||
|
||||
"Object" form shall mean any form resulting from mechanical transformation or
|
||||
translation of a Source form, including but not limited to compiled object code,
|
||||
generated documentation, and conversions to other media types.
|
||||
|
||||
"Work" shall mean the work of authorship, whether in Source or Object form, made
|
||||
available under the License, as indicated by a copyright notice that is included
|
||||
in or attached to the work (an example is provided in the Appendix below).
|
||||
|
||||
"Derivative Works" shall mean any work, whether in Source or Object form, that
|
||||
is based on (or derived from) the Work and for which the editorial revisions,
|
||||
annotations, elaborations, or other modifications represent, as a whole, an
|
||||
original work of authorship. For the purposes of this License, Derivative Works
|
||||
shall not include works that remain separable from, or merely link (or bind by
|
||||
name) to the interfaces of, the Work and Derivative Works thereof.
|
||||
|
||||
"Contribution" shall mean any work of authorship, including the original version
|
||||
of the Work and any modifications or additions to that Work or Derivative Works
|
||||
thereof, that is intentionally submitted to Licensor for inclusion in the Work
|
||||
by the copyright owner or by an individual or Legal Entity authorized to submit
|
||||
on behalf of the copyright owner. For the purposes of this definition,
|
||||
"submitted" means any form of electronic, verbal, or written communication sent
|
||||
to the Licensor or its representatives, including but not limited to
|
||||
communication on electronic mailing lists, source code control systems, and
|
||||
issue tracking systems that are managed by, or on behalf of, the Licensor for
|
||||
the purpose of discussing and improving the Work, but excluding communication
|
||||
that is conspicuously marked or otherwise designated in writing by the copyright
|
||||
owner as "Not a Contribution."
|
||||
|
||||
"Contributor" shall mean Licensor and any individual or Legal Entity on behalf
|
||||
of whom a Contribution has been received by Licensor and subsequently
|
||||
incorporated within the Work.
|
||||
|
||||
2. Grant of Copyright License.
|
||||
|
||||
Subject to the terms and conditions of this License, each Contributor hereby
|
||||
grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free,
|
||||
irrevocable copyright license to reproduce, prepare Derivative Works of,
|
||||
publicly display, publicly perform, sublicense, and distribute the Work and such
|
||||
Derivative Works in Source or Object form.
|
||||
|
||||
3. Grant of Patent License.
|
||||
|
||||
Subject to the terms and conditions of this License, each Contributor hereby
|
||||
grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free,
|
||||
irrevocable (except as stated in this section) patent license to make, have
|
||||
made, use, offer to sell, sell, import, and otherwise transfer the Work, where
|
||||
such license applies only to those patent claims licensable by such Contributor
|
||||
that are necessarily infringed by their Contribution(s) alone or by combination
|
||||
of their Contribution(s) with the Work to which such Contribution(s) was
|
||||
submitted. If You institute patent litigation against any entity (including a
|
||||
cross-claim or counterclaim in a lawsuit) alleging that the Work or a
|
||||
Contribution incorporated within the Work constitutes direct or contributory
|
||||
patent infringement, then any patent licenses granted to You under this License
|
||||
for that Work shall terminate as of the date such litigation is filed.
|
||||
|
||||
4. Redistribution.
|
||||
|
||||
You may reproduce and distribute copies of the Work or Derivative Works thereof
|
||||
in any medium, with or without modifications, and in Source or Object form,
|
||||
provided that You meet the following conditions:
|
||||
|
||||
You must give any other recipients of the Work or Derivative Works a copy of
|
||||
this License; and
|
||||
You must cause any modified files to carry prominent notices stating that You
|
||||
changed the files; and
|
||||
You must retain, in the Source form of any Derivative Works that You distribute,
|
||||
all copyright, patent, trademark, and attribution notices from the Source form
|
||||
of the Work, excluding those notices that do not pertain to any part of the
|
||||
Derivative Works; and
|
||||
If the Work includes a "NOTICE" text file as part of its distribution, then any
|
||||
Derivative Works that You distribute must include a readable copy of the
|
||||
attribution notices contained within such NOTICE file, excluding those notices
|
||||
that do not pertain to any part of the Derivative Works, in at least one of the
|
||||
following places: within a NOTICE text file distributed as part of the
|
||||
Derivative Works; within the Source form or documentation, if provided along
|
||||
with the Derivative Works; or, within a display generated by the Derivative
|
||||
Works, if and wherever such third-party notices normally appear. The contents of
|
||||
the NOTICE file are for informational purposes only and do not modify the
|
||||
License. You may add Your own attribution notices within Derivative Works that
|
||||
You distribute, alongside or as an addendum to the NOTICE text from the Work,
|
||||
provided that such additional attribution notices cannot be construed as
|
||||
modifying the License.
|
||||
You may add Your own copyright statement to Your modifications and may provide
|
||||
additional or different license terms and conditions for use, reproduction, or
|
||||
distribution of Your modifications, or for any such Derivative Works as a whole,
|
||||
provided Your use, reproduction, and distribution of the Work otherwise complies
|
||||
with the conditions stated in this License.
|
||||
|
||||
5. Submission of Contributions.
|
||||
|
||||
Unless You explicitly state otherwise, any Contribution intentionally submitted
|
||||
for inclusion in the Work by You to the Licensor shall be under the terms and
|
||||
conditions of this License, without any additional terms or conditions.
|
||||
Notwithstanding the above, nothing herein shall supersede or modify the terms of
|
||||
any separate license agreement you may have executed with Licensor regarding
|
||||
such Contributions.
|
||||
|
||||
6. Trademarks.
|
||||
|
||||
This License does not grant permission to use the trade names, trademarks,
|
||||
service marks, or product names of the Licensor, except as required for
|
||||
reasonable and customary use in describing the origin of the Work and
|
||||
reproducing the content of the NOTICE file.
|
||||
|
||||
7. Disclaimer of Warranty.
|
||||
|
||||
Unless required by applicable law or agreed to in writing, Licensor provides the
|
||||
Work (and each Contributor provides its Contributions) on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied,
|
||||
including, without limitation, any warranties or conditions of TITLE,
|
||||
NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. You are
|
||||
solely responsible for determining the appropriateness of using or
|
||||
redistributing the Work and assume any risks associated with Your exercise of
|
||||
permissions under this License.
|
||||
|
||||
8. Limitation of Liability.
|
||||
|
||||
In no event and under no legal theory, whether in tort (including negligence),
|
||||
contract, or otherwise, unless required by applicable law (such as deliberate
|
||||
and grossly negligent acts) or agreed to in writing, shall any Contributor be
|
||||
liable to You for damages, including any direct, indirect, special, incidental,
|
||||
or consequential damages of any character arising as a result of this License or
|
||||
out of the use or inability to use the Work (including but not limited to
|
||||
damages for loss of goodwill, work stoppage, computer failure or malfunction, or
|
||||
any and all other commercial damages or losses), even if such Contributor has
|
||||
been advised of the possibility of such damages.
|
||||
|
||||
9. Accepting Warranty or Additional Liability.
|
||||
|
||||
While redistributing the Work or Derivative Works thereof, You may choose to
|
||||
offer, and charge a fee for, acceptance of support, warranty, indemnity, or
|
||||
other liability obligations and/or rights consistent with this License. However,
|
||||
in accepting such obligations, You may act only on Your own behalf and on Your
|
||||
sole responsibility, not on behalf of any other Contributor, and only if You
|
||||
agree to indemnify, defend, and hold each Contributor harmless for any liability
|
||||
incurred by, or claims asserted against, such Contributor by reason of your
|
||||
accepting any such warranty or additional liability.
|
|
@ -0,0 +1,57 @@
|
|||
TARGET = lfs
|
||||
|
||||
CC = gcc
|
||||
AR = ar
|
||||
SIZE = size
|
||||
|
||||
SRC += $(wildcard *.c emubd/*.c)
|
||||
OBJ := $(SRC:.c=.o)
|
||||
DEP := $(SRC:.c=.d)
|
||||
ASM := $(SRC:.c=.s)
|
||||
|
||||
TEST := $(patsubst tests/%.sh,%,$(wildcard tests/test_*))
|
||||
|
||||
ifdef DEBUG
|
||||
CFLAGS += -O0 -g3
|
||||
else
|
||||
CFLAGS += -Os
|
||||
endif
|
||||
ifdef WORD
|
||||
CFLAGS += -m$(WORD)
|
||||
endif
|
||||
CFLAGS += -I.
|
||||
CFLAGS += -std=c99 -Wall -pedantic
|
||||
|
||||
|
||||
all: $(TARGET)
|
||||
|
||||
asm: $(ASM)
|
||||
|
||||
size: $(OBJ)
|
||||
$(SIZE) -t $^
|
||||
|
||||
.SUFFIXES:
|
||||
test: test_format test_dirs test_files test_seek test_parallel \
|
||||
test_alloc test_paths test_orphan test_corrupt
|
||||
test_%: tests/test_%.sh
|
||||
./$<
|
||||
|
||||
-include $(DEP)
|
||||
|
||||
$(TARGET): $(OBJ)
|
||||
$(CC) $(CFLAGS) $^ $(LFLAGS) -o $@
|
||||
|
||||
%.a: $(OBJ)
|
||||
$(AR) rcs $@ $^
|
||||
|
||||
%.o: %.c
|
||||
$(CC) -c -MMD $(CFLAGS) $< -o $@
|
||||
|
||||
%.s: %.c
|
||||
$(CC) -S $(CFLAGS) $< -o $@
|
||||
|
||||
clean:
|
||||
rm -f $(TARGET)
|
||||
rm -f $(OBJ)
|
||||
rm -f $(DEP)
|
||||
rm -f $(ASM)
|
|
@ -0,0 +1,142 @@
|
|||
## The little filesystem
|
||||
|
||||
A little fail-safe filesystem designed for embedded systems.
|
||||
|
||||
```
|
||||
| | | .---._____
|
||||
.-----. | |
|
||||
--|o |---| littlefs |
|
||||
--| |---| |
|
||||
'-----' '----------'
|
||||
| | |
|
||||
```
|
||||
|
||||
**Fail-safe** - The littlefs is designed to work consistently with random
|
||||
power failures. During filesystem operations the storage on disk is always
|
||||
kept in a valid state. The filesystem also has strong copy-on-write garuntees.
|
||||
When updating a file, the original file will remain unmodified until the
|
||||
file is closed, or sync is called.
|
||||
|
||||
**Wear awareness** - While the littlefs does not implement static wear
|
||||
leveling, the littlefs takes into account write errors reported by the
|
||||
underlying block device and uses a limited form of dynamic wear leveling
|
||||
to manage blocks that go bad during the lifetime of the filesystem.
|
||||
|
||||
**Bounded ram/rom** - The littlefs is designed to work in a
|
||||
limited amount of memory, recursion is avoided, and dynamic memory is kept
|
||||
to a minimum. The littlefs allocates two fixed-size buffers for general
|
||||
operations, and one fixed-size buffer per file. If there is only ever one file
|
||||
in use, all memory can be provided statically and the littlefs can be used
|
||||
in a system without dynamic memory.
|
||||
|
||||
## Example
|
||||
|
||||
Here's a simple example that updates a file named `boot_count` every time
|
||||
main runs. The program can be interrupted at any time without losing track
|
||||
of how many times it has been booted and without corrupting the filesystem:
|
||||
|
||||
``` c
|
||||
#include "lfs.h"
|
||||
|
||||
// variables used by the filesystem
|
||||
lfs_t lfs;
|
||||
lfs_file_t file;
|
||||
|
||||
// configuration of the filesystem is provided by this struct
|
||||
const struct lfs_config cfg = {
|
||||
// block device operations
|
||||
.read = user_provided_block_device_read,
|
||||
.prog = user_provided_block_device_prog,
|
||||
.erase = user_provided_block_device_erase,
|
||||
.sync = user_provided_block_device_sync,
|
||||
|
||||
// block device configuration
|
||||
.read_size = 16,
|
||||
.prog_size = 16,
|
||||
.block_size = 4096,
|
||||
.block_count = 128,
|
||||
.lookahead = 128,
|
||||
};
|
||||
|
||||
// entry point
|
||||
int main(void) {
|
||||
// mount the filesystem
|
||||
int err = lfs_mount(&lfs, &cfg);
|
||||
|
||||
// reformat if we can't mount the filesystem
|
||||
// this should only happen on the first boot
|
||||
if (err) {
|
||||
lfs_format(&lfs, &cfg);
|
||||
lfs_mount(&lfs, &cfg);
|
||||
}
|
||||
|
||||
// read current count
|
||||
uint32_t boot_count = 0;
|
||||
lfs_file_open(&lfs, &file, "boot_count", LFS_O_RDWR | LFS_O_CREAT);
|
||||
lfs_file_read(&lfs, &file, &boot_count, sizeof(boot_count));
|
||||
|
||||
// update boot count
|
||||
boot_count += 1;
|
||||
printf("boot_count: %ld\n", boot_count);
|
||||
lfs_file_rewind(&lfs, &file);
|
||||
lfs_file_write(&lfs, &file, &boot_count, sizeof(boot_count));
|
||||
|
||||
// remember the storage is not updated until the file is closed successfully
|
||||
lfs_file_close(&lfs, &file);
|
||||
|
||||
// release any resources we were using
|
||||
lfs_unmount(&lfs);
|
||||
}
|
||||
```
|
||||
|
||||
## Usage
|
||||
|
||||
Detailed documentation (or at least as much detail as is currently available)
|
||||
can be cound in the comments in [lfs.h](lfs.h).
|
||||
|
||||
As you may have noticed, the littlefs takes in a configuration structure that
|
||||
defines how the filesystem operates. The configuration struct provides the
|
||||
filesystem with the block device operations and dimensions, tweakable
|
||||
parameters that tradeoff memory usage for performance, and optional
|
||||
static buffers if the user wants to avoid dynamic memory.
|
||||
|
||||
The state of the littlefs is stored in the `lfs_t` type which is left up
|
||||
to the user to allocate, allowing multiple filesystems to be in use
|
||||
simultaneously. With the `lfs_t` and configuration struct, a user can either
|
||||
format a block device or mount the filesystem.
|
||||
|
||||
Once mounted, the littlefs provides a full set of posix-like file and
|
||||
directory functions, with the deviation that the allocation of filesystem
|
||||
structures must be provided by the user. An important addition is that
|
||||
no file updates will actually be written to disk until a sync or close
|
||||
is called.
|
||||
|
||||
## Other notes
|
||||
|
||||
All littlefs have the potential to return a negative error code. The errors
|
||||
can be either one of those found in the `enum lfs_error` in [lfs.h](lfs.h),
|
||||
or an error returned by the user's block device operations.
|
||||
|
||||
It should also be noted that the littlefs does not do anything to insure
|
||||
that the data written to disk is machine portable. It should be fine as
|
||||
long as the machines involved share endianness and don't have really
|
||||
strange padding requirements. If the question does come up, the littlefs
|
||||
metadata should be stored on disk in little-endian format.
|
||||
|
||||
## Design
|
||||
|
||||
the littlefs was developed with the goal of learning more about filesystem
|
||||
design by tackling the relative unsolved problem of managing a robust
|
||||
filesystem resilient to power loss on devices with limited RAM and ROM.
|
||||
More detail on the solutions and tradeoffs incorporated into this filesystem
|
||||
can be found in [DESIGN.md](DESIGN.md).
|
||||
|
||||
## Testing
|
||||
|
||||
The littlefs comes with a test suite designed to run on a pc using the
|
||||
[emulated block device](emubd/lfs_emubd.h) found in the emubd directory.
