mirror of https://github.com/ARMmbed/mbed-os.git
				
				
				
			Merge pull request #5363 from mprse/extended_rtc
Add support and tests for extended RTCpull/5693/head
						commit
						be52ba2156
					
				| 
						 | 
				
			
			@ -0,0 +1,138 @@
 | 
			
		|||
"""
 | 
			
		||||
mbed SDK
 | 
			
		||||
Copyright (c) 2011-2013 ARM Limited
 | 
			
		||||
 | 
			
		||||
Licensed under the Apache License, Version 2.0 (the "License");
 | 
			
		||||
you may not use this file except in compliance with the License.
 | 
			
		||||
You may obtain a copy of the License at
 | 
			
		||||
 | 
			
		||||
    http://www.apache.org/licenses/LICENSE-2.0
 | 
			
		||||
 | 
			
		||||
Unless required by applicable law or agreed to in writing, software
 | 
			
		||||
distributed under the License is distributed on an "AS IS" BASIS,
 | 
			
		||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
			
		||||
See the License for the specific language governing permissions and
 | 
			
		||||
limitations under the License.
 | 
			
		||||
"""
 | 
			
		||||
 | 
			
		||||
from mbed_host_tests import BaseHostTest
 | 
			
		||||
import time
 | 
			
		||||
import calendar
 | 
			
		||||
import datetime
 | 
			
		||||
 | 
			
		||||
class RTC_time_calc_test(BaseHostTest):
 | 
			
		||||
    """
 | 
			
		||||
    This is the host part of the test to verify if:
 | 
			
		||||
    - _rtc_mktime function converts a calendar time into time since UNIX epoch as a time_t,
 | 
			
		||||
    - _rtc_localtime function converts a given time in seconds since epoch into calendar time.
 | 
			
		||||
    
 | 
			
		||||
    The same algoritm to generate next calendar time to be tested is used by both parts of the test.
 | 
			
		||||
    We will check if correct time since UNIX epoch is calculated for the first and the last day
 | 
			
		||||
    of each month and across valid years.
 | 
			
		||||
    
 | 
			
		||||
    Mbed part of the test sends calculated time since UNIX epoch.
 | 
			
		||||
    This part validates given value and responds to indicate pass or fail.
 | 
			
		||||
    Additionally it sends also encoded day of week and day of year which
 | 
			
		||||
    will be needed to verify _rtc_localtime.
 | 
			
		||||
    
 | 
			
		||||
    Support for both types of RTC devices is provided:
 | 
			
		||||
    - RTCs which handles all leap years in the mentioned year range correctly. Leap year is determined by checking if
 | 
			
		||||
      the year counter value is divisible by 400, 100, and 4. No problem here.
 | 
			
		||||
    - RTCs which handles leap years correctly up to 2100. The RTC does a simple bit comparison to see if the two
 | 
			
		||||
      lowest order bits of the year counter are zero. In this case 2100 year will be considered
 | 
			
		||||
      incorrectly as a leap year, so the last valid point in time will be 28.02.2100 23:59:59 and next day will be
 | 
			
		||||
      29.02.2100 (invalid). So after 28.02.2100 the day counter will be off by a day.
 | 
			
		||||
      
 | 
			
		||||
    """
 | 
			
		||||
 | 
			
		||||
    edge_date = datetime.datetime(2100, 2, 28, 0, 0, 0)
 | 
			
		||||
    
 | 
			
		||||
    years = [1970, 1971, 1972, 1973, 1974, 1975, 1976, 1977, 1978, 1979, 1980,
 | 
			
		||||
             2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010,
 | 
			
		||||
             2099, 2100, 2101, 2102, 2103, 2104, 2105, 2106]
 | 
			
		||||
    year_id = 0
 | 
			
		||||
             
 | 
			
		||||
             
 | 
			
		||||
 | 
			
		||||
    full_leap_year_support = False
 | 
			
		||||
 | 
			
		||||
    RTC_FULL_LEAP_YEAR_SUPPORT = 0
 | 
			
		||||
    RTC_PARTIAL_LEAP_YEAR_SUPPORT = 1
 | 
			
		||||
 | 
			
		||||
    def _set_leap_year_support(self, key, value, timestamp):
 | 
			
		||||
        if (int(value) == self.RTC_FULL_LEAP_YEAR_SUPPORT):
 | 
			
		||||
            self.full_leap_year_support = True
 | 
			
		||||
        else:
 | 
			
		||||
            self.full_leap_year_support = False
 | 
			
		||||
 | 
			
		||||
        self.first = True
 | 
			
		||||
        self.date = datetime.datetime(1970, 1, 1, 23, 0, 0)
 | 
			
		||||
        self.year_id = 0
 | 
			
		||||
 | 
			
		||||
    def _verify_timestamp(self, key, value, timestamp):
 | 
			
		||||
        # week day in python is counted from sunday(0) and on mbed side week day is counted from monday(0).
 | 
			
		||||
        # year day in python is counted from 1 and on mbed side year day is counted from 0.
 | 
			
		||||
        week_day = ((self.date.timetuple().tm_wday + 1) % 7)
 | 
			
		||||
        year_day = self.date.timetuple().tm_yday - 1
 | 
			
		||||
 | 
			
		||||
        # Fix for RTC which not have full leap year support.
 | 
			
		||||
        if (not self.full_leap_year_support):
 | 
			
		||||
            if self.date >= self.edge_date:
 | 
			
		||||
                # After 28.02.2100 we should be one day off - add this day and store original
 | 
			
		||||
                date_org = self.date
 | 
			
		||||
                self.date += datetime.timedelta(days = 1)
 | 
			
		||||
                
 | 
			
		||||
                # Adjust week day.
 | 
			
		||||
                week_day = ((self.date.timetuple().tm_wday + 1) % 7)
 | 
			
		||||
 | 
			
		||||
                # Adjust year day.
 | 
			
		||||
                if (self.date.year == 2100):
 | 
			
		||||
                    year_day = self.date.timetuple().tm_yday - 1
 | 
			
		||||
                else:
 | 
			
		||||
                    year_day = date_org.timetuple().tm_yday - 1
 | 
			
		||||
 | 
			
		||||
                # Last day in year
 | 
			
		||||
                if (self.date.month == 1 and self.date.day == 1):
 | 
			
		||||
                    if (self.date.year == 2101):
 | 
			
		||||
                        # Exception for year 2100 - ivalid handled by RTC without full leap year support
 | 
			
		||||
                        year_day = 365
 | 
			
		||||
                    else:
 | 
			
		||||
                        year_day = date_org.timetuple().tm_yday - 1
 | 
			
		||||
 | 
			
		||||
        t = (self.date.year , self.date.month, self.date.day, self.date.hour, self.date.minute, self.date.second, 0, 0, 0)
 | 
			
		||||
        
 | 
			
		||||
        expected_timestamp = calendar.timegm(t)
 | 
			
		||||
        actual_timestamp = int(value) & 0xffffffff # convert to unsigned int
 | 
			
		||||
 | 
			
		||||
        # encode week day and year day in the response
 | 
			
		||||
        response = (week_day << 16) | year_day
 | 
			
		||||
        
 | 
			
		||||
        if (actual_timestamp == expected_timestamp):
 | 
			
		||||
            # response contains encoded week day and year day
 | 
			
		||||
            self.send_kv("passed", str(response))
 | 
			
		||||
        else:
 | 
			
		||||
            self.send_kv("failed", 0)
 | 
			
		||||
            print "expected = %d, result = %d" %  (expected_timestamp , actual_timestamp)
 | 
			
		||||
 | 
			
		||||
        # calculate next date
 | 
			
		||||
        if (self.first):
 | 
			
		||||
            days_range = calendar.monthrange(self.date.year, self.date.month)
 | 
			
		||||
            self.date = self.date.replace(day = days_range[1], minute = 59, second = 59)
 | 
			
		||||
            self.first = not self.first
 | 
			
		||||
        else:
 | 
			
		||||
            self.date += datetime.timedelta(days = 1)
 | 
			
		||||
            if (self.date.month == 1):
 | 
			
		||||
                self.year_id += 1
 | 
			
		||||
                self.date = self.date.replace(year = self.years[self.year_id])
 | 
			
		||||
            self.date = self.date.replace(day = 1, minute = 0, second = 0)
 | 
			
		||||
            self.first = not self.first
 | 
			
		||||
 | 
			
		||||
    def setup(self):
 | 
			
		||||
        self.register_callback('timestamp', self._verify_timestamp)
 | 
			
		||||
        self.register_callback('leap_year_setup', self._set_leap_year_support)
 | 
			
		||||
 | 
			
		||||
    def result(self):
 | 
			
		||||
        return self.__result
 | 
			
		||||
 | 
			
		||||
    def teardown(self):
 | 
			
		||||
        pass
 | 
			
		||||
| 
						 | 
				
			
			@ -21,23 +21,15 @@
 | 
			
		|||
#include "mbed.h"
 | 
			
		||||
#include "mbed_mktime.h"
 | 
			
		||||
 | 
			
		||||
// Limit the test range to 1935 for IAR only. From the IAR C/C++ Development Guide:
 | 
			
		||||
// "The 32-bit interface supports years from 1900 up to 2035 and uses a 32-bit integer
 | 
			
		||||
// for time_t."
 | 
			
		||||
#ifdef __ICCARM__
 | 
			
		||||
#define LOCALTIME_MAX       2082758400      // 1st of january 2036 at 00:00:00
 | 
			
		||||
#define MKTIME_YR_MAX       136
 | 
			
		||||
#else
 | 
			
		||||
#define LOCALTIME_MAX       INT_MAX
 | 
			
		||||
#define MKTIME_YR_MAX       137
 | 
			
		||||
#endif
 | 
			
		||||
#define LAST_VALID_YEAR 206
 | 
			
		||||
 | 
			
		||||
using namespace utest::v1;
 | 
			
		||||
 | 
			
		||||
/* 
 | 
			
		||||
 * regular is_leap_year, see platform/mbed_mktime.c for the optimized version
 | 
			
