pull/1121/head
hjjeon0608 2015-05-26 08:05:34 +09:00
commit b8909ae27d
39 changed files with 1472 additions and 1441 deletions

View File

@ -85,6 +85,10 @@
#define EPINT_IN (EP4IN)
#define EPINT_OUT_callback EP3_OUT_callback
#define EPINT_IN_callback EP4_IN_callback
/* Isochronous endpoints */
/* NOT SUPPORTED - use invalid endpoint number to prevent built errors */
#define EPISO_OUT (EP0OUT)
#define EPISO_IN (EP0IN)
#define MAX_PACKET_SIZE_EPBULK (64)
#define MAX_PACKET_SIZE_EPINT (64)

View File

@ -60,7 +60,7 @@ public:
Ticker() : TimerEvent() {
}
Ticker(const ticker_data_t *const data) : TimerEvent(data) {
Ticker(const ticker_data_t *data) : TimerEvent(data) {
}
/** Attach a function to be called by the Ticker, specifiying the interval in seconds

View File

@ -46,7 +46,7 @@ class Timer {
public:
Timer();
Timer(const ticker_data_t *const data);
Timer(const ticker_data_t *data);
/** Start the timer
*/
@ -83,7 +83,7 @@ protected:
int _running; // whether the timer is running
unsigned int _start; // the start time of the latest slice
int _time; // any accumulated time from previous slices
const ticker_data_t *const _ticker_data;
const ticker_data_t *_ticker_data;
};
} // namespace mbed

View File

@ -47,7 +47,7 @@ protected:
ticker_event_t event;
const ticker_data_t *const _ticker_data;
const ticker_data_t *_ticker_data;
};
} // namespace mbed

View File

@ -23,7 +23,7 @@ Timer::Timer() : _running(), _start(), _time(), _ticker_data(get_us_ticker_data(
reset();
}
Timer::Timer(const ticker_data_t *const data) : _running(), _start(), _time(), _ticker_data(data) {
Timer::Timer(const ticker_data_t *data) : _running(), _start(), _time(), _ticker_data(data) {
reset();
}

View File

@ -170,10 +170,10 @@ typedef enum {
AOUT_CO = (0xF << PORT_SHIFT) | 2,
AOUT_DO = (0xF << PORT_SHIFT) | 3,
LED_GREEN = P7_4,
LED_RED = P7_0,
LED_YELLOW = P6_6,
LED_BLUE = P7_6,
LED_GREEN = P6_6,
LED_RED = P7_1,
LED_YELLOW = P7_0,
LED_BLUE = P6_7,
// mbed original LED naming
LED1 = LED_RED,

View File

@ -115,7 +115,7 @@ void spi_format(spi_t *obj, int bits, int mode, int slave)
void spi_frequency(spi_t *obj, int hz)
{
// Maximum frequency is half the system frequency
MBED_ASSERT((unsigned int)hz < (SystemCoreClock / 2));
MBED_ASSERT((unsigned int)hz <= (SystemCoreClock / 2));
unsigned clocks = ((SystemCoreClock/2)/(hz));
// Figure out the divider ratio

View File

@ -115,7 +115,7 @@ void spi_format(spi_t *obj, int bits, int mode, int slave)
void spi_frequency(spi_t *obj, int hz)
{
// Maximum frequency is half the system frequency
MBED_ASSERT((unsigned int)hz < (SystemCoreClock / 2));
MBED_ASSERT((unsigned int)hz <= (SystemCoreClock / 2));
unsigned clocks = ((SystemCoreClock/2)/(hz));
// Figure out the divider ratio

View File

@ -87,134 +87,134 @@ const PinMap PinMap_PWM[] = {
/*************SPI**************/
const PinMap PinMap_SPI_MOSI[] = {
/* USART0 */
{PE10, SPI_0, 0},
{PE7, SPI_0, 1},
{PC11, SPI_0, 2},
{PC0, SPI_0, 5},
/* USART1 */
{PD0, SPI_1, 1},
{PD7, SPI_1, 2},
/* USART2 */
{PC2, SPI_2, 0},
{PB3, SPI_2, 1},
/* Not connected */
{NC , NC , NC}
/* USART0 */
{PE10, SPI_0, 0},
{PE7, SPI_0, 1},
{PC11, SPI_0, 2},
{PC0, SPI_0, 5},
/* USART1 */
{PD0, SPI_1, 1},
{PD7, SPI_1, 2},
/* USART2 */
{PC2, SPI_2, 0},
{PB3, SPI_2, 1},
/* Not connected */
{NC , NC , NC}
};
const PinMap PinMap_SPI_MISO[] = {
/* USART0 */
{PE11, SPI_0, 0},
{PE6, SPI_0, 1},
{PC10, SPI_0, 2},
{PC1, SPI_0, 5},
/* USART1 */
{PD1, SPI_1, 1},
{PD6, SPI_1, 2},
/* USART2 */
{PC3, SPI_2, 0},
{PB4, SPI_2, 1},
/* Not connected */
{NC , NC , NC}
/* USART0 */
{PE11, SPI_0, 0},
{PE6, SPI_0, 1},
{PC10, SPI_0, 2},
{PC1, SPI_0, 5},
/* USART1 */
{PD1, SPI_1, 1},
{PD6, SPI_1, 2},
/* USART2 */
{PC3, SPI_2, 0},
{PB4, SPI_2, 1},
/* Not connected */
{NC , NC , NC}
};
const PinMap PinMap_SPI_CLK[] = {
/* USART0 */
{PE12, SPI_0, 0},
{PE5, SPI_0, 1},
{PC9, SPI_0, 2},
{PB13, SPI_0, 5},
/* USART1 */
{PD2, SPI_1, 1},
{PF0, SPI_1, 2},
/* USART2 */
{PC4, SPI_2, 0},
{PB5, SPI_2, 1},
/* Not connected */
{NC , NC , NC}
/* USART0 */
{PE12, SPI_0, 0},
{PE5, SPI_0, 1},
{PC9, SPI_0, 2},
{PB13, SPI_0, 5},
/* USART1 */
{PD2, SPI_1, 1},
{PF0, SPI_1, 2},
/* USART2 */
{PC4, SPI_2, 0},
{PB5, SPI_2, 1},
/* Not connected */
{NC , NC , NC}
};
const PinMap PinMap_SPI_CS[] = {
/* USART0 */
{PE13, SPI_0, 0},
{PE4, SPI_0, 1},
{PC8, SPI_0, 2},
{PB14, SPI_0, 5},
/* USART1 */
{PD3, SPI_1, 1},
{PF1, SPI_1, 2},
/* USART2 */
{PC5, SPI_2, 0},
{PB6, SPI_2, 1},
/* Not connected */
{NC , NC , NC}
/* USART0 */
{PE13, SPI_0, 0},
{PE4, SPI_0, 1},
{PC8, SPI_0, 2},
{PB14, SPI_0, 5},
/* USART1 */
{PD3, SPI_1, 1},
{PF1, SPI_1, 2},
/* USART2 */
{PC5, SPI_2, 0},
{PB6, SPI_2, 1},
/* Not connected */
{NC , NC , NC}
};
/************UART**************/
const PinMap PinMap_UART_TX[] = {
/* UART0 */
{PF6, UART_0, 0},
{PE0, UART_0, 1},
/* UART1 */
{PF10, UART_1, 1},
{PB9, UART_1, 2},
{PE2, UART_1, 3},
/* USART0 */
{PE10, USART_0, 0},
{PE7, USART_0, 1},
{PC11, USART_0, 2},
{PE13, USART_0, 3},
{PB7, USART_0, 4},
/* USART1 */
{PC0, USART_1, 0},
{PD0, USART_1, 1},
{PD7, USART_1, 2},
/* USART2 */
{PC2, USART_2, 0},
{PB3, USART_2, 1},
/* LEUART0 */
{PD4, LEUART_0, 0},
{PB13, LEUART_0, 1},
{PE14, LEUART_0, 2},
{PF0, LEUART_0, 3},
{PF2, LEUART_0, 4},
/* LEUART1 */
{PC6, LEUART_1, 0},
{PA5, LEUART_1, 1},
/* Not connected */
{NC , NC , NC}
/* UART0 */
{PF6, UART_0, 0},
{PE0, UART_0, 1},
/* UART1 */
{PF10, UART_1, 1},
{PB9, UART_1, 2},
{PE2, UART_1, 3},
/* USART0 */
{PE10, USART_0, 0},
{PE7, USART_0, 1},
{PC11, USART_0, 2},
{PE13, USART_0, 3},
{PB7, USART_0, 4},
/* USART1 */
{PC0, USART_1, 0},
{PD0, USART_1, 1},
{PD7, USART_1, 2},
/* USART2 */
{PC2, USART_2, 0},
{PB3, USART_2, 1},
/* LEUART0 */
{PD4, LEUART_0, 0},
{PB13, LEUART_0, 1},
{PE14, LEUART_0, 2},
{PF0, LEUART_0, 3},
{PF2, LEUART_0, 4},
/* LEUART1 */
{PC6, LEUART_1, 0},
{PA5, LEUART_1, 1},
/* Not connected */
{NC , NC , NC}
};
const PinMap PinMap_UART_RX[] = {
/* UART0 */
{PF7, UART_0, 0},
{PE1, UART_0, 1},
/* UART1 */
{PF11, UART_1, 1},
{PB10, UART_1, 2},
{PE3, UART_1, 3},
/* USART0 */
{PE11, USART_0, 0},
{PE6, USART_0, 1},
{PC10, USART_0, 2},
{PE12, USART_0, 3},
{PB8, USART_0, 4},
/* USART1 */
{PC1, USART_1, 0},
{PD1, USART_1, 1},
{PD6, USART_1, 2},
/* USART2 */
{PC3, USART_2, 0},
{PB4, USART_2, 1},
/* LEUART0 */
{PD5, LEUART_0, 0},
{PB14, LEUART_0, 1},
{PE15, LEUART_0, 2},
{PF1, LEUART_0, 3},
{PA0, LEUART_0, 4},
/* LEUART1 */
{PC7, LEUART_1, 0},
{PA6, LEUART_1, 1},
/* Not connected */
{NC , NC , NC}
/* UART0 */
{PF7, UART_0, 0},
{PE1, UART_0, 1},
/* UART1 */
{PF11, UART_1, 1},
{PB10, UART_1, 2},
{PE3, UART_1, 3},
/* USART0 */
{PE11, USART_0, 0},
{PE6, USART_0, 1},
{PC10, USART_0, 2},
{PE12, USART_0, 3},
{PB8, USART_0, 4},
/* USART1 */
{PC1, USART_1, 0},
{PD1, USART_1, 1},
{PD6, USART_1, 2},
/* USART2 */
{PC3, USART_2, 0},
{PB4, USART_2, 1},
/* LEUART0 */
{PD5, LEUART_0, 0},
{PB14, LEUART_0, 1},
{PE15, LEUART_0, 2},
{PF1, LEUART_0, 3},
{PA0, LEUART_0, 4},
/* LEUART1 */
{PC7, LEUART_1, 0},
{PA6, LEUART_1, 1},
/* Not connected */
{NC , NC , NC}
};

View File

@ -60,109 +60,109 @@ const PinMap PinMap_PWM[] = {
/*************SPI**************/
const PinMap PinMap_SPI_MOSI[] = {
/* USART0 */
{PE10, SPI_0, 0},
//{NC, SPI_0, 2}, /* SPI_0 loc2 is not bonded */
{PE13, SPI_0, 3},
{PB7, SPI_0, 4},
/* USART0 */
{PE10, SPI_0, 0},
//{NC, SPI_0, 2}, /* SPI_0 loc2 is not bonded */
{PE13, SPI_0, 3},
{PB7, SPI_0, 4},
/* USART1 */
{PC0, SPI_1, 0},
{PD7, SPI_1, 3},
{PF2, SPI_1, 4},
/* USART1 */
{PC0, SPI_1, 0},
{PD7, SPI_1, 3},
{PF2, SPI_1, 4},
/* Not connected */
{NC , NC , NC}
/* Not connected */
{NC , NC , NC}
};
const PinMap PinMap_SPI_MISO[] = {
/* USART0 */
{PE11, SPI_0, 0},
{PC10, SPI_0, 2},
{PE12, SPI_0, 3},
{PB8, SPI_0, 4},
/* USART0 */
{PE11, SPI_0, 0},
{PC10, SPI_0, 2},
{PE12, SPI_0, 3},
{PB8, SPI_0, 4},
/* USART1 */
{PC1, SPI_1, 0},
{PD6, SPI_1, 3},
{PA0, SPI_1, 4},
/* USART1 */
{PC1, SPI_1, 0},
{PD6, SPI_1, 3},
{PA0, SPI_1, 4},
/* Not connected */
{NC , NC , NC}
/* Not connected */
{NC , NC , NC}
};
const PinMap PinMap_SPI_CLK[] = {
/* USART0 */
{PE12, SPI_0, 0},
{PC9, SPI_0, 2},
//{PC15, SPI_0, 3}, /* Conflict with SPI_0 loc4 */
{PB13, SPI_0, 4},
/* USART0 */
{PE12, SPI_0, 0},
{PC9, SPI_0, 2},
//{PC15, SPI_0, 3}, /* Conflict with SPI_0 loc4 */
{PB13, SPI_0, 4},
/* USART1 */
{PB7, SPI_1, 0},
{PC15, SPI_1, 3},
{PB11, SPI_1, 4},
/* USART1 */
{PB7, SPI_1, 0},
{PC15, SPI_1, 3},
{PB11, SPI_1, 4},
/* Not connected */
{NC , NC , NC}
/* Not connected */
{NC , NC , NC}
};
const PinMap PinMap_SPI_CS[] = {
/* USART0 */
{PE13, SPI_0, 0},
{PC8, SPI_0, 2},
//{PC14, SPI_0, 3}, /* Conflict with SPI_1 loc3 */
{PB14, SPI_0, 4},
/* USART0 */
{PE13, SPI_0, 0},
{PC8, SPI_0, 2},
//{PC14, SPI_0, 3}, /* Conflict with SPI_1 loc3 */
{PB14, SPI_0, 4},
/* USART1 */
{PB8, SPI_1, 0},
{PC14, SPI_1, 3},
/* USART1 */
{PB8, SPI_1, 0},
{PC14, SPI_1, 3},
/* Not connected */
{NC , NC , NC}
/* Not connected */
{NC , NC , NC}
};
/************UART**************/
const PinMap PinMap_UART_TX[] = {
/* USART0 */
{PE10, USART_0, 0},
//{NC, USART_0, 2}, /* USART_0 loc2 is not bonded */
{PE13, USART_0, 3},
{PB7, USART_0, 4},
/* USART0 */
{PE10, USART_0, 0},
//{NC, USART_0, 2}, /* USART_0 loc2 is not bonded */
{PE13, USART_0, 3},
{PB7, USART_0, 4},
/* USART1 */
{PC0, USART_1, 0},
{PD7, USART_1, 3},
{PF2, USART_1, 4},
/* USART1 */
{PC0, USART_1, 0},
{PD7, USART_1, 3},
{PF2, USART_1, 4},
/* LEUART0 */
{PD4, LEUART_0, 0},
{PB13, LEUART_0, 1},
{PF0, LEUART_0, 3},
{PC14, LEUART_0, 5},
/* LEUART0 */
{PD4, LEUART_0, 0},
{PB13, LEUART_0, 1},
{PF0, LEUART_0, 3},
{PC14, LEUART_0, 5},
/* Not connected */
{NC , NC , NC}
/* Not connected */
{NC , NC , NC}
};
const PinMap PinMap_UART_RX[] = {
/* USART0 */
{PE11, USART_0, 0},
//{PC10, USART_0, 2},
{PE12, USART_0, 3},
{PB8, USART_0, 4},
/* USART0 */
{PE11, USART_0, 0},
//{PC10, USART_0, 2},
{PE12, USART_0, 3},
{PB8, USART_0, 4},
/* USART1 */
{PC1, USART_1, 0},
{PD6, USART_1, 3},
{PA0, USART_1, 4},
/* USART1 */
{PC1, USART_1, 0},
{PD6, USART_1, 3},
{PA0, USART_1, 4},
/* LEUART0 */
{PD5, LEUART_0, 0},
{PB14, LEUART_0, 1},
{PF1, LEUART_0, 3},
{PC15, LEUART_0, 5},
/* LEUART0 */
{PD5, LEUART_0, 0},
{PB14, LEUART_0, 1},
{PF1, LEUART_0, 3},
{PC15, LEUART_0, 5},
/* Not connected */
{NC , NC , NC}
/* Not connected */
{NC , NC , NC}
};

