Merge pull request #880 from lindvalla/adding_lpc4088DM

Add support for EA LPC4088_DM
pull/884/head
Martin Kojtal 2015-02-03 13:11:57 +00:00
commit ae7e2e76ed
22 changed files with 2792 additions and 6 deletions

View File

@ -0,0 +1,111 @@
/* mbed Microcontroller Library
* Copyright (c) 2006-2013 ARM Limited
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MBED_PERIPHERALNAMES_H
#define MBED_PERIPHERALNAMES_H
#include "cmsis.h"
#ifdef __cplusplus
extern "C" {
#endif
typedef enum {
UART_0 = (int)LPC_UART0_BASE,
UART_1 = (int)LPC_UART1_BASE,
UART_2 = (int)LPC_UART2_BASE,
UART_3 = (int)LPC_UART3_BASE,
UART_4 = (int)LPC_UART4_BASE
} UARTName;
typedef enum {
ADC0_0 = 0,
ADC0_1,
ADC0_2,
ADC0_3,
ADC0_4,
ADC0_5,
ADC0_6,
ADC0_7
} ADCName;
typedef enum {
DAC_0 = 0
} DACName;
typedef enum {
SPI_0 = (int)LPC_SSP0_BASE,
SPI_1 = (int)LPC_SSP1_BASE,
SPI_2 = (int)LPC_SSP2_BASE
} SPIName;
typedef enum {
I2C_0 = (int)LPC_I2C0_BASE,
I2C_1 = (int)LPC_I2C1_BASE,
I2C_2 = (int)LPC_I2C2_BASE
} I2CName;
typedef enum {
PWM0_1 = 1,
PWM0_2,
PWM0_3,
PWM0_4,
PWM0_5,
PWM0_6,
PWM1_1,
PWM1_2,
PWM1_3,
PWM1_4,
PWM1_5,
PWM1_6
} PWMName;
typedef enum {
CAN_1 = (int)LPC_CAN1_BASE,
CAN_2 = (int)LPC_CAN2_BASE
} CANName;
#define STDIO_UART_TX USBTX
#define STDIO_UART_RX USBRX
#define STDIO_UART UART_0
// Default peripherals
#define MBED_SPI0 p7, p8, p9
#define MBED_SPI1 p46, p44, p42, p45
#define MBED_SPI2 p15, p16, p17, p18
#define MBED_UART3 p29, p30
#define MBED_UART4 p19, p18
#define MBED_UARTUSB USBTX, USBRX
#define MBED_I2C1 p12, p13
#define MBED_CAN1 p12, p13
#define MBED_CAN2 p41, p43
#define MBED_ANALOGOUT0 p30
#define MBED_ANALOGIN2 p29
#define MBED_ANALOGIN3 p30
#define MBED_PWMOUT0 p9
#define MBED_PWMOUT1 p8
#define MBED_PWMOUT2 p7
#ifdef __cplusplus
}
#endif
#endif

View File

@ -0,0 +1,106 @@
/* mbed Microcontroller Library
* Copyright (c) 2006-2013 ARM Limited
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MBED_PINNAMES_H
#define MBED_PINNAMES_H
#include "cmsis.h"
#ifdef __cplusplus
extern "C" {
#endif
typedef enum {
PIN_INPUT,
PIN_OUTPUT
} PinDirection;
#define PORT_SHIFT 5
typedef enum {
// LPC Pin Names
P0_0 = /*LPC_GPIO0_BASE*/0,
P0_1, P0_2, P0_3, P0_4, P0_5, P0_6, P0_7, P0_8, P0_9, P0_10, P0_11, P0_12, P0_13, P0_14, P0_15, P0_16, P0_17, P0_18, P0_19, P0_20, P0_21, P0_22, P0_23, P0_24, P0_25, P0_26, P0_27, P0_28, P0_29, P0_30, P0_31,
P1_0, P1_1, P1_2, P1_3, P1_4, P1_5, P1_6, P1_7, P1_8, P1_9, P1_10, P1_11, P1_12, P1_13, P1_14, P1_15, P1_16, P1_17, P1_18, P1_19, P1_20, P1_21, P1_22, P1_23, P1_24, P1_25, P1_26, P1_27, P1_28, P1_29, P1_30, P1_31,
P2_0, P2_1, P2_2, P2_3, P2_4, P2_5, P2_6, P2_7, P2_8, P2_9, P2_10, P2_11, P2_12, P2_13, P2_14, P2_15, P2_16, P2_17, P2_18, P2_19, P2_20, P2_21, P2_22, P2_23, P2_24, P2_25, P2_26, P2_27, P2_28, P2_29, P2_30, P2_31,
P3_0, P3_1, P3_2, P3_3, P3_4, P3_5, P3_6, P3_7, P3_8, P3_9, P3_10, P3_11, P3_12, P3_13, P3_14, P3_15, P3_16, P3_17, P3_18, P3_19, P3_20, P3_21, P3_22, P3_23, P3_24, P3_25, P3_26, P3_27, P3_28, P3_29, P3_30, P3_31,
P4_0, P4_1, P4_2, P4_3, P4_4, P4_5, P4_6, P4_7, P4_8, P4_9, P4_10, P4_11, P4_12, P4_13, P4_14, P4_15, P4_16, P4_17, P4_18, P4_19, P4_20, P4_21, P4_22, P4_23, P4_24, P4_25, P4_26, P4_27, P4_28, P4_29, P4_30, P4_31,
P5_0, P5_1, P5_2, P5_3, P5_4,
// mbed DIP Pin Names
p1 = P0_30,
p2 = P2_14,
p3 = P0_29,
p4 = P2_15,
p7 = P1_24,
p8 = P1_23,
p9 = P1_20,
p10 = P1_19,
p11 = P0_21,
p12 = P0_0,
p13 = P0_1,
p14 = P2_10,
p15 = P5_0,
p16 = P5_1,
p17 = P5_2,
p18 = P5_3,
p19 = P5_4,
p20 = P2_22,
p21 = P2_23,
p22 = P2_25,
p23 = P2_26,
p24 = P2_27,
p25 = P0_2,
p26 = P0_3,
p29 = P0_25,
p30 = P0_26,
p41 = P0_4,
p42 = P0_7,
p43 = P0_5,
p44 = P0_8,
p45 = P0_6,
p46 = P0_9,
// Other mbed Pin Names
LED1 = P1_18,
LED2 = P0_13,
LED3 = P1_13,
LED4 = P2_19,
USBTX = P0_2,
USBRX = P0_3,
// Not connected
NC = (int)0xFFFFFFFF
} PinName;
typedef enum {
PullUp = 2,
PullDown = 1,
PullNone = 0,
OpenDrain = 4,
PullDefault = PullDown
} PinMode;
#ifdef __cplusplus
}
#endif
#endif

