KL05 clock removal, I2C API

- spi - bus clock clock correction
  - i2c driver
pull/11/head
0xc0170 2013-06-25 21:53:06 +02:00
parent 3884f1ba3c
commit bf4746897f
5 changed files with 391 additions and 92 deletions

View File

@ -8,12 +8,6 @@
0 ... Multipurpose Clock Generator (MCG) in FLL Engaged Internal (FEI) mode
Reference clock source for MCG module is the slow internal clock source 32.768kHz
Core clock = 47.97MHz, BusClock = 23.48MHz
1 ... Multipurpose Clock Generator (MCG) in FLL Engaged External (FEE) mode
Reference clock source for MCG module is an external crystal 8MHz
Core clock = 40MHz, BusClock = 20MHz
2 ... Multipurpose Clock Generator (MCG) in Bypassed Low Power External (BLPE) mode
Core clock/Bus clock derived directly from an external crystal 8MHz with no multiplication
Core clock = 8MHz, BusClock = 8MHz
*/
/*----------------------------------------------------------------------------
@ -24,17 +18,7 @@
#define CPU_INT_SLOW_CLK_HZ 32768u /* Value of the slow internal oscillator clock frequency in Hz */
#define CPU_INT_FAST_CLK_HZ 4000000u /* Value of the fast internal oscillator clock frequency in Hz */
#define DEFAULT_SYSTEM_CLOCK 47972352u /* Default System clock value */
#elif (CLOCK_SETUP == 1)
#define CPU_XTAL_CLK_HZ 8000000u /* Value of the external crystal or oscillator clock frequency in Hz */
#define CPU_INT_SLOW_CLK_HZ 32768u /* Value of the slow internal oscillator clock frequency in Hz */
#define CPU_INT_FAST_CLK_HZ 4000000u /* Value of the fast internal oscillator clock frequency in Hz */
#define DEFAULT_SYSTEM_CLOCK 40000000u /* Default System clock value */
#elif (CLOCK_SETUP == 2)
#define CPU_XTAL_CLK_HZ 8000000u /* Value of the external crystal or oscillator clock frequency in Hz */
#define CPU_INT_SLOW_CLK_HZ 32768u /* Value of the slow internal oscillator clock frequency in Hz */
#define CPU_INT_FAST_CLK_HZ 4000000u /* Value of the fast internal oscillator clock frequency in Hz */
#define DEFAULT_SYSTEM_CLOCK 8000000u /* Default System clock value */
#endif /* (CLOCK_SETUP == 2) */
#endif /* (CLOCK_SETUP == 0) */
/* ----------------------------------------------------------------------------
@ -47,13 +31,13 @@ uint32_t SystemCoreClock = DEFAULT_SYSTEM_CLOCK;
-- SystemInit()
---------------------------------------------------------------------------- */
void SystemInit (void) {
void SystemInit(void) {
#if (DISABLE_WDOG)
/* Disable the WDOG module */
/* SIM_COPC: COPT=0,COPCLKS=0,COPW=0 */
SIM->COPC = (uint32_t)0x00u;
#endif /* (DISABLE_WDOG) */
#if (CLOCK_SETUP == 0)
SIM->SCGC5 |= (SIM_SCGC5_PORTB_MASK | SIM_SCGC5_PORTA_MASK); /* Enable clock gate for ports to enable pin routing */
/* SIM_CLKDIV1: OUTDIV1=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,OUTDIV4=1,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0 */
SIM->CLKDIV1 = (SIM_CLKDIV1_OUTDIV1(0x00) | SIM_CLKDIV1_OUTDIV4(0x01)); /* Update system prescalers */
@ -90,75 +74,6 @@ void SystemInit (void) {
}
while((MCG->S & 0x0CU) != 0x00U) { /* Wait until output of the FLL is selected */
}
#elif (CLOCK_SETUP == 1)
SIM->SCGC5 |= (SIM_SCGC5_PORTB_MASK | SIM_SCGC5_PORTA_MASK); /* Enable clock gate for ports to enable pin routing */
/* SIM_CLKDIV1: OUTDIV1=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,OUTDIV4=1,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0 */
SIM->CLKDIV1 = (SIM_CLKDIV1_OUTDIV1(0x00) | SIM_CLKDIV1_OUTDIV4(0x01)); /* Update system prescalers */
/* SIM_SOPT1: OSC32KSEL=3 */