View File

@ -87,134 +87,134 @@ const PinMap PinMap_PWM[] = {
/*************SPI**************/
const PinMap PinMap_SPI_MOSI[] = {
/* USART0 */
{PE10, SPI_0, 0},
{PE7, SPI_0, 1},
{PC11, SPI_0, 2},
{PC0, SPI_0, 5},
/* USART1 */
{PD0, SPI_1, 1},
{PD7, SPI_1, 2},
/* USART2 */
{PC2, SPI_2, 0},
{PB3, SPI_2, 1},
/* Not connected */
{NC , NC , NC}
/* USART0 */
{PE10, SPI_0, 0},
{PE7, SPI_0, 1},
{PC11, SPI_0, 2},
{PC0, SPI_0, 5},
/* USART1 */
{PD0, SPI_1, 1},
{PD7, SPI_1, 2},
/* USART2 */
{PC2, SPI_2, 0},
{PB3, SPI_2, 1},
/* Not connected */
{NC , NC , NC}
};
const PinMap PinMap_SPI_MISO[] = {
/* USART0 */
{PE11, SPI_0, 0},
{PE6, SPI_0, 1},
{PC10, SPI_0, 2},
{PC1, SPI_0, 5},
/* USART1 */
{PD1, SPI_1, 1},
{PD6, SPI_1, 2},
/* USART2 */
{PC3, SPI_2, 0},
{PB4, SPI_2, 1},
/* Not connected */
{NC , NC , NC}
/* USART0 */
{PE11, SPI_0, 0},
{PE6, SPI_0, 1},
{PC10, SPI_0, 2},
{PC1, SPI_0, 5},
/* USART1 */
{PD1, SPI_1, 1},
{PD6, SPI_1, 2},
/* USART2 */
{PC3, SPI_2, 0},
{PB4, SPI_2, 1},
/* Not connected */
{NC , NC , NC}
};
const PinMap PinMap_SPI_CLK[] = {
/* USART0 */
{PE12, SPI_0, 0},
{PE5, SPI_0, 1},
{PC9, SPI_0, 2},
{PB13, SPI_0, 5},
/* USART1 */
{PD2, SPI_1, 1},
{PF0, SPI_1, 2},
/* USART2 */
{PC4, SPI_2, 0},
{PB5, SPI_2, 1},
/* Not connected */
{NC , NC , NC}
/* USART0 */
{PE12, SPI_0, 0},
{PE5, SPI_0, 1},
{PC9, SPI_0, 2},
{PB13, SPI_0, 5},
/* USART1 */
{PD2, SPI_1, 1},
{PF0, SPI_1, 2},
/* USART2 */
{PC4, SPI_2, 0},
{PB5, SPI_2, 1},
/* Not connected */
{NC , NC , NC}
};
const PinMap PinMap_SPI_CS[] = {
/* USART0 */
{PE13, SPI_0, 0},
{PE4, SPI_0, 1},
{PC8, SPI_0, 2},
{PB14, SPI_0, 5},
/* USART1 */
{PD3, SPI_1, 1},
{PF1, SPI_1, 2},
/* USART2 */
{PC5, SPI_2, 0},
{PB6, SPI_2, 1},
/* Not connected */
{NC , NC , NC}
/* USART0 */
{PE13, SPI_0, 0},
{PE4, SPI_0, 1},
{PC8, SPI_0, 2},
{PB14, SPI_0, 5},
/* USART1 */
{PD3, SPI_1, 1},
{PF1, SPI_1, 2},
/* USART2 */
{PC5, SPI_2, 0},
{PB6, SPI_2, 1},
/* Not connected */
{NC , NC , NC}
};
/************UART**************/
const PinMap PinMap_UART_TX[] = {
/* UART0 */
{PF6, UART_0, 0},
{PE0, UART_0, 1},
/* UART1 */
{PF10, UART_1, 1},
{PB9, UART_1, 2},
{PE2, UART_1, 3},
/* USART0 */
{PE10, USART_0, 0},
{PE7, USART_0, 1},
{PC11, USART_0, 2},
{PE13, USART_0, 3},
{PB7, USART_0, 4},
/* USART1 */
{PC0, USART_1, 0},
{PD0, USART_1, 1},
{PD7, USART_1, 2},
/* USART2 */
{PC2, USART_2, 0},
{PB3, USART_2, 1},
/* LEUART0 */
{PD4, LEUART_0, 0},
{PB13, LEUART_0, 1},
{PE14, LEUART_0, 2},
{PF0, LEUART_0, 3},
{PF2, LEUART_0, 4},
/* LEUART1 */
{PC6, LEUART_1, 0},
{PA5, LEUART_1, 1},
/* Not connected */
{NC , NC , NC}
/* UART0 */
{PF6, UART_0, 0},
{PE0, UART_0, 1},
/* UART1 */
{PF10, UART_1, 1},
{PB9, UART_1, 2},
{PE2, UART_1, 3},
/* USART0 */
{PE10, USART_0, 0},
{PE7, USART_0, 1},
{PC11, USART_0, 2},
{PE13, USART_0, 3},
{PB7, USART_0, 4},
/* USART1 */
{PC0, USART_1, 0},
{PD0, USART_1, 1},
{PD7, USART_1, 2},
/* USART2 */
{PC2, USART_2, 0},
{PB3, USART_2, 1},
/* LEUART0 */
{PD4, LEUART_0, 0},
{PB13, LEUART_0, 1},
{PE14, LEUART_0, 2},
{PF0, LEUART_0, 3},
{PF2, LEUART_0, 4},
/* LEUART1 */
{PC6, LEUART_1, 0},
{PA5, LEUART_1, 1},
/* Not connected */
{NC , NC , NC}
};
const PinMap PinMap_UART_RX[] = {
/* UART0 */
{PF7, UART_0, 0},
{PE1, UART_0, 1},
/* UART1 */
{PF11, UART_1, 1},
{PB10, UART_1, 2},
{PE3, UART_1, 3},
/* USART0 */
{PE11, USART_0, 0},
{PE6, USART_0, 1},
{PC10, USART_0, 2},
{PE12, USART_0, 3},
{PB8, USART_0, 4},
/* USART1 */
{PC1, USART_1, 0},
{PD1, USART_1, 1},
{PD6, USART_1, 2},
/* USART2 */
{PC3, USART_2, 0},
{PB4, USART_2, 1},
/* LEUART0 */
{PD5, LEUART_0, 0},
{PB14, LEUART_0, 1},
{PE15, LEUART_0, 2},
{PF1, LEUART_0, 3},
{PA0, LEUART_0, 4},
/* LEUART1 */
{PC7, LEUART_1, 0},
{PA6, LEUART_1, 1},
/* Not connected */
{NC , NC , NC}
/* UART0 */
{PF7, UART_0, 0},
{PE1, UART_0, 1},
/* UART1 */
{PF11, UART_1, 1},
{PB10, UART_1, 2},
{PE3, UART_1, 3},
/* USART0 */
{PE11, USART_0, 0},
{PE6, USART_0, 1},
{PC10, USART_0, 2},
{PE12, USART_0, 3},
{PB8, USART_0, 4},
/* USART1 */
{PC1, USART_1, 0},
{PD1, USART_1, 1},
{PD6, USART_1, 2},
/* USART2 */
{PC3, USART_2, 0},
{PB4, USART_2, 1},
/* LEUART0 */
{PD5, LEUART_0, 0},
{PB14, LEUART_0, 1},
{PE15, LEUART_0, 2},
{PF1, LEUART_0, 3},
{PA0, LEUART_0, 4},
/* LEUART1 */
{PC7, LEUART_1, 0},
{PA6, LEUART_1, 1},
/* Not connected */
{NC , NC , NC}
};

View File

@ -92,8 +92,8 @@ typedef enum {
/* mbed modes:
* PullUp, PullDown, PullNone, OpenDrain
*
* mbed default digital input mode:
* PullDefault
* mbed default digital input mode:
* PullDefault
*
* mbed default digital output mode:
* PullNone

View File

@ -87,134 +87,134 @@ const PinMap PinMap_PWM[] = {
/*************SPI**************/
const PinMap PinMap_SPI_MOSI[] = {
/* USART0 */
{PE10, SPI_0, 0},
{PE7, SPI_0, 1},
{PC11, SPI_0, 2},
{PC0, SPI_0, 5},
/* USART1 */
{PD0, SPI_1, 1},
{PD7, SPI_1, 2},
/* USART2 */
{PC2, SPI_2, 0},
{PB3, SPI_2, 1},
/* Not connected */
{NC , NC , NC}
/* USART0 */
{PE10, SPI_0, 0},
{PE7, SPI_0, 1},
{PC11, SPI_0, 2},
{PC0, SPI_0, 5},
/* USART1 */
{PD0, SPI_1, 1},
{PD7, SPI_1, 2},
/* USART2 */
{PC2, SPI_2, 0},
{PB3, SPI_2, 1},
/* Not connected */
{NC , NC , NC}
};
const PinMap PinMap_SPI_MISO[] = {
/* USART0 */
{PE11, SPI_0, 0},
{PE6, SPI_0, 1},
{PC10, SPI_0, 2},
{PC1, SPI_0, 5},
/* USART1 */
{PD1, SPI_1, 1},
{PD6, SPI_1, 2},
/* USART2 */
{PC3, SPI_2, 0},
{PB4, SPI_2, 1},
/* Not connected */
{NC , NC , NC}
/* USART0 */
{PE11, SPI_0, 0},
{PE6, SPI_0, 1},
{PC10, SPI_0, 2},
{PC1, SPI_0, 5},
/* USART1 */
{PD1, SPI_1, 1},
{PD6, SPI_1, 2},
/* USART2 */
{PC3, SPI_2, 0},
{PB4, SPI_2, 1},
/* Not connected */
{NC , NC , NC}
};
const PinMap PinMap_SPI_CLK[] = {
/* USART0 */
{PE12, SPI_0, 0},
{PE5, SPI_0, 1},
{PC9, SPI_0, 2},
{PB13, SPI_0, 5},
/* USART1 */
{PD2, SPI_1, 1},
{PF0, SPI_1, 2},
/* USART2 */
{PC4, SPI_2, 0},
{PB5, SPI_2, 1},
/* Not connected */
{NC , NC , NC}
/* USART0 */
{PE12, SPI_0, 0},
{PE5, SPI_0, 1},
{PC9, SPI_0, 2},
{PB13, SPI_0, 5},
/* USART1 */
{PD2, SPI_1, 1},
{PF0, SPI_1, 2},
/* USART2 */
{PC4, SPI_2, 0},
{PB5, SPI_2, 1},
/* Not connected */
{NC , NC , NC}
};
const PinMap PinMap_SPI_CS[] = {
/* USART0 */
{PE13, SPI_0, 0},
{PE4, SPI_0, 1},
{PC8, SPI_0, 2},
{PB14, SPI_0, 5},
/* USART1 */
{PD3, SPI_1, 1},
{PF1, SPI_1, 2},
/* USART2 */
{PC5, SPI_2, 0},
{PB6, SPI_2, 1},
/* Not connected */
{NC , NC , NC}
/* USART0 */
{PE13, SPI_0, 0},
{PE4, SPI_0, 1},
{PC8, SPI_0, 2},
{PB14, SPI_0, 5},
/* USART1 */
{PD3, SPI_1, 1},
{PF1, SPI_1, 2},
/* USART2 */
{PC5, SPI_2, 0},
{PB6, SPI_2, 1},
/* Not connected */
{NC , NC , NC}
};
/************UART**************/
const PinMap PinMap_UART_TX[] = {
/* UART0 */
{PF6, UART_0, 0},
{PE0, UART_0, 1},
/* UART1 */
{PF10, UART_1, 1},
{PB9, UART_1, 2},
{PE2, UART_1, 3},
/* USART0 */
{PE10, USART_0, 0},
{PE7, USART_0, 1},
{PC11, USART_0, 2},
{PE13, USART_0, 3},
{PB7, USART_0, 4},
/* USART1 */
{PC0, USART_1, 0},
{PD0, USART_1, 1},
{PD7, USART_1, 2},
/* USART2 */
{PC2, USART_2, 0},
{PB3, USART_2, 1},
/* LEUART0 */
{PD4, LEUART_0, 0},
{PB13, LEUART_0, 1},
{PE14, LEUART_0, 2},
{PF0, LEUART_0, 3},
{PF2, LEUART_0, 4},
/* LEUART1 */
{PC6, LEUART_1, 0},
{PA5, LEUART_1, 1},
/* Not connected */
{NC , NC , NC}
/* UART0 */
{PF6, UART_0, 0},
{PE0, UART_0, 1},
/* UART1 */
{PF10, UART_1, 1},
{PB9, UART_1, 2},
{PE2, UART_1, 3},
/* USART0 */
{PE10, USART_0, 0},
{PE7, USART_0, 1},
{PC11, USART_0, 2},
{PE13, USART_0, 3},
{PB7, USART_0, 4},
/* USART1 */
{PC0, USART_1, 0},
{PD0, USART_1, 1},
{PD7, USART_1, 2},
/* USART2 */
{PC2, USART_2, 0},
{PB3, USART_2, 1},
/* LEUART0 */
{PD4, LEUART_0, 0},
{PB13, LEUART_0, 1},
{PE14, LEUART_0, 2},
{PF0, LEUART_0, 3},
{PF2, LEUART_0, 4},
/* LEUART1 */
{PC6, LEUART_1, 0},
{PA5, LEUART_1, 1},
/* Not connected */
{NC , NC , NC}
};
const PinMap PinMap_UART_RX[] = {
/* UART0 */
{PF7, UART_0, 0},
{PE1, UART_0, 1},
/* UART1 */
{PF11, UART_1, 1},
{PB10, UART_1, 2},
{PE3, UART_1, 3},
/* USART0 */
{PE11, USART_0, 0},
{PE6, USART_0, 1},
{PC10, USART_0, 2},
{PE12, USART_0, 3},
{PB8, USART_0, 4},
/* USART1 */
{PC1, USART_1, 0},
{PD1, USART_1, 1},
{PD6, USART_1, 2},
/* USART2 */
{PC3, USART_2, 0},
{PB4, USART_2, 1},
/* LEUART0 */
{PD5, LEUART_0, 0},
{PB14, LEUART_0, 1},
{PE15, LEUART_0, 2},
{PF1, LEUART_0, 3},
{PA0, LEUART_0, 4},
/* LEUART1 */
{PC7, LEUART_1, 0},
{PA6, LEUART_1, 1},
/* Not connected */
{NC , NC , NC}
/* UART0 */
{PF7, UART_0, 0},
{PE1, UART_0, 1},
/* UART1 */
{PF11, UART_1, 1},
{PB10, UART_1, 2},
{PE3, UART_1, 3},
/* USART0 */
{PE11, USART_0, 0},
{PE6, USART_0, 1},
{PC10, USART_0, 2},
{PE12, USART_0, 3},
{PB8, USART_0, 4},
/* USART1 */
{PC1, USART_1, 0},
{PD1, USART_1, 1},
{PD6, USART_1, 2},
/* USART2 */
{PC3, USART_2, 0},
{PB4, USART_2, 1},
/* LEUART0 */
{PD5, LEUART_0, 0},
{PB14, LEUART_0, 1},
{PE15, LEUART_0, 2},
{PF1, LEUART_0, 3},
{PA0, LEUART_0, 4},
/* LEUART1 */
{PC7, LEUART_1, 0},
{PA6, LEUART_1, 1},
/* Not connected */
{NC , NC , NC}
};

View File

@ -92,8 +92,8 @@ typedef enum {
/* mbed modes:
* PullUp, PullDown, PullNone, OpenDrain
*
* mbed default digital input mode:
* PullDefault
* mbed default digital input mode:
* PullDefault
*
* mbed default digital output mode:
* PullNone

View File

@ -60,60 +60,60 @@ const PinMap PinMap_PWM[] = {
/*************SPI**************/
const PinMap PinMap_SPI_MOSI[] = {
/* USART1 */
{PC0, SPI_1, 0},
{PD7, SPI_1, 3},
/* Not connected */
{NC , NC , NC}
/* USART1 */
{PC0, SPI_1, 0},
{PD7, SPI_1, 3},
/* Not connected */
{NC , NC , NC}
};
const PinMap PinMap_SPI_MISO[] = {
/* USART1 */
{PC1, SPI_1, 0},
{PD6, SPI_1, 3},
/* Not connected */
{NC , NC , NC}
/* USART1 */
{PC1, SPI_1, 0},
{PD6, SPI_1, 3},
/* Not connected */
{NC , NC , NC}
};
const PinMap PinMap_SPI_CLK[] = {
/* USART1 */
{PB7, SPI_1, 0},
{PC15, SPI_1, 3},
/* Not connected */
{NC , NC , NC}
/* USART1 */
{PB7, SPI_1, 0},
{PC15, SPI_1, 3},
/* Not connected */
{NC , NC , NC}
};
const PinMap PinMap_SPI_CS[] = {
/* USART1 */
{PB8, SPI_1, 0},
{PC14, SPI_1, 3},
/* Not connected */
{NC , NC , NC}
/* USART1 */
{PB8, SPI_1, 0},
{PC14, SPI_1, 3},
/* Not connected */
{NC , NC , NC}
};
/************UART**************/
const PinMap PinMap_UART_TX[] = {
/* USART1 */
{PC0, USART_1, 0},
{PD7, USART_1, 3},
/* LEUART0 */
{PD4, LEUART_0, 0},
{PB13, LEUART_0, 1},
{PF0, LEUART_0, 3},
{PF2, LEUART_0, 4},
/* Not connected */
{NC , NC , NC}
/* USART1 */
{PC0, USART_1, 0},
{PD7, USART_1, 3},
/* LEUART0 */
{PD4, LEUART_0, 0},
{PB13, LEUART_0, 1},
{PF0, LEUART_0, 3},
{PF2, LEUART_0, 4},
/* Not connected */
{NC , NC , NC}
};
const PinMap PinMap_UART_RX[] = {
/* USART1 */
{PC1, USART_1, 0},
{PD6, USART_1, 3},
/* LEUART0 */
{PD5, LEUART_0, 0},
{PB14, LEUART_0, 1},
{PF1, LEUART_0, 3},
{PA0, LEUART_0, 4},
/* Not connected */
{NC , NC , NC}
/* USART1 */
{PC1, USART_1, 0},
{PD6, USART_1, 3},
/* LEUART0 */
{PD5, LEUART_0, 0},
{PB14, LEUART_0, 1},
{PF1, LEUART_0, 3},
{PA0, LEUART_0, 4},
/* Not connected */
{NC , NC , NC}
};

View File

@ -42,7 +42,8 @@ void analogout_preinit(dac_t *obj, PinName pin)
MBED_ASSERT((int) obj->channel != NC);
}
void analogout_init(dac_t *obj, PinName pin) {
void analogout_init(dac_t *obj, PinName pin)
{
static uint8_t dac_initialized = 0;
/* init in-memory structure */
@ -83,7 +84,8 @@ void analogout_pins_enable(dac_t *obj, uint8_t enable)
//not avail for EFM32
}
static inline void dac_write(dac_t *obj, int value) {
static inline void dac_write(dac_t *obj, int value)
{
switch (obj->channel) {
case 0:
obj->dac->CH0DATA = value;
@ -94,7 +96,8 @@ static inline void dac_write(dac_t *obj, int value) {
}
}
static inline int dac_read(dac_t *obj) {
static inline int dac_read(dac_t *obj)
{
switch (obj->channel) {
case 0:
return obj->dac->CH0DATA;
@ -109,23 +112,27 @@ static inline int dac_read(dac_t *obj) {
}
}
void analogout_write(dac_t *obj, float value) {
void analogout_write(dac_t *obj, float value)
{
/* We multiply the float value with 0xFFF because the DAC has 12-bit resolution.
* Ie. accepts values between 0 and 0xFFF (4096). */
dac_write(obj, value*0xFFF);
}
void analogout_write_u16(dac_t *obj, uint16_t value) {
void analogout_write_u16(dac_t *obj, uint16_t value)
{
/* The DAC has 12 bit resolution, so we remove the 4 least significant bits */
dac_write(obj, value >> 4);
}
float analogout_read(dac_t *obj) {
float analogout_read(dac_t *obj)
{
/* dac_read returns a number between 0 and 0xFFF. Division gives us a float between 0 and 1 */
return dac_read(obj)/(float)0xFFF;
}
uint16_t analogout_read_u16(dac_t *obj) {
uint16_t analogout_read_u16(dac_t *obj)
{
/* dac_read returns a number with 12 significant digits,
* so we shift in 0s from right to make it a 16 bit number */
return dac_read(obj) << 4;