View File

@ -0,0 +1,119 @@
/* mbed Microcontroller Library
* Copyright (c) 2006-2013 ARM Limited
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "mbed_assert.h"
#include "analogin_api.h"
#include "cmsis.h"
#include "pinmap.h"
#include "mbed_error.h"
#define ANALOGIN_MEDIAN_FILTER 1
#define ADC_10BIT_RANGE 0x3FF
#define ADC_12BIT_RANGE 0xFFF
static inline int div_round_up(int x, int y) {
return (x + (y - 1)) / y;
}
static const PinMap PinMap_ADC[] = {
{P0_25, ADC0_2, 0x01},
{P0_26, ADC0_3, 0x01},
{NC , NC , 0 }
};
#define ADC_RANGE ADC_12BIT_RANGE
void analogin_init(analogin_t *obj, PinName pin) {
obj->adc = (ADCName)pinmap_peripheral(pin, PinMap_ADC);
MBED_ASSERT(obj->adc != (ADCName)NC);
// ensure power is turned on
LPC_SC->PCONP |= (1 << 12);
uint32_t PCLK = PeripheralClock;
// calculate minimum clock divider
// clkdiv = divider - 1
uint32_t MAX_ADC_CLK = 12400000;
uint32_t clkdiv = div_round_up(PCLK, MAX_ADC_CLK) - 1;
// Set the generic software-controlled ADC settings
LPC_ADC->CR = (0 << 0) // SEL: 0 = no channels selected
| (clkdiv << 8) // CLKDIV:
| (0 << 16) // BURST: 0 = software control
| (1 << 21) // PDN: 1 = operational
| (0 << 24) // START: 0 = no start
| (0 << 27); // EDGE: not applicable
// must enable analog mode (ADMODE = 0)
__IO uint32_t *reg = (__IO uint32_t*) (LPC_IOCON_BASE + 4 * pin);
*reg &= ~(1 << 7);
pinmap_pinout(pin, PinMap_ADC);
}
static inline uint32_t adc_read(analogin_t *obj) {
// Select the appropriate channel and start conversion
LPC_ADC->CR &= ~0xFF;
LPC_ADC->CR |= 1 << (int)obj->adc;
LPC_ADC->CR |= 1 << 24;
// Repeatedly get the sample data until DONE bit
unsigned int data;
do {
data = LPC_ADC->GDR;
} while ((data & ((unsigned int)1 << 31)) == 0);
// Stop conversion
LPC_ADC->CR &= ~(1 << 24);
return (data >> 4) & ADC_RANGE; // 12 bit
}
static inline void order(uint32_t *a, uint32_t *b) {
if (*a > *b) {
uint32_t t = *a;
*a = *b;
*b = t;
}
}
static inline uint32_t adc_read_u32(analogin_t *obj) {
uint32_t value;
#if ANALOGIN_MEDIAN_FILTER
uint32_t v1 = adc_read(obj);
uint32_t v2 = adc_read(obj);
uint32_t v3 = adc_read(obj);
order(&v1, &v2);
order(&v2, &v3);
order(&v1, &v2);
value = v2;
#else
value = adc_read(obj);
#endif
return value;
}
uint16_t analogin_read_u16(analogin_t *obj) {
uint32_t value = adc_read_u32(obj);
return (value << 4) | ((value >> 8) & 0x000F); // 12 bit
}
float analogin_read(analogin_t *obj) {
uint32_t value = adc_read_u32(obj);
return (float)value * (1.0f / (float)ADC_RANGE);
}