|
||||
The tests assume a linux environment and can be started with make:
|
||||
|
||||
``` bash
|
||||
make test
|
||||
```
|
|
@ -0,0 +1,242 @@
|
|||
/*
|
||||
* Block device emulated on standard files
|
||||
*
|
||||
* Copyright (c) 2017 Christopher Haster
|
||||
* Distributed under the Apache 2.0 license
|
||||
*/
|
||||
#include "emubd/lfs_emubd.h"
|
||||
|
||||
#include <errno.h>
|
||||
#include <string.h>
|
||||
#include <stdlib.h>
|
||||
#include <stdio.h>
|
||||
#include <limits.h>
|
||||
#include <dirent.h>
|
||||
#include <sys/stat.h>
|
||||
#include <unistd.h>
|
||||
#include <assert.h>
|
||||
#include <stdbool.h>
|
||||
|
||||
|
||||
// Block device emulated on existing filesystem
|
||||
int lfs_emubd_create(const struct lfs_config *cfg, const char *path) {
|
||||
lfs_emubd_t *emu = cfg->context;
|
||||
emu->cfg.read_size = cfg->read_size;
|
||||
emu->cfg.prog_size = cfg->prog_size;
|
||||
emu->cfg.block_size = cfg->block_size;
|
||||
emu->cfg.block_count = cfg->block_count;
|
||||
|
||||
// Allocate buffer for creating children files
|
||||
size_t pathlen = strlen(path);
|
||||
emu->path = malloc(pathlen + 1 + LFS_NAME_MAX + 1);
|
||||
if (!emu->path) {
|
||||
return -ENOMEM;
|
||||
}
|
||||
|
||||
strcpy(emu->path, path);
|
||||
emu->path[pathlen] = '/';
|
||||
emu->child = &emu->path[pathlen+1];
|
||||
memset(emu->child, '\0', LFS_NAME_MAX+1);
|
||||
|
||||
// Create directory if it doesn't exist
|
||||
int err = mkdir(path, 0777);
|
||||
if (err && errno != EEXIST) {
|
||||
return -errno;
|
||||
}
|
||||
|
||||
// Load stats to continue incrementing
|
||||
snprintf(emu->child, LFS_NAME_MAX, "stats");
|
||||
FILE *f = fopen(emu->path, "r");
|
||||
if (!f) {
|
||||
return -errno;
|
||||
}
|
||||
|
||||
size_t res = fread(&emu->stats, sizeof(emu->stats), 1, f);
|
||||
if (res < 1) {
|
||||
return -errno;
|
||||
}
|
||||
|
||||
err = fclose(f);
|
||||
if (err) {
|
||||
return -errno;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
void lfs_emubd_destroy(const struct lfs_config *cfg) {
|
||||
lfs_emubd_sync(cfg);
|
||||
|
||||
lfs_emubd_t *emu = cfg->context;
|
||||
free(emu->path);
|
||||
}
|
||||
|
||||
int lfs_emubd_read(const struct lfs_config *cfg, lfs_block_t block,
|
||||
lfs_off_t off, void *buffer, lfs_size_t size) {
|
||||
lfs_emubd_t *emu = cfg->context;
|
||||
uint8_t *data = buffer;
|
||||
|
||||
// Check if read is valid
|
||||
assert(off % cfg->read_size == 0);
|
||||
assert(size % cfg->read_size == 0);
|
||||
assert(block < cfg->block_count);
|
||||
|
||||
// Zero out buffer for debugging
|
||||
memset(data, 0, size);
|
||||
|
||||
// Read data
|
||||
snprintf(emu->child, LFS_NAME_MAX, "%x", block);
|
||||
|
||||
FILE *f = fopen(emu->path, "rb");
|
||||
if (!f && errno != ENOENT) {
|
||||
return -errno;
|
||||
}
|
||||
|
||||
if (f) {
|
||||
int err = fseek(f, off, SEEK_SET);
|
||||
if (err) {
|
||||
return -errno;
|
||||
}
|
||||
|
||||
size_t res = fread(data, 1, size, f);
|
||||
if (res < size && !feof(f)) {
|
||||
return -errno;
|
||||
}
|
||||
|
||||
err = fclose(f);
|
||||
if (err) {
|
||||
return -errno;
|
||||
}
|
||||
}
|
||||
|
||||
emu->stats.read_count += 1;
|
||||
return 0;
|
||||
}
|
||||
|
||||
int lfs_emubd_prog(const struct lfs_config *cfg, lfs_block_t block,
|
||||
lfs_off_t off, const void *buffer, lfs_size_t size) {
|
||||
lfs_emubd_t *emu = cfg->context;
|
||||
const uint8_t *data = buffer;
|
||||
|
||||
// Check if write is valid
|
||||
assert(off % cfg->prog_size == 0);
|
||||
assert(size % cfg->prog_size == 0);
|
||||
assert(block < cfg->block_count);
|
||||
|
||||
// Program data
|
||||
snprintf(emu->child, LFS_NAME_MAX, "%x", block);
|
||||
|
||||
FILE *f = fopen(emu->path, "r+b");
|
||||
if (!f && errno != ENOENT) {
|
||||
return -errno;
|
||||
}
|
||||
|
||||
// Check that file was erased
|
||||
assert(f);
|
||||
|
||||
int err = fseek(f, off, SEEK_SET);
|
||||
if (err) {
|
||||
return -errno;
|
||||
}
|
||||
|
||||
size_t res = fwrite(data, 1, size, f);
|
||||
if (res < size) {
|
||||
return -errno;
|
||||
}
|
||||
|
||||
err = fseek(f, off, SEEK_SET);
|
||||
if (err) {
|
||||
return -errno;
|
||||
}
|
||||
|
||||
uint8_t dat;
|
||||
res = fread(&dat, 1, 1, f);
|
||||
if (res < 1) {
|
||||
return -errno;
|
||||
}
|
||||
|
||||
err = fclose(f);
|
||||
if (err) {
|
||||
return -errno;
|
||||
}
|
||||
|
||||
emu->stats.prog_count += 1;
|
||||
return 0;
|
||||
}
|
||||
|
||||
int lfs_emubd_erase(const struct lfs_config *cfg, lfs_block_t block) {
|
||||
lfs_emubd_t *emu = cfg->context;
|
||||
|
||||
// Check if erase is valid
|
||||
assert(block < cfg->block_count);
|
||||
|
||||
// Erase the block
|
||||
snprintf(emu->child, LFS_NAME_MAX, "%x", block);
|
||||
struct stat st;
|
||||
int err = stat(emu->path, &st);
|
||||
if (err && errno != ENOENT) {
|
||||
return -errno;
|
||||
}
|
||||
|
||||
if (!err && S_ISREG(st.st_mode)) {
|
||||
int err = unlink(emu->path);
|
||||
if (err) {
|
||||
return -errno;
|
||||
}
|
||||
}
|
||||
|
||||
if (err || S_ISREG(st.st_mode)) {
|
||||
FILE *f = fopen(emu->path, "w");
|
||||
if (!f) {
|
||||
return -errno;
|
||||
}
|
||||
|
||||
err = fclose(f);
|
||||
if (err) {
|
||||
return -errno;
|
||||
}
|
||||
}
|
||||
|
||||
emu->stats.erase_count += 1;
|
||||
return 0;
|
||||
}
|
||||
|
||||
int lfs_emubd_sync(const struct lfs_config *cfg) {
|
||||
lfs_emubd_t *emu = cfg->context;
|
||||
|
||||
// Just write out info/stats for later lookup
|
||||
snprintf(emu->child, LFS_NAME_MAX, "config");
|
||||
FILE *f = fopen(emu->path, "w");
|
||||
if (!f) {
|
||||
return -errno;
|
||||
}
|
||||
|
||||
size_t res = fwrite(&emu->cfg, sizeof(emu->cfg), 1, f);
|
||||
if (res < 1) {
|
||||
return -errno;
|
||||
}
|
||||
|
||||
int err = fclose(f);
|
||||
if (err) {
|
||||
return -errno;
|
||||
}
|
||||
|
||||
snprintf(emu->child, LFS_NAME_MAX, "stats");
|
||||
f = fopen(emu->path, "w");
|
||||
if (!f) {
|
||||
return -errno;
|
||||
}
|
||||
|
||||
res = fwrite(&emu->stats, sizeof(emu->stats), 1, f);
|
||||
if (res < 1) {
|
||||
return -errno;
|
||||
}
|
||||
|
||||
err = fclose(f);
|
||||
if (err) {
|
||||
return -errno;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
|
@ -0,0 +1,78 @@
|
|||
/*
|
||||
* Block device emulated on standard files
|
||||
*
|
||||
* Copyright (c) 2017 Christopher Haster
|
||||
* Distributed under the Apache 2.0 license
|
||||
*/
|
||||
#ifndef LFS_EMUBD_H
|
||||
#define LFS_EMUBD_H
|
||||
|
||||
#include "lfs.h"
|
||||
#include "lfs_util.h"
|
||||
|
||||
|
||||
// Config options
|
||||
#ifndef LFS_EMUBD_READ_SIZE
|
||||
#define LFS_EMUBD_READ_SIZE 1
|
||||
#endif
|
||||
|
||||
#ifndef LFS_EMUBD_PROG_SIZE
|
||||
#define LFS_EMUBD_PROG_SIZE 1
|
||||
#endif
|
||||
|
||||
#ifndef LFS_EMUBD_ERASE_SIZE
|
||||
#define LFS_EMUBD_ERASE_SIZE 512
|
||||
#endif
|
||||
|
||||
#ifndef LFS_EMUBD_TOTAL_SIZE
|
||||
#define LFS_EMUBD_TOTAL_SIZE 524288
|
||||
#endif
|
||||
|
||||
|
||||
// The emu bd state
|
||||
typedef struct lfs_emubd {
|
||||
char *path;
|
||||
char *child;
|
||||
|
||||
struct {
|
||||
uint64_t read_count;
|
||||
uint64_t prog_count;
|
||||
uint64_t erase_count;
|
||||
} stats;
|
||||
|
||||
struct {
|
||||
uint32_t read_size;
|
||||
uint32_t prog_size;
|
||||
uint32_t block_size;
|
||||
uint32_t block_count;
|
||||
} cfg;
|
||||
} lfs_emubd_t;
|
||||
|
||||
|
||||
// Create a block device using path for the directory to store blocks
|
||||
int lfs_emubd_create(const struct lfs_config *cfg, const char *path);
|
||||
|
||||
// Clean up memory associated with emu block device
|
||||
void lfs_emubd_destroy(const struct lfs_config *cfg);
|
||||
|
||||
// Read a block
|
||||
int lfs_emubd_read(const struct lfs_config *cfg, lfs_block_t block,
|
||||
lfs_off_t off, void *buffer, lfs_size_t size);
|
||||
|
||||
// Program a block
|
||||
//
|
||||
// The block must have previously been erased.
|
||||
int lfs_emubd_prog(const struct lfs_config *cfg, lfs_block_t block,
|
||||
lfs_off_t off, const void *buffer, lfs_size_t size);
|
||||
|
||||
// Erase a block
|
||||
//
|
||||
// A block must be erased before being programmed. The
|
||||
// state of an erased block is undefined.
|
||||
int lfs_emubd_erase(const struct lfs_config *cfg, lfs_block_t block);
|
||||
|
||||
// Sync the block device
|
||||
int lfs_emubd_sync(const struct lfs_config *cfg);
|
||||
|
||||
|
||||
#endif
|
File diff suppressed because it is too large
Load Diff
|
@ -0,0 +1,435 @@
|
|||
/*
|
||||
* The little filesystem
|
||||
*
|
||||
* Copyright (c) 2017 Christopher Haster
|
||||
* Distributed under the Apache 2.0 license
|
||||
*/
|
||||
#ifndef LFS_H
|
||||
#define LFS_H
|
||||
|
||||
#include <stdint.h>
|
||||
#include <stdbool.h>
|
||||
|
||||
|
||||
/// Definitions ///
|
||||
|
||||
// Type definitions
|
||||
typedef uint32_t lfs_size_t;
|
||||
typedef uint32_t lfs_off_t;
|
||||
|
||||
typedef int32_t lfs_ssize_t;
|
||||
typedef int32_t lfs_soff_t;
|
||||
|
||||
typedef uint32_t lfs_block_t;
|
||||
|
||||
// Max name size in bytes
|
||||
#ifndef LFS_NAME_MAX
|
||||
#define LFS_NAME_MAX 255
|
||||
#endif
|
||||
|
||||
// Possible error codes, these are negative to allow
|
||||
// valid positive return values
|
||||
enum lfs_error {
|
||||
LFS_ERR_OK = 0, // No error
|
||||
LFS_ERR_IO = -5, // Error during device operation
|
||||
LFS_ERR_CORRUPT = -52, // Corrupted
|
||||
LFS_ERR_NOENT = -2, // No directory entry
|
||||
LFS_ERR_EXISTS = -17, // Entry already exists
|
||||
LFS_ERR_NOTDIR = -20, // Entry is not a dir
|
||||
LFS_ERR_ISDIR = -21, // Entry is a dir
|
||||
LFS_ERR_INVAL = -22, // Invalid parameter
|
||||
LFS_ERR_NOSPC = -28, // No space left on device
|
||||
LFS_ERR_NOMEM = -12, // No more memory available
|
||||
};
|
||||
|
||||
// File types
|
||||
enum lfs_type {
|
||||
LFS_TYPE_REG = 0x11,
|
||||
LFS_TYPE_DIR = 0x22,
|
||||
LFS_TYPE_SUPERBLOCK = 0xe2,
|
||||
};
|
||||
|
||||
// File open flags
|
||||
enum lfs_open_flags {
|
||||
// open flags
|
||||
LFS_O_RDONLY = 1, // Open a file as read only
|
||||
LFS_O_WRONLY = 2, // Open a file as write only
|
||||
LFS_O_RDWR = 3, // Open a file as read and write
|
||||
LFS_O_CREAT = 0x0100, // Create a file if it does not exist
|
||||
LFS_O_EXCL = 0x0200, // Fail if a file already exists
|
||||
LFS_O_TRUNC = 0x0400, // Truncate the existing file to zero size
|
||||
LFS_O_APPEND = 0x0800, // Move to end of file on every write
|
||||
|
||||
// internally used flags
|
||||
LFS_F_DIRTY = 0x10000, // File does not match storage
|
||||
LFS_F_WRITING = 0x20000, // File has been written since last flush
|
||||
LFS_F_READING = 0x40000, // File has been read since last flush
|
||||
};
|
||||
|
||||
// File seek flags
|
||||
enum lfs_whence_flags {
|
||||
LFS_SEEK_SET = 0, // Seek relative to an absolute position
|
||||
LFS_SEEK_CUR = 1, // Seek relative to the current file position
|
||||
LFS_SEEK_END = 2, // Seek relative to the end of the file
|
||||
};
|
||||
|
||||
|
||||
// Configuration provided during initialization of the littlefs
|
||||
struct lfs_config {
|
||||
// Opaque user provided context that can be used to pass
|
||||
// information to the block device operations
|
||||
void *context;
|
||||
|
||||
// Read a region in a block. Negative error codes are propogated
|
||||
// to the user.
|
||||
int (*read)(const struct lfs_config *c, lfs_block_t block,
|
||||
lfs_off_t off, void *buffer, lfs_size_t size);
|
||||
|
||||
// Program a region in a block. The block must have previously
|
||||
// been erased. Negative error codes are propogated to the user.
|
||||
// The prog function must return LFS_ERR_CORRUPT if the block should
|
||||
// be considered bad.
|
||||
int (*prog)(const struct lfs_config *c, lfs_block_t block,
|
||||
lfs_off_t off, const void *buffer, lfs_size_t size);
|
||||
|
||||
// Erase a block. A block must be erased before being programmed.
|
||||
// The state of an erased block is undefined. Negative error codes
|
||||
// are propogated to the user.
|
||||
int (*erase)(const struct lfs_config *c, lfs_block_t block);
|
||||
|
||||
// Sync the state of the underlying block device. Negative error codes
|
||||
// are propogated to the user.
|
||||
int (*sync)(const struct lfs_config *c);
|
||||
|
||||
// Minimum size of a block read. This determines the size of read buffers.
|
||||
// This may be larger than the physical read size to improve performance
|
||||
// by caching more of the block device.
|
||||
lfs_size_t read_size;
|
||||
|
||||
// Minimum size of a block program. This determines the size of program
|
||||
// buffers. This may be larger than the physical program size to improve
|
||||
// performance by caching more of the block device.
|
||||
lfs_size_t prog_size;
|
||||
|
||||
// Size of an erasable block. This does not impact ram consumption and
|
||||
// may be larger than the physical erase size. However, this should be
|
||||
// kept small as each file currently takes up an entire block .
|
||||
lfs_size_t block_size;
|
||||
|
||||
// Number of erasable blocks on the device.
|
||||
lfs_size_t block_count;
|
||||
|
||||
// Number of blocks to lookahead during block allocation. A larger
|
||||
// lookahead reduces the number of passes required to allocate a block.
|
||||
// The lookahead buffer requires only 1 bit per block so it can be quite
|
||||
// large with little ram impact. Should be a multiple of 32.