View File

@ -39,55 +39,51 @@ bool enabled = false;
void dma_init(void)
{
if (enabled) return;
DMA_Init_TypeDef dmaInit;
if (enabled) return;
DMA_Init_TypeDef dmaInit;
CMU_ClockEnable(cmuClock_DMA, true);
CMU_ClockEnable(cmuClock_HFPER, true);
CMU_ClockEnable(cmuClock_DMA, true);
CMU_ClockEnable(cmuClock_HFPER, true);
/* Configure general DMA issues */
dmaInit.hprot = 0;
dmaInit.controlBlock = dmaControlBlock;
DMA_Init(&dmaInit);
enabled = true;
/* Configure general DMA issues */
dmaInit.hprot = 0;
dmaInit.controlBlock = dmaControlBlock;
DMA_Init(&dmaInit);
enabled = true;
}
int dma_channel_allocate(uint32_t capabilities)
{
int i;
// Check if 2d copy is required
if (DMA_CAP_2DCOPY & capabilities)
{
if (channels & 1)
{
// Channel already in use
return DMA_ERROR_OUT_OF_CHANNELS;
} else {
channels |= 1 << 0;
return 0;
int i;
// Check if 2d copy is required
if (DMA_CAP_2DCOPY & capabilities) {
if (channels & 1) {
// Channel already in use
return DMA_ERROR_OUT_OF_CHANNELS;
} else {
channels |= 1 << 0;
return 0;
}
}
}
for (i = 1; i < DMA_CHAN_COUNT; i++)
{
if ((channels & (1 << i)) == 0)
{
// Channel available
channels |= 1 << i;
return i;
for (i = 1; i < DMA_CHAN_COUNT; i++) {
if ((channels & (1 << i)) == 0) {
// Channel available
channels |= 1 << i;
return i;
}
}
}
// Check if channel 0 is available
if ((channels & 1 ) == 0) {
channels |= 1 << 0;
return 0;
}
// Couldn't find a channel.
return DMA_ERROR_OUT_OF_CHANNELS;
// Check if channel 0 is available
if ((channels & 1 ) == 0) {
channels |= 1 << 0;
return 0;
}
// Couldn't find a channel.
return DMA_ERROR_OUT_OF_CHANNELS;
}
int dma_channel_free(int channelid)
{
channels &= ~(1 << channelid);
return 0;
channels &= ~(1 << channelid);
return 0;
}

View File

@ -46,9 +46,9 @@ extern "C" {
#endif
typedef struct {
DMAUsage dmaUsageState;
int dmaChannel;
DMA_CB_TypeDef dmaCallback;
DMAUsage dmaUsageState;
int dmaChannel;
DMA_CB_TypeDef dmaCallback;
} DMA_OPTIONS_t;
typedef void (*DMACallback)(void);

View File

@ -37,9 +37,9 @@
#define GPIOINT_MASK2IDX(mask) (countTrailingZeros(mask))
__STATIC_INLINE uint32_t countTrailingZeros(uint32_t mask)
{
uint32_t zeros;
for(zeros=0; (zeros<32) && (0 == (mask&0x1)); zeros++, mask>>=1);
return zeros;
uint32_t zeros;
for(zeros=0; (zeros<32) && (0 == (mask&0x1)); zeros++, mask>>=1);
return zeros;
}
#else
#error Unsupported architecture.
@ -85,8 +85,8 @@ void gpio_irq_preinit(gpio_irq_t *obj, PinName pin)
int gpio_irq_init(gpio_irq_t *obj, PinName pin, gpio_irq_handler handler, uint32_t id)
{
/* Init pins */
gpio_irq_preinit(obj, pin);
/* Init pins */
gpio_irq_preinit(obj, pin);
/* Initialize GPIO interrupt dispatcher */
NVIC_ClearPendingIRQ(GPIO_ODD_IRQn);
NVIC_EnableIRQ(GPIO_ODD_IRQn);
@ -134,13 +134,13 @@ void gpio_irq_set(gpio_irq_t *obj, gpio_irq_event event, uint32_t enable)
GPIO_IntConfig(obj->port, obj->pin, obj->risingEdge, obj->fallingEdge, obj->risingEdge || obj->fallingEdge);
if ((GPIO->IEN != 0) && (obj->risingEdge || obj->fallingEdge) && was_disabled) {
blockSleepMode(GPIO_LEAST_ACTIVE_SLEEPMODE);
blockSleepMode(GPIO_LEAST_ACTIVE_SLEEPMODE);
}
}
inline void gpio_irq_enable(gpio_irq_t *obj)
{
if(GPIO->IEN == 0) blockSleepMode(GPIO_LEAST_ACTIVE_SLEEPMODE);
if(GPIO->IEN == 0) blockSleepMode(GPIO_LEAST_ACTIVE_SLEEPMODE);
GPIO_IntEnable(1 << obj->pin); // pin mask for pins to enable
}
@ -165,19 +165,18 @@ inline void gpio_irq_disable(gpio_irq_t *obj)
******************************************************************************/
static void GPIOINT_IRQDispatcher(uint32_t iflags)
{
uint32_t irqIdx;
uint32_t irqIdx;
/* check for all flags set in IF register */
while(iflags)
{
irqIdx = GPIOINT_MASK2IDX(iflags);
/* check for all flags set in IF register */
while(iflags) {
irqIdx = GPIOINT_MASK2IDX(iflags);
/* clear flag*/
iflags &= ~(1 << irqIdx);
/* clear flag*/
iflags &= ~(1 << irqIdx);
/* call user callback */
handle_interrupt_in(irqIdx);
}
/* call user callback */
handle_interrupt_in(irqIdx);
}
}
/***************************************************************************//**
@ -188,15 +187,15 @@ static void GPIOINT_IRQDispatcher(uint32_t iflags)
******************************************************************************/
void GPIO_EVEN_IRQHandler(void)
{
uint32_t iflags;
uint32_t iflags;
/* Get all even interrupts. */
iflags = GPIO_IntGetEnabled() & 0x00005555;
/* Get all even interrupts. */
iflags = GPIO_IntGetEnabled() & 0x00005555;
/* Clean only even interrupts. */
GPIO_IntClear(iflags);
/* Clean only even interrupts. */
GPIO_IntClear(iflags);
GPIOINT_IRQDispatcher(iflags);
GPIOINT_IRQDispatcher(iflags);
}
@ -208,15 +207,15 @@ void GPIO_EVEN_IRQHandler(void)
******************************************************************************/
void GPIO_ODD_IRQHandler(void)
{
uint32_t iflags;
uint32_t iflags;
/* Get all odd interrupts. */
iflags = GPIO_IntGetEnabled() & 0x0000AAAA;
/* Get all odd interrupts. */
iflags = GPIO_IntGetEnabled() & 0x0000AAAA;
/* Clean only even interrupts. */
GPIO_IntClear(iflags);
/* Clean only even interrupts. */
GPIO_IntClear(iflags);
GPIOINT_IRQDispatcher(iflags);
GPIOINT_IRQDispatcher(iflags);
}
#endif

View File

@ -49,7 +49,8 @@ static inline int gpio_read(gpio_t *obj)
}
}
static inline int gpio_is_connected(const gpio_t *obj) {
static inline int gpio_is_connected(const gpio_t *obj)
{
return obj->pin != (PinName)NC;
}

View File

@ -75,7 +75,7 @@ static CMU_Clock_TypeDef i2c_get_clock(i2c_t *obj)
#endif
#ifdef I2C1
case I2C_1:
clock = cmuClock_I2C1;
clock = cmuClock_I2C1;
break;
#endif
default:
@ -104,10 +104,10 @@ void i2c_preinit(i2c_t *obj, PinName sda, PinName scl)
void i2c_init(i2c_t *obj, PinName sda, PinName scl)
{
/* Assign mbed pins */
i2c_preinit(obj, sda, scl);
i2c_preinit(obj, sda, scl);
/* Enable clock for the peripheral */
CMU_ClockEnable(i2c_get_clock(obj), true);
/* Enable clock for the peripheral */
CMU_ClockEnable(i2c_get_clock(obj), true);
/* Initializing the I2C */
/* Using default settings */
@ -222,14 +222,14 @@ int i2c_stop(i2c_t *obj)
/* Returns number of bytes read */
int i2c_read(i2c_t *obj, int address, char *data, int length, int stop)
{
int retval;
int retval;
i2c_start(obj);
retval = i2c_byte_write(obj, (address | 1));
if ((!retval) || (length == 0)) { //Write address with W flag (last bit 1)
obj->i2c.i2c->CMD = I2C_CMD_STOP | I2C_CMD_ABORT;
while(obj->i2c.i2c->STATE & I2C_STATE_BUSY); // Wait until the bus is done
obj->i2c.i2c->CMD = I2C_CMD_STOP | I2C_CMD_ABORT;
while(obj->i2c.i2c->STATE & I2C_STATE_BUSY); // Wait until the bus is done
return (retval == 0 ? I2C_ERROR_NO_SLAVE : 0); //NACK or error when writing adress. Return 0 as 0 bytes were read
}
int i = 0;
@ -344,10 +344,10 @@ int block_and_wait_for_ack(I2C_TypeDef *i2c)
void i2c_slave_mode(i2c_t *obj, int enable_slave)
{
if(enable_slave){
if(enable_slave) {
obj->i2c.i2c->CTRL |= _I2C_CTRL_SLAVE_MASK;
obj->i2c.i2c->CTRL |= _I2C_CTRL_AUTOACK_MASK; //Slave implementation assumes auto acking
}else{
} else {
obj->i2c.i2c->CTRL &= ~_I2C_CTRL_SLAVE_MASK;
obj->i2c.i2c->CTRL &= ~_I2C_CTRL_AUTOACK_MASK; //Master implementation ACKs manually
}
@ -356,19 +356,19 @@ void i2c_slave_mode(i2c_t *obj, int enable_slave)
int i2c_slave_receive(i2c_t *obj)
{
if(obj->i2c.i2c->IF & I2C_IF_ADDR){
if(obj->i2c.i2c->IF & I2C_IF_ADDR) {
obj->i2c.i2c->IFC = I2C_IF_ADDR; //Clear interrupt
/*0x00 is the address for general write.
The address the master wrote is in RXDATA now
and reading it also frees the buffer for the next
write which can then be acked. */
if(obj->i2c.i2c->RXDATA == 0x00){
if(obj->i2c.i2c->RXDATA == 0x00) {
return WriteGeneral; //Read the address;
}
if(obj->i2c.i2c->STATE & I2C_STATE_TRANSMITTER){
if(obj->i2c.i2c->STATE & I2C_STATE_TRANSMITTER) {
return ReadAddressed;
}else{
} else {
return WriteAddressed;
}
}
@ -426,128 +426,131 @@ void i2c_slave_address(i2c_t *obj, int idx, uint32_t address, uint32_t mask)
* @param handler The I2C IRQ handler to be set
* @param hint DMA hint usage
*/
void i2c_transfer_asynch(i2c_t *obj, void *tx, size_t tx_length, void *rx, size_t rx_length, uint32_t address, uint32_t stop, uint32_t handler, uint32_t event, DMAUsage hint) {
I2C_TransferReturn_TypeDef retval;
if(i2c_active(obj)) return;
void i2c_transfer_asynch(i2c_t *obj, void *tx, size_t tx_length, void *rx, size_t rx_length, uint32_t address, uint32_t stop, uint32_t handler, uint32_t event, DMAUsage hint)
{
I2C_TransferReturn_TypeDef retval;
if(i2c_active(obj)) return;
if((tx_length == 0) && (rx_length == 0)) return;
// For now, we are assuming a solely interrupt-driven implementation.
// For now, we are assuming a solely interrupt-driven implementation.
// Store transfer config
obj->i2c.xfer.addr = address;
// Store transfer config
obj->i2c.xfer.addr = address;
// Some combination of tx_length and rx_length will tell us what to do
if((tx_length > 0) && (rx_length == 0)) {
obj->i2c.xfer.flags = I2C_FLAG_WRITE;
//Store buffer info
obj->i2c.xfer.buf[0].data = tx;
obj->i2c.xfer.buf[0].len = (uint16_t) tx_length;
} else if ((tx_length == 0) && (rx_length > 0)) {
obj->i2c.xfer.flags = I2C_FLAG_READ;
//Store buffer info
obj->i2c.xfer.buf[0].data = rx;
obj->i2c.xfer.buf[0].len = (uint16_t) rx_length;
} else if ((tx_length > 0) && (rx_length > 0)) {
obj->i2c.xfer.flags = I2C_FLAG_WRITE_READ;
//Store buffer info
obj->i2c.xfer.buf[0].data = tx;
obj->i2c.xfer.buf[0].len = (uint16_t) tx_length;
obj->i2c.xfer.buf[1].data = rx;
obj->i2c.xfer.buf[1].len = (uint16_t) rx_length;
}
// Some combination of tx_length and rx_length will tell us what to do
if((tx_length > 0) && (rx_length == 0)) {
obj->i2c.xfer.flags = I2C_FLAG_WRITE;
//Store buffer info
obj->i2c.xfer.buf[0].data = tx;
obj->i2c.xfer.buf[0].len = (uint16_t) tx_length;
} else if ((tx_length == 0) && (rx_length > 0)) {
obj->i2c.xfer.flags = I2C_FLAG_READ;
//Store buffer info
obj->i2c.xfer.buf[0].data = rx;
obj->i2c.xfer.buf[0].len = (uint16_t) rx_length;
} else if ((tx_length > 0) && (rx_length > 0)) {
obj->i2c.xfer.flags = I2C_FLAG_WRITE_READ;
//Store buffer info
obj->i2c.xfer.buf[0].data = tx;
obj->i2c.xfer.buf[0].len = (uint16_t) tx_length;
obj->i2c.xfer.buf[1].data = rx;
obj->i2c.xfer.buf[1].len = (uint16_t) rx_length;
}
if(address > 255) obj->i2c.xfer.flags |= I2C_FLAG_10BIT_ADDR;
if(address > 255) obj->i2c.xfer.flags |= I2C_FLAG_10BIT_ADDR;
// Store event flags
obj->i2c.events = event;
// Store event flags
obj->i2c.events = event;
// Enable interrupt
i2c_enable_interrupt(obj, handler, true);
// Enable interrupt
i2c_enable_interrupt(obj, handler, true);
// Kick off the transfer
retval = I2C_TransferInit(obj->i2c.i2c, &(obj->i2c.xfer));
// Kick off the transfer
retval = I2C_TransferInit(obj->i2c.i2c, &(obj->i2c.xfer));
if(retval == i2cTransferInProgress) {
blockSleepMode(EM1);
}
else {
// something happened, and the transfer did not go through
// So, we need to clean up
if(retval == i2cTransferInProgress) {
blockSleepMode(EM1);
} else {
// something happened, and the transfer did not go through
// So, we need to clean up
// Disable interrupt
i2c_enable_interrupt(obj, 0, false);
// Disable interrupt
i2c_enable_interrupt(obj, 0, false);
// Block until free
while(i2c_active(obj));
}
// Block until free
while(i2c_active(obj));
}
}
/** The asynchronous IRQ handler
* @param obj The I2C object which holds the transfer information
* @return Returns event flags if a transfer termination condition was met or 0 otherwise.
*/
uint32_t i2c_irq_handler_asynch(i2c_t *obj) {
uint32_t i2c_irq_handler_asynch(i2c_t *obj)
{
// For now, we are assuming a solely interrupt-driven implementation.
// For now, we are assuming a solely interrupt-driven implementation.
I2C_TransferReturn_TypeDef status = I2C_Transfer(obj->i2c.i2c);
switch(status) {
case i2cTransferInProgress:
// Still busy transferring, so let it.
return 0;
case i2cTransferDone:
// Transfer has completed
I2C_TransferReturn_TypeDef status = I2C_Transfer(obj->i2c.i2c);
switch(status) {
case i2cTransferInProgress:
// Still busy transferring, so let it.
return 0;
case i2cTransferDone:
// Transfer has completed
// Disable interrupt
i2c_enable_interrupt(obj, 0, false);
// Disable interrupt
i2c_enable_interrupt(obj, 0, false);
unblockSleepMode(EM1);
unblockSleepMode(EM1);
return I2C_EVENT_TRANSFER_COMPLETE & obj->i2c.events;
case i2cTransferNack:
// A NACK has been received while an ACK was expected. This is usually because the slave did not respond to the address.
// Disable interrupt
i2c_enable_interrupt(obj, 0, false);
return I2C_EVENT_TRANSFER_COMPLETE & obj->i2c.events;
case i2cTransferNack:
// A NACK has been received while an ACK was expected. This is usually because the slave did not respond to the address.
// Disable interrupt
i2c_enable_interrupt(obj, 0, false);
unblockSleepMode(EM1);
unblockSleepMode(EM1);
return I2C_EVENT_ERROR_NO_SLAVE & obj->i2c.events;
default:
// An error situation has arisen.
// Disable interrupt
i2c_enable_interrupt(obj, 0, false);
return I2C_EVENT_ERROR_NO_SLAVE & obj->i2c.events;
default:
// An error situation has arisen.
// Disable interrupt
i2c_enable_interrupt(obj, 0, false);
unblockSleepMode(EM1);
unblockSleepMode(EM1);
// return error
return I2C_EVENT_ERROR & obj->i2c.events;
}
// return error
return I2C_EVENT_ERROR & obj->i2c.events;
}
}
/** Attempts to determine if I2C peripheral is already in use.
* @param obj The I2C object
* @return non-zero if the I2C module is active or zero if it is not
*/
uint8_t i2c_active(i2c_t *obj) {
return (obj->i2c.i2c->STATE & I2C_STATE_BUSY);
uint8_t i2c_active(i2c_t *obj)
{
return (obj->i2c.i2c->STATE & I2C_STATE_BUSY);
}
/** Abort ongoing asynchronous transaction.
* @param obj The I2C object
*/
void i2c_abort_asynch(i2c_t *obj) {
// Do not deactivate I2C twice
if (!i2c_active(obj)) return;
void i2c_abort_asynch(i2c_t *obj)
{
// Do not deactivate I2C twice
if (!i2c_active(obj)) return;
// Disable interrupt
i2c_enable_interrupt(obj, 0, false);
// Disable interrupt
i2c_enable_interrupt(obj, 0, false);
// Abort
obj->i2c.i2c->CMD = I2C_CMD_STOP | I2C_CMD_ABORT;
// Abort
obj->i2c.i2c->CMD = I2C_CMD_STOP | I2C_CMD_ABORT;
// Block until free
while(i2c_active(obj));
// Block until free
while(i2c_active(obj));
unblockSleepMode(EM1);
unblockSleepMode(EM1);
}
#endif //DEVICE_I2C ASYNCH