		||||
 */
 | 
			
		||||
bool is_leap_year(int year) {
 | 
			
		||||
static rtc_leap_year_support_t rtc_leap_year_support;
 | 
			
		||||
 | 
			
		||||
/*  Regular is_leap_year, see platform/mbed_mktime.c for the optimised version. */
 | 
			
		||||
bool is_leap_year(int year)
 | 
			
		||||
{
 | 
			
		||||
    year = 1900 + year;
 | 
			
		||||
    if (year % 4) {
 | 
			
		||||
        return false;
 | 
			
		||||
| 
						 | 
				
			
			@ -49,212 +41,173 @@ bool is_leap_year(int year) {
 | 
			
		|||
    return true;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/*
 | 
			
		||||
 * Test the optimized version of _rtc_is_leap_year against the generic version.
 | 
			
		||||
/* Test the optimised version of _rtc_is_leap_year() against the generic version.
 | 
			
		||||
 *
 | 
			
		||||
 * Note: This test case is designed for both types of RTC devices:
 | 
			
		||||
 *       - RTC devices which handle correctly leap years in whole range (1970 - 2106).
 | 
			
		||||
 *       - RTC devices which does not handle correctly leap years in whole range (1970 - 2106).
 | 
			
		||||
 *         This RTC devices uses simpler leap year detection and incorrectly treat 2100 as a leap year.
 | 
			
		||||
 *       rtc_leap_year_support variable specifies which device is tested.
 | 
			
		||||
 *
 | 
			
		||||
 * Given is year in valid range.
 | 
			
		||||
 * When _rtc_is_leap_year() function is called.
 | 
			
		||||
 * Then _rtc_is_leap_year() returns true if given year is a leap year; false otherwise.
 | 
			
		||||
 */
 | 
			
		||||
void test_is_leap_year() { 
 | 
			
		||||
    for (int i = 70; i < 138; ++i) { 
 | 
			
		||||
void test_is_leap_year()
 | 
			
		||||
{
 | 
			
		||||
    for (int i = 70; i <= LAST_VALID_YEAR; ++i) {
 | 
			
		||||
        bool expected = is_leap_year(i);
 | 
			
		||||
        bool actual_value = _rtc_is_leap_year(i);
 | 
			
		||||
 | 
			
		||||
        if (expected != actual_value) { 
 | 
			
		||||
            printf ("leap year failed with i = %d\r\n", i);
 | 
			
		||||
        /* Add exception for year 2100. */
 | 
			
		||||
        if (rtc_leap_year_support == RTC_4_YEAR_LEAP_YEAR_SUPPORT && i == 200) {
 | 
			
		||||
            expected = true;
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        bool actual_value = _rtc_is_leap_year(i, rtc_leap_year_support);
 | 
			
		||||
 | 
			
		||||
        if (expected != actual_value) {
 | 
			
		||||
            printf("Leap year failed with i = %d\r\n", i);
 | 
			
		||||
        }
 | 
			
		||||
        TEST_ASSERT_EQUAL(expected, actual_value);
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
struct tm make_time_info(int year, int month, int day, int hours, int minutes, int seconds) { 
 | 
			
		||||
    struct tm timeinfo = {
 | 
			
		||||
            seconds,    // tm_sec
 | 
			
		||||
            minutes,    // tm_min
 | 
			
		||||
            hours,      // tm_hour
 | 
			
		||||
            day,        // tm_mday
 | 
			
		||||
            month,      // tm_mon
 | 
			
		||||
            year,       // tm_year
 | 
			
		||||
            0,          // tm_wday
 | 
			
		||||
            0,          // tm_yday
 | 
			
		||||
            0,          // tm_isdst
 | 
			
		||||
    };
 | 
			
		||||
    return timeinfo;
 | 
			
		||||
}
 | 
			
		||||
/* Structure to test border values for _rtc_maketime(). */
 | 
			
		||||
typedef struct
 | 
			
		||||
{
 | 
			
		||||
    struct tm timeinfo;
 | 
			
		||||
    time_t exp_seconds;  // if result is false then exp_seconds is irrelevant
 | 
			
		||||
    bool result;
 | 
			
		||||
} test_mk_time_struct;
 | 
			
		||||
 | 
			
		||||
/*
 | 
			
		||||
 * test out of range values for _rtc_mktime.
 | 
			
		||||
 * The function operates from the 1st of january 1970 at 00:00:00 to the 19th 
 | 
			
		||||
 * of january 2038 at 03:14:07.
 | 
			
		||||
/* Array which contains data to test boundary values for the RTC devices which handles correctly leap years in
 | 
			
		||||
 * whole range (1970 - 2106).
 | 
			
		||||
 * Expected range: the 1st of January 1970 at 00:00:00 (seconds: 0) to the 7th of February 2106 at 06:28:15 (seconds: UINT_MAX).
 | 
			
		||||
 */
 | 
			
		||||
void test_mk_time_out_of_range() { 
 | 
			
		||||
    tm invalid_lower_bound = make_time_info(
 | 
			
		||||
        69,
 | 
			
		||||
        11,
 | 
			
		||||
        31,
 | 
			
		||||
        23,
 | 
			
		||||
        59,
 | 
			
		||||
        59
 | 
			
		||||
    );    
 | 
			
		||||
test_mk_time_struct test_mk_time_arr_full[] = {
 | 
			
		||||
    {{ 0, 0, 0, 1, 0, 70, 0, 0, 0 },      (time_t) 0, true},          // valid lower bound - the 1st of January 1970 at 00:00:00
 | 
			
		||||
    {{ 59, 59, 23, 31, 11, 59, 0, 0, 0 }, (time_t) 0, false },        // invalid lower bound - the 31st of December 1969 at 23:59:59
 | 
			
		||||
 | 
			
		||||
    tm valid_lower_bound = make_time_info(
 | 
			
		||||
        70,
 | 
			
		||||
        0,
 | 
			
		||||
        1,
 | 
			
		||||
        0,
 | 
			
		||||
        0,
 | 
			
		||||
        0
 | 
			
		||||
    );
 | 
			
		||||
    {{ 15, 28, 6, 7, 1, 206, 0, 0, 0 }, (time_t)(UINT_MAX), true },   // valid upper bound - the 7th of February 2106 at 06:28:15
 | 
			
		||||
    {{ 16, 28, 6, 7, 1, 206, 0, 0, 0 }, (time_t) 0, false },          // invalid upper bound - the 7th of February 2106 at 06:28:16
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
    tm valid_upper_bound = make_time_info(
 | 
			
		||||
        138,
 | 
			
		||||
        0,
 | 
			
		||||
        19,
 | 
			
		||||
        3,
 | 
			
		||||
        14,
 | 
			
		||||
        7
 | 
			
		||||
    );
 | 
			
		||||
 | 
			
		||||
    tm invalid_upper_bound = make_time_info(
 | 
			
		||||
        138,
 | 
			
		||||
        0,
 | 
			
		||||
        19,
 | 
			
		||||
        3,
 | 
			
		||||
        14,
 | 
			
		||||
        8
 | 
			
		||||
    );
 | 
			
		||||
 | 
			
		||||
    TEST_ASSERT_EQUAL_INT(((time_t) -1), _rtc_mktime(&invalid_lower_bound));
 | 
			
		||||
    TEST_ASSERT_EQUAL_INT(((time_t) 0), _rtc_mktime(&valid_lower_bound));
 | 
			
		||||
    TEST_ASSERT_EQUAL_INT(((time_t) INT_MAX), _rtc_mktime(&valid_upper_bound));
 | 
			
		||||
    TEST_ASSERT_EQUAL_INT(((time_t) -1), _rtc_mktime(&invalid_upper_bound));
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/* 
 | 
			
		||||
 * test mktime over a large set of values 
 | 
			
		||||
/* Array which contains data to test boundary values for the RTC devices which does not handle correctly leap years in
 | 
			
		||||
 * whole range (1970 - 2106). On this platforms we will be one day off after 28.02.2100 since 2100 year will be
 | 
			
		||||
 * incorrectly treated as a leap year.
 | 
			
		||||
 * Expected range: the 1st of January 1970 at 00:00:00 (seconds: 0) to the 6th of February 2106 at 06:28:15 (seconds: UINT_MAX).
 | 
			
		||||
 */
 | 
			
		||||
void test_mk_time() { 
 | 
			
		||||
    for (size_t year = 70; year < MKTIME_YR_MAX; ++year) {
 | 
			
		||||
        for (size_t month = 0; month < 12; ++month) { 
 | 
			
		||||
            for (size_t day = 1; day < 32; ++day) {
 | 
			
		||||
                if (month == 1 && is_leap_year(year) && day == 29) { 
 | 
			
		||||
                    break;
 | 
			
		||||
                } else if(month == 1 && !is_leap_year(year) && day == 28) {
 | 
			
		||||
                    break;
 | 
			
		||||
                } else if (
 | 
			
		||||
                    day == 31 && 
 | 
			
		||||
                    (month == 3 || month == 5 || month == 8 || month == 10)
 | 
			
		||||
                ) {
 | 
			
		||||
                    break;
 | 
			
		||||
                }
 | 
			
		||||
test_mk_time_struct test_mk_time_arr_partial[] = {
 | 
			
		||||
    {{ 0, 0, 0, 1, 0, 70, 0, 0, 0 },      (time_t) 0, true},          // valid lower bound - the 1st of January 1970 at 00:00:00
 | 
			
