Merge pull request #5106 from fkjagodzinski/timeout_tests

Timeout & LowPowerTimeout tests
pull/6211/merge
Cruz Monrreal 2018-03-15 10:55:15 -05:00 committed by GitHub
commit b18c88e2cc
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 518 additions and 170 deletions

View File

@ -18,135 +18,76 @@
#error [NOT_SUPPORTED] Low power timer not supported for this target
#endif
#include "mbed.h"
#include "greentea-client/test_env.h"
#include "utest/utest.h"
#include "unity/unity.h"
#include "greentea-client/test_env.h"
#include "mbed.h"
#include "../timeout/timeout_tests.h"
using namespace utest::v1;
volatile static bool complete;
static LowPowerTimeout lpt;
/* Timeouts are quite arbitrary due to large number of boards with varying level of accuracy */
#define LONG_TIMEOUT (100000)
#define SHORT_TIMEOUT (600)
void cb_done() {
complete = true;
}
#if DEVICE_SLEEP
void lp_timeout_1s_deepsleep(void)
utest::v1::status_t greentea_failure_handler(const Case * const source, const failure_t reason)
{
complete = false;
LowPowerTimer timer;
/*
* Since deepsleep() may shut down the UART peripheral, we wait for 10ms
* to allow for hardware serial buffers to completely flush.
* This should be replaced with a better function that checks if the
* hardware buffers are empty. However, such an API does not exist now,
* so we'll use the wait_ms() function for now.
*/
wait_ms(10);
/*
* We use here the low power timer instead of microsecond timer for start and
* end because the microseconds timer might be disable during deepsleep.
*/
timer.start();
lpt.attach(&cb_done, 1);
/* Make sure deepsleep is allowed, to go to deepsleep */
bool deep_sleep_allowed = sleep_manager_can_deep_sleep();
TEST_ASSERT_TRUE_MESSAGE(deep_sleep_allowed, "Deep sleep should be allowed");
sleep();
while (!complete);
/* It takes longer to wake up from deep sleep */
TEST_ASSERT_UINT32_WITHIN(LONG_TIMEOUT, 1000000, timer.read_us());
TEST_ASSERT_TRUE(complete);
}
void lp_timeout_1s_sleep(void)
{
complete = false;
Timer timer;
timer.start();
sleep_manager_lock_deep_sleep();
lpt.attach(&cb_done, 1);
bool deep_sleep_allowed = sleep_manager_can_deep_sleep();
TEST_ASSERT_FALSE_MESSAGE(deep_sleep_allowed, "Deep sleep should be disallowed");
sleep();
while (!complete);
sleep_manager_unlock_deep_sleep();
TEST_ASSERT_UINT32_WITHIN(LONG_TIMEOUT, 1000000, timer.read_us());
TEST_ASSERT_TRUE(complete);
}
#endif /* DEVICE_SLEEP */
void lp_timeout_us(uint32_t delay_us, uint32_t tolerance)
{
complete = false;
Timer timer;
timer.start();
lpt.attach_us(&cb_done, delay_us);
while (!complete);
/* Using RTC which is less accurate */
TEST_ASSERT_UINT32_WITHIN(tolerance, delay_us, timer.read_us());
TEST_ASSERT_TRUE(complete);
}
void lp_timeout_5s(void)
{
lp_timeout_us(5000000, LONG_TIMEOUT);
}
void lp_timeout_1s(void)
{
lp_timeout_us(1000000, LONG_TIMEOUT);
}
void lp_timeout_1ms(void)
{
lp_timeout_us(1000, SHORT_TIMEOUT);
}
void lp_timeout_500us(void)
{
lp_timeout_us(500, SHORT_TIMEOUT);
}
utest::v1::status_t greentea_failure_handler(const Case *const source, const failure_t reason) {
greentea_case_failure_abort_handler(source, reason);
return STATUS_CONTINUE;
}
Case cases[] = {
Case("500us LowPowerTimeout", lp_timeout_500us, greentea_failure_handler),
Case("1ms LowPowerTimeout", lp_timeout_1ms, greentea_failure_handler),
Case("1sec LowPowerTimeout", lp_timeout_1s, greentea_failure_handler),
Case("5sec LowPowerTimeout", lp_timeout_5s, greentea_failure_handler),
Case("Callback called once (attach)", test_single_call<AttachTester<LowPowerTimeout> >),
Case("Callback called once (attach_us)", test_single_call<AttachUSTester<LowPowerTimeout> >),