|
||||
lfs_size_t lookahead;
|
||||
|
||||
// Optional, statically allocated read buffer. Must be read sized.
|
||||
void *read_buffer;
|
||||
|
||||
// Optional, statically allocated program buffer. Must be program sized.
|
||||
void *prog_buffer;
|
||||
|
||||
// Optional, statically allocated lookahead buffer. Must be 1 bit per
|
||||
// lookahead block.
|
||||
void *lookahead_buffer;
|
||||
|
||||
// Optional, statically allocated buffer for files. Must be program sized.
|
||||
// If enabled, only one file may be opened at a time.
|
||||
void *file_buffer;
|
||||
};
|
||||
|
||||
|
||||
// File info structure
|
||||
struct lfs_info {
|
||||
// Type of the file, either LFS_TYPE_REG or LFS_TYPE_DIR
|
||||
uint8_t type;
|
||||
|
||||
// Size of the file, only valid for REG files
|
||||
lfs_size_t size;
|
||||
|
||||
// Name of the file stored as a null-terminated string
|
||||
char name[LFS_NAME_MAX+1];
|
||||
};
|
||||
|
||||
|
||||
/// littlefs data structures ///
|
||||
typedef struct lfs_entry {
|
||||
lfs_off_t off;
|
||||
|
||||
struct lfs_disk_entry {
|
||||
uint8_t type;
|
||||
uint8_t name;
|
||||
uint16_t len;
|
||||
union {
|
||||
struct {
|
||||
lfs_block_t head;
|
||||
lfs_size_t size;
|
||||
} file;
|
||||
lfs_block_t dir[2];
|
||||
} u;
|
||||
} d;
|
||||
} lfs_entry_t;
|
||||
|
||||
typedef struct lfs_cache {
|
||||
lfs_block_t block;
|
||||
lfs_off_t off;
|
||||
uint8_t *buffer;
|
||||
} lfs_cache_t;
|
||||
|
||||
typedef struct lfs_file {
|
||||
struct lfs_file *next;
|
||||
lfs_block_t pair[2];
|
||||
lfs_off_t poff;
|
||||
|
||||
lfs_block_t head;
|
||||
lfs_size_t size;
|
||||
|
||||
uint32_t flags;
|
||||
lfs_off_t pos;
|
||||
lfs_block_t block;
|
||||
lfs_off_t off;
|
||||
lfs_cache_t cache;
|
||||
} lfs_file_t;
|
||||
|
||||
typedef struct lfs_dir {
|
||||
lfs_block_t pair[2];
|
||||
lfs_off_t off;
|
||||
|
||||
lfs_block_t head[2];
|
||||
lfs_off_t pos;
|
||||
|
||||
struct lfs_disk_dir {
|
||||
uint32_t rev;
|
||||
lfs_size_t size;
|
||||
lfs_block_t tail[2];
|
||||
} d;
|
||||
} lfs_dir_t;
|
||||
|
||||
typedef struct lfs_superblock {
|
||||
lfs_off_t off;
|
||||
|
||||
struct lfs_disk_superblock {
|
||||
uint8_t type;
|
||||
uint8_t name;
|
||||
uint16_t len;
|
||||
lfs_block_t root[2];
|
||||
uint32_t block_size;
|
||||
uint32_t block_count;
|
||||
uint32_t version;
|
||||
char magic[8];
|
||||
} d;
|
||||
} lfs_superblock_t;
|
||||
|
||||
typedef struct lfs_free {
|
||||
lfs_block_t end;
|
||||
lfs_block_t start;
|
||||
lfs_block_t off;
|
||||
uint32_t *lookahead;
|
||||
} lfs_free_t;
|
||||
|
||||
// The littlefs type
|
||||
typedef struct lfs {
|
||||
const struct lfs_config *cfg;
|
||||
|
||||
lfs_block_t root[2];
|
||||
lfs_file_t *files;
|
||||
bool deorphaned;
|
||||
|
||||
lfs_cache_t rcache;
|
||||
lfs_cache_t pcache;
|
||||
|
||||
lfs_free_t free;
|
||||
} lfs_t;
|
||||
|
||||
|
||||
/// Filesystem functions ///
|
||||
|
||||
// Format a block device with the littlefs
|
||||
//
|
||||
// Requires a littlefs object and config struct. This clobbers the littlefs
|
||||
// object, and does not leave the filesystem mounted.
|
||||
//
|
||||
// Returns a negative error code on failure.
|
||||
int lfs_format(lfs_t *lfs, const struct lfs_config *config);
|
||||
|
||||
// Mounts a littlefs
|
||||
//
|
||||
// Requires a littlefs object and config struct. Multiple filesystems
|
||||
// may be mounted simultaneously with multiple littlefs objects. Both
|
||||
// lfs and config must be allocated while mounted.
|
||||
//
|
||||
// Returns a negative error code on failure.
|
||||
int lfs_mount(lfs_t *lfs, const struct lfs_config *config);
|
||||
|
||||
// Unmounts a littlefs
|
||||
//
|
||||
// Does nothing besides releasing any allocated resources.
|
||||
// Returns a negative error code on failure.
|
||||
int lfs_unmount(lfs_t *lfs);
|
||||
|
||||
/// General operations ///
|
||||
|
||||
// Removes a file or directory
|
||||
//
|
||||
// If removing a directory, the directory must be empty.
|
||||
// Returns a negative error code on failure.
|
||||
int lfs_remove(lfs_t *lfs, const char *path);
|
||||
|
||||
// Rename or move a file or directory
|
||||
//
|
||||
// If the destination exists, it must match the source in type.
|
||||
// If the destination is a directory, the directory must be empty.
|
||||
//
|
||||
// Note: If power loss occurs, it is possible that the file or directory
|
||||
// will exist in both the oldpath and newpath simultaneously after the
|
||||
// next mount.
|
||||
//
|
||||
// Returns a negative error code on failure.
|
||||
int lfs_rename(lfs_t *lfs, const char *oldpath, const char *newpath);
|
||||
|
||||
// Find info about a file or directory
|
||||
//
|
||||
// Fills out the info structure, based on the specified file or directory.
|
||||
// Returns a negative error code on failure.
|
||||
int lfs_stat(lfs_t *lfs, const char *path, struct lfs_info *info);
|
||||
|
||||
|
||||
/// File operations ///
|
||||
|
||||
// Open a file
|
||||
//
|
||||
// The mode that the file is opened in is determined
|
||||
// by the flags, which are values from the enum lfs_open_flags
|
||||
// that are bitwise-ored together.
|
||||
//
|
||||
// Returns a negative error code on failure.
|
||||
int lfs_file_open(lfs_t *lfs, lfs_file_t *file,
|
||||
const char *path, int flags);
|
||||
|
||||
// Close a file
|
||||
//
|
||||
// Any pending writes are written out to storage as though
|
||||
// sync had been called and releases any allocated resources.
|
||||
//
|
||||
// Returns a negative error code on failure.
|
||||
int lfs_file_close(lfs_t *lfs, lfs_file_t *file);
|
||||
|
||||
// Synchronize a file on storage
|
||||
//
|
||||
// Any pending writes are written out to storage.
|
||||
// Returns a negative error code on failure.
|
||||
int lfs_file_sync(lfs_t *lfs, lfs_file_t *file);
|
||||
|
||||
// Read data from file
|
||||
//
|
||||
// Takes a buffer and size indicating where to store the read data.
|
||||
// Returns the number of bytes read, or a negative error code on failure.
|
||||
lfs_ssize_t lfs_file_read(lfs_t *lfs, lfs_file_t *file,
|
||||
void *buffer, lfs_size_t size);
|
||||
|
||||
// Write data to file
|
||||
//
|
||||
// Takes a buffer and size indicating the data to write. The file will not
|
||||
// actually be updated on the storage until either sync or close is called.
|
||||
//
|
||||
// Returns the number of bytes written, or a negative error code on failure.
|
||||
lfs_ssize_t lfs_file_write(lfs_t *lfs, lfs_file_t *file,
|
||||
const void *buffer, lfs_size_t size);
|
||||
|
||||
// Change the position of the file
|
||||
//
|
||||
// The change in position is determined by the offset and whence flag.
|
||||
// Returns the old position of the file, or a negative error code on failure.
|
||||
lfs_soff_t lfs_file_seek(lfs_t *lfs, lfs_file_t *file,
|
||||
lfs_soff_t off, int whence);
|
||||
|
||||
// Return the position of the file
|
||||
//
|
||||
// Equivalent to lfs_file_seek(lfs, file, 0, LFS_SEEK_CUR)
|
||||
// Returns the position of the file, or a negative error code on failure.
|
||||
lfs_soff_t lfs_file_tell(lfs_t *lfs, lfs_file_t *file);
|
||||
|
||||
// Change the position of the file to the beginning of the file
|
||||
//
|
||||
// Equivalent to lfs_file_seek(lfs, file, 0, LFS_SEEK_CUR)
|
||||
// Returns a negative error code on failure.
|
||||
int lfs_file_rewind(lfs_t *lfs, lfs_file_t *file);
|
||||
|
||||
// Return the size of the file
|
||||
//
|
||||
// Similar to lfs_file_seek(lfs, file, 0, LFS_SEEK_END)
|
||||
// Returns the size of the file, or a negative error code on failure.
|
||||
lfs_soff_t lfs_file_size(lfs_t *lfs, lfs_file_t *file);
|
||||
|
||||
|
||||
/// Directory operations ///
|
||||
|
||||
// Create a directory
|
||||
//
|
||||
// Returns a negative error code on failure.
|
||||
int lfs_mkdir(lfs_t *lfs, const char *path);
|
||||
|
||||
// Open a directory
|
||||
//
|
||||
// Once open a directory can be used with read to iterate over files.
|
||||
// Returns a negative error code on failure.
|
||||
int lfs_dir_open(lfs_t *lfs, lfs_dir_t *dir, const char *path);
|
||||
|
||||
// Close a directory
|
||||
//
|
||||
// Releases any allocated resources.
|
||||
// Returns a negative error code on failure.
|
||||
int lfs_dir_close(lfs_t *lfs, lfs_dir_t *dir);
|
||||
|
||||
// Read an entry in the directory
|
||||
//
|
||||
// Fills out the info structure, based on the specified file or directory.
|
||||
// Returns a negative error code on failure.
|
||||
int lfs_dir_read(lfs_t *lfs, lfs_dir_t *dir, struct lfs_info *info);
|
||||
|
||||
// Change the position of the directory
|
||||
//
|
||||
// The new off must be a value previous returned from tell and specifies
|
||||
// an absolute offset in the directory seek.
|
||||
//
|
||||
// Returns a negative error code on failure.
|
||||
int lfs_dir_seek(lfs_t *lfs, lfs_dir_t *dir, lfs_off_t off);
|
||||
|
||||
// Return the position of the directory
|
||||
//
|
||||
// The returned offset is only meant to be consumed by seek and may not make
|
||||
// sense, but does indicate the current position in the directory iteration.
|
||||
//
|
||||
// Returns the position of the directory, or a negative error code on failure.
|
||||
lfs_soff_t lfs_dir_tell(lfs_t *lfs, lfs_dir_t *dir);
|
||||
|
||||
// Change the position of the directory to the beginning of the directory
|
||||
//
|
||||
// Returns a negative error code on failure.
|
||||
int lfs_dir_rewind(lfs_t *lfs, lfs_dir_t *dir);
|
||||
|
||||
|
||||
/// Miscellaneous littlefs specific operations ///
|
||||
|
||||
// Traverse through all blocks in use by the filesystem
|
||||
//
|
||||
// The provided callback will be called with each block address that is
|
||||
// currently in use by the filesystem. This can be used to determine which
|
||||
// blocks are in use or how much of the storage is available.
|
||||
//
|
||||
// Returns a negative error code on failure.
|
||||
int lfs_traverse(lfs_t *lfs, int (*cb)(void*, lfs_block_t), void *data);
|
||||
|
||||
// Prunes any recoverable errors that may have occured in the filesystem
|
||||
//
|
||||
// Not needed to be called by user unless an operation is interrupted
|
||||
// but the filesystem is still mounted. This is already called on first
|
||||
// allocation.
|
||||
//
|
||||
// Returns a negative error code on failure.