SIM->SOPT1 |= SIM_SOPT1_OSC32KSEL(0x03); /* LPO 1kHz oscillator drives 32 kHz clock for various peripherals */
/* SIM_SOPT2: TPMSRC=1 */
SIM->SOPT2 = (uint32_t)((SIM->SOPT2 & (uint32_t)~(uint32_t)(
SIM_SOPT2_TPMSRC(0x02)
)) | (uint32_t)(
SIM_SOPT2_TPMSRC(0x01)
)); /* Set the TPM clock */
/* PORTA_PCR3: ISF=0,MUX=0 */
PORTA->PCR[3] &= (uint32_t)~(uint32_t)((PORT_PCR_ISF_MASK | PORT_PCR_MUX(0x07)));
/* PORTA_PCR4: ISF=0,MUX=0 */
PORTA->PCR[4] &= (uint32_t)~(uint32_t)((PORT_PCR_ISF_MASK | PORT_PCR_MUX(0x07)));
/* Switch to FEE Mode */
/* MCG_C2: LOCRE0=0,??=0,RANGE0=2,HGO0=0,EREFS0=1,LP=0,IRCS=0 */
MCG->C2 = (MCG_C2_RANGE0(0x02) | MCG_C2_EREFS0_MASK);
/* OSC0_CR: ERCLKEN=1,??=0,EREFSTEN=0,??=0,SC2P=0,SC4P=0,SC8P=0,SC16P=0 */
OSC0->CR = OSC_CR_ERCLKEN_MASK;
/* MCG_C1: CLKS=0,FRDIV=3,IREFS=0,IRCLKEN=1,IREFSTEN=0 */
MCG->C1 = (MCG_C1_CLKS(0x00) | MCG_C1_FRDIV(0x03) | MCG_C1_IRCLKEN_MASK);
/* MCG_C4: DMX32=0,DRST_DRS=1 */
MCG->C4 = (uint8_t)((MCG->C4 & (uint8_t)~(uint8_t)(
MCG_C4_DMX32_MASK |
MCG_C4_DRST_DRS(0x02)
)) | (uint8_t)(
MCG_C4_DRST_DRS(0x01)
));
while((MCG->S & MCG_S_IREFST_MASK) != 0x00U) { /* Check that the source of the FLL reference clock is the external reference clock. */
}
while((MCG->S & 0x0CU) != 0x00U) { /* Wait until output of the FLL is selected */
}
#elif (CLOCK_SETUP == 2)
SIM->SCGC5 |= (SIM_SCGC5_PORTB_MASK | SIM_SCGC5_PORTA_MASK); /* Enable clock gate for ports to enable pin routing */
/* SIM_CLKDIV1: OUTDIV1=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,OUTDIV4=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0 */
SIM->CLKDIV1 = (SIM_CLKDIV1_OUTDIV1(0x00) | SIM_CLKDIV1_OUTDIV4(0x00)); /* Update system prescalers */
/* SIM_SOPT1: OSC32KSEL=3 */
SIM->SOPT1 |= SIM_SOPT1_OSC32KSEL(0x03); /* LPO 1kHz oscillator drives 32 kHz clock for various peripherals */
/* SIM_SOPT2: TPMSRC=2 */
SIM->SOPT2 = (uint32_t)((SIM->SOPT2 & (uint32_t)~(uint32_t)(
SIM_SOPT2_TPMSRC(0x01)
)) | (uint32_t)(
SIM_SOPT2_TPMSRC(0x02)
)); /* Set the TPM clock */
/* PORTA_PCR3: ISF=0,MUX=0 */
PORTA->PCR[3] &= (uint32_t)~(uint32_t)((PORT_PCR_ISF_MASK | PORT_PCR_MUX(0x07)));
/* PORTA_PCR4: ISF=0,MUX=0 */
PORTA->PCR[4] &= (uint32_t)~(uint32_t)((PORT_PCR_ISF_MASK | PORT_PCR_MUX(0x07)));
/* Switch to FBE Mode */
/* MCG_C2: LOCRE0=0,??=0,RANGE0=2,HGO0=0,EREFS0=1,LP=0,IRCS=0 */
MCG->C2 = (MCG_C2_RANGE0(0x02) | MCG_C2_EREFS0_MASK);
/* OSC0_CR: ERCLKEN=1,??=0,EREFSTEN=0,??=0,SC2P=0,SC4P=0,SC8P=0,SC16P=0 */
OSC0->CR = OSC_CR_ERCLKEN_MASK;
/* MCG_C1: CLKS=2,FRDIV=3,IREFS=0,IRCLKEN=1,IREFSTEN=0 */
MCG->C1 = (MCG_C1_CLKS(0x02) | MCG_C1_FRDIV(0x03) | MCG_C1_IRCLKEN_MASK);
/* MCG_C4: DMX32=0,DRST_DRS=0 */
MCG->C4 &= (uint8_t)~(uint8_t)((MCG_C4_DMX32_MASK | MCG_C4_DRST_DRS(0x03)));
while((MCG->S & MCG_S_IREFST_MASK) != 0x00U) { /* Check that the source of the FLL reference clock is the external reference clock. */
}
while((MCG->S & 0x0CU) != 0x08U) { /* Wait until external reference clock is selected as MCG output */
}
/* Switch to BLPE Mode */
/* MCG_C2: LOCRE0=0,??=0,RANGE0=2,HGO0=0,EREFS0=1,LP=1,IRCS=0 */
MCG->C2 = (MCG_C2_RANGE0(0x02) | MCG_C2_EREFS0_MASK | MCG_C2_LP_MASK);
while((MCG->S & 0x0CU) != 0x08U) { /* Wait until external reference clock is selected as MCG output */
}
#endif /* (CLOCK_SETUP == 2) */
}
// Make sure we are pulling in the retargeting module at link time
@ -168,6 +83,6 @@ extern int stdio_retargeting_module;
-- SystemCoreClockUpdate()
---------------------------------------------------------------------------- */
void SystemCoreClockUpdate (void) {
void SystemCoreClockUpdate(void) {
/* TODO */
}