Case("Callback not called when cancelled (attach)", test_cancel<AttachTester<LowPowerTimeout> >),
Case("Callback not called when cancelled (attach_us)", test_cancel<AttachUSTester<LowPowerTimeout> >),
Case("Callback override (attach)", test_override<AttachTester<LowPowerTimeout> >),
Case("Callback override (attach_us)", test_override<AttachUSTester<LowPowerTimeout> >),
Case("Multiple timeouts running in parallel (attach)", test_multiple<AttachTester<LowPowerTimeout> >),
Case("Multiple timeouts running in parallel (attach_us)", test_multiple<AttachUSTester<LowPowerTimeout> >),
Case("Zero delay (attach)", test_no_wait<AttachTester<LowPowerTimeout> >),
Case("Zero delay (attach_us)", test_no_wait<AttachUSTester<LowPowerTimeout> >),
Case("10 ms delay accuracy (attach)", test_delay_accuracy<AttachTester<LowPowerTimeout>, 10000, SHORT_DELTA_US>,
greentea_failure_handler),
Case("10 ms delay accuracy (attach_us)", test_delay_accuracy<AttachUSTester<LowPowerTimeout>, 10000, SHORT_DELTA_US>,
greentea_failure_handler),
Case("1 s delay accuracy (attach)", test_delay_accuracy<AttachTester<LowPowerTimeout>, 1000000, LONG_DELTA_US>,
greentea_failure_handler),
Case("1 s delay accuracy (attach_us)", test_delay_accuracy<AttachUSTester<LowPowerTimeout>, 1000000, LONG_DELTA_US>,
greentea_failure_handler),
Case("5 s delay accuracy (attach)", test_delay_accuracy<AttachTester<LowPowerTimeout>, 5000000, LONG_DELTA_US>,
greentea_failure_handler),
Case("5 s delay accuracy (attach_us)", test_delay_accuracy<AttachUSTester<LowPowerTimeout>, 5000000, LONG_DELTA_US>,
greentea_failure_handler),
#if DEVICE_SLEEP
Case("1sec LowPowerTimeout from sleep", lp_timeout_1s_sleep, greentea_failure_handler),
Case("1sec LowPowerTimeout from deepsleep", lp_timeout_1s_deepsleep, greentea_failure_handler),
#endif /* DEVICE_SLEEP */
Case("1 s delay during sleep (attach)", test_sleep<AttachTester<LowPowerTimeout>, 1000000, LONG_DELTA_US>,
greentea_failure_handler),
Case("1 s delay during sleep (attach_us)", test_sleep<AttachUSTester<LowPowerTimeout>, 1000000, LONG_DELTA_US>,
greentea_failure_handler),
Case("1 s delay during deepsleep (attach)", test_deepsleep<AttachTester<LowPowerTimeout>, 1000000, LONG_DELTA_US>,
greentea_failure_handler),
Case("1 s delay during deepsleep (attach_us)", test_deepsleep<AttachUSTester<LowPowerTimeout>, 1000000, LONG_DELTA_US>,
greentea_failure_handler),
#endif
Case("Timing drift (attach)", test_drift<AttachTester<LowPowerTimeout> >),
Case("Timing drift (attach_us)", test_drift<AttachUSTester<LowPowerTimeout> >),
};
utest::v1::status_t greentea_test_setup(const size_t number_of_cases) {
GREENTEA_SETUP(20, "default_auto");
utest::v1::status_t greentea_test_setup(const size_t number_of_cases)
{
GREENTEA_SETUP(240, "timing_drift_auto");
return greentea_test_setup_handler(number_of_cases);
}
Specification specification(greentea_test_setup, cases, greentea_test_teardown_handler);
int main() {
int main()
{
Harness::run(specification);
}

View File

@ -1,91 +1,83 @@
/*
* Copyright (c) 2013-2016, ARM Limited, All Rights Reserved
* SPDX-License-Identifier: Apache-2.0
/* mbed Microcontroller Library
* Copyright (c) 2017 ARM Limited
*
* Licensed under the Apache License, Version 2.0 (the "License"); you may
* not use this file except in compliance with the License.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/*
* Tests is to measure the accuracy of Timeout over a period of time
*
*
* 1) DUT would start to update callback_trigger_count every milli sec
* 2) Host would query what is current count base_time, Device responds by the callback_trigger_count
* 3) Host after waiting for measurement stretch. It will query for device time again final_time.