		||||
    {{ 59, 59, 23, 31, 11, 59, 0, 0, 0 }, (time_t) 0, false },        // invalid lower bound - the 31st of December 1969 at 23:59:59
 | 
			
		||||
 | 
			
		||||
                for (size_t hour = 0; hour < 24; ++hour) {  
 | 
			
		||||
                    tm time_info = make_time_info(
 | 
			
		||||
                        year,
 | 
			
		||||
                        month,
 | 
			
		||||
                        day,
 | 
			
		||||
                        hour,
 | 
			
		||||
                        hour % 2 ? 59 : 0,
 | 
			
		||||
                        hour % 2 ? 59 : 0
 | 
			
		||||
                    );
 | 
			
		||||
    {{ 15, 28, 6, 6, 1, 206, 0, 0, 0 }, (time_t)(UINT_MAX), true },   // valid upper bound - the 6th of February 2106 at 06:28:15
 | 
			
		||||
    {{ 16, 28, 6, 6, 1, 206, 0, 0, 0 }, (time_t) 0, false },          // invalid upper bound - the 6th of February 2106 at 06:28:16
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
                    time_t expected = mktime(&time_info);
 | 
			
		||||
                    time_t actual_value = _rtc_mktime(&time_info);
 | 
			
		||||
/* Test boundary values for _rtc_maketime().
 | 
			
		||||
 *
 | 
			
		||||
 * Note: This test case is designed for both types of RTC devices:
 | 
			
		||||
 *       - RTC devices which handle correctly leap years in whole range (1970 - 2106).
 | 
			
		||||
 *       - RTC devices which does not handle correctly leap years in whole range (1970 - 2106).
 | 
			
		||||
 *         This RTC devices uses simpler leap year detection and incorrectly treat 2100 as a leap year.
 | 
			
		||||
 *       rtc_leap_year_support variable specifies which device is tested.
 | 
			
		||||
 *
 | 
			
		||||
 * Given is boundary calendar time.
 | 
			
		||||
 * When _rtc_maketime() function is called to convert the calendar time into timestamp.
 | 
			
		||||
 * Then if given calendar time is valid function returns true and conversion result, otherwise returns false.
 | 
			
		||||
 */
 | 
			
		||||
void test_mk_time_boundary()
 | 
			
		||||
{
 | 
			
		||||
    test_mk_time_struct *pTestCases;
 | 
			
		||||
 | 
			
		||||
                    char msg[128] = "";
 | 
			
		||||
                    if (expected != actual_value) { 
 | 
			
		||||
                        snprintf(
 | 
			
		||||
                            msg, sizeof(msg), 
 | 
			
		||||
                            "year = %d, month = %d, day = %d, diff = %ld", 
 | 
			
		||||
                            year, month, day, expected - actual_value
 | 
			
		||||
                        );
 | 
			
		||||
                    }
 | 
			
		||||
    /* Select array with test cases. */
 | 
			
		||||
    if (rtc_leap_year_support == RTC_FULL_LEAP_YEAR_SUPPORT) {
 | 
			
		||||
        pTestCases = test_mk_time_arr_full;
 | 
			
		||||
    } else {
 | 
			
		||||
        pTestCases = test_mk_time_arr_partial;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
                    TEST_ASSERT_EQUAL_UINT32_MESSAGE(expected, actual_value, msg);
 | 
			
		||||
                }
 | 
			
		||||
            }
 | 
			
		||||
    for (int i = 0; i < (sizeof(test_mk_time_arr_full) / (sizeof(test_mk_time_struct))); i++) {
 | 
			
		||||
        time_t seconds;
 | 
			
		||||
        bool result = _rtc_maketime(&pTestCases[i].timeinfo, &seconds, rtc_leap_year_support);
 | 
			
		||||
 | 
			
		||||
        TEST_ASSERT_EQUAL(pTestCases[i].result, result);
 | 
			
		||||
 | 
			
		||||
        /* If the result is false, then we have conversion error - skip checking seconds. */
 | 
			
		||||
        if (pTestCases[i].result) {
 | 
			
		||||
            TEST_ASSERT_EQUAL_UINT32(pTestCases[i].exp_seconds, seconds);
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/* 
 | 
			
		||||
 * test value out of range for localtime
 | 
			
		||||
/* Test _rtc_maketime() function - call with invalid parameters.
 | 
			
		||||
 *
 | 
			
		||||
 * Given is _rtc_maketime() function.
 | 
			
		||||
 * When _rtc_maketime() function is called with invalid parameter.
 | 
			
		||||
 * Then _rtc_maketime() function returns false.
 | 
			
		||||
 */
 | 
			
		||||
void test_local_time_limit() {
 | 
			
		||||
    struct tm dummy_value; 
 | 
			
		||||
    TEST_ASSERT_FALSE(_rtc_localtime((time_t) -1, &dummy_value));
 | 
			
		||||
    TEST_ASSERT_FALSE(_rtc_localtime((time_t) INT_MIN, &dummy_value));
 | 
			
		||||
void test_mk_time_invalid_param()
 | 
			
		||||
{
 | 
			
		||||
    time_t seconds;
 | 
			
		||||
    struct tm timeinfo;
 | 
			
		||||
 | 
			
		||||
    TEST_ASSERT_EQUAL(false, _rtc_maketime(NULL, &seconds, RTC_FULL_LEAP_YEAR_SUPPORT ));
 | 
			
		||||
    TEST_ASSERT_EQUAL(false, _rtc_maketime(NULL, &seconds, RTC_4_YEAR_LEAP_YEAR_SUPPORT ));
 | 
			
		||||
    TEST_ASSERT_EQUAL(false, _rtc_maketime(&timeinfo, NULL, RTC_FULL_LEAP_YEAR_SUPPORT ));
 | 
			
		||||
    TEST_ASSERT_EQUAL(false, _rtc_maketime(&timeinfo, NULL, RTC_4_YEAR_LEAP_YEAR_SUPPORT ));
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/* 
 | 
			
		||||
 * test _rtc_localtime over a large set of values.
 | 
			
		||||
/* Test _rtc_localtime() function - call with invalid parameters.
 | 
			
		||||
 *
 | 
			
		||||
 * Given is _rtc_localtime() function.
 | 
			
		||||
 * When _rtc_localtime() function is called with invalid parameter.
 | 
			
		||||
 * Then _rtc_localtime() function returns false.
 | 
			
		||||
 */
 | 
			
		||||
void test_local_time() { 
 | 
			
		||||
    for (uint32_t i = 0; i < LOCALTIME_MAX; i += 3451) {
 | 
			
		||||
        time_t copy = (time_t) i;
 | 
			
		||||
        struct tm* expected = localtime(©);
 | 
			
		||||
        struct tm actual_value; 
 | 
			
		||||
        bool result = _rtc_localtime((time_t) i, &actual_value);
 | 
			
		||||
 | 
			
		||||
        if (
 | 
			
		||||
            expected->tm_sec != actual_value.tm_sec || 
 | 
			
		||||
            expected->tm_min != actual_value.tm_min ||
 | 
			
		||||
            expected->tm_hour != actual_value.tm_hour || 
 | 
			
		||||
            expected->tm_mday != actual_value.tm_mday ||
 | 
			
		||||
            expected->tm_mon != actual_value.tm_mon || 
 | 
			
		||||
            expected->tm_year != actual_value.tm_year || 
 | 
			
		||||
            expected->tm_wday != actual_value.tm_wday || 
 | 
			
		||||
            expected->tm_yday != actual_value.tm_yday ||
 | 
			
		||||
            result == false
 | 
			
		||||
        ) { 
 | 
			
		||||
            printf("error: i = %lu\r\n", i);
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        TEST_ASSERT_TRUE(result);
 | 
			
		||||
        TEST_ASSERT_EQUAL_UINT32_MESSAGE(
 | 
			
		||||
            expected->tm_sec, actual_value.tm_sec, "invalid seconds"
 | 
			
		||||
        );
 | 
			
		||||
        TEST_ASSERT_EQUAL_UINT32_MESSAGE(
 | 
			
		||||
            expected->tm_min, actual_value.tm_min, "invalid minutes"
 | 
			
		||||
        );
 | 
			
		||||
        TEST_ASSERT_EQUAL_UINT32_MESSAGE(
 | 
			
		||||
            expected->tm_hour, actual_value.tm_hour, "invalid hours"
 | 
			
		||||
        );
 | 
			
		||||
        TEST_ASSERT_EQUAL_UINT32_MESSAGE(
 | 
			
		||||
            expected->tm_mday, actual_value.tm_mday, "invalid day"
 | 
			
		||||
        );
 | 
			
		||||
        TEST_ASSERT_EQUAL_UINT32_MESSAGE(
 | 
			
		||||
            expected->tm_mon, actual_value.tm_mon, "invalid month"
 | 
			
		||||
        );
 | 
			
		||||
        TEST_ASSERT_EQUAL_UINT32_MESSAGE(
 | 
			
		||||
            expected->tm_year, actual_value.tm_year, "invalid year"
 | 
			
		||||
        );
 | 
			
		||||
        TEST_ASSERT_EQUAL_UINT32_MESSAGE(
 | 
			
		||||
            expected->tm_wday, actual_value.tm_wday, "invalid weekday"
 | 
			
		||||
        );
 | 
			
		||||
        TEST_ASSERT_EQUAL_UINT32_MESSAGE(
 | 
			
		||||
            expected->tm_yday, actual_value.tm_yday, "invalid year day"
 | 
			
		||||
        );
 | 
			
		||||
    }
 | 
			
		||||
void test_local_time_invalid_param()
 | 
			
		||||
{
 | 
			
		||||
    TEST_ASSERT_EQUAL(false, _rtc_localtime(1, NULL, RTC_FULL_LEAP_YEAR_SUPPORT ));
 | 
			