View File

@ -27,8 +27,9 @@ void lp_ticker_init()
rtc_set_comp0_handler((uint32_t)lp_ticker_irq_handler);
}
void lp_ticker_set_interrupt(timestamp_t timestamp) {
uint64_t timestamp_ticks;
void lp_ticker_set_interrupt(timestamp_t timestamp)
{
uint64_t timestamp_ticks;
uint64_t current_ticks = RTC_CounterGet();
timestamp_t current_time = ((uint64_t)(current_ticks * 1000000) / (LOW_ENERGY_CLOCK_FREQUENCY / RTC_CLOCKDIV_INT));
@ -38,42 +39,45 @@ void lp_ticker_set_interrupt(timestamp_t timestamp) {
if(offset > 0xEFFFFFFF) offset = 100;
/* map offset to RTC value */
// ticks = offset * RTC frequency div 1000000
timestamp_ticks = ((uint64_t)offset * (LOW_ENERGY_CLOCK_FREQUENCY / RTC_CLOCKDIV_INT)) / 1000000;
// ticks = offset * RTC frequency div 1000000
timestamp_ticks = ((uint64_t)offset * (LOW_ENERGY_CLOCK_FREQUENCY / RTC_CLOCKDIV_INT)) / 1000000;
timestamp_ticks += current_ticks;
/* RTC has 24 bit resolution */
timestamp_ticks &= 0xFFFFFF;
/* RTC has 24 bit resolution */
timestamp_ticks &= 0xFFFFFF;
/* check for RTC limitation */
if((timestamp_ticks - RTC_CounterGet()) >= 0x800000) timestamp_ticks = RTC_CounterGet() + 2;
/* Set callback */
RTC_FreezeEnable(true);
RTC_CompareSet(0, (uint32_t)timestamp_ticks);
RTC_IntEnable(RTC_IF_COMP0);
RTC_FreezeEnable(false);
/* Set callback */
RTC_FreezeEnable(true);
RTC_CompareSet(0, (uint32_t)timestamp_ticks);
RTC_IntEnable(RTC_IF_COMP0);
RTC_FreezeEnable(false);
}
inline void lp_ticker_disable_interrupt() {
RTC_IntDisable(RTC_IF_COMP0);
inline void lp_ticker_disable_interrupt()
{
RTC_IntDisable(RTC_IF_COMP0);
}
inline void lp_ticker_clear_interrupt() {
RTC_IntClear(RTC_IF_COMP0);
inline void lp_ticker_clear_interrupt()
{
RTC_IntClear(RTC_IF_COMP0);
}
timestamp_t lp_ticker_read() {
uint64_t ticks_temp;
uint64_t ticks = RTC_CounterGet();
timestamp_t lp_ticker_read()
{
uint64_t ticks_temp;
uint64_t ticks = RTC_CounterGet();
/* ticks = counter tick value
* timestamp = value in microseconds
* timestamp = ticks * 1.000.000 / RTC frequency
*/
/* ticks = counter tick value
* timestamp = value in microseconds
* timestamp = ticks * 1.000.000 / RTC frequency
*/
ticks_temp = (ticks * 1000000) / (LOW_ENERGY_CLOCK_FREQUENCY / RTC_CLOCKDIV_INT);
return (timestamp_t) (ticks_temp & 0xFFFFFFFF);
ticks_temp = (ticks * 1000000) / (LOW_ENERGY_CLOCK_FREQUENCY / RTC_CLOCKDIV_INT);
return (timestamp_t) (ticks_temp & 0xFFFFFFFF);
}
#endif

View File

@ -50,11 +50,11 @@ void mbed_sdk_init()
CMU_ClockSelectSet(cmuClock_LFA, LFXO);
#endif
#ifdef CMU_LFBCLKSEL_REG
/* cmuClock_LFB (to date) only has LEUART peripherals.
* Do NOT set it up here, as LEUARTs might have been initialized
* before this code is called. (Limitation of the override mechanism of ARMCC)
*/
//TODO: Look for a more elegant fix.
/* cmuClock_LFB (to date) only has LEUART peripherals.
* Do NOT set it up here, as LEUARTs might have been initialized
* before this code is called. (Limitation of the override mechanism of ARMCC)
*/
//TODO: Look for a more elegant fix.
//CMU_ClockSelectSet(cmuClock_LFB, LFXO);
#endif
#ifdef CMU_LFECLKSEL_REG
@ -92,7 +92,8 @@ void mbed_sdk_init()
gpio_init_out_ex(&bc_enable, EFM_BC_EN, 1);
}
void check_usart_clock(USART_TypeDef* usart, uint32_t clockmask) {
void check_usart_clock(USART_TypeDef* usart, uint32_t clockmask)
{
uint32_t freq = 14000000, baudrate;
USART_OVS_TypeDef ovs;

View File

@ -129,11 +129,11 @@ struct lp_timer_s {
#if DEVICE_SLEEP
#define NUM_SLEEP_MODES 5
typedef enum {
EM0 = 0,
EM1 = 1,
EM2 = 2,
EM3 = 3,
EM4 = 4
EM0 = 0,
EM1 = 1,
EM2 = 2,
EM3 = 3,
EM4 = 4
} sleepstate_enum;
#endif

View File

@ -30,10 +30,10 @@ void pin_mode(PinName pin, PinMode mode)
MBED_ASSERT(pin != NC);
/* Enable GPIO clock if not already done */
if (!gpio_clock_inited) {
CMU_ClockEnable(cmuClock_GPIO, true);
gpio_clock_inited = 1;
}
if (!gpio_clock_inited) {
CMU_ClockEnable(cmuClock_GPIO, true);
gpio_clock_inited = 1;
}
/* Pin and port index encoded in one uint32.
* First four bits represent the pin number

View File

@ -44,7 +44,7 @@ void port_preinit(port_t *obj, PortName port, int mask, PinDirection dir)
void port_init(port_t *obj, PortName port, int mask, PinDirection dir)
{
port_preinit(obj, port, mask, dir);
port_preinit(obj, port, mask, dir);
port_dir(obj, obj->dir);
}

View File

@ -33,22 +33,23 @@
static int pwm_clockfreq;
static int pwm_prescaler_div;
uint32_t pwmout_get_channel_route(pwmout_t *obj) {
MBED_ASSERT(obj->channel != (PWMName) NC);
uint32_t pwmout_get_channel_route(pwmout_t *obj)
{
MBED_ASSERT(obj->channel != (PWMName) NC);
switch (obj->channel) {
case PWM_CH0:
return TIMER_ROUTE_CC0PEN;
break;
case PWM_CH1:
return TIMER_ROUTE_CC1PEN;
break;
case PWM_CH2:
return TIMER_ROUTE_CC2PEN;
break;
default:
return 0;
}
switch (obj->channel) {
case PWM_CH0:
return TIMER_ROUTE_CC0PEN;
break;
case PWM_CH1:
return TIMER_ROUTE_CC1PEN;
break;
case PWM_CH2:
return TIMER_ROUTE_CC2PEN;
break;
default:
return 0;
}
}
void pwmout_enable_pins(pwmout_t *obj, uint8_t enable)
@ -63,8 +64,8 @@ void pwmout_enable_pins(pwmout_t *obj, uint8_t enable)
void pwmout_enable(pwmout_t *obj, uint8_t enable)
{
/* Start with default CC (Compare/Capture) channel parameters */
TIMER_InitCC_TypeDef timerCCInit = TIMER_INITCC_DEFAULT;
/* Start with default CC (Compare/Capture) channel parameters */
TIMER_InitCC_TypeDef timerCCInit = TIMER_INITCC_DEFAULT;
if (enable) {
/* Set mode to PWM */
timerCCInit.mode = timerCCModePWM;
@ -76,33 +77,33 @@ void pwmout_enable(pwmout_t *obj, uint8_t enable)
void pwmout_init(pwmout_t *obj, PinName pin)
{
obj->channel = (PWMName) pinmap_peripheral(pin, PinMap_PWM);
obj->pin = pin;
MBED_ASSERT(obj->channel != (PWMName) NC);
obj->channel = (PWMName) pinmap_peripheral(pin, PinMap_PWM);
obj->pin = pin;
MBED_ASSERT(obj->channel != (PWMName) NC);
/* Turn on clock */
CMU_ClockEnable(PWM_TIMER_CLOCK, true);
/* Turn on clock */
CMU_ClockEnable(PWM_TIMER_CLOCK, true);
/* Turn on timer */
if(!(PWM_TIMER->STATUS & TIMER_STATUS_RUNNING)) {
TIMER_Init_TypeDef timerInit = TIMER_INIT_DEFAULT;
TIMER_Init(PWM_TIMER, &timerInit);
}
/* Turn on timer */
if(!(PWM_TIMER->STATUS & TIMER_STATUS_RUNNING)) {
TIMER_Init_TypeDef timerInit = TIMER_INIT_DEFAULT;
TIMER_Init(PWM_TIMER, &timerInit);
}
/* Enable correct channel */
uint32_t routeloc = pwmout_get_channel_route(obj);
if(PWM_TIMER->ROUTE & routeloc) {
//This channel was already in use
//TODO: gracefully handle this case
} else {
//This channel was unused up to now
PWM_TIMER->ROUTE |= routeloc;
blockSleepMode(EM1);
uint32_t routeloc = pwmout_get_channel_route(obj);
if(PWM_TIMER->ROUTE & routeloc) {
//This channel was already in use
//TODO: gracefully handle this case
} else {
//This channel was unused up to now
PWM_TIMER->ROUTE |= routeloc;
blockSleepMode(EM1);
//TODO: check if any channel was up already, then don't re-init timer
pwmout_enable(obj, true);
pwmout_enable_pins(obj, true);
}
//TODO: check if any channel was up already, then don't re-init timer
pwmout_enable(obj, true);
pwmout_enable_pins(obj, true);
}
/* Route correct channel to location 1 */
PWM_TIMER->ROUTE &= ~_TIMER_ROUTE_LOCATION_MASK;
@ -115,18 +116,19 @@ void pwmout_init(pwmout_t *obj, PinName pin)
pwmout_period(obj, 0.02);
}
void pwmout_free(pwmout_t *obj) {
uint32_t routeloc = pwmout_get_channel_route(obj);
if(PWM_TIMER->ROUTE & routeloc) {
//This channel was in use, so disable
PWM_TIMER->ROUTE &= ~routeloc;
pwmout_enable_pins(obj, false);
unblockSleepMode(EM1);
void pwmout_free(pwmout_t *obj)
{
uint32_t routeloc = pwmout_get_channel_route(obj);
if(PWM_TIMER->ROUTE & routeloc) {
//This channel was in use, so disable
PWM_TIMER->ROUTE &= ~routeloc;
pwmout_enable_pins(obj, false);
unblockSleepMode(EM1);
//TODO: check if all channels are down, then switch off timer
} else {
//This channel was disabled already
}
//TODO: check if all channels are down, then switch off timer
} else {
//This channel was disabled already
}
}
void pwmout_write(pwmout_t *obj, float value)

View File

@ -37,17 +37,14 @@ void RTC_IRQHandler(void)
{
uint32_t flags;
flags = RTC_IntGet();
if (flags & RTC_IF_OF)
{
if (flags & RTC_IF_OF) {
RTC_IntClear(RTC_IF_OF);
/* RTC has overflowed (24 bits). Use time_base as software counter for upper 8 bits. */
time_base += 1 << 24;
}
if (flags & RTC_IF_COMP0)
{
if (flags & RTC_IF_COMP0) {
RTC_IntClear(RTC_IF_COMP0);
if (comp0_handler != NULL)
{
if (comp0_handler != NULL) {
comp0_handler();
}
}
@ -69,8 +66,7 @@ void rtc_init_real(uint32_t flags)
{
useflags |= flags;
if (!rtc_inited)
{
if (!rtc_inited) {
/* Start LFXO and wait until it is stable */
CMU_OscillatorEnable(cmuOsc_LFXO, true, true);
@ -114,8 +110,7 @@ void rtc_free_real(uint32_t flags)
flags &= ~flags;
/* Disable the RTC if it was inited and is no longer in use by anyone. */
if (rtc_inited && (flags == 0))
{
if (rtc_inited && (flags == 0)) {
NVIC_DisableIRQ(RTC_IRQn);
RTC_Reset();
CMU_ClockEnable(cmuClock_RTC, false);