* 4) Host computes the drift considering base_time, final_time, transport delay and measurement stretch
* 5) Finally host send the results back to device pass/fail based on tolerance.
* 6) More details on tests can be found in timing_drift_auto.py
*
*/
#include "mbed.h"
#include "greentea-client/test_env.h"
#include "utest/utest.h"
#include "unity/unity.h"
#include "timeout_tests.h"
using namespace utest::v1;
#define PERIOD_US 10000
volatile int ticker_count = 0;
volatile uint32_t callback_trigger_count = 0;
static const int test_timeout = 240;
Timeout timeout;
void set_incremeant_count() {
timeout.attach_us(set_incremeant_count, PERIOD_US);
++callback_trigger_count;
utest::v1::status_t greentea_failure_handler(const Case * const source, const failure_t reason)
{
greentea_case_failure_abort_handler(source, reason);
return STATUS_CONTINUE;
}
void test_case_timeout() {
Case cases[] = {
Case("Callback called once (attach)", test_single_call<AttachTester<Timeout> >),
Case("Callback called once (attach_us)", test_single_call<AttachUSTester<Timeout> >),
char _key[11] = { };
char _value[128] = { };
int expected_key = 1;
uint8_t results_size = 0;
Case("Callback not called when cancelled (attach)", test_cancel<AttachTester<Timeout> >),
Case("Callback not called when cancelled (attach_us)", test_cancel<AttachUSTester<Timeout> >),
greentea_send_kv("timing_drift_check_start", 0);
timeout.attach_us(set_incremeant_count, PERIOD_US);
Case("Callback override (attach)", test_override<AttachTester<Timeout> >),
Case("Callback override (attach_us)", test_override<AttachUSTester<Timeout> >),
// wait for 1st signal from host
do {
greentea_parse_kv(_key, _value, sizeof(_key), sizeof(_value));
expected_key = strcmp(_key, "base_time");
} while (expected_key);
Case("Multiple timeouts running in parallel (attach)", test_multiple<AttachTester<Timeout> >),
Case("Multiple timeouts running in parallel (attach_us)", test_multiple<AttachUSTester<Timeout> >),
greentea_send_kv(_key, callback_trigger_count * PERIOD_US);
Case("Zero delay (attach)", test_no_wait<AttachTester<Timeout> >),
Case("Zero delay (attach_us)", test_no_wait<AttachUSTester<Timeout> >),
// wait for 2nd signal from host
greentea_parse_kv(_key, _value, sizeof(_key), sizeof(_value));
greentea_send_kv(_key, callback_trigger_count * PERIOD_US);
Case("10 ms delay accuracy (attach)", test_delay_accuracy<AttachTester<Timeout>, 10000, SHORT_DELTA_US>,
greentea_failure_handler),
Case("10 ms delay accuracy (attach_us)", test_delay_accuracy<AttachUSTester<Timeout>, 10000, SHORT_DELTA_US>,
greentea_failure_handler),
//get the results from host
greentea_parse_kv(_key, _value, sizeof(_key), sizeof(_value));
Case("1 s delay accuracy (attach)", test_delay_accuracy<AttachTester<Timeout>, 1000000, LONG_DELTA_US>,
greentea_failure_handler),
Case("1 s delay accuracy (attach_us)", test_delay_accuracy<AttachUSTester<Timeout>, 1000000, LONG_DELTA_US>,
greentea_failure_handler),
TEST_ASSERT_EQUAL_STRING_MESSAGE("pass", _key,"Host side script reported a fail...");
}
Case("5 s delay accuracy (attach)", test_delay_accuracy<AttachTester<Timeout>, 5000000, LONG_DELTA_US>,
greentea_failure_handler),
Case("5 s delay accuracy (attach_us)", test_delay_accuracy<AttachUSTester<Timeout>, 5000000, LONG_DELTA_US>,
greentea_failure_handler),
// Test casess
Case cases[] = { Case("Timers: toggle on/off", test_case_timeout), };
#if DEVICE_SLEEP
Case("1 s delay during sleep (attach)", test_sleep<AttachTester<Timeout>, 1000000, LONG_DELTA_US>,
greentea_failure_handler),
Case("1 s delay during sleep (attach_us)", test_sleep<AttachUSTester<Timeout>, 1000000, LONG_DELTA_US>,
greentea_failure_handler),
#endif
utest::v1::status_t greentea_test_setup(const size_t number_of_cases) {
GREENTEA_SETUP(test_timeout, "timing_drift_auto");
Case("Timing drift (attach)", test_drift<AttachTester<Timeout> >),
Case("Timing drift (attach_us)", test_drift<AttachUSTester<Timeout> >),
};
utest::v1::status_t greentea_test_setup(const size_t number_of_cases)
{
GREENTEA_SETUP(240, "timing_drift_auto");