		||||
    TEST_ASSERT_EQUAL(false, _rtc_localtime(1, NULL, RTC_4_YEAR_LEAP_YEAR_SUPPORT ));
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
utest::v1::status_t greentea_failure_handler(const Case *const source, const failure_t reason) {
 | 
			
		||||
    greentea_case_failure_abort_handler(source, reason);
 | 
			
		||||
    return STATUS_CONTINUE;
 | 
			
		||||
utest::v1::status_t teardown_handler_t(const Case * const source, const size_t passed, const size_t failed,
 | 
			
		||||
        const failure_t reason)
 | 
			
		||||
{
 | 
			
		||||
    return greentea_case_teardown_handler(source, passed, failed, reason);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
utest::v1::status_t full_leap_year_case_setup_handler_t(const Case * const source, const size_t index_of_case)
 | 
			
		||||
{
 | 
			
		||||
    rtc_leap_year_support = RTC_FULL_LEAP_YEAR_SUPPORT;
 | 
			
		||||
 | 
			
		||||
    return greentea_case_setup_handler(source, index_of_case);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
utest::v1::status_t partial_leap_year_case_setup_handler_t(const Case * const source, const size_t index_of_case)
 | 
			
		||||
{
 | 
			
		||||
    rtc_leap_year_support = RTC_4_YEAR_LEAP_YEAR_SUPPORT;
 | 
			
		||||
 | 
			
		||||
    return greentea_case_setup_handler(source, index_of_case);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
Case cases[] = {
 | 
			
		||||
    Case("test is leap year", test_is_leap_year, greentea_failure_handler),
 | 
			
		||||
    Case("test mk time out of range values", test_mk_time_out_of_range, greentea_failure_handler),
 | 
			
		||||
    Case("mk time", test_mk_time, greentea_failure_handler),
 | 
			
		||||
    Case("test local time", test_local_time, greentea_failure_handler),
 | 
			
		||||
    Case("test local time limits", test_local_time_limit, greentea_failure_handler),
 | 
			
		||||
  Case("test is leap year - RTC leap years full support", full_leap_year_case_setup_handler_t, test_is_leap_year, teardown_handler_t),
 | 
			
		||||
  Case("test is leap year - RTC leap years partial support", partial_leap_year_case_setup_handler_t, test_is_leap_year, teardown_handler_t),
 | 
			
		||||
  Case("test make time boundary values - RTC leap years full support", full_leap_year_case_setup_handler_t, test_mk_time_boundary, teardown_handler_t),
 | 
			
		||||
  Case("test make time boundary values - RTC leap years partial support", partial_leap_year_case_setup_handler_t, test_mk_time_boundary, teardown_handler_t),
 | 
			
		||||
  Case("test make time - invalid param", test_mk_time_invalid_param, teardown_handler_t),
 | 
			
		||||
  Case("test local time - invalid param", test_local_time_invalid_param, teardown_handler_t),
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
utest::v1::status_t greentea_test_setup(const size_t number_of_cases) {
 | 
			
		||||
    GREENTEA_SETUP(1200, "default_auto");
 | 
			
		||||
utest::v1::status_t greentea_test_setup(const size_t number_of_cases)
 | 
			
		||||
{
 | 
			
		||||
    GREENTEA_SETUP(20, "default_auto");
 | 
			
		||||
    return greentea_test_setup_handler(number_of_cases);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
Specification specification(greentea_test_setup, cases, greentea_test_teardown_handler);
 | 
			
		||||
 | 
			
		||||
int main() {
 | 
			
		||||
int main()
 | 
			
		||||
{
 | 
			
		||||
    return Harness::run(specification);
 | 
			
		||||
}
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -0,0 +1,214 @@
 | 
			
		|||
/*
 | 
			
		||||
 * Copyright (c) 2013-2016, ARM Limited, All Rights Reserved
 | 
			
		||||
 * SPDX-License-Identifier: Apache-2.0
 | 
			
		||||
 *
 | 
			
		||||
 * Licensed under the Apache License, Version 2.0 (the "License"); you may
 | 
			
		||||
 * not use this file except in compliance with the License.
 | 
			
		||||
 * You may obtain a copy of the License at
 | 
			
		||||
 *
 | 
			
		||||
 * http://www.apache.org/licenses/LICENSE-2.0
 | 
			
		||||
 *
 | 
			
		||||
 * Unless required by applicable law or agreed to in writing, software
 | 
			
		||||
 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
 | 
			
		||||
 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
			
		||||
 * See the License for the specific language governing permissions and
 | 
			
		||||
 * limitations under the License.
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
/*
 | 
			
		||||
 * This is the mbed device part of the test to verify if:
 | 
			
		||||
 * - _rtc_maketime() function converts a calendar time into time since UNIX epoch as a time_t,
 | 
			
		||||
 * - _rtc_localtime() function converts a given time in seconds since epoch into calendar time.
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
#include "mbed.h"
 | 
			
		||||
#include "greentea-client/test_env.h"
 | 
			
		||||
#include "utest/utest.h"
 | 
			
		||||
#include "unity/unity.h"
 | 
			
		||||
#include "mbed_mktime.h"
 | 
			
		||||
 | 
			
		||||
#define LAST_VALID_YEAR 206
 | 
			
		||||
 | 
			
		||||
using namespace utest::v1;
 | 
			
		||||
 | 
			
		||||
static rtc_leap_year_support_t rtc_leap_year_support;
 | 
			
		||||
 | 
			
		||||
/*
 | 
			
		||||
 * regular is_leap_year, see platform/mbed_mktime.c for the optimised version
 | 
			
		||||
 */
 | 
			
		||||
bool is_leap_year(int year)
 | 
			
		||||
{
 | 
			
		||||
    year = 1900 + year;
 | 
			
		||||
    if (year % 4) {
 | 
			
		||||
        return false;
 | 
			
		||||
    } else if (year % 100) {
 | 
			
		||||
        return true;
 | 
			
		||||
    } else if (year % 400) {
 | 
			
		||||
        return false;
 | 
			
		||||
    }
 | 
			
		||||
    return true;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
struct tm make_time_info(int year, int month, int day, int hours, int minutes, int seconds)
 | 
			
		||||
{
 | 
			
		||||
    struct tm timeinfo =
 | 
			
		||||
    { seconds,    // tm_sec
 | 
			
		||||
        minutes,    // tm_min
 | 
			
		||||
        hours,      // tm_hour
 | 
			
		||||
        day,        // tm_mday
 | 
			
		||||
        month,      // tm_mon
 | 
			
		||||
        year,       // tm_year
 | 
			
		||||
        0,          // tm_wday
 | 
			
		||||
        0,          // tm_yday
 | 
			
		||||
        0,          // tm_isdst
 | 
			
		||||
            };
 | 
			
		||||
    return timeinfo;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/* Test _rtc_maketime() and _rtc_localtime() across wide range
 | 
			
		||||
 *
 | 
			
		||||
 * Note: This test functions handles both types of RTC devices:
 | 
			
		||||
 * - devices which supports full leap years support in range 1970 - 2106.
 | 
			
		||||
 * - devices which supports parial leap years support and incorrectly treats 2100 year as a leap year.
 | 
			
		||||
 *
 | 
			
		||||
 * Given is valid calendar time.
 | 
			
		||||
 * When _rtc_maketime() is used to generate timestamp from calendar time and _rtc_localtime() is used to convert
 | 
			
		||||
 * timestamp to calendar time.
 | 
			
		||||
 * Then both operations gives valid results.
 | 
			
		||||
 */
 | 
			
		||||
void test_case_mktime_localtime()
 | 
			
		||||
{
 | 
			
		||||
    char _key[11] =
 | 
			
		||||
    { };
 | 
			
		||||
    char _value[128] =
 | 
			
		||||
    { };
 | 
			
		||||
 | 
			
		||||
    size_t years[] = {70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80,
 | 
			
		||||
                      100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110,
 | 
			
		||||
                      199, 200, 201, 202, 203, 204, 205};
 | 
			
		||||
 | 
			
		||||
    /* Inform host part of the test about tested RTC type. */
 | 
			
		||||
    greentea_send_kv("leap_year_setup",  rtc_leap_year_support);
 | 
			
		||||
 | 
			
		||||
    /* Check the first and last last day of each month. */
 | 
			
		||||
    for (size_t year_id = 0; year_id < (sizeof(years) /sizeof(size_t)) ; ++year_id) {
 | 
			
		||||
        for (size_t month = 0; month < 12; ++month) {
 | 
			
		||||
            for (size_t dayid = 0; dayid < 2; ++dayid) {
 | 
			
		||||
 | 
			
		||||
                size_t year = years[year_id];
 | 
			
		||||
 | 
			
		||||
                size_t day = 0;
 | 
			
		||||
                /* Test the first and the last day of each month:
 | 
			
		||||
                 * day 0 - first,
 | 
			
		||||
                 * day 1 - last
 | 
			
		||||
                 * */
 | 
			
		||||
                switch (dayid)
 | 
			
		||||
                {
 | 
			
		||||
                    case 0:
 | 
			
		||||
                        day = 1;
 | 
			
		||||
                        break;
 | 
			
		||||
 | 
			
		||||
                    case 1:
 | 
			
		||||
                        day = 31;
 | 
			
		||||
 | 
			
		||||
                        if (month == 3 || month == 5 || month == 8 || month == 10) {
 | 
			
		||||
                            day = 30;
 | 
			
		||||
                        }
 | 
			
		||||
 | 
			
		||||
                        if (month == 1) {
 | 
			
		||||
                            day = 28;
 | 
			
		||||
                        }
 | 
			
		||||
 | 
			
		||||
                        if (month == 1 && is_leap_year(year)) {
 | 
			
		||||
                            day = 29;
 | 
			
		||||
                        }
 | 
			
		||||
 | 
			
		||||
                        /* Additional conditions for RTCs with partial leap year support. */
 | 
			