View File

@ -66,6 +66,8 @@ serial_t stdio_uart;
static void uart_irq(UARTName, int, SerialIrq);
uint8_t serial_get_index(serial_t *obj);
void serial_enable(serial_t *obj, uint8_t enable);
void serial_enable_pins(serial_t *obj, uint8_t enable);
IRQn_Type serial_get_rx_irq_index(serial_t *obj);
IRQn_Type serial_get_tx_irq_index(serial_t *obj);
CMU_Clock_TypeDef serial_get_clock(serial_t *obj);
@ -92,7 +94,8 @@ static void usart2_rx_irq() { uart_irq(USART_2, 4, RxIrq); }
static void usart2_tx_irq() { uart_irq(USART_2, 4, TxIrq); USART_IntClear((USART_TypeDef*)USART_2, USART_IFC_TXC);}
#endif
#ifdef LEUART0
static void leuart0_irq() {
static void leuart0_irq()
{
if(LEUART_IntGetEnabled(LEUART0) && (LEUART_IF_RXDATAV | LEUART_IF_FERR | LEUART_IFC_PERR | LEUART_IF_RXOF)) {
uart_irq(LEUART_0, 5, RxIrq);
} else {
@ -101,7 +104,8 @@ static void leuart0_irq() {
}
#endif
#ifdef LEUART1
static void leuart1_irq() {
static void leuart1_irq()
{
if(LEUART_IntGetEnabled(LEUART1) && (LEUART_IF_RXDATAV | LEUART_IF_FERR | LEUART_IFC_PERR | LEUART_IF_RXOF)) {
uart_irq(LEUART_1, 6, RxIrq);
} else {
@ -403,12 +407,12 @@ void serial_enable_pins(serial_t *obj, uint8_t enable)
void serial_init(serial_t *obj, PinName tx, PinName rx)
{
serial_preinit(obj, tx, rx);
serial_preinit(obj, tx, rx);
if(LEUART_REF_VALID(obj->serial.periph.leuart)) {
// Set up LEUART clock tree to use high-speed clock)
CMU_ClockSelectSet(cmuClock_LFB, cmuSelect_CORELEDIV2);
CMU_ClockEnable(cmuClock_LFB, true);
CMU_ClockEnable(cmuClock_LFB, true);
CMU_ClockSelectSet(serial_get_clock(obj), cmuSelect_CORELEDIV2);
}
@ -435,24 +439,17 @@ void serial_init(serial_t *obj, PinName tx, PinName rx)
if (obj->serial.periph.uart == (USART_TypeDef*)STDIO_UART ) {
stdio_uart_inited = 1;
memcpy(&stdio_uart, obj, sizeof(serial_t));
/* enable TX and RX by default for STDIO */
if(LEUART_REF_VALID(obj->serial.periph.leuart)) {
obj->serial.periph.leuart->CMD = LEUART_CMD_TXEN | LEUART_CMD_RXEN;
} else {
obj->serial.periph.uart->CMD = USART_CMD_TXEN | USART_CMD_RXEN;
}
}
serial_enable_pins(obj, true);
serial_enable(obj, true);
obj->serial.dmaOptionsTX.dmaChannel = -1;
obj->serial.dmaOptionsTX.dmaUsageState = DMA_USAGE_OPPORTUNISTIC;
obj->serial.dmaOptionsRX.dmaChannel = -1;
obj->serial.dmaOptionsRX.dmaUsageState = DMA_USAGE_OPPORTUNISTIC;
obj->serial.dmaOptionsRX.dmaChannel = -1;
obj->serial.dmaOptionsRX.dmaUsageState = DMA_USAGE_OPPORTUNISTIC;
}
@ -870,8 +867,8 @@ void serial_pinout_tx(PinName tx)
******************************************/
static void serial_dmaTransferComplete(unsigned int channel, bool primary, void *user)
{
/* Store information about which channel triggered because CPP doesn't take arguments */
serial_dma_irq_fired[channel] = true;
/* Store information about which channel triggered because CPP doesn't take arguments */
serial_dma_irq_fired[channel] = true;
/* User pointer should be a thunk to CPP land */
if (user != NULL) {
@ -885,100 +882,101 @@ static void serial_dmaTransferComplete(unsigned int channel, bool primary, void
* Sets up the DMA configuration block for the assigned channel
* tx_nrx: true if configuring TX, false if configuring RX.
******************************************/
static void serial_dmaSetupChannel(serial_t *obj, bool tx_nrx) {
DMA_CfgChannel_TypeDef channelConfig;
static void serial_dmaSetupChannel(serial_t *obj, bool tx_nrx)
{
DMA_CfgChannel_TypeDef channelConfig;
if(tx_nrx) {
//setup TX channel
channelConfig.highPri = false;
channelConfig.enableInt = true;
channelConfig.cb = &(obj->serial.dmaOptionsTX.dmaCallback);
if(tx_nrx) {
//setup TX channel
channelConfig.highPri = false;
channelConfig.enableInt = true;
channelConfig.cb = &(obj->serial.dmaOptionsTX.dmaCallback);
switch((uint32_t)(obj->serial.periph.uart)) {
switch((uint32_t)(obj->serial.periph.uart)) {
#ifdef UART0
case UART_0:
channelConfig.select = DMAREQ_UART0_TXBL;
break;
case UART_0:
channelConfig.select = DMAREQ_UART0_TXBL;
break;
#endif
#ifdef UART1
case UART_1:
channelConfig.select = DMAREQ_UART1_TXBL;
break;
case UART_1:
channelConfig.select = DMAREQ_UART1_TXBL;
break;
#endif
#ifdef USART0
case USART_0:
channelConfig.select = DMAREQ_USART0_TXBL;
break;
case USART_0:
channelConfig.select = DMAREQ_USART0_TXBL;
break;
#endif
#ifdef USART1
case USART_1:
channelConfig.select = DMAREQ_USART1_TXBL;
break;
case USART_1:
channelConfig.select = DMAREQ_USART1_TXBL;
break;
#endif
#ifdef USART2
case USART_2:
channelConfig.select = DMAREQ_USART2_TXBL;
break;
case USART_2:
channelConfig.select = DMAREQ_USART2_TXBL;
break;
#endif
#ifdef LEUART0
case LEUART_0:
channelConfig.select = DMAREQ_LEUART0_TXBL;
break;
case LEUART_0:
channelConfig.select = DMAREQ_LEUART0_TXBL;
break;
#endif
#ifdef LEUART1
case LEUART_1:
channelConfig.select = DMAREQ_LEUART1_TXBL;
break;
case LEUART_1:
channelConfig.select = DMAREQ_LEUART1_TXBL;
break;
#endif
}
}
DMA_CfgChannel(obj->serial.dmaOptionsTX.dmaChannel, &channelConfig);
} else {
//setup RX channel
channelConfig.highPri = true;
channelConfig.enableInt = true;
channelConfig.cb = &(obj->serial.dmaOptionsRX.dmaCallback);
DMA_CfgChannel(obj->serial.dmaOptionsTX.dmaChannel, &channelConfig);
} else {
//setup RX channel
channelConfig.highPri = true;
channelConfig.enableInt = true;
channelConfig.cb = &(obj->serial.dmaOptionsRX.dmaCallback);
switch((uint32_t)(obj->serial.periph.uart)) {
switch((uint32_t)(obj->serial.periph.uart)) {
#ifdef UART0
case UART_0:
channelConfig.select = DMAREQ_UART0_RXDATAV;
break;
case UART_0:
channelConfig.select = DMAREQ_UART0_RXDATAV;
break;
#endif
#ifdef UART1
case UART_1:
channelConfig.select = DMAREQ_UART1_RXDATAV;
break;
case UART_1:
channelConfig.select = DMAREQ_UART1_RXDATAV;
break;
#endif
#ifdef USART0
case USART_0:
channelConfig.select = DMAREQ_USART0_RXDATAV;
break;
case USART_0:
channelConfig.select = DMAREQ_USART0_RXDATAV;
break;
#endif
#ifdef USART1
case USART_1:
channelConfig.select = DMAREQ_USART1_RXDATAV;
break;
case USART_1:
channelConfig.select = DMAREQ_USART1_RXDATAV;
break;
#endif
#ifdef USART2
case USART_2:
channelConfig.select = DMAREQ_USART2_RXDATAV;
break;
case USART_2:
channelConfig.select = DMAREQ_USART2_RXDATAV;
break;
#endif
#ifdef LEUART0
case LEUART_0:
channelConfig.select = DMAREQ_LEUART0_RXDATAV;
break;
case LEUART_0:
channelConfig.select = DMAREQ_LEUART0_RXDATAV;
break;
#endif
#ifdef LEUART1
case LEUART_1:
channelConfig.select = DMAREQ_LEUART1_RXDATAV;
break;
case LEUART_1:
channelConfig.select = DMAREQ_LEUART1_RXDATAV;
break;
#endif
}
}
DMA_CfgChannel(obj->serial.dmaOptionsRX.dmaChannel, &channelConfig);
}
DMA_CfgChannel(obj->serial.dmaOptionsRX.dmaChannel, &channelConfig);
}
}
@ -999,57 +997,59 @@ static void serial_dmaSetupChannel(serial_t *obj, bool tx_nrx) {
* Will try to allocate a channel and keep it.
* If succesfully allocated, state changes to DMA_USAGE_ALLOCATED.
******************************************/
static void serial_dmaTrySetState(DMA_OPTIONS_t *obj, DMAUsage requestedState, serial_t *serialPtr, bool tx_nrx) {
DMAUsage currentState = obj->dmaUsageState;
int tempDMAChannel = -1;
static void serial_dmaTrySetState(DMA_OPTIONS_t *obj, DMAUsage requestedState, serial_t *serialPtr, bool tx_nrx)
{
DMAUsage currentState = obj->dmaUsageState;
int tempDMAChannel = -1;
if ((requestedState == DMA_USAGE_ALWAYS) && (currentState != DMA_USAGE_ALLOCATED)) {
/* Try to allocate channel */
tempDMAChannel = dma_channel_allocate(DMA_CAP_NONE);
if(tempDMAChannel >= 0) {
obj->dmaChannel = tempDMAChannel;
obj->dmaUsageState = DMA_USAGE_ALLOCATED;
dma_init();
serial_dmaSetupChannel(serialPtr, tx_nrx);
}
} else if (requestedState == DMA_USAGE_OPPORTUNISTIC) {
if (currentState == DMA_USAGE_ALLOCATED) {
/* Channels have already been allocated previously by an ALWAYS state, so after this transfer, we will release them */
obj->dmaUsageState = DMA_USAGE_TEMPORARY_ALLOCATED;
} else {
/* Try to allocate channel */
tempDMAChannel = dma_channel_allocate(DMA_CAP_NONE);
if(tempDMAChannel >= 0) {
obj->dmaChannel = tempDMAChannel;
obj->dmaUsageState = DMA_USAGE_TEMPORARY_ALLOCATED;
dma_init();
serial_dmaSetupChannel(serialPtr, tx_nrx);
}
}
} else if (requestedState == DMA_USAGE_NEVER) {
/* If channel is allocated, get rid of it */
dma_channel_free(obj->dmaChannel);
obj->dmaChannel = -1;
obj->dmaUsageState = DMA_USAGE_NEVER;
}
if ((requestedState == DMA_USAGE_ALWAYS) && (currentState != DMA_USAGE_ALLOCATED)) {
/* Try to allocate channel */
tempDMAChannel = dma_channel_allocate(DMA_CAP_NONE);
if(tempDMAChannel >= 0) {
obj->dmaChannel = tempDMAChannel;
obj->dmaUsageState = DMA_USAGE_ALLOCATED;
dma_init();
serial_dmaSetupChannel(serialPtr, tx_nrx);
}
} else if (requestedState == DMA_USAGE_OPPORTUNISTIC) {
if (currentState == DMA_USAGE_ALLOCATED) {
/* Channels have already been allocated previously by an ALWAYS state, so after this transfer, we will release them */
obj->dmaUsageState = DMA_USAGE_TEMPORARY_ALLOCATED;
} else {
/* Try to allocate channel */
tempDMAChannel = dma_channel_allocate(DMA_CAP_NONE);
if(tempDMAChannel >= 0) {
obj->dmaChannel = tempDMAChannel;
obj->dmaUsageState = DMA_USAGE_TEMPORARY_ALLOCATED;
dma_init();
serial_dmaSetupChannel(serialPtr, tx_nrx);
}
}
} else if (requestedState == DMA_USAGE_NEVER) {
/* If channel is allocated, get rid of it */
dma_channel_free(obj->dmaChannel);
obj->dmaChannel = -1;
obj->dmaUsageState = DMA_USAGE_NEVER;
}
}
static void serial_dmaActivate(serial_t *obj, void* cb, void* buffer, int length, bool tx_nrx) {
DMA_CfgDescr_TypeDef channelConfig;
static void serial_dmaActivate(serial_t *obj, void* cb, void* buffer, int length, bool tx_nrx)
{
DMA_CfgDescr_TypeDef channelConfig;
if(tx_nrx) {
// Set DMA callback
obj->serial.dmaOptionsTX.dmaCallback.cbFunc = serial_dmaTransferComplete;
obj->serial.dmaOptionsTX.dmaCallback.userPtr = cb;
if(tx_nrx) {
// Set DMA callback
obj->serial.dmaOptionsTX.dmaCallback.cbFunc = serial_dmaTransferComplete;
obj->serial.dmaOptionsTX.dmaCallback.userPtr = cb;
// Set up configuration structure
channelConfig.dstInc = dmaDataIncNone;
channelConfig.srcInc = dmaDataInc1;
channelConfig.size = dmaDataSize1;
channelConfig.arbRate = dmaArbitrate1;
channelConfig.hprot = 0;
// Set up configuration structure
channelConfig.dstInc = dmaDataIncNone;
channelConfig.srcInc = dmaDataInc1;
channelConfig.size = dmaDataSize1;
channelConfig.arbRate = dmaArbitrate1;
channelConfig.hprot = 0;
DMA_CfgDescr(obj->serial.dmaOptionsTX.dmaChannel, true, &channelConfig);
DMA_CfgDescr(obj->serial.dmaOptionsTX.dmaChannel, true, &channelConfig);
if(LEUART_REF_VALID(obj->serial.periph.leuart)) {
// Activate TX
@ -1070,19 +1070,19 @@ static void serial_dmaActivate(serial_t *obj, void* cb, void* buffer, int length
// Kick off TX DMA
DMA_ActivateBasic(obj->serial.dmaOptionsTX.dmaChannel, true, false, (void*) &(obj->serial.periph.uart->TXDATA), buffer, length - 1);
}
} else {
// Set DMA callback
obj->serial.dmaOptionsRX.dmaCallback.cbFunc = serial_dmaTransferComplete;
obj->serial.dmaOptionsRX.dmaCallback.userPtr = cb;
} else {
// Set DMA callback
obj->serial.dmaOptionsRX.dmaCallback.cbFunc = serial_dmaTransferComplete;
obj->serial.dmaOptionsRX.dmaCallback.userPtr = cb;
// Set up configuration structure
channelConfig.dstInc = dmaDataInc1;
channelConfig.srcInc = dmaDataIncNone;
channelConfig.size = dmaDataSize1;
channelConfig.arbRate = dmaArbitrate1;
channelConfig.hprot = 0;
// Set up configuration structure
channelConfig.dstInc = dmaDataInc1;
channelConfig.srcInc = dmaDataIncNone;
channelConfig.size = dmaDataSize1;
channelConfig.arbRate = dmaArbitrate1;
channelConfig.hprot = 0;
DMA_CfgDescr(obj->serial.dmaOptionsRX.dmaChannel, true, &channelConfig);
DMA_CfgDescr(obj->serial.dmaOptionsRX.dmaChannel, true, &channelConfig);
if(LEUART_REF_VALID(obj->serial.periph.leuart)) {
// Activate RX
@ -1103,7 +1103,7 @@ static void serial_dmaActivate(serial_t *obj, void* cb, void* buffer, int length
// Kick off RX DMA
DMA_ActivateBasic(obj->serial.dmaOptionsRX.dmaChannel, true, false, buffer, (void*) &(obj->serial.periph.uart->RXDATA), length - 1);
}
}
}
}
/************************************************************************************
@ -1122,10 +1122,11 @@ static void serial_dmaActivate(serial_t *obj, void* cb, void* buffer, int length
* @param event The logical OR of the TX events to configure
* @param enable Set to non-zero to enable events, or zero to disable them
*/
void serial_tx_enable_event(serial_t *obj, int event, uint8_t enable) {
// Shouldn't have to enable TX interrupt here, just need to keep track of the requested events.
if(enable) obj->serial.events |= event;
else obj->serial.events &= ~event;
void serial_tx_enable_event(serial_t *obj, int event, uint8_t enable)
{
// Shouldn't have to enable TX interrupt here, just need to keep track of the requested events.
if(enable) obj->serial.events |= event;
else obj->serial.events &= ~event;
}
/**
@ -1133,12 +1134,13 @@ void serial_tx_enable_event(serial_t *obj, int event, uint8_t enable) {
* @param event The logical OR of the RX events to configure
* @param enable Set to non-zero to enable events, or zero to disable them
*/
void serial_rx_enable_event(serial_t *obj, int event, uint8_t enable) {
if(enable) {
obj->serial.events |= event;
} else {
obj->serial.events &= ~event;
}
void serial_rx_enable_event(serial_t *obj, int event, uint8_t enable)
{
if(enable) {
obj->serial.events |= event;
} else {
obj->serial.events &= ~event;
}
if(LEUART_REF_VALID(obj->serial.periph.leuart)) {
if(event & SERIAL_EVENT_RX_FRAMING_ERROR) {
//FERR interrupt source
@ -1192,17 +1194,18 @@ void serial_rx_enable_event(serial_t *obj, int event, uint8_t enable) {
* @param tx The buffer for sending.
* @param tx_length The number of words to transmit.
*/
void serial_tx_buffer_set(serial_t *obj, void *tx, int tx_length, uint8_t width) {
// We only support byte buffers for now
MBED_ASSERT(width == 8);
void serial_tx_buffer_set(serial_t *obj, void *tx, int tx_length, uint8_t width)
{
// We only support byte buffers for now
MBED_ASSERT(width == 8);
if(serial_tx_active(obj)) return;
if(serial_tx_active(obj)) return;
obj->tx_buff.buffer = tx;
obj->tx_buff.length = tx_length;
obj->tx_buff.pos = 0;
obj->tx_buff.buffer = tx;
obj->tx_buff.length = tx_length;
obj->tx_buff.pos = 0;
return;
return;
}
/** Configure the TX buffer for an asynchronous read serial transaction
@ -1211,17 +1214,18 @@ void serial_tx_buffer_set(serial_t *obj, void *tx, int tx_length, uint8_t width)
* @param rx The buffer for receiving.
* @param rx_length The number of words to read.
*/
void serial_rx_buffer_set(serial_t *obj, void *rx, int rx_length, uint8_t width) {
// We only support byte buffers for now
MBED_ASSERT(width == 8);
void serial_rx_buffer_set(serial_t *obj, void *rx, int rx_length, uint8_t width)
{
// We only support byte buffers for now
MBED_ASSERT(width == 8);
if(serial_rx_active(obj)) return;
if(serial_rx_active(obj)) return;
obj->rx_buff.buffer = rx;
obj->rx_buff.length = rx_length;
obj->rx_buff.pos = 0;
obj->rx_buff.buffer = rx;
obj->rx_buff.length = rx_length;
obj->rx_buff.pos = 0;
return;
return;
}
/** Set character to be matched. If an event is enabled, and received character
@ -1231,18 +1235,19 @@ void serial_rx_buffer_set(serial_t *obj, void *rx, int rx_length, uint8_t width)
* @param obj The serial object
* @param char_match A character in range 0-254
*/
void serial_set_char_match(serial_t *obj, uint8_t char_match) {
// We only have hardware support for this in LEUART.
// When in USART/UART, we can set up a check in the receiving ISR, but not when using DMA.
if (char_match != SERIAL_RESERVED_CHAR_MATCH) {
obj->char_match = char_match;
void serial_set_char_match(serial_t *obj, uint8_t char_match)
{
// We only have hardware support for this in LEUART.
// When in USART/UART, we can set up a check in the receiving ISR, but not when using DMA.
if (char_match != SERIAL_RESERVED_CHAR_MATCH) {
obj->char_match = char_match;
if(LEUART_REF_VALID(obj->serial.periph.leuart)) {
obj->serial.periph.leuart->SIGFRAME = char_match & 0x000000FF;
}
}
}
return;
return;
}
/************************************
@ -1257,36 +1262,37 @@ void serial_set_char_match(serial_t *obj, uint8_t char_match) {
* @param hint A suggestion for how to use DMA with this transfer
* @return Returns number of data transfered, or 0 otherwise
*/
int serial_tx_asynch(serial_t *obj, void *tx, size_t tx_length, uint8_t tx_width, uint32_t handler, uint32_t event, DMAUsage hint) {
// Check that a buffer has indeed been set up
MBED_ASSERT(tx != (void*)0);
if(tx_length == 0) return 0;
int serial_tx_asynch(serial_t *obj, void *tx, size_t tx_length, uint8_t tx_width, uint32_t handler, uint32_t event, DMAUsage hint)
{
// Check that a buffer has indeed been set up
MBED_ASSERT(tx != (void*)0);
if(tx_length == 0) return 0;
// Set up buffer
serial_tx_buffer_set(obj, tx, tx_length, tx_width);
// Set up buffer
serial_tx_buffer_set(obj, tx, tx_length, tx_width);