return greentea_test_setup_handler(number_of_cases);
}
Specification specification(greentea_test_setup, cases, greentea_test_teardown_handler);
int main() {
int main()
{
Harness::run(specification);
}

View File

@ -0,0 +1,415 @@
/* mbed Microcontroller Library
* Copyright (c) 2017 ARM Limited
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MBED_TIMEOUT_TESTS_H
#define MBED_TIMEOUT_TESTS_H
#include "mbed.h"
#include "unity/unity.h"
#define NUM_TIMEOUTS 16
#define DRIFT_TEST_PERIOD_US 10000
const float TEST_DELAY_S = 0.01;
const uint32_t TEST_DELAY_MS = 1000.0F * TEST_DELAY_S;
const us_timestamp_t TEST_DELAY_US = 1000000.0F * TEST_DELAY_S;
/* Timeouts are quite arbitrary due to large number of boards with varying level of accuracy */
#define LONG_DELTA_US (100000)
#define SHORT_DELTA_US (2000)
void sem_callback(Semaphore *sem)
{
sem->release();
}
void cnt_callback(volatile uint32_t *cnt)
{
(*cnt)++;
}
template<typename TimeoutType>
class AttachTester: public TimeoutType {
public:
void attach_callback(Callback<void()> func, us_timestamp_t delay_us)
{
TimeoutType::attach(func, (float) delay_us / 1000000.0f);
}
};
template<typename TimeoutType>
class AttachUSTester: public TimeoutType {
public:
void attach_callback(Callback<void()> func, us_timestamp_t delay_us)
{
TimeoutType::attach_us(func, delay_us);
}
};
/** Template for tests: callback called once
*
* Test callback called once
* Given a Timeout object with a callback attached with @a attach()
* When given time elapses
* Then the callback is called exactly one time
*
* Test callback called once
* Given a Timeout object with a callback attached with @a attach_us()
* When given time elapses
* Then the callback is called exactly one time
*/
template<typename T>
void test_single_call(void)
{
Semaphore sem(0, 1);
T timeout;
timeout.attach_callback(mbed::callback(sem_callback, &sem), TEST_DELAY_US);
int32_t sem_slots = sem.wait(0);
TEST_ASSERT_EQUAL(0, sem_slots);
sem_slots = sem.wait(TEST_DELAY_MS + 1);
TEST_ASSERT_EQUAL(1, sem_slots);
sem_slots = sem.wait(TEST_DELAY_MS + 1);
TEST_ASSERT_EQUAL(0, sem_slots);
timeout.detach();
}
/** Template for tests: callback not called when cancelled
*
* Test callback not called when cancelled
* Given a Timeout object with a callback attached with @a attach()
* When the callback is detached before being called
* Then the callback is never called
*
* Test callback not called when cancelled
* Given a Timeout object with a callback attached with @a attach_us()
* When the callback is detached before being called
* Then the callback is never called
*/
template<typename T>
void test_cancel(void)
{
Semaphore sem(0, 1);
T timeout;
timeout.attach_callback(mbed::callback(sem_callback, &sem), 2.0f * TEST_DELAY_US);
int32_t sem_slots = sem.wait(TEST_DELAY_MS);
TEST_ASSERT_EQUAL(0, sem_slots);
timeout.detach();
sem_slots = sem.wait(TEST_DELAY_MS + 1);
TEST_ASSERT_EQUAL(0, sem_slots);
}
/** Template for tests: callback override
*
* Test callback override
* Given a Timeout object with a callback attached with @a attach()
* When another callback is attached before first one is called
* and second callback's delay elapses
* Then the second callback is called
* and the first callback is never called
*
* Test callback override
* Given a Timeout object with a callback attached with @a attach_us()
* When another callback is attached before first one is called
* and second callback's delay elapses
* Then the second callback is called
* and the first callback is never called
*/
template<typename T>
void test_override(void)
{
Semaphore sem1(0, 1);
Semaphore sem2(0, 1);
T timeout;
timeout.attach_callback(mbed::callback(sem_callback, &sem1), 2.0f * TEST_DELAY_US);
int32_t sem_slots = sem1.wait(TEST_DELAY_MS);
TEST_ASSERT_EQUAL(0, sem_slots);
timeout.attach_callback(mbed::callback(sem_callback, &sem2), 2.0f * TEST_DELAY_US);
sem_slots = sem2.wait(2 * TEST_DELAY_MS + 1);
TEST_ASSERT_EQUAL(1, sem_slots);
sem_slots = sem1.wait(0);
TEST_ASSERT_EQUAL(0, sem_slots);
timeout.detach();
}
/** Template for tests: multiple Timeouts
*
* Test multiple Timeouts