|
||||
int lfs_deorphan(lfs_t *lfs);
|
||||
|
||||
|
||||
#endif
|
|
@ -0,0 +1,25 @@
|
|||
/*
|
||||
* lfs util functions
|
||||
*
|
||||
* Copyright (c) 2017 Christopher Haster
|
||||
* Distributed under the Apache 2.0 license
|
||||
*/
|
||||
#include "lfs_util.h"
|
||||
|
||||
|
||||
void lfs_crc(uint32_t *restrict crc, const void *buffer, size_t size) {
|
||||
static const uint32_t rtable[16] = {
|
||||
0x00000000, 0x1db71064, 0x3b6e20c8, 0x26d930ac,
|
||||
0x76dc4190, 0x6b6b51f4, 0x4db26158, 0x5005713c,
|
||||
0xedb88320, 0xf00f9344, 0xd6d6a3e8, 0xcb61b38c,
|
||||
0x9b64c2b0, 0x86d3d2d4, 0xa00ae278, 0xbdbdf21c,
|
||||
};
|
||||
|
||||
const uint8_t *data = buffer;
|
||||
|
||||
for (size_t i = 0; i < size; i++) {
|
||||
*crc = (*crc >> 4) ^ rtable[(*crc ^ (data[i] >> 0)) & 0xf];
|
||||
*crc = (*crc >> 4) ^ rtable[(*crc ^ (data[i] >> 4)) & 0xf];
|
||||
}
|
||||
}
|
||||
|
|
@ -0,0 +1,45 @@
|
|||
/*
|
||||
* lfs utility functions
|
||||
*
|
||||
* Copyright (c) 2017 Christopher Haster
|
||||
* Distributed under the Apache 2.0 license
|
||||
*/
|
||||
#ifndef LFS_UTIL_H
|
||||
#define LFS_UTIL_H
|
||||
|
||||
#include <stdlib.h>
|
||||
#include <stdint.h>
|
||||
#include <stdio.h>
|
||||
|
||||
|
||||
// Builtin functions
|
||||
static inline uint32_t lfs_max(uint32_t a, uint32_t b) {
|
||||
return (a > b) ? a : b;
|
||||
}
|
||||
|
||||
static inline uint32_t lfs_min(uint32_t a, uint32_t b) {
|
||||
return (a < b) ? a : b;
|
||||
}
|
||||
|
||||
static inline uint32_t lfs_ctz(uint32_t a) {
|
||||
return __builtin_ctz(a);
|
||||
}
|
||||
|
||||
static inline uint32_t lfs_npw2(uint32_t a) {
|
||||
return 32 - __builtin_clz(a-1);
|
||||
}
|
||||
|
||||
static inline int lfs_scmp(uint32_t a, uint32_t b) {
|
||||
return (int)(unsigned)(a - b);
|
||||
}
|
||||
|
||||
void lfs_crc(uint32_t *crc, const void *buffer, size_t size);
|
||||
|
||||
|
||||
// Logging functions
|
||||
#define LFS_DEBUG(fmt, ...) printf("lfs debug: " fmt "\n", __VA_ARGS__)
|
||||
#define LFS_WARN(fmt, ...) printf("lfs warn: " fmt "\n", __VA_ARGS__)
|
||||
#define LFS_ERROR(fmt, ...) printf("lfs error: " fmt "\n", __VA_ARGS__)
|
||||
|
||||
|
||||
#endif
|
|
@ -0,0 +1,30 @@
|
|||
#!/usr/bin/env python
|
||||
|
||||
import struct
|
||||
import sys
|
||||
import time
|
||||
import os
|
||||
import re
|
||||
|
||||
def main():
|
||||
with open('blocks/config') as file:
|
||||
s = struct.unpack('<LLLL', file.read())
|
||||
print 'read_size: %d' % s[0]
|
||||
print 'prog_size: %d' % s[1]
|
||||
print 'block_size: %d' % s[2]
|
||||
print 'block_size: %d' % s[3]
|
||||
|
||||
print 'real_size: %d' % sum(
|
||||
os.path.getsize(os.path.join('blocks', f))
|
||||
for f in os.listdir('blocks') if re.match('\d+', f))
|
||||
|
||||
with open('blocks/stats') as file:
|
||||
s = struct.unpack('<QQQ', file.read())
|
||||
print 'read_count: %d' % s[0]
|
||||
print 'prog_count: %d' % s[1]
|
||||
print 'erase_count: %d' % s[2]
|
||||
|
||||
print 'runtime: %.3f' % (time.time() - os.stat('blocks').st_ctime)
|
||||
|
||||
if __name__ == "__main__":
|
||||
main(*sys.argv[1:])
|
|
@ -0,0 +1,105 @@
|
|||
/// AUTOGENERATED TEST ///
|
||||
#include "lfs.h"
|
||||
#include "emubd/lfs_emubd.h"
|
||||
#include <stdio.h>
|
||||
#include <string.h>
|
||||
#include <stdlib.h>
|
||||
|
||||
|
||||
// test stuff
|
||||
void test_log(const char *s, uintmax_t v) {{
|
||||
printf("%s: %jd\n", s, v);
|
||||
}}
|
||||
|
||||
void test_assert(const char *file, unsigned line,
|
||||
const char *s, uintmax_t v, uintmax_t e) {{
|
||||
static const char *last[6] = {{0, 0}};
|
||||
if (v != e || !(last[0] == s || last[1] == s ||
|
||||
last[2] == s || last[3] == s ||
|
||||
last[4] == s || last[5] == s)) {{
|
||||
test_log(s, v);
|
||||
last[0] = last[1];
|
||||
last[1] = last[2];
|
||||
last[2] = last[3];
|
||||
last[3] = last[4];
|
||||
last[4] = last[5];
|
||||
last[5] = s;
|
||||
}}
|
||||
|
||||
if (v != e) {{
|
||||
printf("\033[31m%s:%u: assert %s failed, expected %jd\033[0m\n",
|
||||
file, line, s, e);
|
||||
exit(-2);
|
||||
}}
|
||||
}}
|
||||
|
||||
#define test_assert(s, v, e) test_assert(__FILE__, __LINE__, s, v, e)
|
||||
|
||||
|
||||
// utility functions for traversals
|
||||
int test_count(void *p, lfs_block_t b) {{
|
||||
unsigned *u = (unsigned*)p;
|
||||
*u += 1;
|
||||
return 0;
|
||||
}}
|
||||
|
||||
|
||||
// lfs declarations
|
||||
lfs_t lfs;
|
||||
lfs_emubd_t bd;
|
||||
lfs_file_t file[4];
|
||||
lfs_dir_t dir[4];
|
||||
struct lfs_info info;
|
||||
|
||||
uint8_t buffer[1024];
|
||||
uint8_t wbuffer[1024];
|
||||
uint8_t rbuffer[1024];
|
||||
lfs_size_t size;
|
||||
lfs_size_t wsize;
|
||||
lfs_size_t rsize;
|
||||
|
||||
uintmax_t res;
|
||||
|
||||
#ifndef LFS_READ_SIZE
|
||||
#define LFS_READ_SIZE 16
|
||||
#endif
|
||||
|
||||
#ifndef LFS_PROG_SIZE
|
||||
#define LFS_PROG_SIZE 16
|
||||
#endif
|
||||
|
||||
#ifndef LFS_BLOCK_SIZE
|
||||
#define LFS_BLOCK_SIZE 512
|
||||
#endif
|
||||
|
||||
#ifndef LFS_BLOCK_COUNT
|
||||
#define LFS_BLOCK_COUNT 1024
|
||||
#endif
|
||||
|
||||
#ifndef LFS_LOOKAHEAD
|
||||
#define LFS_LOOKAHEAD 128
|
||||
#endif
|
||||
|
||||
const struct lfs_config cfg = {{
|
||||
.context = &bd,
|
||||
.read = &lfs_emubd_read,
|
||||
.prog = &lfs_emubd_prog,
|
||||
.erase = &lfs_emubd_erase,
|
||||
.sync = &lfs_emubd_sync,
|
||||
|
||||
.read_size = LFS_READ_SIZE,
|
||||
.prog_size = LFS_PROG_SIZE,
|
||||
.block_size = LFS_BLOCK_SIZE,
|
||||
.block_count = LFS_BLOCK_COUNT,
|
||||
.lookahead = LFS_LOOKAHEAD,
|
||||
}};
|
||||
|
||||
|
||||
// Entry point
|
||||
int main() {{
|
||||
lfs_emubd_create(&cfg, "blocks");
|
||||
|
||||
{tests}
|
||||
|
||||
lfs_emubd_destroy(&cfg);
|
||||
}}
|
|
@ -0,0 +1,49 @@
|
|||
#!/usr/bin/env python
|
||||
|
||||
import re
|
||||
import sys
|
||||
import subprocess
|
||||
import os
|
||||
|
||||
def generate(test):
|
||||
with open("tests/template.fmt") as file:
|
||||
template = file.read()
|
||||
|
||||
lines = []
|
||||
for line in re.split('(?<=[;{}])\n', test.read()):
|
||||
match = re.match('(?: *\n)*( *)(.*)=>(.*);', line, re.DOTALL | re.MULTILINE)
|
||||
if match:
|
||||
tab, test, expect = match.groups()
|
||||
lines.append(tab+'res = {test};'.format(test=test.strip()))
|
||||
lines.append(tab+'test_assert("{name}", res, {expect});'.format(
|
||||
name = re.match('\w*', test.strip()).group(),
|
||||
expect = expect.strip()))
|
||||
else:
|
||||
lines.append(line)
|
||||
|
||||
with open('test.c', 'w') as file:
|
||||
file.write(template.format(tests='\n'.join(lines)))
|
||||
|
||||
def compile():
|
||||
os.environ['CFLAGS'] = os.environ.get('CFLAGS', '') + ' -Werror'
|
||||
subprocess.check_call(['make', '--no-print-directory', '-s'], env=os.environ)
|
||||
|
||||
def execute():
|
||||
subprocess.check_call(["./lfs"])
|
||||
|
||||
def main(test=None):
|
||||
if test and not test.startswith('-'):
|
||||
with open(test) as file:
|
||||
generate(file)
|
||||
else:
|
||||
generate(sys.stdin)
|
||||
|
||||
compile()
|
||||
|
||||
if test == '-s':
|
||||
sys.exit(1)
|
||||
|
||||
execute()
|
||||
|
||||
if __name__ == "__main__":
|
||||
main(*sys.argv[1:])
|
|
@ -0,0 +1,261 @@
|
|||
#!/bin/bash
|
||||
set -eu
|
||||
|
||||
echo "=== Allocator tests ==="
|
||||
rm -rf blocks
|
||||
tests/test.py << TEST
|
||||
lfs_format(&lfs, &cfg) => 0;
|
||||
TEST
|
||||
|
||||
SIZE=15000
|
||||
|
||||
lfs_mkdir() {
|
||||
tests/test.py << TEST
|
||||
lfs_mount(&lfs, &cfg) => 0;
|
||||
lfs_mkdir(&lfs, "$1") => 0;
|
||||
lfs_unmount(&lfs) => 0;
|
||||
TEST
|
||||
}
|
||||
|
||||
lfs_remove() {
|
||||
tests/test.py << TEST
|
||||
lfs_mount(&lfs, &cfg) => 0;
|
||||
lfs_remove(&lfs, "$1/eggs") => 0;
|
||||
lfs_remove(&lfs, "$1/bacon") => 0;
|
||||
lfs_remove(&lfs, "$1/pancakes") => 0;
|
||||
lfs_remove(&lfs, "$1") => 0;
|
||||
lfs_unmount(&lfs) => 0;
|
||||
TEST
|
||||
}
|
||||
|
||||
lfs_alloc_singleproc() {
|
||||
tests/test.py << TEST
|
||||
const char *names[] = {"bacon", "eggs", "pancakes"};
|
||||
lfs_mount(&lfs, &cfg) => 0;
|
||||
for (int n = 0; n < sizeof(names)/sizeof(names[0]); n++) {
|
||||
sprintf((char*)buffer, "$1/%s", names[n]);
|
||||
lfs_file_open(&lfs, &file[n], (char*)buffer,
|
||||
LFS_O_WRONLY | LFS_O_CREAT | LFS_O_APPEND) => 0;
|
||||
}
|
||||
for (int n = 0; n < sizeof(names)/sizeof(names[0]); n++) {
|
||||
size = strlen(names[n]);
|
||||
for (int i = 0; i < $SIZE; i++) {
|
||||
lfs_file_write(&lfs, &file[n], names[n], size) => size;
|
||||
}
|
||||
}
|
||||
for (int n = 0; n < sizeof(names)/sizeof(names[0]); n++) {
|
||||
lfs_file_close(&lfs, &file[n]) => 0;
|
||||
}
|
||||
lfs_unmount(&lfs) => 0;
|
||||
TEST
|
||||
}
|
||||
|
||||
lfs_alloc_multiproc() {
|
||||
for name in bacon eggs pancakes
|
||||
do
|
||||
tests/test.py << TEST
|
||||
lfs_mount(&lfs, &cfg) => 0;
|
||||
lfs_file_open(&lfs, &file[0], "$1/$name",
|
||||
LFS_O_WRONLY | LFS_O_CREAT | LFS_O_APPEND) => 0;
|
||||
size = strlen("$name");
|
||||
memcpy(buffer, "$name", size);
|
||||
for (int i = 0; i < $SIZE; i++) {
|
||||
lfs_file_write(&lfs, &file[0], buffer, size) => size;
|
||||
}
|
||||
lfs_file_close(&lfs, &file[0]) => 0;
|
||||
lfs_unmount(&lfs) => 0;
|
||||
TEST
|
||||
done
|
||||
}
|
||||
|
||||
lfs_verify() {
|
||||
for name in bacon eggs pancakes
|
||||
do
|
||||
tests/test.py << TEST
|
||||
lfs_mount(&lfs, &cfg) => 0;
|
||||
lfs_file_open(&lfs, &file[0], "$1/$name", LFS_O_RDONLY) => 0;
|
||||
size = strlen("$name");
|
||||
for (int i = 0; i < $SIZE; i++) {
|
||||
lfs_file_read(&lfs, &file[0], buffer, size) => size;
|
||||
memcmp(buffer, "$name", size) => 0;
|
||||
}
|
||||
lfs_file_close(&lfs, &file[0]) => 0;
|
||||
lfs_unmount(&lfs) => 0;
|
||||
TEST
|
||||
done
|
||||
}
|
||||
|
||||
echo "--- Single-process allocation test ---"
|
||||
lfs_mkdir singleproc
|
||||
lfs_alloc_singleproc singleproc
|
||||
lfs_verify singleproc
|
||||
|
||||
echo "--- Multi-process allocation test ---"
|
||||
lfs_mkdir multiproc
|
||||
lfs_alloc_multiproc multiproc
|
||||
lfs_verify multiproc
|
||||
lfs_verify singleproc
|
||||
|
||||
echo "--- Single-process reuse test ---"
|
||||
lfs_remove singleproc
|
||||
lfs_mkdir singleprocreuse
|
||||
lfs_alloc_singleproc singleprocreuse
|
||||
lfs_verify singleprocreuse
|
||||
lfs_verify multiproc
|
||||
|
||||
echo "--- Multi-process reuse test ---"
|
||||
lfs_remove multiproc
|
||||
lfs_mkdir multiprocreuse
|
||||
lfs_alloc_singleproc multiprocreuse
|
||||
lfs_verify multiprocreuse
|
||||
lfs_verify singleprocreuse
|
||||
|
||||
echo "--- Cleanup ---"
|
||||
lfs_remove multiprocreuse
|
||||
lfs_remove singleprocreuse
|
||||
|
||||
echo "--- Exhaustion test ---"
|
||||
tests/test.py << TEST
|
||||
lfs_mount(&lfs, &cfg) => 0;
|
||||
lfs_file_open(&lfs, &file[0], "exhaustion", LFS_O_WRONLY | LFS_O_CREAT);
|
||||
size = strlen("exhaustion");
|
||||
memcpy(buffer, "exhaustion", size);
|
||||
lfs_file_write(&lfs, &file[0], buffer, size) => size;
|
||||
|
||||
size = strlen("blahblahblahblah");
|
||||
memcpy(buffer, "blahblahblahblah", size);
|
||||
lfs_ssize_t res;
|
||||
while (true) {