// Set up events
serial_tx_enable_event(obj, SERIAL_EVENT_TX_ALL, false);
serial_tx_enable_event(obj, event, true);
// Set up events
serial_tx_enable_event(obj, SERIAL_EVENT_TX_ALL, false);
serial_tx_enable_event(obj, event, true);
// Set up sleepmode
blockSleepMode(SERIAL_LEAST_ACTIVE_SLEEPMODE);
// Set up sleepmode
blockSleepMode(SERIAL_LEAST_ACTIVE_SLEEPMODE);
// Determine DMA strategy
serial_dmaTrySetState(&(obj->serial.dmaOptionsTX), hint, obj, true);
// Determine DMA strategy
serial_dmaTrySetState(&(obj->serial.dmaOptionsTX), hint, obj, true);
// If DMA, kick off DMA transfer
if(obj->serial.dmaOptionsTX.dmaChannel >= 0) {
serial_dmaActivate(obj, (void*)handler, obj->tx_buff.buffer, obj->tx_buff.length, true);
}
// Else, activate interrupt. TXBL will take care of buffer filling through ISR.
else {
// Store callback
NVIC_ClearPendingIRQ(serial_get_tx_irq_index(obj));
NVIC_DisableIRQ(serial_get_tx_irq_index(obj));
NVIC_SetPriority(serial_get_tx_irq_index(obj), 1);
NVIC_SetVector(serial_get_tx_irq_index(obj), (uint32_t)handler);
NVIC_EnableIRQ(serial_get_tx_irq_index(obj));
// If DMA, kick off DMA transfer
if(obj->serial.dmaOptionsTX.dmaChannel >= 0) {
serial_dmaActivate(obj, (void*)handler, obj->tx_buff.buffer, obj->tx_buff.length, true);
}
// Else, activate interrupt. TXBL will take care of buffer filling through ISR.
else {
// Store callback
NVIC_ClearPendingIRQ(serial_get_tx_irq_index(obj));
NVIC_DisableIRQ(serial_get_tx_irq_index(obj));
NVIC_SetPriority(serial_get_tx_irq_index(obj), 1);
NVIC_SetVector(serial_get_tx_irq_index(obj), (uint32_t)handler);
NVIC_EnableIRQ(serial_get_tx_irq_index(obj));
if(LEUART_REF_VALID(obj->serial.periph.leuart)) {
// Activate TX and return
@ -1307,9 +1313,9 @@ int serial_tx_asynch(serial_t *obj, void *tx, size_t tx_length, uint8_t tx_width
// Enable interrupt
USART_IntEnable(obj->serial.periph.uart, USART_IEN_TXBL);
}
}
}
return 0;
return 0;
}
/** Begin asynchronous RX transfer (enable interrupt for data collecting)
@ -1319,38 +1325,39 @@ int serial_tx_asynch(serial_t *obj, void *tx, size_t tx_length, uint8_t tx_width
* @param cb The function to call when an event occurs
* @param hint A suggestion for how to use DMA with this transfer
*/
void serial_rx_asynch(serial_t *obj, void *rx, size_t rx_length, uint8_t rx_width, uint32_t handler, uint32_t event, uint8_t char_match, DMAUsage hint) {
// Check that a buffer has indeed been set up
MBED_ASSERT(rx != (void*)0);
if(rx_length == 0) return;
void serial_rx_asynch(serial_t *obj, void *rx, size_t rx_length, uint8_t rx_width, uint32_t handler, uint32_t event, uint8_t char_match, DMAUsage hint)
{
// Check that a buffer has indeed been set up
MBED_ASSERT(rx != (void*)0);
if(rx_length == 0) return;
// Set up buffer
serial_rx_buffer_set(obj, rx, rx_length, rx_width);
// Set up buffer
serial_rx_buffer_set(obj, rx, rx_length, rx_width);
// Set up events
serial_rx_enable_event(obj, SERIAL_EVENT_RX_ALL, false);
serial_rx_enable_event(obj, event, true);
serial_set_char_match(obj, char_match);
// Set up events
serial_rx_enable_event(obj, SERIAL_EVENT_RX_ALL, false);
serial_rx_enable_event(obj, event, true);
serial_set_char_match(obj, char_match);
// Set up sleepmode
blockSleepMode(SERIAL_LEAST_ACTIVE_SLEEPMODE);
// Set up sleepmode
blockSleepMode(SERIAL_LEAST_ACTIVE_SLEEPMODE);
// Determine DMA strategy
// If character match is enabled, we can't use DMA, sadly. We could when using LEUART though, but that support is not in here yet.
if(!(event & SERIAL_EVENT_RX_CHARACTER_MATCH)) {
serial_dmaTrySetState(&(obj->serial.dmaOptionsRX), hint, obj, false);
}
// Determine DMA strategy
// If character match is enabled, we can't use DMA, sadly. We could when using LEUART though, but that support is not in here yet.
if(!(event & SERIAL_EVENT_RX_CHARACTER_MATCH)) {
serial_dmaTrySetState(&(obj->serial.dmaOptionsRX), hint, obj, false);
}
// If DMA, kick off DMA
if(obj->serial.dmaOptionsRX.dmaChannel >= 0) {
serial_dmaActivate(obj, (void*)handler, obj->rx_buff.buffer, obj->rx_buff.length, false);
}
// Else, activate interrupt. RXDATAV is responsible for incoming data notification.
else {
// Store callback
NVIC_ClearPendingIRQ(serial_get_rx_irq_index(obj));
NVIC_SetVector(serial_get_rx_irq_index(obj), (uint32_t)handler);
NVIC_EnableIRQ(serial_get_rx_irq_index(obj));
// If DMA, kick off DMA
if(obj->serial.dmaOptionsRX.dmaChannel >= 0) {
serial_dmaActivate(obj, (void*)handler, obj->rx_buff.buffer, obj->rx_buff.length, false);
}
// Else, activate interrupt. RXDATAV is responsible for incoming data notification.
else {
// Store callback
NVIC_ClearPendingIRQ(serial_get_rx_irq_index(obj));
NVIC_SetVector(serial_get_rx_irq_index(obj), (uint32_t)handler);
NVIC_EnableIRQ(serial_get_rx_irq_index(obj));
if(LEUART_REF_VALID(obj->serial.periph.leuart)) {
// Activate RX
@ -1374,9 +1381,9 @@ void serial_rx_asynch(serial_t *obj, void *rx, size_t rx_length, uint8_t rx_widt
// Enable interrupt
USART_IntEnable(obj->serial.periph.uart, USART_IEN_RXDATAV);
}
}
}
return;
return;
}
/** Attempts to determine if the serial peripheral is already in use for TX
@ -1384,22 +1391,23 @@ void serial_rx_asynch(serial_t *obj, void *rx, size_t rx_length, uint8_t rx_widt
* @param obj The serial object
* @return Non-zero if the TX transaction is ongoing, 0 otherwise
*/
uint8_t serial_tx_active(serial_t *obj) {
switch(obj->serial.dmaOptionsTX.dmaUsageState) {
case DMA_USAGE_TEMPORARY_ALLOCATED:
/* Temporary allocation always means its active, as this state gets cleared afterwards */
return 1;
case DMA_USAGE_ALLOCATED:
/* Check whether the allocated DMA channel is active by checking the DMA transfer */
return(DMA_ChannelEnabled(obj->serial.dmaOptionsTX.dmaChannel));
default:
/* Check whether interrupt for serial TX is enabled */
uint8_t serial_tx_active(serial_t *obj)
{
switch(obj->serial.dmaOptionsTX.dmaUsageState) {
case DMA_USAGE_TEMPORARY_ALLOCATED:
/* Temporary allocation always means its active, as this state gets cleared afterwards */
return 1;
case DMA_USAGE_ALLOCATED:
/* Check whether the allocated DMA channel is active by checking the DMA transfer */
return(DMA_ChannelEnabled(obj->serial.dmaOptionsTX.dmaChannel));
default:
/* Check whether interrupt for serial TX is enabled */
if(LEUART_REF_VALID(obj->serial.periph.leuart)) {
return (obj->serial.periph.leuart->IEN & (LEUART_IEN_TXBL)) ? true : false;
} else {
return (obj->serial.periph.uart->IEN & (USART_IEN_TXBL)) ? true : false;
}
}
}
}
/** Attempts to determine if the serial peripheral is already in use for RX
@ -1407,22 +1415,23 @@ uint8_t serial_tx_active(serial_t *obj) {
* @param obj The serial object
* @return Non-zero if the RX transaction is ongoing, 0 otherwise
*/
uint8_t serial_rx_active(serial_t *obj) {
switch(obj->serial.dmaOptionsRX.dmaUsageState) {
case DMA_USAGE_TEMPORARY_ALLOCATED:
/* Temporary allocation always means its active, as this state gets cleared afterwards */
return 1;
case DMA_USAGE_ALLOCATED:
/* Check whether the allocated DMA channel is active by checking the DMA transfer */
return(DMA_ChannelEnabled(obj->serial.dmaOptionsRX.dmaChannel));
default:
/* Check whether interrupt for serial TX is enabled */
uint8_t serial_rx_active(serial_t *obj)
{
switch(obj->serial.dmaOptionsRX.dmaUsageState) {
case DMA_USAGE_TEMPORARY_ALLOCATED:
/* Temporary allocation always means its active, as this state gets cleared afterwards */
return 1;
case DMA_USAGE_ALLOCATED:
/* Check whether the allocated DMA channel is active by checking the DMA transfer */
return(DMA_ChannelEnabled(obj->serial.dmaOptionsRX.dmaChannel));
default:
/* Check whether interrupt for serial TX is enabled */
if(LEUART_REF_VALID(obj->serial.periph.leuart)) {
return (obj->serial.periph.leuart->IEN & (LEUART_IEN_RXDATAV)) ? true : false;
} else {
return (obj->serial.periph.uart->IEN & (USART_IEN_RXDATAV)) ? true : false;
}
}
}
}
/** The asynchronous TX handler. Writes to the TX FIFO and checks for events.
@ -1431,17 +1440,18 @@ uint8_t serial_rx_active(serial_t *obj) {
* @param obj The serial object
* @return Returns event flags if a TX transfer termination condition was met or 0 otherwise
*/
int serial_tx_irq_handler_asynch(serial_t *obj) {
/* This interrupt handler is called from USART irq */
uint8_t *buf = obj->tx_buff.buffer;
int serial_tx_irq_handler_asynch(serial_t *obj)
{
/* This interrupt handler is called from USART irq */
uint8_t *buf = obj->tx_buff.buffer;
/* Interrupt has another TX source */
if(obj->tx_buff.pos >= obj->tx_buff.length) {
/* Transfer complete. Switch off interrupt and return event. */
serial_tx_abort_asynch(obj);
return SERIAL_EVENT_TX_COMPLETE & obj->serial.events;
} else {
/* There's still data in the buffer that needs to be sent */
/* Interrupt has another TX source */
if(obj->tx_buff.pos >= obj->tx_buff.length) {
/* Transfer complete. Switch off interrupt and return event. */
serial_tx_abort_asynch(obj);
return SERIAL_EVENT_TX_COMPLETE & obj->serial.events;
} else {
/* There's still data in the buffer that needs to be sent */
if(LEUART_REF_VALID(obj->serial.periph.leuart)) {
while((LEUART_StatusGet(obj->serial.periph.leuart) & LEUART_STATUS_TXBL) && (obj->tx_buff.pos <= (obj->tx_buff.length - 1))) {
LEUART_Tx(obj->serial.periph.leuart, buf[obj->tx_buff.pos]);
@ -1453,8 +1463,8 @@ int serial_tx_irq_handler_asynch(serial_t *obj) {
obj->tx_buff.pos++;
}
}
}
return 0;
}
return 0;
}
/** The asynchronous RX handler. Reads from the RX FIFOF and checks for events.
@ -1463,11 +1473,12 @@ int serial_tx_irq_handler_asynch(serial_t *obj) {
* @param obj The serial object
* @return Returns event flags if a RX transfer termination condition was met or 0 otherwise
*/
int serial_rx_irq_handler_asynch(serial_t *obj) {
int event = 0;
int serial_rx_irq_handler_asynch(serial_t *obj)
{
int event = 0;
/* This interrupt handler is called from USART irq */
uint8_t *buf = (uint8_t*)obj->rx_buff.buffer;
/* This interrupt handler is called from USART irq */
uint8_t *buf = (uint8_t*)obj->rx_buff.buffer;
if(LEUART_REF_VALID(obj->serial.periph.leuart)) {
/* Determine the source of the interrupt */
@ -1596,33 +1607,34 @@ int serial_rx_irq_handler_asynch(serial_t *obj) {
}
}
/* All events should have generated a return, if no return has happened, no event has been caught */
return 0;
/* All events should have generated a return, if no return has happened, no event has been caught */
return 0;
}
/** Unified IRQ handler. Determines the appropriate handler to execute and returns the flags.
*
* WARNING: this code should be stateless, as re-entrancy is very possible in interrupt-based mode.
*/
int serial_irq_handler_asynch(serial_t *obj) {
/* First, check if we're running in DMA mode */
if(serial_dma_irq_fired[obj->serial.dmaOptionsRX.dmaChannel]) {
/* Clean up */
serial_dma_irq_fired[obj->serial.dmaOptionsRX.dmaChannel] = false;
serial_rx_abort_asynch(obj);
int serial_irq_handler_asynch(serial_t *obj)
{
/* First, check if we're running in DMA mode */
if(serial_dma_irq_fired[obj->serial.dmaOptionsRX.dmaChannel]) {
/* Clean up */
serial_dma_irq_fired[obj->serial.dmaOptionsRX.dmaChannel] = false;
serial_rx_abort_asynch(obj);
/* Notify CPP land of RX completion */
return SERIAL_EVENT_RX_COMPLETE & obj->serial.events;
} else if (serial_dma_irq_fired[obj->serial.dmaOptionsTX.dmaChannel]) {
/* Clean up */
serial_dma_irq_fired[obj->serial.dmaOptionsTX.dmaChannel] = false;
serial_tx_abort_asynch(obj);
/* Notify CPP land of RX completion */
return SERIAL_EVENT_RX_COMPLETE & obj->serial.events;
} else if (serial_dma_irq_fired[obj->serial.dmaOptionsTX.dmaChannel]) {
/* Clean up */
serial_dma_irq_fired[obj->serial.dmaOptionsTX.dmaChannel] = false;
serial_tx_abort_asynch(obj);
/* Notify CPP land of completion */
return SERIAL_EVENT_TX_COMPLETE & obj->serial.events;
} else {
/* Check the NVIC to see which interrupt we're running from
* Also make sure to prioritize RX */
/* Notify CPP land of completion */
return SERIAL_EVENT_TX_COMPLETE & obj->serial.events;
} else {
/* Check the NVIC to see which interrupt we're running from
* Also make sure to prioritize RX */
if(LEUART_REF_VALID(obj->serial.periph.leuart)) {
//Different method of checking tx vs rx for LEUART
if(LEUART_IntGetEnabled(obj->serial.periph.leuart) & (LEUART_IF_RXDATAV | LEUART_IF_FERR | LEUART_IF_PERR | LEUART_IF_RXOF | LEUART_IF_SIGF)) {
@ -1637,10 +1649,10 @@ int serial_irq_handler_asynch(serial_t *obj) {
return serial_tx_irq_handler_asynch(obj);
}
}
}
}
// All should be done now
return 0;
// All should be done now
return 0;
}
/** Abort the ongoing TX transaction. It disables the enabled interupt for TX and
@ -1648,35 +1660,36 @@ int serial_irq_handler_asynch(serial_t *obj) {
*
* @param obj The serial object
*/
void serial_tx_abort_asynch(serial_t *obj) {
/* Stop transmitter */
//obj->serial.periph.uart->CMD |= USART_CMD_TXDIS;
void serial_tx_abort_asynch(serial_t *obj)
{
/* Stop transmitter */
//obj->serial.periph.uart->CMD |= USART_CMD_TXDIS;
/* Clean up */
switch(obj->serial.dmaOptionsTX.dmaUsageState) {
case DMA_USAGE_ALLOCATED:
/* stop DMA transfer */
DMA_ChannelEnable(obj->serial.dmaOptionsTX.dmaChannel, false);
break;
case DMA_USAGE_TEMPORARY_ALLOCATED:
/* stop DMA transfer and release channel */
DMA_ChannelEnable(obj->serial.dmaOptionsTX.dmaChannel, false);
dma_channel_free(obj->serial.dmaOptionsTX.dmaChannel);
obj->serial.dmaOptionsTX.dmaChannel = -1;
obj->serial.dmaOptionsTX.dmaUsageState = DMA_USAGE_OPPORTUNISTIC;
break;
default:
/* stop interrupting */
if(LEUART_REF_VALID(obj->serial.periph.leuart)) {
LEUART_IntDisable(obj->serial.periph.leuart, LEUART_IEN_TXBL);
} else {
USART_IntDisable(obj->serial.periph.uart, USART_IEN_TXBL);
}
break;
}
/* Clean up */
switch(obj->serial.dmaOptionsTX.dmaUsageState) {
case DMA_USAGE_ALLOCATED:
/* stop DMA transfer */
DMA_ChannelEnable(obj->serial.dmaOptionsTX.dmaChannel, false);
break;
case DMA_USAGE_TEMPORARY_ALLOCATED:
/* stop DMA transfer and release channel */
DMA_ChannelEnable(obj->serial.dmaOptionsTX.dmaChannel, false);
dma_channel_free(obj->serial.dmaOptionsTX.dmaChannel);
obj->serial.dmaOptionsTX.dmaChannel = -1;
obj->serial.dmaOptionsTX.dmaUsageState = DMA_USAGE_OPPORTUNISTIC;
break;
default:
/* stop interrupting */
if(LEUART_REF_VALID(obj->serial.periph.leuart)) {
LEUART_IntDisable(obj->serial.periph.leuart, LEUART_IEN_TXBL);
} else {
USART_IntDisable(obj->serial.periph.uart, USART_IEN_TXBL);
}
break;
}
/* Unblock EM2 and below */
unblockSleepMode(SERIAL_LEAST_ACTIVE_SLEEPMODE);
/* Unblock EM2 and below */
unblockSleepMode(SERIAL_LEAST_ACTIVE_SLEEPMODE);
}
/** Abort the ongoing RX transaction It disables the enabled interrupt for RX and
@ -1684,35 +1697,36 @@ void serial_tx_abort_asynch(serial_t *obj) {
*
* @param obj The serial object
*/
void serial_rx_abort_asynch(serial_t *obj) {
/* Stop receiver */
obj->serial.periph.uart->CMD |= USART_CMD_RXDIS;
void serial_rx_abort_asynch(serial_t *obj)
{
/* Stop receiver */
obj->serial.periph.uart->CMD |= USART_CMD_RXDIS;
/* Clean up */
switch(obj->serial.dmaOptionsRX.dmaUsageState) {
case DMA_USAGE_ALLOCATED:
/* stop DMA transfer */
DMA_ChannelEnable(obj->serial.dmaOptionsRX.dmaChannel, false);
break;
case DMA_USAGE_TEMPORARY_ALLOCATED:
/* stop DMA transfer and release channel */
DMA_ChannelEnable(obj->serial.dmaOptionsRX.dmaChannel, false);
dma_channel_free(obj->serial.dmaOptionsRX.dmaChannel);
obj->serial.dmaOptionsRX.dmaChannel = -1;
obj->serial.dmaOptionsRX.dmaUsageState = DMA_USAGE_OPPORTUNISTIC;
break;
default:
/* stop interrupting */
if(LEUART_REF_VALID(obj->serial.periph.leuart)) {
LEUART_IntDisable(obj->serial.periph.leuart, LEUART_IEN_RXDATAV | LEUART_IEN_PERR | LEUART_IEN_FERR | LEUART_IEN_RXOF | LEUART_IEN_SIGF);
} else {
USART_IntDisable(obj->serial.periph.uart, USART_IEN_RXDATAV | USART_IEN_PERR | USART_IEN_FERR | USART_IEN_RXOF);
}
break;
}
/* Clean up */
switch(obj->serial.dmaOptionsRX.dmaUsageState) {
case DMA_USAGE_ALLOCATED:
/* stop DMA transfer */
DMA_ChannelEnable(obj->serial.dmaOptionsRX.dmaChannel, false);
break;
case DMA_USAGE_TEMPORARY_ALLOCATED:
/* stop DMA transfer and release channel */
DMA_ChannelEnable(obj->serial.dmaOptionsRX.dmaChannel, false);
dma_channel_free(obj->serial.dmaOptionsRX.dmaChannel);
obj->serial.dmaOptionsRX.dmaChannel = -1;
obj->serial.dmaOptionsRX.dmaUsageState = DMA_USAGE_OPPORTUNISTIC;
break;
default:
/* stop interrupting */
if(LEUART_REF_VALID(obj->serial.periph.leuart)) {
LEUART_IntDisable(obj->serial.periph.leuart, LEUART_IEN_RXDATAV | LEUART_IEN_PERR | LEUART_IEN_FERR | LEUART_IEN_RXOF | LEUART_IEN_SIGF);
} else {
USART_IntDisable(obj->serial.periph.uart, USART_IEN_RXDATAV | USART_IEN_PERR | USART_IEN_FERR | USART_IEN_RXOF);
}
break;
}
/* Say that we can stop using this emode */
unblockSleepMode(SERIAL_LEAST_ACTIVE_SLEEPMODE);
/* Say that we can stop using this emode */
unblockSleepMode(SERIAL_LEAST_ACTIVE_SLEEPMODE);
}
#endif //DEVICE_SERIAL_ASYNCH