View File

@ -30,6 +30,10 @@ typedef enum {
#define STDIO_UART_RX USBRX
#define STDIO_UART UART_0
typedef enum {
I2C_0 = (int)I2C0_BASE
} I2CName;
typedef enum {
ADC0_SE2 = 2,
ADC0_SE3 = 3,

View File

@ -27,8 +27,8 @@
#define DEVICE_SERIAL 1
#define DEVICE_I2C 0
#define DEVICE_I2CSLAVE 0
#define DEVICE_I2C 1
#define DEVICE_I2CSLAVE 1
#define DEVICE_SPI 1
#define DEVICE_SPISLAVE 1

View File

@ -18,3 +18,383 @@
#include "cmsis.h"
#include "pinmap.h"
#include "error.h"
static const PinMap PinMap_I2C_SDA[] = {
{PTB4, I2C_0, 2},
{NC , NC , 0}
};
static const PinMap PinMap_I2C_SCL[] = {
{PTB3, I2C_0, 2},
{NC , NC , 0}
};
static const uint16_t ICR[0x40] = {
20, 22, 24, 26, 28,
30, 34, 40, 28, 32,
36, 40, 44, 48, 56,
68, 48, 56, 64, 72,
80, 88, 104, 128, 80,
96, 112, 128, 144, 160,
192, 240, 160, 192, 224,
256, 288, 320, 384, 480,
320, 384, 448, 512, 576,
640, 768, 960, 640, 768,
896, 1024, 1152, 1280, 1536,
1920, 1280, 1536, 1792, 2048,
2304, 2560, 3072, 3840
};
static uint8_t first_read;
void i2c_init(i2c_t *obj, PinName sda, PinName scl) {
// determine the I2C to use
I2CName i2c_sda = (I2CName)pinmap_peripheral(sda, PinMap_I2C_SDA);
I2CName i2c_scl = (I2CName)pinmap_peripheral(scl, PinMap_I2C_SCL);
obj->i2c = (I2C_Type*)pinmap_merge(i2c_sda, i2c_scl);
if ((int)obj->i2c == NC) {
error("I2C pin mapping failed");
}
// enable power
switch ((int)obj->i2c) {
case I2C_0:
SIM->SCGC5 |= SIM_SCGC5_PORTB_MASK;
SIM->SCGC4 |= SIM_SCGC4_I2C0_MASK;
break;
}
// set default frequency at 100k
i2c_frequency(obj, 100000);
// enable I2C interface
obj->i2c->C1 |= 0x80;
pinmap_pinout(sda, PinMap_I2C_SDA);
pinmap_pinout(scl, PinMap_I2C_SCL);
first_read = 1;
}
int i2c_start(i2c_t *obj) {
// if we are in the middle of a transaction
// activate the repeat_start flag
if (obj->i2c->S & I2C_S_BUSY_MASK) {
obj->i2c->C1 |= 0x04;
} else {
obj->i2c->C1 |= I2C_C1_MST_MASK;
obj->i2c->C1 |= I2C_C1_TX_MASK;
}
first_read = 1;
return 0;
}
void i2c_stop(i2c_t *obj) {
volatile uint32_t n = 0;
obj->i2c->C1 &= ~I2C_C1_MST_MASK;
obj->i2c->C1 &= ~I2C_C1_TX_MASK;
// It seems that there are timing problems
// when there is no waiting time after a STOP.
// This wait is also included on the samples
// code provided with the freedom board
for (n = 0; n < 100; n++) __NOP();
first_read = 1;
}
static int timeout_status_poll(i2c_t *obj, uint32_t mask) {
uint32_t i, timeout = 1000;
for (i = 0; i < timeout; i++) {
if (obj->i2c->S & mask)
return 0;
}
return 1;
}
// this function waits the end of a tx transfer and return the status of the transaction:
// 0: OK ack received
// 1: OK ack not received
// 2: failure
static int i2c_wait_end_tx_transfer(i2c_t *obj) {
// wait for the interrupt flag
if (timeout_status_poll(obj, I2C_S_IICIF_MASK)) {
return 2;
}
obj->i2c->S |= I2C_S_IICIF_MASK;
// wait transfer complete
if (timeout_status_poll(obj, I2C_S_TCF_MASK)) {
return 2;
}
// check if we received the ACK or not
return obj->i2c->S & I2C_S_RXAK_MASK ? 1 : 0;
}
// this function waits the end of a rx transfer and return the status of the transaction:
// 0: OK
// 1: failure
static int i2c_wait_end_rx_transfer(i2c_t *obj) {
// wait for the end of the rx transfer
if (timeout_status_poll(obj, I2C_S_IICIF_MASK)) {
return 1;
}
obj->i2c->S |= I2C_S_IICIF_MASK;
return 0;
}
static void i2c_send_nack(i2c_t *obj) {
obj->i2c->C1 |= I2C_C1_TXAK_MASK; // NACK
}
static void i2c_send_ack(i2c_t *obj) {
obj->i2c->C1 &= ~I2C_C1_TXAK_MASK; // ACK
}
static int i2c_do_write(i2c_t *obj, int value) {
// write the data
obj->i2c->D = value;
// init and wait the end of the transfer
return i2c_wait_end_tx_transfer(obj);
}
static int i2c_do_read(i2c_t *obj, char * data, int last) {
if (last)
i2c_send_nack(obj);
else
i2c_send_ack(obj);
*data = (obj->i2c->D & 0xFF);
// start rx transfer and wait the end of the transfer
return i2c_wait_end_rx_transfer(obj);
}
void i2c_frequency(i2c_t *obj, int hz) {
uint8_t icr = 0;
uint8_t mult = 0;
uint32_t error = 0;
uint32_t p_error = 0xffffffff;
uint32_t ref = 0;
uint8_t i, j;
// bus clk
uint32_t PCLK = 23986176u;
// we look for the values that minimize the error
// test all the MULT values
for (i = 1; i < 5; i*=2) {
for (j = 0; j < 0x40; j++) {
ref = PCLK / (i*ICR[j]);
error = (ref > hz) ? ref - hz : hz - ref;
if (error < p_error) {
icr = j;
mult = i/2;
p_error = error;
}
}
}
pulse = icr | (mult << 6);
// I2C Rate
obj->i2c->F = pulse;
}
int i2c_read(i2c_t *obj, int address, char *data, int length, int stop) {
uint8_t count;
char dummy_read, *ptr;
if (i2c_start(obj)) {
i2c_stop(obj);
return 1;
}
if (i2c_do_write(obj, (address | 0x01))) {
i2c_stop(obj);
return 1;
}
// set rx mode
obj->i2c->C1 &= ~I2C_C1_TX_MASK;
// Read in bytes
for (count = 0; count < (length); count++) {
ptr = (count == 0) ? &dummy_read : &data[count - 1];
uint8_t stop_ = (count == (length - 1)) ? 1 : 0;
if (i2c_do_read(obj, ptr, stop_)) {
i2c_stop(obj);
return 1;
}
}
// If not repeated start, send stop.
if (stop) {
i2c_stop(obj);
}
// last read
data[count-1] = obj->i2c->D;
return 0;
}
int i2c_write(i2c_t *obj, int address, const char *data, int length, int stop) {
int i;
