Merge pull request #14483 from LDong-Arm/tdbstore_whitebox_low_ram

Improve HeapBlockDevice, TDBStore and tests
pull/14529/head
Martin Kojtal 2021-04-15 10:36:36 +02:00 committed by GitHub
commit b5652a45c9
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
6 changed files with 81 additions and 55 deletions

View File

@ -28,9 +28,11 @@
namespace mbed {
/** Lazily allocated heap-backed block device
/** Lazily allocated heap-backed block device.
*
* Useful for simulating a block device and tests
* Useful for simulating a block device and tests.
*
* @note Each block is allocated when used, and freed when erased.
*
* @code
* #include "mbed.h"

View File

@ -40,11 +40,11 @@ HeapBlockDevice::~HeapBlockDevice()
{
if (_blocks) {
for (size_t i = 0; i < _count; i++) {
free(_blocks[i]);
delete[] _blocks[i];
}
delete[] _blocks;
_blocks = 0;
_blocks = nullptr;
}
}
@ -57,9 +57,13 @@ int HeapBlockDevice::init()
}
if (!_blocks) {
_blocks = new uint8_t *[_count];
_blocks = new (std::nothrow) uint8_t *[_count];
if (!_blocks) {
return BD_ERROR_DEVICE_ERROR;
}
for (size_t i = 0; i < _count; i++) {
_blocks[i] = 0;
_blocks[i] = nullptr;
}
}
@ -156,7 +160,7 @@ int HeapBlockDevice::program(const void *b, bd_addr_t addr, bd_size_t size)
bd_addr_t lo = addr % _erase_size;
if (!_blocks[hi]) {
_blocks[hi] = (uint8_t *)malloc(_erase_size);
_blocks[hi] = new (std::nothrow) uint8_t[_erase_size];
if (!_blocks[hi]) {
return BD_ERROR_DEVICE_ERROR;
}
@ -180,6 +184,13 @@ int HeapBlockDevice::erase(bd_addr_t addr, bd_size_t size)
if (!is_valid_erase(addr, size)) {
return BD_ERROR_DEVICE_ERROR;
}
for (size_t i = 0; i < (size / _erase_size); i++) {
size_t index = addr / _erase_size + i;
delete[] _blocks[index];
_blocks[index] = nullptr;
}
return 0;
}

View File

@ -67,21 +67,6 @@ TEST_F(FileSystemStoreModuleTest, set_get)
EXPECT_STREQ("data", buf);
}
TEST_F(FileSystemStoreModuleTest, erased_set_get)
{
EXPECT_EQ(store->deinit(), MBED_SUCCESS);
EXPECT_EQ(heap.init(), MBED_SUCCESS);
EXPECT_EQ(heap.erase(0, heap.size()), MBED_SUCCESS);
EXPECT_EQ(heap.deinit(), MBED_SUCCESS);
EXPECT_EQ(store->init(), MBED_SUCCESS);
char buf[100];
size_t size;
EXPECT_EQ(store->set("key", "data", 5, 0), MBED_SUCCESS);
EXPECT_EQ(store->get("key", buf, 100, &size), MBED_SUCCESS);
EXPECT_EQ(size, 5);
EXPECT_STREQ("data", buf);
}
TEST_F(FileSystemStoreModuleTest, set_deinit_init_get)
{
char buf[100];

View File

@ -346,14 +346,15 @@ private:
int reset_area(uint8_t area);
/**
* @brief Erase an erase unit.
* @brief Erase an area.
*
* @param[in] area Area.
* @param[in] offset Offset in area.
* @param[in] size Number of bytes to erase.
*
* @returns 0 for success, nonzero for failure.
*/
int erase_erase_unit(uint8_t area, uint32_t offset);
int erase_area(uint8_t area, uint32_t offset, uint32_t size);
/**
* @brief Calculate addresses and sizes of areas.