View File

@ -34,19 +34,19 @@ uint32_t sleep_block_counter[NUM_SLEEP_MODES] = {0};
*/
void sleep(void)
{
if (sleep_block_counter[0] > 0) {
// Blocked everything below EM0, so just return
return;
} else if (sleep_block_counter[1] > 0) {
// Blocked everything below EM1, enter EM1
EMU_EnterEM1();
} else if (sleep_block_counter[2] > 0) {
// Blocked everything below EM2, enter EM2
EMU_EnterEM2(true);
} else if (sleep_block_counter[3] > 0) {
// Blocked everything below EM3, enter EM3
EMU_EnterEM3(true);
}
if (sleep_block_counter[0] > 0) {
// Blocked everything below EM0, so just return
return;
} else if (sleep_block_counter[1] > 0) {
// Blocked everything below EM1, enter EM1
EMU_EnterEM1();
} else if (sleep_block_counter[2] > 0) {
// Blocked everything below EM2, enter EM2
EMU_EnterEM2(true);
} else if (sleep_block_counter[3] > 0) {
// Blocked everything below EM3, enter EM3
EMU_EnterEM3(true);
}
return;
}
@ -76,9 +76,9 @@ void deepsleep(void)
*/
void blockSleepMode(sleepstate_enum minimumMode)
{
INT_Disable();
sleep_block_counter[minimumMode]++;
INT_Enable();
INT_Disable();
sleep_block_counter[minimumMode]++;
INT_Enable();
}
/** Unblock the microcontroller from sleeping below a certain mode
@ -90,12 +90,11 @@ void blockSleepMode(sleepstate_enum minimumMode)
*/
void unblockSleepMode(sleepstate_enum minimumMode)
{
INT_Disable();
if(sleep_block_counter[minimumMode] > 0)
{
sleep_block_counter[minimumMode]--;
}
INT_Enable();
INT_Disable();
if(sleep_block_counter[minimumMode] > 0) {
sleep_block_counter[minimumMode]--;
}
INT_Enable();
}
#endif