		||||
                        if(month == 1 && year == 200 && rtc_leap_year_support == RTC_4_YEAR_LEAP_YEAR_SUPPORT) {
 | 
			
		||||
                            day = 29;
 | 
			
		||||
                        }
 | 
			
		||||
 | 
			
		||||
                        break;
 | 
			
		||||
 | 
			
		||||
                    default:
 | 
			
		||||
                        break;
 | 
			
		||||
                }
 | 
			
		||||
 | 
			
		||||
                tm time_info = make_time_info(year, month, day, 23, dayid ? 59 : 0, dayid ? 59 : 0);
 | 
			
		||||
 | 
			
		||||
                time_t actual_timestamp;
 | 
			
		||||
 | 
			
		||||
                TEST_ASSERT_TRUE(_rtc_maketime(&time_info, &actual_timestamp, rtc_leap_year_support));
 | 
			
		||||
 | 
			
		||||
                greentea_send_kv("timestamp", (int) actual_timestamp);
 | 
			
		||||
 | 
			
		||||
                greentea_parse_kv(_key, _value, sizeof(_key), sizeof(_value));
 | 
			
		||||
 | 
			
		||||
                TEST_ASSERT_EQUAL_STRING("passed", _key);
 | 
			
		||||
 | 
			
		||||
                /* Response which indicates success contains encoded week day
 | 
			
		||||
                 * and year day needed to verify _rtc_localtime().
 | 
			
		||||
                 * Use validated timestamp to generate and validate calendar time.
 | 
			
		||||
                 */
 | 
			
		||||
 | 
			
		||||
                unsigned int buf = (unsigned int) strtol(_value, NULL, 10);
 | 
			
		||||
 | 
			
		||||
                time_info.tm_wday = ((buf >> 16) & 0x0000FFFF);
 | 
			
		||||
                time_info.tm_yday = (buf & 0x0000FFFF);
 | 
			
		||||
 | 
			
		||||
                tm actual_time_info;
 | 
			
		||||
 | 
			
		||||
                bool result = _rtc_localtime((time_t) actual_timestamp, &actual_time_info, rtc_leap_year_support);
 | 
			
		||||
 | 
			
		||||
                TEST_ASSERT_TRUE(result);
 | 
			
		||||
                TEST_ASSERT_EQUAL_UINT32_MESSAGE(time_info.tm_sec, actual_time_info.tm_sec, "invalid seconds");
 | 
			
		||||
                TEST_ASSERT_EQUAL_UINT32_MESSAGE(time_info.tm_min, actual_time_info.tm_min, "invalid minutes");
 | 
			
		||||
                TEST_ASSERT_EQUAL_UINT32_MESSAGE(time_info.tm_hour, actual_time_info.tm_hour, "invalid hours");
 | 
			
		||||
                TEST_ASSERT_EQUAL_UINT32_MESSAGE(time_info.tm_mday, actual_time_info.tm_mday, "invalid day");
 | 
			
		||||
                TEST_ASSERT_EQUAL_UINT32_MESSAGE(time_info.tm_mon, actual_time_info.tm_mon, "invalid month");
 | 
			
		||||
                TEST_ASSERT_EQUAL_UINT32_MESSAGE(time_info.tm_year, actual_time_info.tm_year, "invalid year");
 | 
			
		||||
                TEST_ASSERT_EQUAL_UINT32_MESSAGE(time_info.tm_wday, actual_time_info.tm_wday, "invalid weekday");
 | 
			
		||||
                TEST_ASSERT_EQUAL_UINT32_MESSAGE(time_info.tm_yday, actual_time_info.tm_yday, "invalid year day");
 | 
			
		||||
            }
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
utest::v1::status_t full_leap_year_case_setup_handler_t(const Case * const source, const size_t index_of_case)
 | 
			
		||||
{
 | 
			
		||||
    rtc_leap_year_support = RTC_FULL_LEAP_YEAR_SUPPORT;
 | 
			
		||||
 | 
			
		||||
    return greentea_case_setup_handler(source, index_of_case);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
utest::v1::status_t partial_leap_year_case_setup_handler_t(const Case * const source, const size_t index_of_case)
 | 
			
		||||
{
 | 
			
		||||
    rtc_leap_year_support = RTC_4_YEAR_LEAP_YEAR_SUPPORT;
 | 
			
		||||
 | 
			
		||||
    return greentea_case_setup_handler(source, index_of_case);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
utest::v1::status_t teardown_handler_t(const Case * const source, const size_t passed, const size_t failed,
 | 
			
		||||
        const failure_t reason)
 | 
			
		||||
{
 | 
			
		||||
    return greentea_case_teardown_handler(source, passed, failed, reason);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
// Test cases
 | 
			
		||||
Case cases[] ={
 | 
			
		||||
   Case("test make time and local time - RTC leap years full support", full_leap_year_case_setup_handler_t, test_case_mktime_localtime, teardown_handler_t),
 | 
			
		||||
   Case("test make time and local time - RTC leap years partial support", partial_leap_year_case_setup_handler_t, test_case_mktime_localtime, teardown_handler_t),
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
utest::v1::status_t greentea_test_setup(const size_t number_of_cases)
 | 
			
		||||
{
 | 
			
		||||
    GREENTEA_SETUP(300, "rtc_calc_auto");
 | 
			
		||||
    return greentea_test_setup_handler(number_of_cases);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
Specification specification(greentea_test_setup, cases, greentea_test_teardown_handler);
 | 
			
		||||
 | 
			
		||||
int main()
 | 
			
		||||
{
 | 
			
		||||
    Harness::run(specification);
 | 
			
		||||
}
 | 
			
		||||
| 
						 | 
				
			
			@ -16,14 +16,17 @@
 | 
			
		|||
 | 
			
		||||
#include "mbed_mktime.h"
 | 
			
		||||
 | 
			
		||||
/*
 | 
			
		||||
 * time constants 
 | 
			
		||||
 */
 | 
			
		||||
/* Time constants. */
 | 
			
		||||
#define SECONDS_BY_MINUTES 60
 | 
			
		||||
#define MINUTES_BY_HOUR 60
 | 
			
		||||
#define SECONDS_BY_HOUR (SECONDS_BY_MINUTES * MINUTES_BY_HOUR)
 | 
			
		||||
#define HOURS_BY_DAY 24 
 | 
			
		||||
#define SECONDS_BY_DAY (SECONDS_BY_HOUR * HOURS_BY_DAY)
 | 
			
		||||
#define LAST_VALID_YEAR 206
 | 
			
		||||
 | 
			
		||||
/* Macros which will be used to determine if we are within valid range. */
 | 
			
		||||
#define EDGE_TIMESTAMP_FULL_LEAP_YEAR_SUPPORT 3220095     // 7th of February 1970 at 06:28:15
 | 
			
		||||
#define EDGE_TIMESTAMP_4_YEAR_LEAP_YEAR_SUPPORT 3133695  // 6th of February 1970 at 06:28:15
 | 
			
		||||
 | 
			
		||||
/*
 | 
			
		||||
 * 2 dimensional array containing the number of seconds elapsed before a given 
 | 
			
		||||
| 
						 | 
				
			
			@ -63,10 +66,10 @@ static const uint32_t seconds_before_month[2][12] = {
 | 
			
		|||
    }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
bool _rtc_is_leap_year(int year) {
 | 
			
		||||
bool _rtc_is_leap_year(int year, rtc_leap_year_support_t leap_year_support) {
 | 
			
		||||
    /* 
 | 
			
		||||
     * since in practice, the value manipulated by this algorithm lie in the 
 | 
			
		||||
     * range [70 : 138], the algorith can be reduced to: year % 4.
 | 
			
		||||
     * range: [70 : 206] the algorithm can be reduced to: year % 4 with exception for 200 (year 2100 is not leap year).
 | 
			
		||||
     * The algorithm valid over the full range of value is: 
 | 
			
		||||
 | 
			
		||||
        year = 1900 + year;
 | 
			
		||||
| 
						 | 
				
			
			@ -80,86 +83,108 @@ bool _rtc_is_leap_year(int year) {
 | 
			
		|||
        return true;
 | 
			
		||||
 | 
			
		||||
     */ 
 | 
			
		||||
    if (leap_year_support == RTC_FULL_LEAP_YEAR_SUPPORT && year == 200) {
 | 
			
		||||
        return false; // 2100 is not a leap year
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    return (year) % 4 ? false : true;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
time_t _rtc_mktime(const struct tm* time) {
 | 
			
		||||
    // partial check for the upper bound of the range
 | 
			
		||||
    // normalization might happen at the end of the function 
 | 
			
		||||
    // this solution is faster than checking if the input is after the 19th of 
 | 
			
		||||
    // january 2038 at 03:14:07.  
 | 
			
		||||
    if ((time->tm_year < 70) || (time->tm_year > 138)) { 
 | 
			
		||||
        return ((time_t) -1);
 | 
			
		||||
bool _rtc_maketime(const struct tm* time, time_t * seconds, rtc_leap_year_support_t leap_year_support) {
 | 
			
		||||
    if (seconds == NULL || time == NULL) {
 | 
			
		||||
        return false;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    /* Partial check for the upper bound of the range - check years only. Full check will be performed after the
 | 
			
		||||
     * elapsed time since the beginning of the year is calculated.
 | 
			
		||||
     */
 | 
			
		||||
    if ((time->tm_year < 70) || (time->tm_year > LAST_VALID_YEAR)) {
 | 
			
		||||
        return false;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    uint32_t result = time->tm_sec;
 | 
			