View File

@ -170,24 +170,31 @@ int TDBStore::write_area(uint8_t area, uint32_t offset, uint32_t size, const voi
return MBED_SUCCESS;
}
int TDBStore::erase_erase_unit(uint8_t area, uint32_t offset)
int TDBStore::erase_area(uint8_t area, uint32_t offset, uint32_t size)
{
uint32_t bd_offset = _area_params[area].address + offset;
uint32_t eu_size = _buff_bd->get_erase_size(bd_offset);
if (_buff_bd->get_erase_value() != -1) {
return _buff_bd->erase(bd_offset, eu_size);
} else {
// We need to simulate erase, as our block device
// does not do it. We can do this one byte at a time
// because we use BufferedBlockDevice that has page buffers
uint8_t val = 0xff;
int ret;
for (; eu_size; --eu_size) {
ret = _buff_bd->program(&val, bd_offset++, 1);
int ret = _buff_bd->erase(bd_offset, size);
if (ret) {
return ret;
}
if (_buff_bd->get_erase_value() == -1) {
// We need to simulate erase to wipe records, as our block device
// may not do it. Program in chunks of _work_buf_size if the minimum
// program size is too small (e.g. one-byte) to avoid performance
// issues.
MBED_ASSERT(_work_buf != nullptr);
MBED_ASSERT(_work_buf_size != 0);
memset(_work_buf, 0xFF, _work_buf_size);
while (size) {
uint32_t chunk = std::min<uint32_t>(_work_buf_size, size);
ret = _buff_bd->program(_work_buf, bd_offset, chunk);
if (ret) {
return ret;
}
size -= chunk;
bd_offset += chunk;
}
}
return MBED_SUCCESS;
@ -1458,19 +1465,24 @@ void TDBStore::offset_in_erase_unit(uint8_t area, uint32_t offset,
uint32_t &offset_from_start, uint32_t &dist_to_end)
{
uint32_t bd_offset = _area_params[area].address + offset;
uint32_t agg_offset = 0;
while (bd_offset >= agg_offset + _buff_bd->get_erase_size(agg_offset)) {
agg_offset += _buff_bd->get_erase_size(agg_offset);
}
offset_from_start = bd_offset - agg_offset;
dist_to_end = _buff_bd->get_erase_size(agg_offset) - offset_from_start;
// The parameter of `BlockDevice::get_erase_size(bd_addr_t addr)`
// does not need to be aligned.
uint32_t erase_unit = _buff_bd->get_erase_size(bd_offset);
// Even on a flash device with multiple regions, the start address of
// an erase unit is aligned to the current region's unit size.
offset_from_start = bd_offset % erase_unit;
dist_to_end = erase_unit - offset_from_start;
}
int TDBStore::check_erase_before_write(uint8_t area, uint32_t offset, uint32_t size, bool force_check)
{
// In order to save init time, we don't check that the entire area is erased.
// Instead, whenever reaching an erase unit start erase it.
bool erase = false;
uint32_t start_offset;
uint32_t end_offset;
while (size) {
uint32_t dist, offset_from_start;
int ret;
@ -1478,13 +1490,22 @@ int TDBStore::check_erase_before_write(uint8_t area, uint32_t offset, uint32_t s
uint32_t chunk = std::min(size, dist);
if (offset_from_start == 0 || force_check) {
ret = erase_erase_unit(area, offset - offset_from_start);
if (ret != MBED_SUCCESS) {
return MBED_ERROR_WRITE_FAILED;
if (!erase) {
erase = true;
start_offset = offset - offset_from_start;
}
end_offset = offset + dist;
}
offset += chunk;
size -= chunk;
}
if (erase) {
int ret = erase_area(area, start_offset, end_offset - start_offset);
if (ret != MBED_SUCCESS) {
return MBED_ERROR_WRITE_FAILED;
}
}
return MBED_SUCCESS;
}

View File

@ -132,11 +132,14 @@ static void white_box_test()
} else {
test_bd = &heap_bd;
// We need to skip the test if we don't have enough memory for the heap block device.
// However, this device allocates the erase units on the fly, so "erase" it via the flash
// simulator. A failure here means we haven't got enough memory.
heap_bd.init();
result = heap_bd.erase(0, heap_bd.size());
TEST_SKIP_UNLESS_MESSAGE(!result, "Not enough heap to run test");
// However, this device allocates the blocks on the fly when programmed. A failure
// here means we haven't got enough memory.
result = heap_bd.init();
TEST_SKIP_UNLESS_MESSAGE(result == BD_ERROR_OK, "Not enough heap to run test")
for (bd_addr_t addr = 0; addr < heap_bd.size(); addr += heap_bd.get_program_size()) {
result = heap_bd.program(dummy, addr, heap_bd.get_program_size());
TEST_SKIP_UNLESS_MESSAGE(result == BD_ERROR_OK, "Not enough heap to run test")
}
heap_bd.deinit();
}
@ -345,11 +348,14 @@ static void multi_set_test()
#ifdef USE_HEAP_BD
// We need to skip the test if we don't have enough memory for the heap block device.
// However, this device allocates the erase units on the fly, so "erase" it via the flash
// simulator. A failure here means we haven't got enough memory.
flash_bd.init();
result = flash_bd.erase(0, flash_bd.size());
TEST_SKIP_UNLESS_MESSAGE(!result, "Not enough heap to run test");
// However, this device allocates the blocks on the fly when programmed. A failure
// here means we haven't got enough memory.
result = flash_bd.init();
TEST_SKIP_UNLESS_MESSAGE(result == BD_ERROR_OK, "Not enough heap to run test")
for (bd_addr_t addr = 0; addr < flash_bd.size(); addr += flash_bd.get_program_size()) {
result = flash_bd.program(dummy, addr, flash_bd.get_program_size());
TEST_SKIP_UNLESS_MESSAGE(result == BD_ERROR_OK, "Not enough heap to run test")
}
flash_bd.deinit();
#endif