if (i2c_start(obj)) {
i2c_stop(obj);
return 1;
}
if (i2c_do_write(obj, (address & 0xFE))) {
i2c_stop(obj);
return 1;
}
for (i = 0; i < length; i++) {
if(i2c_do_write(obj, data[i])) {
i2c_stop(obj);
return 1;
}
}
if (stop) {
i2c_stop(obj);
}
return 0;
}
void i2c_reset(i2c_t *obj) {
i2c_stop(obj);
}
int i2c_byte_read(i2c_t *obj, int last) {
char data;
// set rx mode
obj->i2c->C1 &= ~I2C_C1_TX_MASK;
if(first_read) {
// first dummy read
i2c_do_read(obj, &data, 0);
first_read = 0;
}
if (last) {
// set tx mode
obj->i2c->C1 |= I2C_C1_TX_MASK;
return obj->i2c->D;
}
i2c_do_read(obj, &data, last);
return data;
}
int i2c_byte_write(i2c_t *obj, int data) {
first_read = 1;
// set tx mode
obj->i2c->C1 |= I2C_C1_TX_MASK;
return !i2c_do_write(obj, (data & 0xFF));
}
#if DEVICE_I2CSLAVE
void i2c_slave_mode(i2c_t *obj, int enable_slave) {
if (enable_slave) {
// set slave mode
obj->i2c->C1 &= ~I2C_C1_MST_MASK;
obj->i2c->C1 |= I2C_C1_IICIE_MASK;
} else {
// set master mode
obj->i2c->C1 |= I2C_C1_MST_MASK;
}
}
int i2c_slave_receive(i2c_t *obj) {
switch(obj->i2c->S) {
// read addressed
case 0xE6:
return 1;
// write addressed
case 0xE2:
return 3;
default:
return 0;
}
}
int i2c_slave_read(i2c_t *obj, char *data, int length) {
uint8_t dummy_read, count;
uint8_t *ptr;
// set rx mode
obj->i2c->C1 &= ~I2C_C1_TX_MASK;
// first dummy read
dummy_read = obj->i2c->D;
if(i2c_wait_end_rx_transfer(obj)) {
return 0;
}
// read address
dummy_read = obj->i2c->D;
if(i2c_wait_end_rx_transfer(obj)) {
return 0;
}
// read (length - 1) bytes
for (count = 0; count < (length - 1); count++) {
data[count] = obj->i2c->D;
if(i2c_wait_end_rx_transfer(obj)) {
return 0;
}
}
// read last byte
ptr = (length == 0) ? &dummy_read : (uint8_t *)&data[count];
*ptr = obj->i2c->D;
return (length) ? (count + 1) : 0;
}
int i2c_slave_write(i2c_t *obj, const char *data, int length) {
uint32_t i, count = 0;
// set tx mode
obj->i2c->C1 |= I2C_C1_TX_MASK;
for (i = 0; i < length; i++) {
if(i2c_do_write(obj, data[count++]) == 2) {
return 0;
}
}
// set rx mode
obj->i2c->C1 &= ~I2C_C1_TX_MASK;
// dummy rx transfer needed
// otherwise the master cannot generate a stop bit
obj->i2c->D;
if(i2c_wait_end_rx_transfer(obj) == 2) {
return 0;
}
return count;
}
void i2c_slave_address(i2c_t *obj, int idx, uint32_t address, uint32_t mask) {
obj->i2c->A1 = address & 0xfe;
}
#endif

View File

@ -115,7 +115,7 @@ void spi_frequency(spi_t *obj, int hz) {
uint8_t ref_prescaler = 0;
// bus clk
uint32_t PCLK = 48000000u;
uint32_t PCLK = 23986176u;
uint8_t prescaler = 1;
uint8_t divisor = 2;