		||||
    result += time->tm_min * SECONDS_BY_MINUTES;
 | 
			
		||||
    result += time->tm_hour * SECONDS_BY_HOUR;
 | 
			
		||||
    result += (time->tm_mday - 1) * SECONDS_BY_DAY;
 | 
			
		||||
    result += seconds_before_month[_rtc_is_leap_year(time->tm_year)][time->tm_mon];
 | 
			
		||||
    result += seconds_before_month[_rtc_is_leap_year(time->tm_year, leap_year_support)][time->tm_mon];
 | 
			
		||||
 | 
			
		||||
    /* Check if we are within valid range. */
 | 
			
		||||
    if (time->tm_year == LAST_VALID_YEAR) {
 | 
			
		||||
        if ((leap_year_support == RTC_FULL_LEAP_YEAR_SUPPORT && result > EDGE_TIMESTAMP_FULL_LEAP_YEAR_SUPPORT) ||
 | 
			
		||||
            (leap_year_support == RTC_4_YEAR_LEAP_YEAR_SUPPORT && result > EDGE_TIMESTAMP_4_YEAR_LEAP_YEAR_SUPPORT)) {
 | 
			
		||||
        return false;
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    if (time->tm_year > 70) { 
 | 
			
		||||
        // valid in the range [70:138] 
 | 
			
		||||
        /* Valid in the range [70:206]. */
 | 
			
		||||
        uint32_t count_of_leap_days = ((time->tm_year - 1) / 4) - (70 / 4);
 | 
			
		||||
        if (leap_year_support == RTC_FULL_LEAP_YEAR_SUPPORT) {
 | 
			
		||||
            if (time->tm_year > 200) {
 | 
			
		||||
                count_of_leap_days--; // 2100 is not a leap year
 | 
			
		||||
            }
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        result += (((time->tm_year - 70) * 365) + count_of_leap_days) * SECONDS_BY_DAY;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    if (result > INT32_MAX) { 
 | 
			
		||||
        return (time_t) -1;
 | 
			
		||||
    }
 | 
			
		||||
    *seconds = result;
 | 
			
		||||
 | 
			
		||||
    return result;
 | 
			
		||||
    return true;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
bool _rtc_localtime(time_t timestamp, struct tm* time_info) {
 | 
			
		||||
    if (((int32_t) timestamp) < 0) { 
 | 
			
		||||
bool _rtc_localtime(time_t timestamp, struct tm* time_info, rtc_leap_year_support_t leap_year_support) {
 | 
			
		||||
    if (time_info == NULL) {
 | 
			
		||||
        return false;
 | 
			
		||||
    } 
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    time_info->tm_sec = timestamp % 60;
 | 
			
		||||
    timestamp = timestamp / 60;   // timestamp in minutes
 | 
			
		||||
    time_info->tm_min = timestamp % 60;
 | 
			
		||||
    timestamp = timestamp / 60;  // timestamp in hours
 | 
			
		||||
    time_info->tm_hour = timestamp % 24;
 | 
			
		||||
    timestamp = timestamp / 24;  // timestamp in days;
 | 
			
		||||
    uint32_t seconds = (uint32_t)timestamp;
 | 
			
		||||
 | 
			
		||||
    // compute the weekday
 | 
			
		||||
    // The 1st of January 1970 was a Thursday which is equal to 4 in the weekday
 | 
			
		||||
    // representation ranging from [0:6]
 | 
			
		||||
    time_info->tm_wday = (timestamp + 4) % 7;
 | 
			
		||||
    time_info->tm_sec = seconds % 60;
 | 
			
		||||
    seconds = seconds / 60;   // timestamp in minutes
 | 
			
		||||
    time_info->tm_min = seconds % 60;
 | 
			
		||||
    seconds = seconds / 60;  // timestamp in hours
 | 
			
		||||
    time_info->tm_hour = seconds % 24;
 | 
			
		||||
    seconds = seconds / 24;  // timestamp in days;
 | 
			
		||||
 | 
			
		||||
    // years start at 70
 | 
			
		||||
    /* Compute the weekday.
 | 
			
		||||
     * The 1st of January 1970 was a Thursday which is equal to 4 in the weekday representation ranging from [0:6].
 | 
			
		||||
     */
 | 
			
		||||
    time_info->tm_wday = (seconds + 4) % 7;
 | 
			
		||||
 | 
			
		||||
    /* Years start at 70. */
 | 
			
		||||
    time_info->tm_year = 70;
 | 
			
		||||
    while (true) { 
 | 
			
		||||
        if (_rtc_is_leap_year(time_info->tm_year) && timestamp >= 366) {
 | 
			
		||||
        if (_rtc_is_leap_year(time_info->tm_year, leap_year_support) && seconds >= 366) {
 | 
			
		||||
            ++time_info->tm_year;
 | 
			
		||||
            timestamp -= 366;
 | 
			
		||||
        } else if (!_rtc_is_leap_year(time_info->tm_year) && timestamp >= 365) {
 | 
			
		||||
            seconds -= 366;
 | 
			
		||||
        } else if (!_rtc_is_leap_year(time_info->tm_year, leap_year_support) && seconds >= 365) {
 | 
			
		||||
            ++time_info->tm_year;
 | 
			
		||||
            timestamp -= 365;
 | 
			
		||||
            seconds -= 365;
 | 
			
		||||
        } else {
 | 
			
		||||
            // the remaining days are less than a years
 | 
			
		||||
            /* The remaining days are less than a years. */
 | 
			
		||||
            break;
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    time_info->tm_yday = timestamp;
 | 
			
		||||
    time_info->tm_yday = seconds;
 | 
			
		||||
 | 
			
		||||
    // convert days into seconds and find the current month
 | 
			
		||||
    timestamp *= SECONDS_BY_DAY;
 | 
			
		||||
    /* Convert days into seconds and find the current month. */
 | 
			
		||||
    seconds *= SECONDS_BY_DAY;
 | 
			
		||||
    time_info->tm_mon = 11;
 | 
			
		||||
    bool leap = _rtc_is_leap_year(time_info->tm_year);
 | 
			
		||||
    bool leap = _rtc_is_leap_year(time_info->tm_year, leap_year_support);
 | 
			
		||||
    for (uint32_t i = 0; i < 12; ++i) {
 | 
			
		||||
        if ((uint32_t) timestamp < seconds_before_month[leap][i]) {
 | 
			
		||||
        if ((uint32_t) seconds < seconds_before_month[leap][i]) {
 | 
			
		||||
            time_info->tm_mon = i - 1;
 | 
			
		||||
            break;
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    // remove month from timestamp and compute the number of days.
 | 
			
		||||
    // note: unlike other fields, days are not 0 indexed.
 | 
			
		||||
    timestamp -= seconds_before_month[leap][time_info->tm_mon];
 | 
			
		||||
    time_info->tm_mday = (timestamp / SECONDS_BY_DAY) + 1;
 | 
			
		||||
    /* Remove month from timestamp and compute the number of days.
 | 
			
		||||
     * Note: unlike other fields, days are not 0 indexed.
 | 
			
		||||
     */
 | 
			
		||||
    seconds -= seconds_before_month[leap][time_info->tm_mon];
 | 
			
		||||
    time_info->tm_mday = (seconds / SECONDS_BY_DAY) + 1;
 | 
			
		||||
 | 
			
		||||
    return true;
 | 
			
		||||
}
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -33,14 +33,34 @@ extern "C" {
 | 
			
		|||
 * @{
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
/* Time range across the whole 32-bit range should be supported which means that years in range 1970 - 2106 can be
 | 
			
		||||
 * encoded. We have two types of RTC devices:
 | 
			
		||||
 * a) RTCs which handles all leap years in the mentioned year range correctly. Leap year is determined by checking if
 | 
			
		||||
 *    the year counter value is divisible by 400, 100, and 4. No problem here.
 | 
			
		||||
 * b) RTCs which handles leap years correctly up to 2100. The RTC does a simple bit comparison to see if the two
 | 
			
		||||
 *    lowest order bits of the year counter are zero. In this case 2100 year will be considered
 | 
			
		||||
 *    incorrectly as a leap year, so the last valid point in time will be 28.02.2100 23:59:59 and next day will be
 | 
			
		||||
 *    29.02.2100 (invalid). So after 28.02.2100 the day counter will be off by a day.
 | 
			
		||||
 */
 | 
			
		||||
typedef enum {
 | 
			
		||||
    RTC_FULL_LEAP_YEAR_SUPPORT,
 | 
			
		||||
    RTC_4_YEAR_LEAP_YEAR_SUPPORT
 | 
			
		||||
} rtc_leap_year_support_t;
 | 
			
		||||
 | 
			
		||||
/** Compute if a year is a leap year or not.
 | 
			
		||||
 *
 | 
			
		||||
 * @param year The year to test it shall be in the range [70:138]. Year 0 is
 | 
			
		||||
 * @param year The year to test it shall be in the range [70:206]. Year 0 is
 | 
			
		||||
 * translated into year 1900 CE.
 | 
			
		||||
 * @param leap_year_support use RTC_FULL_LEAP_YEAR_SUPPORT if RTC device is able
 | 
			
		||||
 * to correctly detect all leap years in range [70:206] otherwise use RTC_4_YEAR_LEAP_YEAR_SUPPORT.
 | 
			
		||||
 *
 | 
			
		||||
 * @return true if the year in input is a leap year and false otherwise.
 | 
			
		||||
 * @note - For use by the HAL only
 | 
			
		||||
 *
 | 
			
		||||
 * @note For use by the HAL only
 | 
			
		||||
 * @note Year 2100 is treated differently for devices with full leap year support and devices with
 | 
			
		||||
 * partial leap year support. Devices with partial leap year support treats 2100 as a leap year.
 | 
			
		||||
 */
 | 
			
		||||
bool _rtc_is_leap_year(int year);
 | 
			
		||||
bool _rtc_is_leap_year(int year, rtc_leap_year_support_t leap_year_support);
 | 
			