|
||||
res = lfs_file_write(&lfs, &file[0], buffer, size);
|
||||
if (res < 0) {
|
||||
break;
|
||||
}
|
||||
|
||||
res => size;
|
||||
}
|
||||
res => LFS_ERR_NOSPC;
|
||||
|
||||
lfs_file_close(&lfs, &file[0]) => 0;
|
||||
lfs_unmount(&lfs) => 0;
|
||||
TEST
|
||||
tests/test.py << TEST
|
||||
lfs_mount(&lfs, &cfg) => 0;
|
||||
lfs_file_open(&lfs, &file[0], "exhaustion", LFS_O_RDONLY);
|
||||
size = strlen("exhaustion");
|
||||
lfs_file_read(&lfs, &file[0], buffer, size) => size;
|
||||
memcmp(buffer, "exhaustion", size) => 0;
|
||||
lfs_file_close(&lfs, &file[0]) => 0;
|
||||
lfs_unmount(&lfs) => 0;
|
||||
TEST
|
||||
|
||||
echo "--- Exhaustion wraparound test ---"
|
||||
tests/test.py << TEST
|
||||
lfs_mount(&lfs, &cfg) => 0;
|
||||
lfs_remove(&lfs, "exhaustion") => 0;
|
||||
|
||||
lfs_file_open(&lfs, &file[0], "padding", LFS_O_WRONLY | LFS_O_CREAT);
|
||||
size = strlen("buffering");
|
||||
memcpy(buffer, "buffering", size);
|
||||
for (int i = 0; i < $SIZE; i++) {
|
||||
lfs_file_write(&lfs, &file[0], buffer, size) => size;
|
||||
}
|
||||
lfs_file_close(&lfs, &file[0]) => 0;
|
||||
lfs_remove(&lfs, "padding") => 0;
|
||||
|
||||
lfs_file_open(&lfs, &file[0], "exhaustion", LFS_O_WRONLY | LFS_O_CREAT);
|
||||
size = strlen("exhaustion");
|
||||
memcpy(buffer, "exhaustion", size);
|
||||
lfs_file_write(&lfs, &file[0], buffer, size) => size;
|
||||
|
||||
size = strlen("blahblahblahblah");
|
||||
memcpy(buffer, "blahblahblahblah", size);
|
||||
lfs_ssize_t res;
|
||||
while (true) {
|
||||
res = lfs_file_write(&lfs, &file[0], buffer, size);
|
||||
if (res < 0) {
|
||||
break;
|
||||
}
|
||||
|
||||
res => size;
|
||||
}
|
||||
res => LFS_ERR_NOSPC;
|
||||
|
||||
lfs_file_close(&lfs, &file[0]) => 0;
|
||||
lfs_unmount(&lfs) => 0;
|
||||
TEST
|
||||
tests/test.py << TEST
|
||||
lfs_mount(&lfs, &cfg) => 0;
|
||||
lfs_file_open(&lfs, &file[0], "exhaustion", LFS_O_RDONLY);
|
||||
size = strlen("exhaustion");
|
||||
lfs_file_read(&lfs, &file[0], buffer, size) => size;
|
||||
memcmp(buffer, "exhaustion", size) => 0;
|
||||
lfs_file_close(&lfs, &file[0]) => 0;
|
||||
lfs_unmount(&lfs) => 0;
|
||||
TEST
|
||||
|
||||
echo "--- Dir exhaustion test ---"
|
||||
tests/test.py << TEST
|
||||
lfs_mount(&lfs, &cfg) => 0;
|
||||
lfs_stat(&lfs, "exhaustion", &info) => 0;
|
||||
lfs_size_t fullsize = info.size;
|
||||
lfs_remove(&lfs, "exhaustion") => 0;
|
||||
|
||||
lfs_file_open(&lfs, &file[0], "exhaustion", LFS_O_WRONLY | LFS_O_CREAT);
|
||||
size = strlen("blahblahblahblah");
|
||||
memcpy(buffer, "blahblahblahblah", size);
|
||||
for (lfs_size_t i = 0; i < fullsize - 2*512; i += size) {
|
||||
lfs_file_write(&lfs, &file[0], buffer, size) => size;
|
||||
}
|
||||
lfs_file_close(&lfs, &file[0]) => 0;
|
||||
|
||||
lfs_mkdir(&lfs, "exhaustiondir") => 0;
|
||||
lfs_remove(&lfs, "exhaustiondir") => 0;
|
||||
|
||||
lfs_file_open(&lfs, &file[0], "exhaustion", LFS_O_WRONLY | LFS_O_APPEND);
|
||||
size = strlen("blahblahblahblah");
|
||||
memcpy(buffer, "blahblahblahblah", size);
|
||||
lfs_file_write(&lfs, &file[0], buffer, size) => size;
|
||||
lfs_file_close(&lfs, &file[0]) => 0;
|
||||
|
||||
lfs_mkdir(&lfs, "exhaustiondir") => LFS_ERR_NOSPC;
|
||||
lfs_unmount(&lfs) => 0;
|
||||
TEST
|
||||
|
||||
echo "--- Chained dir exhaustion test ---"
|
||||
tests/test.py << TEST
|
||||
lfs_mount(&lfs, &cfg) => 0;
|
||||
lfs_stat(&lfs, "exhaustion", &info) => 0;
|
||||
lfs_size_t fullsize = info.size;
|
||||
|
||||
lfs_remove(&lfs, "exhaustion") => 0;
|
||||
lfs_file_open(&lfs, &file[0], "exhaustion", LFS_O_WRONLY | LFS_O_CREAT);
|
||||
size = strlen("blahblahblahblah");
|
||||
memcpy(buffer, "blahblahblahblah", size);
|
||||
for (lfs_size_t i = 0; i < fullsize - 19*512; i += size) {
|
||||
lfs_file_write(&lfs, &file[0], buffer, size) => size;
|
||||
}
|
||||
lfs_file_close(&lfs, &file[0]) => 0;
|
||||
|
||||
for (int i = 0; i < 9; i++) {
|
||||
sprintf((char*)buffer, "dirwithanexhaustivelylongnameforpadding%d", i);
|
||||
lfs_mkdir(&lfs, (char*)buffer) => 0;
|
||||
}
|
||||
|
||||
lfs_mkdir(&lfs, "exhaustiondir") => LFS_ERR_NOSPC;
|
||||
|
||||
lfs_remove(&lfs, "exhaustion") => 0;
|
||||
lfs_file_open(&lfs, &file[0], "exhaustion", LFS_O_WRONLY | LFS_O_CREAT);
|
||||
size = strlen("blahblahblahblah");
|
||||
memcpy(buffer, "blahblahblahblah", size);
|
||||
for (lfs_size_t i = 0; i < fullsize - 20*512; i += size) {
|
||||
lfs_file_write(&lfs, &file[0], buffer, size) => size;
|
||||
}
|
||||
lfs_file_close(&lfs, &file[0]) => 0;
|
||||
|
||||
lfs_mkdir(&lfs, "exhaustiondir") => 0;
|
||||
lfs_mkdir(&lfs, "exhaustiondir2") => LFS_ERR_NOSPC;
|
||||
TEST
|
||||
|
||||
|
||||
echo "--- Results ---"
|
||||
tests/stats.py
|
|
@ -0,0 +1,106 @@
|
|||
#!/bin/bash
|
||||
set -eu
|
||||
|
||||
echo "=== Corrupt tests ==="
|
||||
|
||||
NAMEMULT=64
|
||||
FILEMULT=1
|
||||
|
||||
lfs_mktree() {
|
||||
tests/test.py ${1:-} << TEST
|
||||
lfs_format(&lfs, &cfg) => 0;
|
||||
|
||||
lfs_mount(&lfs, &cfg) => 0;
|
||||
for (int i = 1; i < 10; i++) {
|
||||
for (int j = 0; j < $NAMEMULT; j++) {
|
||||
buffer[j] = '0'+i;
|
||||
}
|
||||
buffer[$NAMEMULT] = '\0';
|
||||
lfs_mkdir(&lfs, (char*)buffer) => 0;
|
||||
|
||||
buffer[$NAMEMULT] = '/';
|
||||
for (int j = 0; j < $NAMEMULT; j++) {
|
||||
buffer[j+$NAMEMULT+1] = '0'+i;
|
||||
}
|
||||
buffer[2*$NAMEMULT+1] = '\0';
|
||||
lfs_file_open(&lfs, &file[0], (char*)buffer,
|
||||
LFS_O_WRONLY | LFS_O_CREAT) => 0;
|
||||
|
||||
size = $NAMEMULT;
|
||||
for (int j = 0; j < i*$FILEMULT; j++) {
|
||||
lfs_file_write(&lfs, &file[0], buffer, size) => size;
|
||||
}
|
||||
|
||||
lfs_file_close(&lfs, &file[0]) => 0;
|
||||
}
|
||||
lfs_unmount(&lfs) => 0;
|
||||
TEST
|
||||
}
|
||||
|
||||
lfs_chktree() {
|
||||
tests/test.py ${1:-} << TEST
|
||||
lfs_mount(&lfs, &cfg) => 0;
|
||||
for (int i = 1; i < 10; i++) {
|
||||
for (int j = 0; j < $NAMEMULT; j++) {
|
||||
buffer[j] = '0'+i;
|
||||
}
|
||||
buffer[$NAMEMULT] = '\0';
|
||||
lfs_stat(&lfs, (char*)buffer, &info) => 0;
|
||||
info.type => LFS_TYPE_DIR;
|
||||
|
||||
buffer[$NAMEMULT] = '/';
|
||||
for (int j = 0; j < $NAMEMULT; j++) {
|
||||
buffer[j+$NAMEMULT+1] = '0'+i;
|
||||
}
|
||||
buffer[2*$NAMEMULT+1] = '\0';
|
||||
lfs_file_open(&lfs, &file[0], (char*)buffer, LFS_O_RDONLY) => 0;
|
||||
|
||||
size = $NAMEMULT;
|
||||
for (int j = 0; j < i*$FILEMULT; j++) {
|
||||
lfs_file_read(&lfs, &file[0], rbuffer, size) => size;
|
||||
memcmp(buffer, rbuffer, size) => 0;
|
||||
}
|
||||
|
||||
lfs_file_close(&lfs, &file[0]) => 0;
|
||||
}
|
||||
lfs_unmount(&lfs) => 0;
|
||||
TEST
|
||||
}
|
||||
|
||||
echo "--- Sanity check ---"
|
||||
rm -rf blocks
|
||||
lfs_mktree
|
||||
lfs_chktree
|
||||
|
||||
echo "--- Block corruption ---"
|
||||
for i in {0..33}
|
||||
do
|
||||
rm -rf blocks
|
||||
mkdir blocks
|
||||
ln -s /dev/zero blocks/$(printf '%x' $i)
|
||||
lfs_mktree
|
||||
lfs_chktree
|
||||
done
|
||||
|
||||
echo "--- Big region corruption ---"
|
||||
rm -rf blocks
|
||||
mkdir blocks
|
||||
for i in {2..255}
|
||||
do
|
||||
ln -s /dev/zero blocks/$(printf '%x' $i)
|
||||
done
|
||||
lfs_mktree
|
||||
lfs_chktree
|
||||
|
||||
echo "--- Alternating corruption ---"
|
||||
rm -rf blocks
|
||||
mkdir blocks
|
||||
for i in {2..511..2}
|
||||
do
|
||||
ln -s /dev/zero blocks/$(printf '%x' $i)
|
||||
done
|
||||
lfs_mktree
|
||||
lfs_chktree
|
||||
|
||||
echo "--- Results ---"
|
||||
tests/stats.py
|
|
@ -0,0 +1,287 @@
|
|||
#!/bin/bash
|
||||
set -eu
|
||||
|
||||
LARGESIZE=128
|
||||
|
||||
echo "=== Directory tests ==="
|
||||
rm -rf blocks
|
||||
tests/test.py << TEST
|
||||
lfs_format(&lfs, &cfg) => 0;
|
||||
TEST
|
||||
|
||||
echo "--- Root directory ---"
|
||||
tests/test.py << TEST
|
||||
lfs_mount(&lfs, &cfg) => 0;
|
||||
lfs_dir_open(&lfs, &dir[0], "/") => 0;
|
||||
lfs_dir_close(&lfs, &dir[0]) => 0;
|
||||
lfs_unmount(&lfs) => 0;
|
||||
TEST
|
||||
|
||||
echo "--- Directory creation ---"
|
||||
tests/test.py << TEST
|
||||
lfs_mount(&lfs, &cfg) => 0;
|
||||
lfs_mkdir(&lfs, "potato") => 0;
|
||||
lfs_unmount(&lfs) => 0;
|
||||
TEST
|
||||
|
||||
echo "--- File creation ---"
|
||||
tests/test.py << TEST
|
||||
lfs_mount(&lfs, &cfg) => 0;
|
||||
lfs_file_open(&lfs, &file[0], "burito", LFS_O_CREAT | LFS_O_WRONLY) => 0;
|
||||
lfs_file_close(&lfs, &file[0]) => 0;
|
||||
lfs_unmount(&lfs) => 0;
|
||||
TEST
|
||||
|
||||
echo "--- Directory iteration ---"
|
||||
tests/test.py << TEST
|
||||
lfs_mount(&lfs, &cfg) => 0;
|
||||
lfs_dir_open(&lfs, &dir[0], "/") => 0;
|
||||
lfs_dir_read(&lfs, &dir[0], &info) => 1;
|
||||
strcmp(info.name, ".") => 0;
|
||||
info.type => LFS_TYPE_DIR;
|
||||
lfs_dir_read(&lfs, &dir[0], &info) => 1;
|
||||
strcmp(info.name, "..") => 0;
|
||||
info.type => LFS_TYPE_DIR;
|
||||
lfs_dir_read(&lfs, &dir[0], &info) => 1;
|
||||
strcmp(info.name, "potato") => 0;
|
||||
info.type => LFS_TYPE_DIR;
|
||||
lfs_dir_read(&lfs, &dir[0], &info) => 1;
|
||||
strcmp(info.name, "burito") => 0;
|
||||
info.type => LFS_TYPE_REG;
|
||||
lfs_dir_read(&lfs, &dir[0], &info) => 0;
|
||||
lfs_dir_close(&lfs, &dir[0]) => 0;
|
||||
lfs_unmount(&lfs) => 0;
|
||||
TEST
|
||||
|
||||
echo "--- Directory failures ---"
|
||||
tests/test.py << TEST
|
||||
lfs_mount(&lfs, &cfg) => 0;
|
||||
lfs_mkdir(&lfs, "potato") => LFS_ERR_EXISTS;
|
||||
lfs_dir_open(&lfs, &dir[0], "tomato") => LFS_ERR_NOENT;
|
||||
lfs_dir_open(&lfs, &dir[0], "burito") => LFS_ERR_NOTDIR;
|
||||
lfs_file_open(&lfs, &file[0], "tomato", LFS_O_RDONLY) => LFS_ERR_NOENT;
|
||||
lfs_file_open(&lfs, &file[0], "potato", LFS_O_RDONLY) => LFS_ERR_ISDIR;
|
||||
lfs_unmount(&lfs) => 0;
|
||||
TEST
|
||||
|
||||
echo "--- Nested directories ---"
|
||||
tests/test.py << TEST
|
||||
lfs_mount(&lfs, &cfg) => 0;
|
||||
lfs_mkdir(&lfs, "potato/baked") => 0;
|
||||
lfs_mkdir(&lfs, "potato/sweet") => 0;
|
||||
lfs_mkdir(&lfs, "potato/fried") => 0;
|
||||
lfs_unmount(&lfs) => 0;
|
||||
TEST
|
||||
tests/test.py << TEST
|
||||
lfs_mount(&lfs, &cfg) => 0;
|
||||
lfs_dir_open(&lfs, &dir[0], "potato") => 0;
|
||||
lfs_dir_read(&lfs, &dir[0], &info) => 1;
|
||||
strcmp(info.name, ".") => 0;
|
||||
info.type => LFS_TYPE_DIR;
|
||||
lfs_dir_read(&lfs, &dir[0], &info) => 1;
|
||||
strcmp(info.name, "..") => 0;
|
||||
info.type => LFS_TYPE_DIR;
|
||||
lfs_dir_read(&lfs, &dir[0], &info) => 1;
|
||||
strcmp(info.name, "baked") => 0;
|
||||
info.type => LFS_TYPE_DIR;
|
||||
lfs_dir_read(&lfs, &dir[0], &info) => 1;
|
||||
strcmp(info.name, "sweet") => 0;
|
||||
info.type => LFS_TYPE_DIR;
|
||||
lfs_dir_read(&lfs, &dir[0], &info) => 1;
|
||||
strcmp(info.name, "fried") => 0;
|
||||
info.type => LFS_TYPE_DIR;
|
||||
lfs_dir_read(&lfs, &dir[0], &info) => 0;
|
||||
lfs_dir_close(&lfs, &dir[0]) => 0;
|
||||
lfs_unmount(&lfs) => 0;
|
||||
TEST
|
||||
|
||||
echo "--- Multi-block directory ---"
|
||||
tests/test.py << TEST
|
||||
lfs_mount(&lfs, &cfg) => 0;
|
||||
lfs_mkdir(&lfs, "cactus") => 0;
|
||||
for (int i = 0; i < $LARGESIZE; i++) {
|
||||
sprintf((char*)buffer, "cactus/test%d", i);
|
||||