* Given multiple separate Timeout objects
* When a callback is attached to all of these Timeout objects with @a attach()
* and delay for every Timeout elapses
* Then all callbacks are called
*
* Test multiple Timeouts
* Given multiple separate Timeout objects
* When a callback is attached to all of these Timeout objects with @a attach_us()
* and delay for every Timeout elapses
* Then all callbacks are called
*/
template<typename T>
void test_multiple(void)
{
volatile uint32_t callback_count = 0;
T timeouts[NUM_TIMEOUTS];
for (size_t i = 0; i < NUM_TIMEOUTS; i++) {
timeouts[i].attach_callback(mbed::callback(cnt_callback, &callback_count), TEST_DELAY_US);
}
Thread::wait(TEST_DELAY_MS + 1);
TEST_ASSERT_EQUAL(NUM_TIMEOUTS, callback_count);
}
/** Template for tests: zero delay
*
* Test zero delay
* Given a Timeout object
* When a callback is attached with 0.0 s delay, with @a attach()
* Then the callback is called instantly
*
* Test zero delay
* Given a Timeout object
* When a callback is attached with 0.0 s delay, with @a attach_us()
* Then the callback is called instantly
*/
template<typename T>
void test_no_wait(void)
{
Semaphore sem(0, 1);
T timeout;
timeout.attach_callback(mbed::callback(sem_callback, &sem), 0ULL);
int32_t sem_slots = sem.wait(0);
TEST_ASSERT_EQUAL(1, sem_slots);
timeout.detach();
}
/** Template for tests: accuracy of timeout delay
*
* Test delay accuracy
* Given a Timeout object with a callback attached with @a attach()
* When the callback is called
* Then elapsed time matches given delay
*
* Test delay accuracy
* Given a Timeout object with a callback attached with @a attach_us()
* When the callback is called
* Then elapsed time matches given delay
*/
template<typename T, us_timestamp_t delay_us, us_timestamp_t delta_us>
void test_delay_accuracy(void)
{
Semaphore sem(0, 1);
T timeout;
Timer timer;
timer.start();
timeout.attach_callback(mbed::callback(sem_callback, &sem), delay_us);
int32_t sem_slots = sem.wait(osWaitForever);
timer.stop();
TEST_ASSERT_EQUAL(1, sem_slots);
TEST_ASSERT_UINT64_WITHIN(delta_us, delay_us, timer.read_high_resolution_us());
timeout.detach();
}
#if DEVICE_SLEEP
/** Template for tests: timeout during sleep
*
* Test timeout during sleep
* Given a Timeout object with a callback attached with @a attach()
* and the uC in a sleep mode
* When given delay elapses
* Then the callback is called
* and elapsed time matches given delay
*
* Test timeout during sleep
* Given a Timeout object with a callback attached with @a attach_us()
* and the uC in a sleep mode
* When given delay elapses
* Then the callback is called
* and elapsed time matches given delay
*/
template<typename T, us_timestamp_t delay_us, us_timestamp_t delta_us>
void test_sleep(void)
{
Semaphore sem(0, 1);
T timeout;
Timer timer;
sleep_manager_lock_deep_sleep();
timer.start();
timeout.attach_callback(mbed::callback(sem_callback, &sem), delay_us);
bool deep_sleep_allowed = sleep_manager_can_deep_sleep();
TEST_ASSERT_FALSE_MESSAGE(deep_sleep_allowed, "Deep sleep should be disallowed");
while (sem.wait(0) != 1) {
sleep();
}
timer.stop();
sleep_manager_unlock_deep_sleep();
TEST_ASSERT_UINT64_WITHIN(delta_us, delay_us, timer.read_high_resolution_us());
timeout.detach();
}
#if DEVICE_LOWPOWERTIMER
/** Template for tests: timeout during deepsleep
*
* Test timeout during deepsleep
* Given a LowPowerTimeout object with a callback attached with @a attach()
* and the uC in a deepsleep mode
* When given delay elapses
* Then the callback is called
* and elapsed time matches given delay
*
* Test timeout during deepsleep
* Given a LowPowerTimeout object with a callback attached with @a attach_us()
* and the uC in a deepsleep mode
* When given delay elapses
* Then the callback is called
* and elapsed time matches given delay
*/
template<typename T, us_timestamp_t delay_us, us_timestamp_t delta_us>
void test_deepsleep(void)
{
Semaphore sem(0, 1);
T timeout;
/*
* We use here the low power timer instead of microsecond timer for start and
* end because the microseconds timer might be disabled during deepsleep.