		||||
 | 
			
		||||
/* Convert a calendar time into time since UNIX epoch as a time_t.
 | 
			
		||||
 *
 | 
			
		||||
| 
						 | 
				
			
			@ -48,7 +68,7 @@ bool _rtc_is_leap_year(int year);
 | 
			
		|||
 * tailored around RTC peripherals needs and is not by any mean a complete
 | 
			
		||||
 * replacement of mktime.
 | 
			
		||||
 *
 | 
			
		||||
 * @param calendar_time The calendar time to convert into a time_t since epoch.
 | 
			
		||||
 * @param time The calendar time to convert into a time_t since epoch.
 | 
			
		||||
 * The fields from tm used for the computation are:
 | 
			
		||||
 *   - tm_sec
 | 
			
		||||
 *   - tm_min
 | 
			
		||||
| 
						 | 
				
			
			@ -57,17 +77,20 @@ bool _rtc_is_leap_year(int year);
 | 
			
		|||
 *   - tm_mon
 | 
			
		||||
 *   - tm_year
 | 
			
		||||
 * Other fields are ignored and won't be renormalized by a call to this function.
 | 
			
		||||
 * A valid calendar time is comprised between the 1st january of 1970 at
 | 
			
		||||
 * 00:00:00 and the 19th of january 2038 at 03:14:07.
 | 
			
		||||
 * A valid calendar time is comprised between:
 | 
			
		||||
 * the 1st of January 1970 at 00:00:00 to the 7th of February 2106 at 06:28:15.
 | 
			
		||||
 * @param leap_year_support use RTC_FULL_LEAP_YEAR_SUPPORT if RTC device is able
 | 
			
		||||
 * to correctly detect all leap years in range [70:206] otherwise use RTC_4_YEAR_LEAP_YEAR_SUPPORT.
 | 
			
		||||
 * @param seconds holder for the result - calendar time as seconds since UNIX epoch.
 | 
			
		||||
 *
 | 
			
		||||
 * @return The calendar time as seconds since UNIX epoch if the input is in the
 | 
			
		||||
 * valid range. Otherwise ((time_t) -1).
 | 
			
		||||
 * @return true on success, false if conversion error occurred.
 | 
			
		||||
 *
 | 
			
		||||
 * @note Leap seconds are not supported.
 | 
			
		||||
 * @note Values in output range from 0 to INT_MAX.
 | 
			
		||||
 * @note - For use by the HAL only
 | 
			
		||||
 * @note Values in output range from 0 to UINT_MAX.
 | 
			
		||||
 * @note Full and partial leap years support.
 | 
			
		||||
 * @note For use by the HAL only
 | 
			
		||||
 */
 | 
			
		||||
time_t _rtc_mktime(const struct tm* calendar_time);
 | 
			
		||||
bool _rtc_maketime(const struct tm* time, time_t * seconds, rtc_leap_year_support_t leap_year_support);
 | 
			
		||||
 | 
			
		||||
/* Convert a given time in seconds since epoch into calendar time.
 | 
			
		||||
 *
 | 
			
		||||
| 
						 | 
				
			
			@ -76,7 +99,7 @@ time_t _rtc_mktime(const struct tm* calendar_time);
 | 
			
		|||
 * complete of localtime.
 | 
			
		||||
 *
 | 
			
		||||
 * @param timestamp The time (in seconds) to convert into calendar time. Valid
 | 
			
		||||
 * input are in the range [0 : INT32_MAX].
 | 
			
		||||
 * input are in the range [0 : UINT32_MAX].
 | 
			
		||||
 * @param calendar_time Pointer to the object which will contain the result of
 | 
			
		||||
 * the conversion. The tm fields filled by this function are:
 | 
			
		||||
 *   - tm_sec
 | 
			
		||||
| 
						 | 
				
			
			@ -88,11 +111,14 @@ time_t _rtc_mktime(const struct tm* calendar_time);
 | 
			
		|||
 *   - tm_wday
 | 
			
		||||
 *   - tm_yday
 | 
			
		||||
 * The object remains untouched if the time in input is invalid.
 | 
			
		||||
 * @param leap_year_support use RTC_FULL_LEAP_YEAR_SUPPORT if RTC device is able
 | 
			
		||||
 * to correctly detect all leap years in range [70:206] otherwise use RTC_4_YEAR_LEAP_YEAR_SUPPORT.
 | 
			
		||||
 * @return true if the conversion was successful, false otherwise.
 | 
			
		||||
 *
 | 
			
		||||
 * @note - For use by the HAL only
 | 
			
		||||
 * @note For use by the HAL only.
 | 
			
		||||
 * @note Full and partial leap years support.
 | 
			
		||||
 */
 | 
			
		||||
bool _rtc_localtime(time_t timestamp, struct tm* calendar_time);
 | 
			
		||||
bool _rtc_localtime(time_t timestamp, struct tm* time_info, rtc_leap_year_support_t leap_year_support);
 | 
			
		||||
 | 
			
		||||
/** @}*/
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -71,7 +71,11 @@ time_t rtc_read(void)
 | 
			
		|||
    timeinfo.tm_year = (ul_year - 1900);
 | 
			
		||||
 | 
			
		||||
    /* Convert to timestamp */
 | 
			
		||||
    time_t t = _rtc_mktime(&timeinfo);
 | 
			
		||||
    time_t t;
 | 
			
		||||
    if (_rtc_maketime(&timeinfo, &t, RTC_4_YEAR_LEAP_YEAR_SUPPORT) == false) {
 | 
			
		||||
        return 0;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    return t;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -81,8 +85,9 @@ void rtc_write(time_t t)
 | 
			
		|||
        /* Initialize the RTC is not yet initialized */
 | 
			
		||||
        rtc_init();
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    struct tm timeinfo;
 | 
			
		||||
    if (_rtc_localtime(t, &timeinfo) == false) {
 | 
			
		||||
    if (_rtc_localtime(t, &timeinfo, RTC_4_YEAR_LEAP_YEAR_SUPPORT) == false) {
 | 
			
		||||
        return;
 | 
			
		||||
    }
 | 
			
		||||
    uint32_t ul_hour, ul_minute, ul_second;
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -94,7 +94,10 @@ time_t rtc_read(void)
 | 
			
		|||
    timeinfo.tm_sec  = rtc_datetime.u32Second;
 | 
			
		||||
 | 
			
		||||
    // Convert to timestamp
 | 
			
		||||
    time_t t = _rtc_mktime(&timeinfo);
 | 
			
		||||
    time_t t;
 | 
			
		||||
    if (_rtc_maketime(&timeinfo, &t, RTC_FULL_LEAP_YEAR_SUPPORT) == false) {
 | 
			
		||||
        return 0;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    return t;
 | 
			
		||||
}
 | 
			
		||||
| 
						 | 
				
			
			@ -104,10 +107,10 @@ void rtc_write(time_t t)
 | 
			
		|||
    if (! rtc_isenabled()) {
 | 
			
		||||
        rtc_init();
 | 
			
		||||
    }
 | 
			
		||||
    
 | 
			
		||||
 | 
			
		||||
    // Convert timestamp to struct tm
 | 
			
		||||
    struct tm timeinfo;
 | 
			
		||||
    if (_rtc_localtime(t, &timeinfo) == false) {
 | 
			
		||||
    if (_rtc_localtime(t, &timeinfo, RTC_FULL_LEAP_YEAR_SUPPORT) == false) {
 | 
			
		||||
        return;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -96,7 +96,10 @@ time_t rtc_read(void)
 | 
			
		|||
    timeinfo.tm_sec  = rtc_datetime.u32Second;
 | 
			
		||||
 | 
			
		||||
    // Convert to timestamp
 | 
			
		||||
    time_t t = _rtc_mktime(&timeinfo);
 | 
			
		||||
    time_t t;
 | 
			
		||||
    if (_rtc_maketime(&timeinfo, &t, RTC_FULL_LEAP_YEAR_SUPPORT) == false) {
 | 
			
		||||
        return 0;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    return t;
 | 
			
		||||
}
 | 
			
		||||
| 
						 | 
				
			
			@ -109,7 +112,7 @@ void rtc_write(time_t t)
 | 
			
		|||
 | 
			
		||||
    // Convert timestamp to struct tm
 | 
			
		||||
    struct tm timeinfo;
 | 
			
		||||
    if (_rtc_localtime(t, &timeinfo) == false) {
 | 
			
		||||
    if (_rtc_localtime(t, &timeinfo, RTC_FULL_LEAP_YEAR_SUPPORT) == false) {
 | 
			
		||||
        return;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -94,7 +94,10 @@ time_t rtc_read(void)
 | 
			
		|||
    timeinfo.tm_sec  = rtc_datetime.u32Second;
 | 
			
		||||
 | 
			
		||||
    // Convert to timestamp
 | 
			
		||||
    time_t t = _rtc_mktime(&timeinfo);
 | 
			
		||||
    time_t t;
 | 
			
		||||
    if (_rtc_maketime(&timeinfo, &t, RTC_FULL_LEAP_YEAR_SUPPORT) == false) {
 | 
			
		||||
        return 0;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    return t;
 | 
			
		||||
}
 | 
			
		||||
| 
						 | 
				
			
			@ -104,10 +107,10 @@ void rtc_write(time_t t)
 | 
			
		|||
    if (! rtc_isenabled()) {
 | 
			
		||||
        rtc_init();
 | 
			
		||||
    }
 | 
			
		||||
    
 | 
			
		||||
 | 
			
		||||
    // Convert timestamp to struct tm
 | 
			
		||||
    struct tm timeinfo;
 | 
			
		||||
    if (_rtc_localtime(t, &timeinfo) == false) {
 | 
			
		||||
    if (_rtc_localtime(t, &timeinfo, RTC_FULL_LEAP_YEAR_SUPPORT) == false) {
 | 
			