lfs_mkdir(&lfs, (char*)buffer) => 0;
|
||||
}
|
||||
lfs_unmount(&lfs) => 0;
|
||||
TEST
|
||||
tests/test.py << TEST
|
||||
lfs_mount(&lfs, &cfg) => 0;
|
||||
lfs_dir_open(&lfs, &dir[0], "cactus") => 0;
|
||||
lfs_dir_read(&lfs, &dir[0], &info) => 1;
|
||||
strcmp(info.name, ".") => 0;
|
||||
info.type => LFS_TYPE_DIR;
|
||||
lfs_dir_read(&lfs, &dir[0], &info) => 1;
|
||||
strcmp(info.name, "..") => 0;
|
||||
info.type => LFS_TYPE_DIR;
|
||||
for (int i = 0; i < $LARGESIZE; i++) {
|
||||
sprintf((char*)buffer, "test%d", i);
|
||||
lfs_dir_read(&lfs, &dir[0], &info) => 1;
|
||||
strcmp(info.name, (char*)buffer) => 0;
|
||||
}
|
||||
lfs_dir_read(&lfs, &dir[0], &info) => 0;
|
||||
lfs_unmount(&lfs) => 0;
|
||||
TEST
|
||||
|
||||
echo "--- Directory remove ---"
|
||||
# TESTING HERE
|
||||
tests/test.py << TEST
|
||||
lfs_mount(&lfs, &cfg) => 0;
|
||||
lfs_remove(&lfs, "potato") => LFS_ERR_INVAL;
|
||||
lfs_remove(&lfs, "potato/sweet") => 0;
|
||||
lfs_remove(&lfs, "potato/baked") => 0;
|
||||
lfs_remove(&lfs, "potato/fried") => 0;
|
||||
|
||||
lfs_dir_open(&lfs, &dir[0], "potato") => 0;
|
||||
lfs_dir_read(&lfs, &dir[0], &info) => 1;
|
||||
strcmp(info.name, ".") => 0;
|
||||
info.type => LFS_TYPE_DIR;
|
||||
lfs_dir_read(&lfs, &dir[0], &info) => 1;
|
||||
strcmp(info.name, "..") => 0;
|
||||
info.type => LFS_TYPE_DIR;
|
||||
lfs_dir_read(&lfs, &dir[0], &info) => 0;
|
||||
lfs_dir_close(&lfs, &dir[0]) => 0;
|
||||
|
||||
lfs_remove(&lfs, "potato") => 0;
|
||||
|
||||
lfs_dir_open(&lfs, &dir[0], "/") => 0;
|
||||
lfs_dir_read(&lfs, &dir[0], &info) => 1;
|
||||
strcmp(info.name, ".") => 0;
|
||||
info.type => LFS_TYPE_DIR;
|
||||
lfs_dir_read(&lfs, &dir[0], &info) => 1;
|
||||
strcmp(info.name, "..") => 0;
|
||||
info.type => LFS_TYPE_DIR;
|
||||
lfs_dir_read(&lfs, &dir[0], &info) => 1;
|
||||
strcmp(info.name, "burito") => 0;
|
||||
info.type => LFS_TYPE_REG;
|
||||
lfs_dir_read(&lfs, &dir[0], &info) => 1;
|
||||
strcmp(info.name, "cactus") => 0;
|
||||
info.type => LFS_TYPE_DIR;
|
||||
lfs_dir_read(&lfs, &dir[0], &info) => 0;
|
||||
lfs_dir_close(&lfs, &dir[0]) => 0;
|
||||
lfs_unmount(&lfs) => 0;
|
||||
TEST
|
||||
tests/test.py << TEST
|
||||
lfs_mount(&lfs, &cfg) => 0;
|
||||
lfs_dir_open(&lfs, &dir[0], "/") => 0;
|
||||
lfs_dir_read(&lfs, &dir[0], &info) => 1;
|
||||
strcmp(info.name, ".") => 0;
|
||||
info.type => LFS_TYPE_DIR;
|
||||
lfs_dir_read(&lfs, &dir[0], &info) => 1;
|
||||
strcmp(info.name, "..") => 0;
|
||||
info.type => LFS_TYPE_DIR;
|
||||
lfs_dir_read(&lfs, &dir[0], &info) => 1;
|
||||
strcmp(info.name, "burito") => 0;
|
||||
info.type => LFS_TYPE_REG;
|
||||
lfs_dir_read(&lfs, &dir[0], &info) => 1;
|
||||
strcmp(info.name, "cactus") => 0;
|
||||
info.type => LFS_TYPE_DIR;
|
||||
lfs_dir_read(&lfs, &dir[0], &info) => 0;
|
||||
lfs_dir_close(&lfs, &dir[0]) => 0;
|
||||
lfs_unmount(&lfs) => 0;
|
||||
TEST
|
||||
|
||||
echo "--- Directory rename ---"
|
||||
tests/test.py << TEST
|
||||
lfs_mount(&lfs, &cfg) => 0;
|
||||
lfs_mkdir(&lfs, "coldpotato") => 0;
|
||||
lfs_mkdir(&lfs, "coldpotato/baked") => 0;
|
||||
lfs_mkdir(&lfs, "coldpotato/sweet") => 0;
|
||||
lfs_mkdir(&lfs, "coldpotato/fried") => 0;
|
||||
lfs_unmount(&lfs) => 0;
|
||||
TEST
|
||||
tests/test.py << TEST
|
||||
lfs_mount(&lfs, &cfg) => 0;
|
||||
lfs_rename(&lfs, "coldpotato", "hotpotato") => 0;
|
||||
lfs_unmount(&lfs) => 0;
|
||||
TEST
|
||||
tests/test.py << TEST
|
||||
lfs_mount(&lfs, &cfg) => 0;
|
||||
lfs_dir_open(&lfs, &dir[0], "hotpotato") => 0;
|
||||
lfs_dir_read(&lfs, &dir[0], &info) => 1;
|
||||
strcmp(info.name, ".") => 0;
|
||||
info.type => LFS_TYPE_DIR;
|
||||
lfs_dir_read(&lfs, &dir[0], &info) => 1;
|
||||
strcmp(info.name, "..") => 0;
|
||||
info.type => LFS_TYPE_DIR;
|
||||
lfs_dir_read(&lfs, &dir[0], &info) => 1;
|
||||
strcmp(info.name, "baked") => 0;
|
||||
info.type => LFS_TYPE_DIR;
|
||||
lfs_dir_read(&lfs, &dir[0], &info) => 1;
|
||||
strcmp(info.name, "sweet") => 0;
|
||||
info.type => LFS_TYPE_DIR;
|
||||
lfs_dir_read(&lfs, &dir[0], &info) => 1;
|
||||
strcmp(info.name, "fried") => 0;
|
||||
info.type => LFS_TYPE_DIR;
|
||||
lfs_dir_read(&lfs, &dir[0], &info) => 0;
|
||||
lfs_dir_close(&lfs, &dir[0]) => 0;
|
||||
lfs_unmount(&lfs) => 0;
|
||||
TEST
|
||||
tests/test.py << TEST
|
||||
lfs_mount(&lfs, &cfg) => 0;
|
||||
lfs_mkdir(&lfs, "warmpotato") => 0;
|
||||
lfs_mkdir(&lfs, "warmpotato/mushy") => 0;
|
||||
lfs_rename(&lfs, "hotpotato", "warmpotato") => LFS_ERR_INVAL;
|
||||
|
||||
lfs_remove(&lfs, "warmpotato/mushy") => 0;
|
||||
lfs_rename(&lfs, "hotpotato", "warmpotato") => 0;
|
||||
|
||||
lfs_unmount(&lfs) => 0;
|
||||
TEST
|
||||
tests/test.py << TEST
|
||||
lfs_mount(&lfs, &cfg) => 0;
|
||||
lfs_dir_open(&lfs, &dir[0], "warmpotato") => 0;
|
||||
lfs_dir_read(&lfs, &dir[0], &info) => 1;
|
||||
strcmp(info.name, ".") => 0;
|
||||
info.type => LFS_TYPE_DIR;
|
||||
lfs_dir_read(&lfs, &dir[0], &info) => 1;
|
||||
strcmp(info.name, "..") => 0;
|
||||
info.type => LFS_TYPE_DIR;
|
||||
lfs_dir_read(&lfs, &dir[0], &info) => 1;
|
||||
strcmp(info.name, "baked") => 0;
|
||||
info.type => LFS_TYPE_DIR;
|
||||
lfs_dir_read(&lfs, &dir[0], &info) => 1;
|
||||
strcmp(info.name, "sweet") => 0;
|
||||
info.type => LFS_TYPE_DIR;
|
||||
lfs_dir_read(&lfs, &dir[0], &info) => 1;
|
||||
strcmp(info.name, "fried") => 0;
|
||||
info.type => LFS_TYPE_DIR;
|
||||
lfs_dir_read(&lfs, &dir[0], &info) => 0;
|
||||
lfs_dir_close(&lfs, &dir[0]) => 0;
|
||||
lfs_unmount(&lfs) => 0;
|
||||
TEST
|
||||
tests/test.py << TEST
|
||||
lfs_mount(&lfs, &cfg) => 0;
|
||||
lfs_mkdir(&lfs, "coldpotato") => 0;
|
||||
lfs_rename(&lfs, "warmpotato/baked", "coldpotato/baked") => 0;
|
||||
lfs_rename(&lfs, "warmpotato/sweet", "coldpotato/sweet") => 0;
|
||||
lfs_rename(&lfs, "warmpotato/fried", "coldpotato/fried") => 0;
|
||||
lfs_remove(&lfs, "coldpotato") => LFS_ERR_INVAL;
|
||||
lfs_remove(&lfs, "warmpotato") => 0;
|
||||
lfs_unmount(&lfs) => 0;
|
||||
TEST
|
||||
tests/test.py << TEST
|
||||
lfs_mount(&lfs, &cfg) => 0;
|
||||
lfs_dir_open(&lfs, &dir[0], "coldpotato") => 0;
|
||||
lfs_dir_read(&lfs, &dir[0], &info) => 1;
|
||||
strcmp(info.name, ".") => 0;
|
||||
info.type => LFS_TYPE_DIR;
|
||||
lfs_dir_read(&lfs, &dir[0], &info) => 1;
|
||||
strcmp(info.name, "..") => 0;
|
||||
info.type => LFS_TYPE_DIR;
|
||||
lfs_dir_read(&lfs, &dir[0], &info) => 1;
|
||||
strcmp(info.name, "baked") => 0;
|
||||
info.type => LFS_TYPE_DIR;
|
||||
lfs_dir_read(&lfs, &dir[0], &info) => 1;
|
||||
strcmp(info.name, "sweet") => 0;
|
||||
info.type => LFS_TYPE_DIR;
|
||||
lfs_dir_read(&lfs, &dir[0], &info) => 1;
|
||||
strcmp(info.name, "fried") => 0;
|
||||
info.type => LFS_TYPE_DIR;
|
||||
lfs_dir_read(&lfs, &dir[0], &info) => 0;
|
||||
lfs_dir_close(&lfs, &dir[0]) => 0;
|
||||
lfs_unmount(&lfs) => 0;
|
||||
TEST
|
||||
|
||||
echo "--- Results ---"
|
||||
tests/stats.py
|
|
@ -0,0 +1,114 @@
|
|||
#!/bin/bash
|
||||
set -eu
|
||||
|
||||
SMALLSIZE=32
|
||||
MEDIUMSIZE=8192
|
||||
LARGESIZE=262144
|
||||
|
||||
echo "=== File tests ==="
|
||||
rm -rf blocks
|
||||
tests/test.py << TEST
|
||||
lfs_format(&lfs, &cfg) => 0;
|
||||
TEST
|
||||
|
||||
echo "--- Simple file test ---"
|
||||
tests/test.py << TEST
|
||||
lfs_mount(&lfs, &cfg) => 0;
|
||||
lfs_file_open(&lfs, &file[0], "hello", LFS_O_WRONLY | LFS_O_CREAT) => 0;
|
||||
size = strlen("Hello World!\n");
|
||||
memcpy(wbuffer, "Hello World!\n", size);
|
||||
lfs_file_write(&lfs, &file[0], wbuffer, size) => size;
|
||||
lfs_file_close(&lfs, &file[0]) => 0;
|
||||
|
||||
lfs_file_open(&lfs, &file[0], "hello", LFS_O_RDONLY) => 0;
|
||||
size = strlen("Hello World!\n");
|
||||
lfs_file_read(&lfs, &file[0], rbuffer, size) => size;
|
||||
memcmp(rbuffer, wbuffer, size) => 0;
|
||||
lfs_file_close(&lfs, &file[0]) => 0;
|
||||
lfs_unmount(&lfs) => 0;
|
||||
TEST
|
||||
|
||||
w_test() {
|
||||
tests/test.py << TEST
|
||||
lfs_size_t size = $1;
|
||||
lfs_size_t chunk = 31;
|
||||
srand(0);
|
||||
lfs_mount(&lfs, &cfg) => 0;
|
||||
lfs_file_open(&lfs, &file[0], "$2", LFS_O_WRONLY | LFS_O_CREAT) => 0;
|
||||
for (lfs_size_t i = 0; i < size; i += chunk) {
|
||||
chunk = (chunk < size - i) ? chunk : size - i;
|
||||
for (lfs_size_t b = 0; b < chunk; b++) {
|
||||
buffer[b] = rand() & 0xff;
|
||||
}
|
||||
lfs_file_write(&lfs, &file[0], buffer, chunk) => chunk;
|
||||
}
|
||||
lfs_file_close(&lfs, &file[0]) => 0;
|
||||
lfs_unmount(&lfs) => 0;
|
||||
TEST
|
||||
}
|
||||
|
||||
r_test() {
|
||||
tests/test.py << TEST
|
||||
lfs_size_t size = $1;
|
||||
lfs_size_t chunk = 29;
|
||||
srand(0);
|
||||
lfs_mount(&lfs, &cfg) => 0;
|
||||
lfs_file_open(&lfs, &file[0], "$2", LFS_O_RDONLY) => 0;
|
||||
for (lfs_size_t i = 0; i < size; i += chunk) {
|
||||
chunk = (chunk < size - i) ? chunk : size - i;
|
||||
lfs_file_read(&lfs, &file[0], buffer, chunk) => chunk;
|
||||
for (lfs_size_t b = 0; b < chunk && i+b < size; b++) {
|
||||
buffer[b] => rand() & 0xff;
|
||||
}
|
||||
}
|
||||
lfs_file_close(&lfs, &file[0]) => 0;
|
||||
lfs_unmount(&lfs) => 0;
|
||||
TEST
|
||||
}
|
||||
|
||||
echo "--- Small file test ---"
|
||||
w_test $SMALLSIZE smallavacado
|
||||
r_test $SMALLSIZE smallavacado
|
||||
|
||||
echo "--- Medium file test ---"
|
||||
w_test $MEDIUMSIZE mediumavacado
|
||||
r_test $MEDIUMSIZE mediumavacado
|
||||
|
||||
echo "--- Large file test ---"
|
||||
w_test $LARGESIZE largeavacado
|
||||
r_test $LARGESIZE largeavacado
|
||||
|
||||
echo "--- Non-overlap check ---"
|
||||
r_test $SMALLSIZE smallavacado
|
||||
r_test $MEDIUMSIZE mediumavacado
|
||||
r_test $LARGESIZE largeavacado
|
||||
|
||||
echo "--- Dir check ---"
|
||||
tests/test.py << TEST
|
||||
lfs_mount(&lfs, &cfg) => 0;
|
||||
lfs_dir_open(&lfs, &dir[0], "/") => 0;
|
||||
lfs_dir_read(&lfs, &dir[0], &info) => 1;
|
||||
lfs_dir_read(&lfs, &dir[0], &info) => 1;
|
||||
lfs_dir_read(&lfs, &dir[0], &info) => 1;
|
||||
strcmp(info.name, "hello") => 0;
|
||||
info.type => LFS_TYPE_REG;
|
||||
info.size => strlen("Hello World!\n");
|
||||
lfs_dir_read(&lfs, &dir[0], &info) => 1;
|
||||
strcmp(info.name, "smallavacado") => 0;
|
||||
info.type => LFS_TYPE_REG;
|
||||
info.size => $SMALLSIZE;
|
||||
lfs_dir_read(&lfs, &dir[0], &info) => 1;
|
||||
strcmp(info.name, "mediumavacado") => 0;
|
||||
info.type => LFS_TYPE_REG;
|
||||
info.size => $MEDIUMSIZE;
|
||||
lfs_dir_read(&lfs, &dir[0], &info) => 1;
|
||||
strcmp(info.name, "largeavacado") => 0;
|
||||
info.type => LFS_TYPE_REG;
|
||||
info.size => $LARGESIZE;
|
||||
lfs_dir_read(&lfs, &dir[0], &info) => 0;
|
||||
lfs_dir_close(&lfs, &dir[0]) => 0;
|
||||
lfs_unmount(&lfs) => 0;
|
||||
TEST
|
||||
|
||||
echo "--- Results ---"
|
||||
tests/stats.py
|
|
@ -0,0 +1,49 @@
|
|||
#!/bin/bash
|
||||
set -eu
|
||||
|
||||
echo "=== Formatting tests ==="
|
||||
rm -rf blocks
|
||||
|
||||
echo "--- Basic formatting ---"
|
||||
tests/test.py << TEST
|
||||
lfs_format(&lfs, &cfg) => 0;
|
||||
TEST
|
||||
|
||||
echo "--- Invalid superblocks ---"
|
||||
ln -f -s /dev/zero blocks/0
|
||||
ln -f -s /dev/zero blocks/1
|