View File

@ -35,7 +35,8 @@
static uint16_t fill_word = SPI_FILL_WORD;
#define SPI_LEAST_ACTIVE_SLEEPMODE EM1
inline CMU_Clock_TypeDef spi_get_clock_tree(spi_t *obj) {
inline CMU_Clock_TypeDef spi_get_clock_tree(spi_t *obj)
{
switch ((int)obj->spi.spi) {
#ifdef USART0
case SPI_0:
@ -81,7 +82,8 @@ inline uint8_t spi_get_index(spi_t *obj)
return index;
}
uint8_t spi_get_module(spi_t *obj) {
uint8_t spi_get_module(spi_t *obj)
{
return spi_get_index(obj);
}
@ -200,12 +202,12 @@ void spi_enable(spi_t *obj, uint8_t enable)
void spi_init(spi_t *obj, PinName mosi, PinName miso, PinName clk, PinName cs)
{
CMU_ClockEnable(cmuClock_HFPER, true);
spi_preinit(obj, mosi, miso, clk, cs);
CMU_ClockEnable(spi_get_clock_tree(obj), true);
usart_init(obj, 100000, usartDatabits8, true, usartClockMode0);
CMU_ClockEnable(cmuClock_HFPER, true);
spi_preinit(obj, mosi, miso, clk, cs);
CMU_ClockEnable(spi_get_clock_tree(obj), true);
usart_init(obj, 100000, usartDatabits8, true, usartClockMode0);
spi_enable_pins(obj, true, mosi, miso, clk, cs);
spi_enable_pins(obj, true, mosi, miso, clk, cs);
spi_enable(obj, true);
}
@ -254,8 +256,7 @@ void spi_enable_interrupt(spi_t *obj, uint32_t handler, uint8_t enable)
NVIC_SetVector(IRQvector, handler);
USART_IntEnable(obj->spi.spi, USART_IEN_RXDATAV);
NVIC_EnableIRQ(IRQvector);
}
else {
} else {
NVIC_SetVector(IRQvector, handler);
USART_IntDisable(obj->spi.spi, USART_IEN_RXDATAV);
NVIC_DisableIRQ(IRQvector);
@ -400,11 +401,11 @@ uint8_t spi_active(spi_t *obj)
void spi_buffer_set(spi_t *obj, void *tx, uint32_t tx_length, void *rx, uint32_t rx_length, uint8_t bit_width)
{
uint32_t i;
uint16_t *tx_ptr = (uint16_t *) tx;
uint32_t i;
uint16_t *tx_ptr = (uint16_t *) tx;
tx_length *= (bit_width >> 3);
rx_length *= (bit_width >> 3);
tx_length *= (bit_width >> 3);
rx_length *= (bit_width >> 3);
obj->tx_buff.buffer = tx;
obj->rx_buff.buffer = rx;
@ -416,123 +417,123 @@ void spi_buffer_set(spi_t *obj, void *tx, uint32_t tx_length, void *rx, uint32_t
obj->rx_buff.width = bit_width;
if((obj->spi.bits == 9) && (tx != 0)) {
// Make sure we don't have inadvertent non-zero bits outside 9-bit frames which could trigger unwanted operation
for(i = 0; i < (tx_length / 2); i++) {
tx_ptr[i] &= 0x1FF;
}
// Make sure we don't have inadvertent non-zero bits outside 9-bit frames which could trigger unwanted operation
for(i = 0; i < (tx_length / 2); i++) {
tx_ptr[i] &= 0x1FF;
}
}
}
static void spi_buffer_tx_write(spi_t *obj)
{
uint32_t data;
// This routine gets triggered on TXBL (= buffer empty), so check to see if we can write a double value
if (obj->spi.bits % 9 != 0) {
// No special 9-bit scenario
if((obj->tx_buff.pos < obj->tx_buff.length - 1) && ((obj->tx_buff.pos & 0x1) == 0)) {
// write double frame
if (obj->tx_buff.buffer == (void *)0) {
data = SPI_FILL_WORD;
} else {
uint16_t *tx = (uint16_t *)(obj->tx_buff.buffer);
data = tx[obj->tx_buff.pos / 2] & 0xFFFF;
}
obj->tx_buff.pos += 2;
obj->spi.spi->TXDOUBLE = data;
} else if (obj->tx_buff.pos < obj->tx_buff.length) {
// write single frame
if (obj->tx_buff.buffer == (void *)0) {
data = SPI_FILL_WORD & 0xFF;
} else {
uint8_t *tx = (uint8_t *)(obj->tx_buff.buffer);
data = tx[obj->tx_buff.pos] & 0xFF;
}
obj->tx_buff.pos++;
obj->spi.spi->TXDATA = data;
}
} else {
// 9-bit frame
if(obj->tx_buff.pos < obj->tx_buff.length - 3) {
// write double frame
if (obj->tx_buff.buffer == (void *)0) {
data = ((SPI_FILL_WORD & 0x01FF) << 16) | (SPI_FILL_WORD & 0x1FF);
} else {
uint32_t *tx = (uint32_t *)(obj->tx_buff.buffer);
data = tx[obj->tx_buff.pos / 4] & 0x01FF01FF;
}
obj->tx_buff.pos += 4;
obj->spi.spi->TXDOUBLEX = data;
} else if (obj->tx_buff.pos < obj->tx_buff.length - 1) {
// write single frame
if (obj->tx_buff.buffer == (void *)0) {
data = SPI_FILL_WORD & 0x01FF;
} else {
uint16_t *tx = (uint16_t *)(obj->tx_buff.buffer);
data = tx[obj->tx_buff.pos / 2] & 0x01FF;
}
obj->tx_buff.pos += 2;
obj->spi.spi->TXDATAX = data;
}
}
uint32_t data;
// This routine gets triggered on TXBL (= buffer empty), so check to see if we can write a double value
if (obj->spi.bits % 9 != 0) {
// No special 9-bit scenario
if((obj->tx_buff.pos < obj->tx_buff.length - 1) && ((obj->tx_buff.pos & 0x1) == 0)) {
// write double frame
if (obj->tx_buff.buffer == (void *)0) {
data = SPI_FILL_WORD;
} else {
uint16_t *tx = (uint16_t *)(obj->tx_buff.buffer);
data = tx[obj->tx_buff.pos / 2] & 0xFFFF;
}
obj->tx_buff.pos += 2;
obj->spi.spi->TXDOUBLE = data;
} else if (obj->tx_buff.pos < obj->tx_buff.length) {
// write single frame
if (obj->tx_buff.buffer == (void *)0) {
data = SPI_FILL_WORD & 0xFF;
} else {
uint8_t *tx = (uint8_t *)(obj->tx_buff.buffer);
data = tx[obj->tx_buff.pos] & 0xFF;
}
obj->tx_buff.pos++;
obj->spi.spi->TXDATA = data;
}
} else {
// 9-bit frame
if(obj->tx_buff.pos < obj->tx_buff.length - 3) {
// write double frame
if (obj->tx_buff.buffer == (void *)0) {
data = ((SPI_FILL_WORD & 0x01FF) << 16) | (SPI_FILL_WORD & 0x1FF);
} else {
uint32_t *tx = (uint32_t *)(obj->tx_buff.buffer);
data = tx[obj->tx_buff.pos / 4] & 0x01FF01FF;
}
obj->tx_buff.pos += 4;
obj->spi.spi->TXDOUBLEX = data;
} else if (obj->tx_buff.pos < obj->tx_buff.length - 1) {
// write single frame
if (obj->tx_buff.buffer == (void *)0) {
data = SPI_FILL_WORD & 0x01FF;
} else {
uint16_t *tx = (uint16_t *)(obj->tx_buff.buffer);
data = tx[obj->tx_buff.pos / 2] & 0x01FF;
}
obj->tx_buff.pos += 2;
obj->spi.spi->TXDATAX = data;
}
}
}
static void spi_buffer_rx_read(spi_t *obj)
{
if (obj->spi.bits % 9 != 0) {
if ((obj->spi.spi->STATUS & USART_STATUS_RXFULL) && (obj->rx_buff.pos < obj->rx_buff.length - 1) && ((obj->rx_buff.pos % 2) == 0)) {
// Read max 16 bits from buffer to speed things up
uint32_t data = (uint32_t)obj->spi.spi->RXDOUBLE; //read the data but store only if rx is set and not full
if (obj->rx_buff.buffer) {
uint16_t *rx = (uint16_t *)(obj->rx_buff.buffer);
rx[obj->rx_buff.pos / 2] = data & 0xFFFF;
obj->rx_buff.pos += 2;
}
} else if ((obj->spi.spi->STATUS & (USART_STATUS_RXDATAV | USART_STATUS_RXFULL)) && (obj->rx_buff.pos < obj->rx_buff.length)) {
// Read 8 bits from buffer
while((obj->spi.spi->STATUS & (USART_STATUS_RXDATAV | USART_STATUS_RXFULL)) && (obj->rx_buff.pos < obj->rx_buff.length)) {
uint32_t data = (uint32_t)obj->spi.spi->RXDATA; //read the data but store only if rx is set and not full
if (obj->rx_buff.buffer) {
uint8_t *rx = (uint8_t *)(obj->rx_buff.buffer);
rx[obj->rx_buff.pos] = data & 0xFF;
obj->rx_buff.pos++;
}
}
} else if (obj->spi.spi->STATUS & USART_STATUS_RXFULL) {
// Read from the buffer to lower the interrupt flag
volatile uint32_t data = (uint32_t)obj->spi.spi->RXDOUBLE;
} else if (obj->spi.spi->STATUS & USART_STATUS_RXDATAV) {
// Read from the buffer to lower the interrupt flag
volatile uint32_t data = (uint32_t)obj->spi.spi->RXDATA;
}
} else {
// Data bits is multiple of 9, so use the extended registers
if ((obj->spi.spi->STATUS & USART_STATUS_RXFULL) && (obj->rx_buff.pos < obj->rx_buff.length - 3) && ((obj->rx_buff.pos % 4) == 0)) {
// Read max 18 bits from buffer to speed things up
uint32_t data = (uint32_t)obj->spi.spi->RXDOUBLEX; //read the data but store only if rx is set and will not overflow
if (obj->rx_buff.buffer) {
uint16_t *rx = (uint16_t *)(obj->rx_buff.buffer);
rx[obj->rx_buff.pos / 2] = data & 0x000001FF;
rx[(obj->rx_buff.pos / 2) + 1] = (data & 0x01FF0000) >> 16;
obj->rx_buff.pos += 4;
}
} else if ((obj->spi.spi->STATUS & (USART_STATUS_RXDATAV | USART_STATUS_RXFULL)) && (obj->rx_buff.pos < obj->rx_buff.length - 1)) {
// Read 9 bits from buffer
while((obj->spi.spi->STATUS & (USART_STATUS_RXDATAV | USART_STATUS_RXFULL)) && (obj->rx_buff.pos < obj->rx_buff.length - 1)) {
uint32_t data = (uint32_t)obj->spi.spi->RXDATAX; //read the data but store only if rx is set and not full
if (obj->rx_buff.buffer) {
uint16_t *rx = (uint16_t *)(obj->rx_buff.buffer);
rx[obj->rx_buff.pos / 2] = data & 0x01FF;
obj->rx_buff.pos += 2;
}
}
} else if (obj->spi.spi->STATUS & USART_STATUS_RXFULL) {
// Read from the buffer to lower the interrupt flag
volatile uint32_t data = (uint32_t)obj->spi.spi->RXDOUBLEX;
} else if (obj->spi.spi->STATUS & USART_STATUS_RXDATAV) {
// Read from the buffer to lower the interrupt flag
volatile uint32_t data = (uint32_t)obj->spi.spi->RXDATAX;
}
}
if (obj->spi.bits % 9 != 0) {
if ((obj->spi.spi->STATUS & USART_STATUS_RXFULL) && (obj->rx_buff.pos < obj->rx_buff.length - 1) && ((obj->rx_buff.pos % 2) == 0)) {
// Read max 16 bits from buffer to speed things up
uint32_t data = (uint32_t)obj->spi.spi->RXDOUBLE; //read the data but store only if rx is set and not full
if (obj->rx_buff.buffer) {
uint16_t *rx = (uint16_t *)(obj->rx_buff.buffer);
rx[obj->rx_buff.pos / 2] = data & 0xFFFF;
obj->rx_buff.pos += 2;
}
} else if ((obj->spi.spi->STATUS & (USART_STATUS_RXDATAV | USART_STATUS_RXFULL)) && (obj->rx_buff.pos < obj->rx_buff.length)) {
// Read 8 bits from buffer
while((obj->spi.spi->STATUS & (USART_STATUS_RXDATAV | USART_STATUS_RXFULL)) && (obj->rx_buff.pos < obj->rx_buff.length)) {
uint32_t data = (uint32_t)obj->spi.spi->RXDATA; //read the data but store only if rx is set and not full
if (obj->rx_buff.buffer) {
uint8_t *rx = (uint8_t *)(obj->rx_buff.buffer);
rx[obj->rx_buff.pos] = data & 0xFF;
obj->rx_buff.pos++;
}
}
} else if (obj->spi.spi->STATUS & USART_STATUS_RXFULL) {
// Read from the buffer to lower the interrupt flag
volatile uint32_t data = (uint32_t)obj->spi.spi->RXDOUBLE;
} else if (obj->spi.spi->STATUS & USART_STATUS_RXDATAV) {
// Read from the buffer to lower the interrupt flag
volatile uint32_t data = (uint32_t)obj->spi.spi->RXDATA;
}
} else {
// Data bits is multiple of 9, so use the extended registers
if ((obj->spi.spi->STATUS & USART_STATUS_RXFULL) && (obj->rx_buff.pos < obj->rx_buff.length - 3) && ((obj->rx_buff.pos % 4) == 0)) {
// Read max 18 bits from buffer to speed things up
uint32_t data = (uint32_t)obj->spi.spi->RXDOUBLEX; //read the data but store only if rx is set and will not overflow
if (obj->rx_buff.buffer) {
uint16_t *rx = (uint16_t *)(obj->rx_buff.buffer);
rx[obj->rx_buff.pos / 2] = data & 0x000001FF;
rx[(obj->rx_buff.pos / 2) + 1] = (data & 0x01FF0000) >> 16;
obj->rx_buff.pos += 4;
}
} else if ((obj->spi.spi->STATUS & (USART_STATUS_RXDATAV | USART_STATUS_RXFULL)) && (obj->rx_buff.pos < obj->rx_buff.length - 1)) {
// Read 9 bits from buffer
while((obj->spi.spi->STATUS & (USART_STATUS_RXDATAV | USART_STATUS_RXFULL)) && (obj->rx_buff.pos < obj->rx_buff.length - 1)) {
uint32_t data = (uint32_t)obj->spi.spi->RXDATAX; //read the data but store only if rx is set and not full
if (obj->rx_buff.buffer) {
uint16_t *rx = (uint16_t *)(obj->rx_buff.buffer);
rx[obj->rx_buff.pos / 2] = data & 0x01FF;
obj->rx_buff.pos += 2;
}
}
} else if (obj->spi.spi->STATUS & USART_STATUS_RXFULL) {
// Read from the buffer to lower the interrupt flag
volatile uint32_t data = (uint32_t)obj->spi.spi->RXDOUBLEX;
} else if (obj->spi.spi->STATUS & USART_STATUS_RXDATAV) {
// Read from the buffer to lower the interrupt flag
volatile uint32_t data = (uint32_t)obj->spi.spi->RXDATAX;
}
}
}
int spi_master_write_asynch(spi_t *obj)
@ -602,7 +603,7 @@ uint32_t spi_event_check(spi_t *obj)
}
if(quit == true) {
event |= SPI_EVENT_INTERNAL_TRANSFER_COMPLETE;
event |= SPI_EVENT_INTERNAL_TRANSFER_COMPLETE;
}
return event;
@ -633,7 +634,8 @@ void transferComplete(unsigned int channel, bool primary, void *user)
*
* return value: whether the channels were acquired successfully (true) or not.
******************************************/
bool spi_allocate_dma(spi_t *obj) {
bool spi_allocate_dma(spi_t *obj)
{
int dmaChannelIn, dmaChannelOut;
dmaChannelIn = dma_channel_allocate(DMA_CAP_NONE);
if (dmaChannelIn == DMA_ERROR_OUT_OF_CHANNELS) {
@ -722,7 +724,7 @@ static void spi_master_dma_channel_setup(spi_t *obj, void* callback)
txChnlCfg.enableInt = true;
txChnlCfg.cb = &(obj->spi.dmaOptionsTX.dmaCallback);
switch ((int)obj->spi.spi) {
switch ((int)obj->spi.spi) {
#ifdef USART0
case SPI_0:
rxChnlCfg.select = DMAREQ_USART0_RXDATAV;
@ -759,7 +761,8 @@ static void spi_master_dma_channel_setup(spi_t *obj, void* callback)
* * tx_length: how many bytes will get sent.
* * rx_length: how many bytes will get received. If > tx_length, TX will get padded with n lower bits of SPI_FILL_WORD.
******************************************/
static void spi_activate_dma(spi_t *obj, void* rxdata, void* txdata, int tx_length, int rx_length) {
static void spi_activate_dma(spi_t *obj, void* rxdata, void* txdata, int tx_length, int rx_length)
{
/* DMA descriptors */
DMA_CfgDescr_TypeDef rxDescrCfg;
DMA_CfgDescr_TypeDef txDescrCfg;
@ -768,81 +771,81 @@ static void spi_activate_dma(spi_t *obj, void* rxdata, void* txdata, int tx_leng
obj->tx_buff.pos = tx_length;
if(obj->spi.bits != 9) {
/* Only activate RX DMA if a receive buffer is specified */
if (rxdata != NULL) {
// Setting up channel descriptor
rxDescrCfg.dstInc = dmaDataInc1;
rxDescrCfg.srcInc = dmaDataIncNone;
rxDescrCfg.size = dmaDataSize1;
rxDescrCfg.arbRate = dmaArbitrate1;
rxDescrCfg.hprot = 0;
DMA_CfgDescr(obj->spi.dmaOptionsRX.dmaChannel, true, &rxDescrCfg);
/* Only activate RX DMA if a receive buffer is specified */
if (rxdata != NULL) {
// Setting up channel descriptor
rxDescrCfg.dstInc = dmaDataInc1;
rxDescrCfg.srcInc = dmaDataIncNone;
rxDescrCfg.size = dmaDataSize1;
rxDescrCfg.arbRate = dmaArbitrate1;
rxDescrCfg.hprot = 0;
DMA_CfgDescr(obj->spi.dmaOptionsRX.dmaChannel, true, &rxDescrCfg);
// Clear RX registers - Useful if previous command transfered don't
obj->spi.spi->CMD = USART_CMD_CLEARRX;
// Clear RX registers - Useful if previous command transfered don't
obj->spi.spi->CMD = USART_CMD_CLEARRX;
/* Activate RX channel */
DMA_ActivateBasic(obj->spi.dmaOptionsRX.dmaChannel, true, false, rxdata, (void *)&(obj->spi.spi->RXDATA),
rx_length - 1);
}
/* Activate RX channel */
DMA_ActivateBasic(obj->spi.dmaOptionsRX.dmaChannel, true, false, rxdata, (void *)&(obj->spi.spi->RXDATA),
rx_length - 1);
}
// buffer with all FFs.
/* Setting up channel descriptor */
txDescrCfg.dstInc = dmaDataIncNone;
txDescrCfg.srcInc = (txdata == 0 ? dmaDataIncNone : (obj->spi.bits <= 8 ? dmaDataInc1 : dmaDataInc2)); //Do not increment source pointer when there is no transmit buffer
txDescrCfg.size = (obj->spi.bits <= 8 ? dmaDataSize1 : dmaDataSize2); //When frame size > 9, we can use TXDOUBLE to save bandwidth
txDescrCfg.arbRate = dmaArbitrate1;
txDescrCfg.hprot = 0;
DMA_CfgDescr(obj->spi.dmaOptionsTX.dmaChannel, true, &txDescrCfg);
// buffer with all FFs.
/* Setting up channel descriptor */
txDescrCfg.dstInc = dmaDataIncNone;
txDescrCfg.srcInc = (txdata == 0 ? dmaDataIncNone : (obj->spi.bits <= 8 ? dmaDataInc1 : dmaDataInc2)); //Do not increment source pointer when there is no transmit buffer
txDescrCfg.size = (obj->spi.bits <= 8 ? dmaDataSize1 : dmaDataSize2); //When frame size > 9, we can use TXDOUBLE to save bandwidth
txDescrCfg.arbRate = dmaArbitrate1;
txDescrCfg.hprot = 0;
DMA_CfgDescr(obj->spi.dmaOptionsTX.dmaChannel, true, &txDescrCfg);
/* Clear TX registers */
obj->spi.spi->CMD = USART_CMD_CLEARTX;
/* Clear TX registers */
obj->spi.spi->CMD = USART_CMD_CLEARTX;
/* Activate TX channel */
DMA_ActivateBasic( obj->spi.dmaOptionsTX.dmaChannel,
true,
false,
(obj->spi.bits <= 8 ? (void *)&(obj->spi.spi->TXDATA) : (void *)&(obj->spi.spi->TXDOUBLE)), //When frame size > 9, point to TXDOUBLE
(txdata == 0 ? &fill_word : txdata), // When there is nothing to transmit, point to static fill word
(obj->spi.bits <= 8 ? tx_length - 1 : (tx_length / 2) - 1)); // When using TXDOUBLE, recalculate transfer length
/* Activate TX channel */
DMA_ActivateBasic( obj->spi.dmaOptionsTX.dmaChannel,
true,
false,
(obj->spi.bits <= 8 ? (void *)&(obj->spi.spi->TXDATA) : (void *)&(obj->spi.spi->TXDOUBLE)), //When frame size > 9, point to TXDOUBLE
(txdata == 0 ? &fill_word : txdata), // When there is nothing to transmit, point to static fill word
(obj->spi.bits <= 8 ? tx_length - 1 : (tx_length / 2) - 1)); // When using TXDOUBLE, recalculate transfer length
} else {
/* Frame size == 9 */
/* Only activate RX DMA if a receive buffer is specified */
if (rxdata != NULL) {
// Setting up channel descriptor
rxDescrCfg.dstInc = dmaDataInc2;
rxDescrCfg.srcInc = dmaDataIncNone;
rxDescrCfg.size = dmaDataSize2;
rxDescrCfg.arbRate = dmaArbitrate1;
rxDescrCfg.hprot = 0;
DMA_CfgDescr(obj->spi.dmaOptionsRX.dmaChannel, true, &rxDescrCfg);
/* Frame size == 9 */
/* Only activate RX DMA if a receive buffer is specified */
if (rxdata != NULL) {
// Setting up channel descriptor
rxDescrCfg.dstInc = dmaDataInc2;
rxDescrCfg.srcInc = dmaDataIncNone;
rxDescrCfg.size = dmaDataSize2;
rxDescrCfg.arbRate = dmaArbitrate1;
rxDescrCfg.hprot = 0;
DMA_CfgDescr(obj->spi.dmaOptionsRX.dmaChannel, true, &rxDescrCfg);
// Clear RX registers - Useful if previous command transfered don't
obj->spi.spi->CMD = USART_CMD_CLEARRX;
// Clear RX registers - Useful if previous command transfered don't
obj->spi.spi->CMD = USART_CMD_CLEARRX;
/* Activate RX channel */
DMA_ActivateBasic(obj->spi.dmaOptionsRX.dmaChannel, true, false, rxdata, (void *)&(obj->spi.spi->RXDATAX),
(rx_length / 2) - 1);
}
/* Activate RX channel */
DMA_ActivateBasic(obj->spi.dmaOptionsRX.dmaChannel, true, false, rxdata, (void *)&(obj->spi.spi->RXDATAX),
(rx_length / 2) - 1);
}
/* Setting up channel descriptor */
txDescrCfg.dstInc = dmaDataIncNone;
txDescrCfg.srcInc = (txdata == 0 ? dmaDataIncNone : dmaDataInc2); //Do not increment source pointer when there is no transmit buffer
txDescrCfg.size = dmaDataSize2; //When frame size > 9, we can use TXDOUBLE to save bandwidth
txDescrCfg.arbRate = dmaArbitrate1;
txDescrCfg.hprot = 0;
DMA_CfgDescr(obj->spi.dmaOptionsTX.dmaChannel, true, &txDescrCfg);
/* Setting up channel descriptor */
txDescrCfg.dstInc = dmaDataIncNone;
txDescrCfg.srcInc = (txdata == 0 ? dmaDataIncNone : dmaDataInc2); //Do not increment source pointer when there is no transmit buffer
txDescrCfg.size = dmaDataSize2; //When frame size > 9, we can use TXDOUBLE to save bandwidth
txDescrCfg.arbRate = dmaArbitrate1;
txDescrCfg.hprot = 0;
DMA_CfgDescr(obj->spi.dmaOptionsTX.dmaChannel, true, &txDescrCfg);
/* Clear TX registers */
obj->spi.spi->CMD = USART_CMD_CLEARTX;
/* Clear TX registers */
obj->spi.spi->CMD = USART_CMD_CLEARTX;
/* Activate TX channel */
DMA_ActivateBasic( obj->spi.dmaOptionsTX.dmaChannel,
true,
false,
(void *)&(obj->spi.spi->TXDATAX), //When frame size > 9, point to TXDOUBLE
(txdata == 0 ? &fill_word : txdata), // When there is nothing to transmit, point to static fill word
(tx_length / 2) - 1); // When using TXDOUBLE, recalculate transfer length
/* Activate TX channel */
DMA_ActivateBasic( obj->spi.dmaOptionsTX.dmaChannel,
true,
false,
(void *)&(obj->spi.spi->TXDATAX), //When frame size > 9, point to TXDOUBLE
(txdata == 0 ? &fill_word : txdata), // When there is nothing to transmit, point to static fill word
(tx_length / 2) - 1); // When using TXDOUBLE, recalculate transfer length
}
}
@ -863,9 +866,10 @@ static void spi_activate_dma(spi_t *obj, void* rxdata, void* txdata, int tx_leng
* If the previous transfer has kept the channel, that channel will continue to get used.
*
********************************************************************/
void spi_master_transfer_dma(spi_t *obj, void *txdata, void *rxdata, int tx_length, int rx_length, void* cb, DMAUsage hint) {
/* Init DMA here to include it in the power figure */
dma_init();
void spi_master_transfer_dma(spi_t *obj, void *txdata, void *rxdata, int tx_length, int rx_length, void* cb, DMAUsage hint)
{
/* Init DMA here to include it in the power figure */
dma_init();
/* If the DMA channels are already allocated, we can assume they have been setup already */
if (hint != DMA_USAGE_NEVER && obj->spi.dmaOptionsTX.dmaUsageState == DMA_USAGE_ALLOCATED) {
/* setup has already been done, so just activate the transfer */
@ -910,36 +914,37 @@ void spi_master_transfer_dma(spi_t *obj, void *txdata, void *rxdata, int tx_leng
* @param[in] handler SPI interrupt handler
* @param[in] hint A suggestion for how to use DMA with this transfer
*/
void spi_master_transfer(spi_t *obj, void *tx, size_t tx_length, void *rx, size_t rx_length, uint8_t bit_width, uint32_t handler, uint32_t event, DMAUsage hint) {
if( spi_active(obj) ) return;
void spi_master_transfer(spi_t *obj, void *tx, size_t tx_length, void *rx, size_t rx_length, uint8_t bit_width, uint32_t handler, uint32_t event, DMAUsage hint)
{
if( spi_active(obj) ) return;
/* update fill word if on 9-bit frame size */
if(obj->spi.bits == 9) fill_word = SPI_FILL_WORD & 0x1FF;
else fill_word = SPI_FILL_WORD;
/* update fill word if on 9-bit frame size */
if(obj->spi.bits == 9) fill_word = SPI_FILL_WORD & 0x1FF;
else fill_word = SPI_FILL_WORD;
/* check corner case */
if(tx_length == 0) {
tx_length = rx_length;
tx = (void*) 0;
}
/* check corner case */
if(tx_length == 0) {
tx_length = rx_length;
tx = (void*) 0;
}
/* First, set the buffer */
spi_buffer_set(obj, tx, tx_length, rx, rx_length, bit_width);
/* First, set the buffer */
spi_buffer_set(obj, tx, tx_length, rx, rx_length, bit_width);
/* Then, enable the events */
spi_enable_event(obj, SPI_EVENT_ALL, false);
spi_enable_event(obj, event, true);
/* Then, enable the events */
spi_enable_event(obj, SPI_EVENT_ALL, false);
spi_enable_event(obj, event, true);
/* Be tricky on how we handle increased bit widths in the buffer... Handling on byte-basis */
// div 8 = shift right 3
tx_length = tx_length * (bit_width >> 3);
rx_length = rx_length * (bit_width >> 3);
/* Be tricky on how we handle increased bit widths in the buffer... Handling on byte-basis */
// div 8 = shift right 3
tx_length = tx_length * (bit_width >> 3);
rx_length = rx_length * (bit_width >> 3);
// Set the sleep mode
blockSleepMode(SPI_LEAST_ACTIVE_SLEEPMODE);
// Set the sleep mode
blockSleepMode(SPI_LEAST_ACTIVE_SLEEPMODE);
/* And kick off the transfer */
spi_master_transfer_dma(obj, tx, rx, tx_length, rx_length, (void*)handler, hint);
/* And kick off the transfer */
spi_master_transfer_dma(obj, tx, rx, tx_length, rx_length, (void*)handler, hint);
}
@ -953,7 +958,8 @@ void spi_master_transfer(spi_t *obj, void *tx, size_t tx_length, void *rx, size_
* return: event mask. Currently only 0 or SPI_EVENT_COMPLETE upon transfer completion.
*
********************************************************************/
uint32_t spi_irq_handler_asynch(spi_t* obj) {
uint32_t spi_irq_handler_asynch(spi_t* obj)
{
/* Determine whether the current scenario is DMA or IRQ, and act accordingly */
@ -962,56 +968,55 @@ uint32_t spi_irq_handler_asynch(spi_t* obj) {
/* If there is an RX transfer ongoing, wait for it to finish */
if (DMA_ChannelEnabled(obj->spi.dmaOptionsRX.dmaChannel)) {
/* Check if we need to kick off TX transfer again to force more incoming data. */
if (!DMA_ChannelEnabled(obj->spi.dmaOptionsTX.dmaChannel) && (obj->tx_buff.pos < obj->rx_buff.length)) {
//Save state of TX transfer amount
int length_diff = obj->rx_buff.length - obj->tx_buff.pos;
obj->tx_buff.pos = obj->rx_buff.length;
/* Check if we need to kick off TX transfer again to force more incoming data. */
if (!DMA_ChannelEnabled(obj->spi.dmaOptionsTX.dmaChannel) && (obj->tx_buff.pos < obj->rx_buff.length)) {
//Save state of TX transfer amount
int length_diff = obj->rx_buff.length - obj->tx_buff.pos;
obj->tx_buff.pos = obj->rx_buff.length;
//Kick off a new DMA transfer
DMA_CfgDescr_TypeDef txDescrCfg;
//Kick off a new DMA transfer
DMA_CfgDescr_TypeDef txDescrCfg;
if(obj->spi.bits != 9) {
fill_word = SPI_FILL_WORD;
/* Setting up channel descriptor */
txDescrCfg.dstInc = dmaDataIncNone;
txDescrCfg.srcInc = dmaDataIncNone; //Do not increment source pointer when there is no transmit buffer
txDescrCfg.size = (obj->spi.bits <= 8 ? dmaDataSize1 : dmaDataSize2); //When frame size > 9, we can use TXDOUBLE to save bandwidth
txDescrCfg.arbRate = dmaArbitrate1;
txDescrCfg.hprot = 0;
DMA_CfgDescr(obj->spi.dmaOptionsTX.dmaChannel, true, &txDescrCfg);
if(obj->spi.bits != 9) {
fill_word = SPI_FILL_WORD;
/* Setting up channel descriptor */
txDescrCfg.dstInc = dmaDataIncNone;
txDescrCfg.srcInc = dmaDataIncNone; //Do not increment source pointer when there is no transmit buffer
txDescrCfg.size = (obj->spi.bits <= 8 ? dmaDataSize1 : dmaDataSize2); //When frame size > 9, we can use TXDOUBLE to save bandwidth
txDescrCfg.arbRate = dmaArbitrate1;
txDescrCfg.hprot = 0;
DMA_CfgDescr(obj->spi.dmaOptionsTX.dmaChannel, true, &txDescrCfg);
/* Activate TX channel */
DMA_ActivateBasic( obj->spi.dmaOptionsTX.dmaChannel,
true,
false,
(obj->spi.bits <= 8 ? (void *)&(obj->spi.spi->TXDATA) : (void *)&(obj->spi.spi->TXDOUBLE)), //When frame size > 9, point to TXDOUBLE
&fill_word, // When there is nothing to transmit, point to static fill word
(obj->spi.bits <= 8 ? length_diff - 1 : (length_diff / 2) - 1)); // When using TXDOUBLE, recalculate transfer length
} else {
/* Setting up channel descriptor */
fill_word = SPI_FILL_WORD & 0x1FF;
txDescrCfg.dstInc = dmaDataIncNone;
txDescrCfg.srcInc = dmaDataIncNone; //Do not increment source pointer when there is no transmit buffer
txDescrCfg.size = dmaDataSize2; //When frame size > 9, we can use TXDOUBLE to save bandwidth
txDescrCfg.arbRate = dmaArbitrate1;
txDescrCfg.hprot = 0;
DMA_CfgDescr(obj->spi.dmaOptionsTX.dmaChannel, true, &txDescrCfg);
/* Activate TX channel */
DMA_ActivateBasic( obj->spi.dmaOptionsTX.dmaChannel,
true,
false,
(obj->spi.bits <= 8 ? (void *)&(obj->spi.spi->TXDATA) : (void *)&(obj->spi.spi->TXDOUBLE)), //When frame size > 9, point to TXDOUBLE
&fill_word, // When there is nothing to transmit, point to static fill word
(obj->spi.bits <= 8 ? length_diff - 1 : (length_diff / 2) - 1)); // When using TXDOUBLE, recalculate transfer length
} else {
/* Setting up channel descriptor */
fill_word = SPI_FILL_WORD & 0x1FF;
txDescrCfg.dstInc = dmaDataIncNone;
txDescrCfg.srcInc = dmaDataIncNone; //Do not increment source pointer when there is no transmit buffer
txDescrCfg.size = dmaDataSize2; //When frame size > 9, we can use TXDOUBLE to save bandwidth
txDescrCfg.arbRate = dmaArbitrate1;
txDescrCfg.hprot = 0;
DMA_CfgDescr(obj->spi.dmaOptionsTX.dmaChannel, true, &txDescrCfg);
DMA_ActivateBasic( obj->spi.dmaOptionsTX.dmaChannel,
true,
false,
(void *)&(obj->spi.spi->TXDATAX), //When frame size > 9, point to TXDOUBLE
&fill_word, // When there is nothing to transmit, point to static fill word
(length_diff / 2) - 1);
}
}
else return 0;
DMA_ActivateBasic( obj->spi.dmaOptionsTX.dmaChannel,
true,
false,
(void *)&(obj->spi.spi->TXDATAX), //When frame size > 9, point to TXDOUBLE
&fill_word, // When there is nothing to transmit, point to static fill word
(length_diff / 2) - 1);
}
} else return 0;
}
/* If there is still a TX transfer ongoing (tx_length > rx_length), wait for it to finish */
if (DMA_ChannelEnabled(obj->spi.dmaOptionsTX.dmaChannel)) {
return 0;
return 0;
}
/* Release the dma channels if they were opportunistically allocated */
@ -1054,7 +1059,8 @@ uint32_t spi_irq_handler_asynch(spi_t* obj) {
*
* @param obj The SPI peripheral to stop
*/
void spi_abort_asynch(spi_t *obj) {
void spi_abort_asynch(spi_t *obj)
{
// If we're not currently transferring, then there's nothing to do here
if(spi_active(obj) != 0) return;