		||||
        return;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -94,7 +94,10 @@ time_t rtc_read(void)
 | 
			
		|||
    timeinfo.tm_sec  = rtc_datetime.u32Second;
 | 
			
		||||
 | 
			
		||||
    // Convert to timestamp
 | 
			
		||||
    time_t t = _rtc_mktime(&timeinfo);
 | 
			
		||||
    time_t t;
 | 
			
		||||
    if (_rtc_maketime(&timeinfo, &t, RTC_FULL_LEAP_YEAR_SUPPORT) == false) {
 | 
			
		||||
        return 0;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    return t;
 | 
			
		||||
}
 | 
			
		||||
| 
						 | 
				
			
			@ -104,10 +107,10 @@ void rtc_write(time_t t)
 | 
			
		|||
    if (! rtc_isenabled()) {
 | 
			
		||||
        rtc_init();
 | 
			
		||||
    }
 | 
			
		||||
    
 | 
			
		||||
 | 
			
		||||
    // Convert timestamp to struct tm
 | 
			
		||||
    struct tm timeinfo;
 | 
			
		||||
    if (_rtc_localtime(t, &timeinfo) == false) {
 | 
			
		||||
    if (_rtc_localtime(t, &timeinfo, RTC_FULL_LEAP_YEAR_SUPPORT) == false) {
 | 
			
		||||
        return;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -89,7 +89,10 @@ time_t rtc_read(void) {
 | 
			
		|||
    timeinfo.tm_year = LPC_RTC->YEAR - 1900;
 | 
			
		||||
    
 | 
			
		||||
    // Convert to timestamp
 | 
			
		||||
    time_t t = _rtc_mktime(&timeinfo);
 | 
			
		||||
    time_t t;
 | 
			
		||||
    if (_rtc_maketime(&timeinfo, &t, RTC_4_YEAR_LEAP_YEAR_SUPPORT) == false) {
 | 
			
		||||
        return 0;
 | 
			
		||||
    }
 | 
			
		||||
    
 | 
			
		||||
    return t;
 | 
			
		||||
}
 | 
			
		||||
| 
						 | 
				
			
			@ -97,10 +100,10 @@ time_t rtc_read(void) {
 | 
			
		|||
void rtc_write(time_t t) {
 | 
			
		||||
    // Convert the time in to a tm
 | 
			
		||||
    struct tm timeinfo;
 | 
			
		||||
    if (_rtc_localtime(t, &timeinfo) == false) {
 | 
			
		||||
    if (_rtc_localtime(t, &timeinfo, RTC_4_YEAR_LEAP_YEAR_SUPPORT) == false) {
 | 
			
		||||
        return;
 | 
			
		||||
    }
 | 
			
		||||
    
 | 
			
		||||
 | 
			
		||||
    // Pause clock, and clear counter register (clears us count)
 | 
			
		||||
    LPC_RTC->CCR |= 2;
 | 
			
		||||
    
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -88,7 +88,10 @@ time_t rtc_read(void) {
 | 
			
		|||
    timeinfo.tm_year = LPC_RTC->YEAR - 1900;
 | 
			
		||||
    
 | 
			
		||||
    // Convert to timestamp
 | 
			
		||||
    time_t t = _rtc_mktime(&timeinfo);
 | 
			
		||||
    time_t t;
 | 
			
		||||
    if (_rtc_maketime(&timeinfo, &t, RTC_4_YEAR_LEAP_YEAR_SUPPORT) == false) {
 | 
			
		||||
        return 0;
 | 
			
		||||
    }
 | 
			
		||||
    
 | 
			
		||||
    return t;
 | 
			
		||||
}
 | 
			
		||||
| 
						 | 
				
			
			@ -96,10 +99,10 @@ time_t rtc_read(void) {
 | 
			
		|||
void rtc_write(time_t t) {
 | 
			
		||||
    // Convert the time in to a tm
 | 
			
		||||
    struct tm timeinfo;
 | 
			
		||||
    if (_rtc_localtime(t, &timeinfo) == false) {
 | 
			
		||||
    if (_rtc_localtime(t, &timeinfo, RTC_4_YEAR_LEAP_YEAR_SUPPORT) == false) {
 | 
			
		||||
        return;
 | 
			
		||||
    }
 | 
			
		||||
    
 | 
			
		||||
 | 
			
		||||
    // Pause clock, and clear counter register (clears us count)
 | 
			
		||||
    LPC_RTC->CCR |= 2;
 | 
			
		||||
    
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -102,7 +102,10 @@ time_t rtc_read(void) {
 | 
			
		|||
    timeinfo.tm_year = LPC_RTC->TIME[RTC_TIMETYPE_YEAR] - 1900;
 | 
			
		||||
    
 | 
			
		||||
    // Convert to timestamp
 | 
			
		||||
    time_t t = _rtc_mktime(&timeinfo);
 | 
			
		||||
    time_t t;
 | 
			
		||||
    if (_rtc_maketime(&timeinfo, &t, RTC_4_YEAR_LEAP_YEAR_SUPPORT) == false) {
 | 
			
		||||
        return 0;
 | 
			
		||||
    }
 | 
			
		||||
    
 | 
			
		||||
    return t;
 | 
			
		||||
}
 | 
			
		||||
| 
						 | 
				
			
			@ -110,10 +113,10 @@ time_t rtc_read(void) {
 | 
			
		|||
void rtc_write(time_t t) {
 | 
			
		||||
    // Convert the time in to a tm
 | 
			
		||||
    struct tm timeinfo;
 | 
			
		||||
    if (_rtc_localtime(t, &timeinfo) == false) {
 | 
			
		||||
    if (_rtc_localtime(t, &timeinfo, RTC_4_YEAR_LEAP_YEAR_SUPPORT) == false) {
 | 
			
		||||
        return;
 | 
			
		||||
    }
 | 
			
		||||
    
 | 
			
		||||
 | 
			
		||||
    // Pause clock, and clear counter register (clears us count)
 | 
			
		||||
    LPC_RTC->CCR |= 2;
 | 
			
		||||
    
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -308,6 +308,7 @@ void rtc_write(time_t t) {
 | 
			
		|||
    if (_rtc_localtime(t, &timeinfo) == false) {
 | 
			
		||||
        return;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    volatile uint16_t dummy_read;
 | 
			
		||||
 | 
			
		||||
    if (rtc_isenabled() != 0) {
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -70,7 +70,7 @@
 | 
			
		|||
#define SHIFT_1BYTE      (8u)
 | 
			
		||||
#define SHIFT_2BYTE      (16u)
 | 
			
		||||
 | 
			
		||||
#define TIME_ERROR_VAL   (0xFFFFFFFFu)
 | 
			
		||||
#define TIME_ERROR_VAL   (0u)
 | 
			
		||||
 | 
			
		||||
static int rtc_dec8_to_hex(uint8_t dec_val, uint8_t offset, int *hex_val);
 | 
			
		||||
static int rtc_dec16_to_hex(uint16_t dec_val, uint16_t offset, int *hex_val);
 | 
			
		||||
| 
						 | 
				
			
			@ -248,7 +248,9 @@ time_t rtc_read(void) {
 | 
			
		|||
 | 
			
		||||
    if (err == 0) {
 | 
			
		||||
        // Convert to timestamp
 | 
			
		||||
        t = _rtc_mktime(&timeinfo);
 | 
			
		||||
        if (_rtc_maketime(&timeinfo, &t, RTC_FULL_LEAP_YEAR_SUPPORT) == false) {
 | 
			
		||||
            return TIME_ERROR_VAL;
 | 
			
		||||
        }
 | 
			
		||||
    } else {
 | 
			
		||||
        // Error
 | 
			
		||||
        t = TIME_ERROR_VAL;
 | 
			
		||||
| 
						 | 
				
			
			@ -339,9 +341,10 @@ static int rtc_dec16_to_hex(uint16_t dec_val, uint16_t offset, int *hex_val) {
 | 
			
		|||
void rtc_write(time_t t) {
 | 
			
		||||
 | 
			
		||||
    struct tm timeinfo;
 | 
			
		||||
    if (_rtc_localtime(t, &timeinfo) == false) {
 | 
			
		||||
    if (_rtc_localtime(t, &timeinfo, RTC_FULL_LEAP_YEAR_SUPPORT) == false) {
 | 
			
		||||
        return;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    volatile uint16_t dummy_read;
 | 
			
		||||
 | 
			
		||||
    if (rtc_isenabled() != 0) {
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -231,7 +231,10 @@ time_t rtc_read(void)
 | 
			
		|||
    timeinfo.tm_isdst  = -1;
 | 
			
		||||
 | 
			
		||||
    // Convert to timestamp
 | 
			
		||||
    time_t t = _rtc_mktime(&timeinfo);
 | 
			
		||||
    time_t t;
 | 
			
		||||
    if (_rtc_maketime(&timeinfo, &t, RTC_4_YEAR_LEAP_YEAR_SUPPORT) == false) {
 | 
			
		||||
        return 0;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    return t;
 | 
			
		||||
}
 | 
			
		||||
| 
						 | 
				
			
			@ -245,7 +248,7 @@ void rtc_write(time_t t)
 | 
			
		|||
 | 
			
		||||
    // Convert the time into a tm
 | 
			
		||||
    struct tm timeinfo;
 | 
			
		||||
    if (_rtc_localtime(t, &timeinfo) == false) {
 | 
			
		||||
    if (_rtc_localtime(t, &timeinfo, RTC_4_YEAR_LEAP_YEAR_SUPPORT) == false) {
 | 
			
		||||
        return;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
		Loading…
	
		Reference in New Issue