||||
tests/test.py << TEST
|
||||
lfs_format(&lfs, &cfg) => LFS_ERR_CORRUPT;
|
||||
TEST
|
||||
rm blocks/0 blocks/1
|
||||
|
||||
echo "--- Basic mounting ---"
|
||||
tests/test.py << TEST
|
||||
lfs_format(&lfs, &cfg) => 0;
|
||||
TEST
|
||||
tests/test.py << TEST
|
||||
lfs_mount(&lfs, &cfg) => 0;
|
||||
lfs_unmount(&lfs) => 0;
|
||||
TEST
|
||||
|
||||
echo "--- Invalid mount ---"
|
||||
tests/test.py << TEST
|
||||
lfs_format(&lfs, &cfg) => 0;
|
||||
TEST
|
||||
rm blocks/0 blocks/1
|
||||
tests/test.py << TEST
|
||||
lfs_mount(&lfs, &cfg) => LFS_ERR_CORRUPT;
|
||||
TEST
|
||||
|
||||
echo "--- Valid corrupt mount ---"
|
||||
tests/test.py << TEST
|
||||
lfs_format(&lfs, &cfg) => 0;
|
||||
TEST
|
||||
rm blocks/0
|
||||
tests/test.py << TEST
|
||||
lfs_mount(&lfs, &cfg) => 0;
|
||||
lfs_unmount(&lfs) => 0;
|
||||
TEST
|
||||
|
||||
echo "--- Results ---"
|
||||
tests/stats.py
|
|
@ -0,0 +1,41 @@
|
|||
#!/bin/bash
|
||||
set -eu
|
||||
|
||||
echo "=== Orphan tests ==="
|
||||
rm -rf blocks
|
||||
tests/test.py << TEST
|
||||
lfs_format(&lfs, &cfg) => 0;
|
||||
TEST
|
||||
|
||||
echo "--- Orphan test ---"
|
||||
tests/test.py << TEST
|
||||
lfs_mount(&lfs, &cfg) => 0;
|
||||
lfs_mkdir(&lfs, "parent") => 0;
|
||||
lfs_mkdir(&lfs, "parent/orphan") => 0;
|
||||
lfs_mkdir(&lfs, "parent/child") => 0;
|
||||
lfs_remove(&lfs, "parent/orphan") => 0;
|
||||
TEST
|
||||
# remove most recent file, this should be the update to the previous
|
||||
# linked-list entry and should orphan the child
|
||||
rm -v blocks/8
|
||||
tests/test.py << TEST
|
||||
lfs_mount(&lfs, &cfg) => 0;
|
||||
lfs_stat(&lfs, "parent/orphan", &info) => LFS_ERR_NOENT;
|
||||
unsigned before = 0;
|
||||
lfs_traverse(&lfs, test_count, &before) => 0;
|
||||
test_log("before", before);
|
||||
|
||||
lfs_deorphan(&lfs) => 0;
|
||||
|
||||
lfs_stat(&lfs, "parent/orphan", &info) => LFS_ERR_NOENT;
|
||||
unsigned after = 0;
|
||||
lfs_traverse(&lfs, test_count, &after) => 0;
|
||||
test_log("after", after);
|
||||
|
||||
int diff = before - after;
|
||||
diff => 2;
|
||||
lfs_unmount(&lfs) => 0;
|
||||
TEST
|
||||
|
||||
echo "--- Results ---"
|
||||
tests/stats.py
|
|
@ -0,0 +1,186 @@
|
|||
#!/bin/bash
|
||||
set -eu
|
||||
|
||||
echo "=== Parallel tests ==="
|
||||
rm -rf blocks
|
||||
tests/test.py << TEST
|
||||
lfs_format(&lfs, &cfg) => 0;
|
||||
TEST
|
||||
|
||||
echo "--- Parallel file test ---"
|
||||
tests/test.py << TEST
|
||||
lfs_mount(&lfs, &cfg) => 0;
|
||||
lfs_file_open(&lfs, &file[0], "a", LFS_O_WRONLY | LFS_O_CREAT) => 0;
|
||||
lfs_file_open(&lfs, &file[1], "b", LFS_O_WRONLY | LFS_O_CREAT) => 0;
|
||||
lfs_file_open(&lfs, &file[2], "c", LFS_O_WRONLY | LFS_O_CREAT) => 0;
|
||||
lfs_file_open(&lfs, &file[3], "d", LFS_O_WRONLY | LFS_O_CREAT) => 0;
|
||||
|
||||
for (int i = 0; i < 10; i++) {
|
||||
lfs_file_write(&lfs, &file[0], (const void*)"a", 1) => 1;
|
||||
lfs_file_write(&lfs, &file[1], (const void*)"b", 1) => 1;
|
||||
lfs_file_write(&lfs, &file[2], (const void*)"c", 1) => 1;
|
||||
lfs_file_write(&lfs, &file[3], (const void*)"d", 1) => 1;
|
||||
}
|
||||
|
||||
lfs_file_close(&lfs, &file[0]);
|
||||
lfs_file_close(&lfs, &file[1]);
|
||||
lfs_file_close(&lfs, &file[2]);
|
||||
lfs_file_close(&lfs, &file[3]);
|
||||
|
||||
lfs_dir_open(&lfs, &dir[0], "/") => 0;
|
||||
lfs_dir_read(&lfs, &dir[0], &info) => 1;
|
||||
strcmp(info.name, ".") => 0;
|
||||
info.type => LFS_TYPE_DIR;
|
||||
lfs_dir_read(&lfs, &dir[0], &info) => 1;
|
||||
strcmp(info.name, "..") => 0;
|
||||
info.type => LFS_TYPE_DIR;
|
||||
lfs_dir_read(&lfs, &dir[0], &info) => 1;
|
||||
strcmp(info.name, "a") => 0;
|
||||
info.type => LFS_TYPE_REG;
|
||||
info.size => 10;
|
||||
lfs_dir_read(&lfs, &dir[0], &info) => 1;
|
||||
strcmp(info.name, "b") => 0;
|
||||
info.type => LFS_TYPE_REG;
|
||||
info.size => 10;
|
||||
lfs_dir_read(&lfs, &dir[0], &info) => 1;
|
||||
strcmp(info.name, "c") => 0;
|
||||
info.type => LFS_TYPE_REG;
|
||||
info.size => 10;
|
||||
lfs_dir_read(&lfs, &dir[0], &info) => 1;
|
||||
strcmp(info.name, "d") => 0;
|
||||
info.type => LFS_TYPE_REG;
|
||||
info.size => 10;
|
||||
lfs_dir_read(&lfs, &dir[0], &info) => 0;
|
||||
lfs_dir_close(&lfs, &dir[0]) => 0;
|
||||
|
||||
lfs_file_open(&lfs, &file[0], "a", LFS_O_RDONLY) => 0;
|
||||
lfs_file_open(&lfs, &file[1], "b", LFS_O_RDONLY) => 0;
|
||||
lfs_file_open(&lfs, &file[2], "c", LFS_O_RDONLY) => 0;
|
||||
lfs_file_open(&lfs, &file[3], "d", LFS_O_RDONLY) => 0;
|
||||
|
||||
for (int i = 0; i < 10; i++) {
|
||||
lfs_file_read(&lfs, &file[0], buffer, 1) => 1;
|
||||
buffer[0] => 'a';
|
||||
lfs_file_read(&lfs, &file[1], buffer, 1) => 1;
|
||||
buffer[0] => 'b';
|
||||
lfs_file_read(&lfs, &file[2], buffer, 1) => 1;
|
||||
buffer[0] => 'c';
|
||||
lfs_file_read(&lfs, &file[3], buffer, 1) => 1;
|
||||
buffer[0] => 'd';
|
||||
}
|
||||
|
||||
lfs_file_close(&lfs, &file[0]);
|
||||
lfs_file_close(&lfs, &file[1]);
|
||||
lfs_file_close(&lfs, &file[2]);
|
||||
lfs_file_close(&lfs, &file[3]);
|
||||
|
||||
lfs_unmount(&lfs) => 0;
|
||||
TEST
|
||||
|
||||
echo "--- Parallel remove file test ---"
|
||||
tests/test.py << TEST
|
||||
lfs_mount(&lfs, &cfg) => 0;
|
||||
lfs_file_open(&lfs, &file[0], "e", LFS_O_WRONLY | LFS_O_CREAT) => 0;
|
||||
|
||||
for (int i = 0; i < 5; i++) {
|
||||
lfs_file_write(&lfs, &file[0], (const void*)"e", 1) => 1;
|
||||
}
|
||||
|
||||
lfs_remove(&lfs, "a") => 0;
|
||||
lfs_remove(&lfs, "b") => 0;
|
||||
lfs_remove(&lfs, "c") => 0;
|
||||
lfs_remove(&lfs, "d") => 0;
|
||||
|
||||
for (int i = 0; i < 5; i++) {
|
||||
lfs_file_write(&lfs, &file[0], (const void*)"e", 1) => 1;
|
||||
}
|
||||
|
||||
lfs_file_close(&lfs, &file[0]);
|
||||
|
||||
lfs_dir_open(&lfs, &dir[0], "/") => 0;
|
||||
lfs_dir_read(&lfs, &dir[0], &info) => 1;
|
||||
strcmp(info.name, ".") => 0;
|
||||
info.type => LFS_TYPE_DIR;
|
||||
lfs_dir_read(&lfs, &dir[0], &info) => 1;
|
||||
strcmp(info.name, "..") => 0;
|
||||
info.type => LFS_TYPE_DIR;
|
||||
lfs_dir_read(&lfs, &dir[0], &info) => 1;
|
||||
strcmp(info.name, "e") => 0;
|
||||
info.type => LFS_TYPE_REG;
|
||||
info.size => 10;
|
||||
lfs_dir_read(&lfs, &dir[0], &info) => 0;
|
||||
lfs_dir_close(&lfs, &dir[0]) => 0;
|
||||
|
||||
lfs_file_open(&lfs, &file[0], "e", LFS_O_RDONLY) => 0;
|
||||
|
||||
for (int i = 0; i < 10; i++) {
|
||||
lfs_file_read(&lfs, &file[0], buffer, 1) => 1;
|
||||
buffer[0] => 'e';
|
||||
}
|
||||
|
||||
lfs_file_close(&lfs, &file[0]);
|
||||
|
||||
lfs_unmount(&lfs) => 0;
|
||||
TEST
|
||||
|
||||
echo "--- Remove inconveniently test ---"
|
||||
tests/test.py << TEST
|
||||
lfs_mount(&lfs, &cfg) => 0;
|
||||
lfs_file_open(&lfs, &file[0], "e", LFS_O_WRONLY | LFS_O_TRUNC) => 0;
|
||||
lfs_file_open(&lfs, &file[1], "f", LFS_O_WRONLY | LFS_O_CREAT) => 0;
|
||||
lfs_file_open(&lfs, &file[2], "g", LFS_O_WRONLY | LFS_O_CREAT) => 0;
|
||||
|
||||
for (int i = 0; i < 5; i++) {
|
||||
lfs_file_write(&lfs, &file[0], (const void*)"e", 1) => 1;
|
||||
lfs_file_write(&lfs, &file[1], (const void*)"f", 1) => 1;
|
||||
lfs_file_write(&lfs, &file[2], (const void*)"g", 1) => 1;
|
||||
}
|
||||
|
||||
lfs_remove(&lfs, "f") => 0;
|
||||
|
||||
for (int i = 0; i < 5; i++) {
|
||||
lfs_file_write(&lfs, &file[0], (const void*)"e", 1) => 1;
|
||||
lfs_file_write(&lfs, &file[1], (const void*)"f", 1) => 1;
|
||||
lfs_file_write(&lfs, &file[2], (const void*)"g", 1) => 1;
|
||||
}
|
||||
|
||||
lfs_file_close(&lfs, &file[0]);
|
||||
lfs_file_close(&lfs, &file[1]);
|
||||
lfs_file_close(&lfs, &file[2]);
|
||||
|
||||
lfs_dir_open(&lfs, &dir[0], "/") => 0;
|
||||
lfs_dir_read(&lfs, &dir[0], &info) => 1;
|
||||
strcmp(info.name, ".") => 0;
|
||||
info.type => LFS_TYPE_DIR;
|
||||
lfs_dir_read(&lfs, &dir[0], &info) => 1;
|
||||
strcmp(info.name, "..") => 0;
|
||||
info.type => LFS_TYPE_DIR;
|
||||
lfs_dir_read(&lfs, &dir[0], &info) => 1;
|
||||
strcmp(info.name, "e") => 0;
|
||||
info.type => LFS_TYPE_REG;
|
||||
info.size => 10;
|
||||
lfs_dir_read(&lfs, &dir[0], &info) => 1;
|
||||
strcmp(info.name, "g") => 0;
|
||||
info.type => LFS_TYPE_REG;
|
||||
info.size => 10;
|
||||
lfs_dir_read(&lfs, &dir[0], &info) => 0;
|
||||
lfs_dir_close(&lfs, &dir[0]) => 0;
|
||||
|
||||
lfs_file_open(&lfs, &file[0], "e", LFS_O_RDONLY) => 0;
|
||||
lfs_file_open(&lfs, &file[1], "g", LFS_O_RDONLY) => 0;
|
||||
|
||||
for (int i = 0; i < 10; i++) {
|
||||
lfs_file_read(&lfs, &file[0], buffer, 1) => 1;
|
||||
buffer[0] => 'e';
|
||||
lfs_file_read(&lfs, &file[1], buffer, 1) => 1;
|
||||
buffer[0] => 'g';
|
||||
}
|
||||
|
||||
lfs_file_close(&lfs, &file[0]);
|
||||
lfs_file_close(&lfs, &file[1]);
|
||||
|
||||
lfs_unmount(&lfs) => 0;
|
||||
TEST
|
||||
|
||||
echo "--- Results ---"
|
||||
tests/stats.py
|
|
@ -0,0 +1,86 @@
|
|||
#!/bin/bash
|
||||
set -eu
|
||||
|
||||
echo "=== Path tests ==="
|
||||
rm -rf blocks
|
||||
tests/test.py << TEST
|
||||
lfs_format(&lfs, &cfg) => 0;
|
||||
TEST
|
||||
|
||||
tests/test.py << TEST
|
||||
lfs_mount(&lfs, &cfg) => 0;
|
||||
lfs_mkdir(&lfs, "tea") => 0;
|
||||
lfs_mkdir(&lfs, "coffee") => 0;
|
||||
lfs_mkdir(&lfs, "soda") => 0;
|
||||
lfs_mkdir(&lfs, "tea/hottea") => 0;
|
||||
lfs_mkdir(&lfs, "tea/warmtea") => 0;
|
||||
lfs_mkdir(&lfs, "tea/coldtea") => 0;
|
||||
lfs_mkdir(&lfs, "coffee/hotcoffee") => 0;
|
||||
lfs_mkdir(&lfs, "coffee/warmcoffee") => 0;
|
||||
lfs_mkdir(&lfs, "coffee/coldcoffee") => 0;
|
||||
lfs_mkdir(&lfs, "soda/hotsoda") => 0;
|
||||
lfs_mkdir(&lfs, "soda/warmsoda") => 0;
|
||||
lfs_mkdir(&lfs, "soda/coldsoda") => 0;
|
||||
lfs_unmount(&lfs) => 0;
|
||||
TEST
|
||||
|
||||
echo "--- Root path tests ---"
|
||||
tests/test.py << TEST
|
||||
lfs_mount(&lfs, &cfg) => 0;
|
||||
lfs_stat(&lfs, "tea/hottea", &info) => 0;
|
||||
strcmp(info.name, "hottea") => 0;
|
||||
lfs_stat(&lfs, "/tea/hottea", &info) => 0;
|
||||
strcmp(info.name, "hottea") => 0;
|
||||
lfs_unmount(&lfs) => 0;
|
||||
TEST
|
||||
|
||||
echo "--- Redundant slash path tests ---"
|
||||
tests/test.py << TEST
|
||||
lfs_mount(&lfs, &cfg) => 0;
|
||||
lfs_stat(&lfs, "/tea/hottea", &info) => 0;
|
||||
strcmp(info.name, "hottea") => 0;
|
||||
lfs_stat(&lfs, "//tea//hottea", &info) => 0;
|
||||
strcmp(info.name, "hottea") => 0;
|
||||
lfs_stat(&lfs, "///tea///hottea", &info) => 0;
|
||||
strcmp(info.name, "hottea") => 0;
|
||||
lfs_unmount(&lfs) => 0;
|
||||
TEST
|
||||
|
||||
echo "--- Dot path tests ---"
|
||||
tests/test.py << TEST
|
||||
lfs_mount(&lfs, &cfg) => 0;
|
||||
lfs_stat(&lfs, "./tea/hottea", &info) => 0;
|
||||
strcmp(info.name, "hottea") => 0;
|
||||
lfs_stat(&lfs, "/./tea/hottea", &info) => 0;
|
||||
strcmp(info.name, "hottea") => 0;
|
||||
lfs_stat(&lfs, "/././tea/hottea", &info) => 0;
|
||||
strcmp(info.name, "hottea") => 0;
|
||||
lfs_stat(&lfs, "/./tea/./hottea", &info) => 0;
|
||||
strcmp(info.name, "hottea") => 0;
|
||||
lfs_unmount(&lfs) => 0;
|
||||
TEST
|
||||
|
||||
echo "--- Dot dot path tests ---"
|
||||
tests/test.py << TEST
|
||||
lfs_mount(&lfs, &cfg) => 0;
|
||||
lfs_stat(&lfs, "coffee/../tea/hottea", &info) => 0;
|
||||