*/
LowPowerTimer timer;
/*
* Since deepsleep() may shut down the UART peripheral, we wait for 10ms
* to allow for hardware serial buffers to completely flush.
* This should be replaced with a better function that checks if the
* hardware buffers are empty. However, such an API does not exist now,
* so we'll use the wait_ms() function for now.
*/
wait_ms(10);
timer.start();
timeout.attach_callback(mbed::callback(sem_callback, &sem), delay_us);
bool deep_sleep_allowed = sleep_manager_can_deep_sleep();
TEST_ASSERT_TRUE_MESSAGE(deep_sleep_allowed, "Deep sleep should be allowed");
while (sem.wait(0) != 1) {
sleep();
}
timer.stop();
TEST_ASSERT_UINT64_WITHIN(delta_us, delay_us, timer.read_high_resolution_us());
timeout.detach();
}
#endif
#endif
template<typename TimeoutTesterType>
class TimeoutDriftTester {
public:
TimeoutDriftTester(us_timestamp_t period = 1000) :
_callback_count(0), _period(period), _timeout()
{
}
void reschedule_callback(void)
{
_timeout.attach_callback(mbed::callback(this, &TimeoutDriftTester::reschedule_callback), _period);
_callback_count++;
}
void detach_callback(void)
{
_timeout.detach();
}
uint32_t get_callback_count(void)
{
return _callback_count;
}
private:
volatile uint32_t _callback_count;
us_timestamp_t _period;
TimeoutTesterType _timeout;
};
/** Template for tests: accuracy of timeout delay scheduled repeatedly
*
* Test time drift -- device part
* Given a Timeout object with a callback repeatedly attached with @a attach()
* When the testing host computes test duration based on values received from uC
* Then computed time and actual time measured by host are equal within given tolerance
*
* Test time drift -- device part
* Given a Timeout object with a callback repeatedly attached with @a attach_us()
* When the testing host computes test duration based on values received from uC
* Then computed time and actual time measured by host are equal within given tolerance
*
* Original description:
* 1) DUT would start to update callback_trigger_count every milli sec
* 2) Host would query what is current count base_time, Device responds by the callback_trigger_count
* 3) Host after waiting for measurement stretch. It will query for device time again final_time.
* 4) Host computes the drift considering base_time, final_time, transport delay and measurement stretch
* 5) Finally host send the results back to device pass/fail based on tolerance.
* 6) More details on tests can be found in timing_drift_auto.py
*/
template<typename T>
void test_drift(void)
{
char _key[11] = { };
char _value[128] = { };
int expected_key = 1;
TimeoutDriftTester<T> timeout(DRIFT_TEST_PERIOD_US);
greentea_send_kv("timing_drift_check_start", 0);
timeout.reschedule_callback();
// wait for 1st signal from host
do {
greentea_parse_kv(_key, _value, sizeof(_key), sizeof(_value));
expected_key = strcmp(_key, "base_time");
} while (expected_key);
greentea_send_kv(_key, timeout.get_callback_count() * DRIFT_TEST_PERIOD_US);
// wait for 2nd signal from host
greentea_parse_kv(_key, _value, sizeof(_key), sizeof(_value));
greentea_send_kv(_key, timeout.get_callback_count() * DRIFT_TEST_PERIOD_US);
timeout.detach_callback();
//get the results from host
greentea_parse_kv(_key, _value, sizeof(_key), sizeof(_value));
TEST_ASSERT_EQUAL_STRING_MESSAGE("pass", _key, "Host script reported a failure");
}
#endif