strcmp(info.name, "hottea") => 0;
|
||||
lfs_stat(&lfs, "tea/coldtea/../hottea", &info) => 0;
|
||||
strcmp(info.name, "hottea") => 0;
|
||||
lfs_stat(&lfs, "coffee/coldcoffee/../../tea/hottea", &info) => 0;
|
||||
strcmp(info.name, "hottea") => 0;
|
||||
lfs_stat(&lfs, "coffee/../soda/../tea/hottea", &info) => 0;
|
||||
strcmp(info.name, "hottea") => 0;
|
||||
lfs_unmount(&lfs) => 0;
|
||||
TEST
|
||||
|
||||
echo "--- Root dot dot path tests ---"
|
||||
tests/test.py << TEST
|
||||
lfs_mount(&lfs, &cfg) => 0;
|
||||
lfs_stat(&lfs, "coffee/../../../../../../tea/hottea", &info) => 0;
|
||||
strcmp(info.name, "hottea") => 0;
|
||||
lfs_unmount(&lfs) => 0;
|
||||
TEST
|
||||
|
||||
echo "--- Results ---"
|
||||
tests/stats.py
|
|
@ -0,0 +1,281 @@
|
|||
#!/bin/bash
|
||||
set -eu
|
||||
|
||||
SMALLSIZE=4
|
||||
MEDIUMSIZE=128
|
||||
LARGESIZE=132
|
||||
|
||||
echo "=== Seek tests ==="
|
||||
rm -rf blocks
|
||||
tests/test.py << TEST
|
||||
lfs_format(&lfs, &cfg) => 0;
|
||||
lfs_mount(&lfs, &cfg) => 0;
|
||||
lfs_mkdir(&lfs, "hello") => 0;
|
||||
for (int i = 0; i < $LARGESIZE; i++) {
|
||||
sprintf((char*)buffer, "hello/kitty%d", i);
|
||||
lfs_file_open(&lfs, &file[0], (char*)buffer,
|
||||
LFS_O_WRONLY | LFS_O_CREAT | LFS_O_APPEND) => 0;
|
||||
|
||||
size = strlen("kittycatcat");
|
||||
memcpy(buffer, "kittycatcat", size);
|
||||
for (int j = 0; j < $LARGESIZE; j++) {
|
||||
lfs_file_write(&lfs, &file[0], buffer, size);
|
||||
}
|
||||
|
||||
lfs_file_close(&lfs, &file[0]) => 0;
|
||||
}
|
||||
lfs_unmount(&lfs) => 0;
|
||||
TEST
|
||||
|
||||
echo "--- Simple dir seek ---"
|
||||
tests/test.py << TEST
|
||||
lfs_mount(&lfs, &cfg) => 0;
|
||||
lfs_dir_open(&lfs, &dir[0], "hello") => 0;
|
||||
lfs_dir_read(&lfs, &dir[0], &info) => 1;
|
||||
strcmp(info.name, ".") => 0;
|
||||
lfs_dir_read(&lfs, &dir[0], &info) => 1;
|
||||
strcmp(info.name, "..") => 0;
|
||||
|
||||
lfs_soff_t pos;
|
||||
int i;
|
||||
for (i = 0; i < $SMALLSIZE; i++) {
|
||||
sprintf((char*)buffer, "kitty%d", i);
|
||||
lfs_dir_read(&lfs, &dir[0], &info) => 1;
|
||||
strcmp(info.name, (char*)buffer) => 0;
|
||||
pos = lfs_dir_tell(&lfs, &dir[0]);
|
||||
}
|
||||
pos >= 0 => 1;
|
||||
|
||||
lfs_dir_seek(&lfs, &dir[0], pos) => 0;
|
||||
sprintf((char*)buffer, "kitty%d", i);
|
||||
lfs_dir_read(&lfs, &dir[0], &info) => 1;
|
||||
strcmp(info.name, (char*)buffer) => 0;
|
||||
|
||||
lfs_dir_rewind(&lfs, &dir[0]) => 0;
|
||||
sprintf((char*)buffer, "kitty%d", 0);
|
||||
lfs_dir_read(&lfs, &dir[0], &info) => 1;
|
||||
strcmp(info.name, ".") => 0;
|
||||
lfs_dir_read(&lfs, &dir[0], &info) => 1;
|
||||
strcmp(info.name, "..") => 0;
|
||||
lfs_dir_read(&lfs, &dir[0], &info) => 1;
|
||||
strcmp(info.name, (char*)buffer) => 0;
|
||||
|
||||
lfs_dir_seek(&lfs, &dir[0], pos) => 0;
|
||||
sprintf((char*)buffer, "kitty%d", i);
|
||||
lfs_dir_read(&lfs, &dir[0], &info) => 1;
|
||||
strcmp(info.name, (char*)buffer) => 0;
|
||||
|
||||
lfs_dir_close(&lfs, &dir[0]) => 0;
|
||||
lfs_unmount(&lfs) => 0;
|
||||
TEST
|
||||
|
||||
echo "--- Large dir seek ---"
|
||||
tests/test.py << TEST
|
||||
lfs_mount(&lfs, &cfg) => 0;
|
||||
lfs_dir_open(&lfs, &dir[0], "hello") => 0;
|
||||
lfs_dir_read(&lfs, &dir[0], &info) => 1;
|
||||
strcmp(info.name, ".") => 0;
|
||||
lfs_dir_read(&lfs, &dir[0], &info) => 1;
|
||||
strcmp(info.name, "..") => 0;
|
||||
|
||||
lfs_soff_t pos;
|
||||
int i;
|
||||
for (i = 0; i < $MEDIUMSIZE; i++) {
|
||||
sprintf((char*)buffer, "kitty%d", i);
|
||||
lfs_dir_read(&lfs, &dir[0], &info) => 1;
|
||||
strcmp(info.name, (char*)buffer) => 0;
|
||||
pos = lfs_dir_tell(&lfs, &dir[0]);
|
||||
}
|
||||
pos >= 0 => 1;
|
||||
|
||||
lfs_dir_seek(&lfs, &dir[0], pos) => 0;
|
||||
sprintf((char*)buffer, "kitty%d", i);
|
||||
lfs_dir_read(&lfs, &dir[0], &info) => 1;
|
||||
strcmp(info.name, (char*)buffer) => 0;
|
||||
|
||||
lfs_dir_rewind(&lfs, &dir[0]) => 0;
|
||||
sprintf((char*)buffer, "kitty%d", 0);
|
||||
lfs_dir_read(&lfs, &dir[0], &info) => 1;
|
||||
strcmp(info.name, ".") => 0;
|
||||
lfs_dir_read(&lfs, &dir[0], &info) => 1;
|
||||
strcmp(info.name, "..") => 0;
|
||||
lfs_dir_read(&lfs, &dir[0], &info) => 1;
|
||||
strcmp(info.name, (char*)buffer) => 0;
|
||||
|
||||
lfs_dir_seek(&lfs, &dir[0], pos) => 0;
|
||||
sprintf((char*)buffer, "kitty%d", i);
|
||||
lfs_dir_read(&lfs, &dir[0], &info) => 1;
|
||||
strcmp(info.name, (char*)buffer) => 0;
|
||||
|
||||
lfs_dir_close(&lfs, &dir[0]) => 0;
|
||||
lfs_unmount(&lfs) => 0;
|
||||
TEST
|
||||
|
||||
echo "--- Simple file seek ---"
|
||||
tests/test.py << TEST
|
||||
lfs_mount(&lfs, &cfg) => 0;
|
||||
lfs_file_open(&lfs, &file[0], "hello/kitty42", LFS_O_RDONLY) => 0;
|
||||
|
||||
lfs_soff_t pos;
|
||||
size = strlen("kittycatcat");
|
||||
for (int i = 0; i < $SMALLSIZE; i++) {
|
||||
lfs_file_read(&lfs, &file[0], buffer, size) => size;
|
||||
memcmp(buffer, "kittycatcat", size) => 0;
|
||||
pos = lfs_file_tell(&lfs, &file[0]);
|
||||
}
|
||||
pos >= 0 => 1;
|
||||
|
||||
lfs_file_seek(&lfs, &file[0], pos, LFS_SEEK_SET) => pos;
|
||||
lfs_file_read(&lfs, &file[0], buffer, size) => size;
|
||||
memcmp(buffer, "kittycatcat", size) => 0;
|
||||
|
||||
lfs_file_rewind(&lfs, &file[0]) => 0;
|
||||
lfs_file_read(&lfs, &file[0], buffer, size) => size;
|
||||
memcmp(buffer, "kittycatcat", size) => 0;
|
||||
|
||||
lfs_file_seek(&lfs, &file[0], pos, LFS_SEEK_SET) => size;
|
||||
lfs_file_read(&lfs, &file[0], buffer, size) => size;
|
||||
memcmp(buffer, "kittycatcat", size) => 0;
|
||||
|
||||
lfs_file_seek(&lfs, &file[0], -size, LFS_SEEK_CUR) => pos+size;
|
||||
lfs_file_read(&lfs, &file[0], buffer, size) => size;
|
||||
memcmp(buffer, "kittycatcat", size) => 0;
|
||||
|
||||
lfs_file_seek(&lfs, &file[0], -size, LFS_SEEK_END) => pos+size;
|
||||
lfs_file_read(&lfs, &file[0], buffer, size) => size;
|
||||
memcmp(buffer, "kittycatcat", size) => 0;
|
||||
|
||||
lfs_size_t size = lfs_file_size(&lfs, &file[0]);
|
||||
lfs_file_seek(&lfs, &file[0], 0, LFS_SEEK_CUR) => size;
|
||||
|
||||
lfs_file_close(&lfs, &file[0]) => 0;
|
||||
lfs_unmount(&lfs) => 0;
|
||||
TEST
|
||||
|
||||
echo "--- Large file seek ---"
|
||||
tests/test.py << TEST
|
||||
lfs_mount(&lfs, &cfg) => 0;
|
||||
lfs_file_open(&lfs, &file[0], "hello/kitty42", LFS_O_RDONLY) => 0;
|
||||
|
||||
lfs_soff_t pos;
|
||||
size = strlen("kittycatcat");
|
||||
for (int i = 0; i < $MEDIUMSIZE; i++) {
|
||||
lfs_file_read(&lfs, &file[0], buffer, size) => size;
|
||||
memcmp(buffer, "kittycatcat", size) => 0;
|
||||
pos = lfs_file_tell(&lfs, &file[0]);
|
||||
}
|
||||
pos >= 0 => 1;
|
||||
|
||||
lfs_file_seek(&lfs, &file[0], pos, LFS_SEEK_SET) => pos;
|
||||
lfs_file_read(&lfs, &file[0], buffer, size) => size;
|
||||
memcmp(buffer, "kittycatcat", size) => 0;
|
||||
|
||||
lfs_file_rewind(&lfs, &file[0]) => 0;
|
||||
lfs_file_read(&lfs, &file[0], buffer, size) => size;
|
||||
memcmp(buffer, "kittycatcat", size) => 0;
|
||||
|
||||
lfs_file_seek(&lfs, &file[0], pos, LFS_SEEK_SET) => size;
|
||||
lfs_file_read(&lfs, &file[0], buffer, size) => size;
|
||||
memcmp(buffer, "kittycatcat", size) => 0;
|
||||
|
||||
lfs_file_seek(&lfs, &file[0], -size, LFS_SEEK_CUR) => pos+size;
|
||||
lfs_file_read(&lfs, &file[0], buffer, size) => size;
|
||||
memcmp(buffer, "kittycatcat", size) => 0;
|
||||
|
||||
lfs_file_seek(&lfs, &file[0], -size, LFS_SEEK_END) => pos+size;
|
||||
lfs_file_read(&lfs, &file[0], buffer, size) => size;
|
||||
memcmp(buffer, "kittycatcat", size) => 0;
|
||||
|
||||
lfs_size_t size = lfs_file_size(&lfs, &file[0]);
|
||||
lfs_file_seek(&lfs, &file[0], 0, LFS_SEEK_CUR) => size;
|
||||
|
||||
lfs_file_close(&lfs, &file[0]) => 0;
|
||||
lfs_unmount(&lfs) => 0;
|
||||
TEST
|
||||
|
||||
echo "--- Simple file seek and write ---"
|
||||
tests/test.py << TEST
|
||||
lfs_mount(&lfs, &cfg) => 0;
|
||||
lfs_file_open(&lfs, &file[0], "hello/kitty42", LFS_O_RDWR) => 0;
|
||||
|
||||
lfs_soff_t pos;
|
||||
size = strlen("kittycatcat");
|
||||
for (int i = 0; i < $SMALLSIZE; i++) {
|
||||
lfs_file_read(&lfs, &file[0], buffer, size) => size;
|
||||
memcmp(buffer, "kittycatcat", size) => 0;
|
||||
pos = lfs_file_tell(&lfs, &file[0]);
|
||||
}
|
||||
pos >= 0 => 1;
|
||||
|
||||
memcpy(buffer, "doggodogdog", size);
|
||||
lfs_file_seek(&lfs, &file[0], pos, LFS_SEEK_SET) => pos;
|
||||
lfs_file_write(&lfs, &file[0], buffer, size) => size;
|
||||
|
||||
lfs_file_seek(&lfs, &file[0], pos, LFS_SEEK_SET) => pos+size;
|
||||
lfs_file_read(&lfs, &file[0], buffer, size) => size;
|
||||
memcmp(buffer, "doggodogdog", size) => 0;
|
||||
|
||||
lfs_file_rewind(&lfs, &file[0]) => 0;
|
||||
lfs_file_read(&lfs, &file[0], buffer, size) => size;
|
||||
memcmp(buffer, "kittycatcat", size) => 0;
|
||||
|
||||
lfs_file_seek(&lfs, &file[0], pos, LFS_SEEK_SET) => size;
|
||||
lfs_file_read(&lfs, &file[0], buffer, size) => size;
|
||||
memcmp(buffer, "doggodogdog", size) => 0;
|
||||
|
||||
lfs_file_seek(&lfs, &file[0], -size, LFS_SEEK_END) => pos+size;
|
||||
lfs_file_read(&lfs, &file[0], buffer, size) => size;
|
||||
memcmp(buffer, "kittycatcat", size) => 0;
|
||||
|
||||
lfs_size_t size = lfs_file_size(&lfs, &file[0]);
|
||||
lfs_file_seek(&lfs, &file[0], 0, LFS_SEEK_CUR) => size;
|
||||
|
||||
lfs_file_close(&lfs, &file[0]) => 0;
|
||||
lfs_unmount(&lfs) => 0;
|
||||
TEST
|
||||
|
||||
echo "--- Large file seek and write ---"
|
||||
tests/test.py << TEST
|
||||
lfs_mount(&lfs, &cfg) => 0;
|
||||
lfs_file_open(&lfs, &file[0], "hello/kitty42", LFS_O_RDWR) => 0;
|
||||
|
||||
lfs_soff_t pos;
|
||||
size = strlen("kittycatcat");
|
||||
for (int i = 0; i < $MEDIUMSIZE; i++) {
|
||||
lfs_file_read(&lfs, &file[0], buffer, size) => size;
|
||||
if (i != $SMALLSIZE) {
|
||||
memcmp(buffer, "kittycatcat", size) => 0;
|
||||
}
|
||||
pos = lfs_file_tell(&lfs, &file[0]);
|
||||
}
|
||||
pos >= 0 => 1;
|
||||
|
||||
memcpy(buffer, "doggodogdog", size);
|
||||
lfs_file_seek(&lfs, &file[0], pos, LFS_SEEK_SET) => pos;
|
||||
lfs_file_write(&lfs, &file[0], buffer, size) => size;
|
||||
|
||||
lfs_file_seek(&lfs, &file[0], pos, LFS_SEEK_SET) => pos+size;
|
||||
lfs_file_read(&lfs, &file[0], buffer, size) => size;
|
||||
memcmp(buffer, "doggodogdog", size) => 0;
|
||||
|
||||
lfs_file_rewind(&lfs, &file[0]) => 0;
|
||||
lfs_file_read(&lfs, &file[0], buffer, size) => size;
|
||||
memcmp(buffer, "kittycatcat", size) => 0;
|
||||
|
||||
lfs_file_seek(&lfs, &file[0], pos, LFS_SEEK_SET) => size;
|
||||
lfs_file_read(&lfs, &file[0], buffer, size) => size;
|
||||
memcmp(buffer, "doggodogdog", size) => 0;
|
||||
|
||||
lfs_file_seek(&lfs, &file[0], -size, LFS_SEEK_END) => pos+size;
|
||||
lfs_file_read(&lfs, &file[0], buffer, size) => size;
|
||||
memcmp(buffer, "kittycatcat", size) => 0;
|
||||
|
||||
lfs_size_t size = lfs_file_size(&lfs, &file[0]);
|
||||
lfs_file_seek(&lfs, &file[0], 0, LFS_SEEK_CUR) => size;
|
||||
|
||||
lfs_file_close(&lfs, &file[0]) => 0;
|
||||
lfs_unmount(&lfs) => 0;
|
||||
TEST
|
||||
|
||||
echo "--- Results ---"
|
||||
tests/stats.py
|
Loading…
Reference in New Issue