View File

@ -0,0 +1,388 @@
/* mbed Microcontroller Library
* Copyright (c) 2006-2013 ARM Limited
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "can_api.h"
#include "cmsis.h"
#include "pinmap.h"
#include <math.h>
#include <string.h>
#define CAN_NUM 2
/* Acceptance filter mode in AFMR register */
#define ACCF_OFF 0x01
#define ACCF_BYPASS 0x02
#define ACCF_ON 0x00
#define ACCF_FULLCAN 0x04
/* There are several bit timing calculators on the internet.
http://www.port.de/engl/canprod/sv_req_form.html
http://www.kvaser.com/can/index.htm
*/
static const PinMap PinMap_CAN_RD[] = {
{P0_0 , CAN_1, 1},
{P0_4 , CAN_2, 2},
{P0_21, CAN_1, 4},
{NC , NC , 0}
};
static const PinMap PinMap_CAN_TD[] = {
{P0_1 , CAN_1, 1},
{P0_5 , CAN_2, 2},
{NC , NC , 0}
};
// Type definition to hold a CAN message
struct CANMsg {
unsigned int reserved1 : 16;
unsigned int dlc : 4; // Bits 16..19: DLC - Data Length Counter
unsigned int reserved0 : 10;
unsigned int rtr : 1; // Bit 30: Set if this is a RTR message
unsigned int type : 1; // Bit 31: Set if this is a 29-bit ID message
unsigned int id; // CAN Message ID (11-bit or 29-bit)
unsigned char data[8]; // CAN Message Data Bytes 0-7
};
typedef struct CANMsg CANMsg;
static uint32_t can_irq_ids[CAN_NUM] = {0};
static can_irq_handler irq_handler;
static uint32_t can_disable(can_t *obj) {
uint32_t sm = obj->dev->MOD;
obj->dev->MOD |= 1;
return sm;
}
static inline void can_enable(can_t *obj) {
if (obj->dev->MOD & 1) {
obj->dev->MOD &= ~(1);
}
}
int can_mode(can_t *obj, CanMode mode)
{
return 0; // not implemented
}
int can_filter(can_t *obj, uint32_t id, uint32_t mask, CANFormat format, int32_t handle) {
return 0; // not implemented
}
static inline void can_irq(uint32_t icr, uint32_t index) {
uint32_t i;
for(i = 0; i < 8; i++)
{
if((can_irq_ids[index] != 0) && (icr & (1 << i)))
{
switch (i) {
case 0: irq_handler(can_irq_ids[index], IRQ_RX); break;
case 1: irq_handler(can_irq_ids[index], IRQ_TX); break;
case 2: irq_handler(can_irq_ids[index], IRQ_ERROR); break;
case 3: irq_handler(can_irq_ids[index], IRQ_OVERRUN); break;
case 4: irq_handler(can_irq_ids[index], IRQ_WAKEUP); break;
case 5: irq_handler(can_irq_ids[index], IRQ_PASSIVE); break;
case 6: irq_handler(can_irq_ids[index], IRQ_ARB); break;
case 7: irq_handler(can_irq_ids[index], IRQ_BUS); break;
case 8: irq_handler(can_irq_ids[index], IRQ_READY); break;
}
}
}
}
// Have to check that the CAN block is active before reading the Interrupt
// Control Register, or the mbed hangs
void can_irq_n() {
uint32_t icr;
if(LPC_SC->PCONP & (1 << 13)) {
icr = LPC_CAN1->ICR & 0x1FF;
can_irq(icr, 0);
}
if(LPC_SC->PCONP & (1 << 14)) {
icr = LPC_CAN2->ICR & 0x1FF;
can_irq(icr, 1);
}
}
// Register CAN object's irq handler
void can_irq_init(can_t *obj, can_irq_handler handler, uint32_t id) {
irq_handler = handler;
can_irq_ids[obj->index] = id;
}
// Unregister CAN object's irq handler
void can_irq_free(can_t *obj) {
obj->dev->IER &= ~(1);
can_irq_ids[obj->index] = 0;
if ((can_irq_ids[0] == 0) && (can_irq_ids[1] == 0)) {
NVIC_DisableIRQ(CAN_IRQn);
}
}
// Clear or set a irq
void can_irq_set(can_t *obj, CanIrqType type, uint32_t enable) {
uint32_t ier;
switch (type) {
case IRQ_RX: ier = (1 << 0); break;
case IRQ_TX: ier = (1 << 1); break;
case IRQ_ERROR: ier = (1 << 2); break;
case IRQ_OVERRUN: ier = (1 << 3); break;
case IRQ_WAKEUP: ier = (1 << 4); break;
case IRQ_PASSIVE: ier = (1 << 5); break;
case IRQ_ARB: ier = (1 << 6); break;
case IRQ_BUS: ier = (1 << 7); break;
case IRQ_READY: ier = (1 << 8); break;
default: return;
}
obj->dev->MOD |= 1;
if(enable == 0) {
obj->dev->IER &= ~ier;
}
else {
obj->dev->IER |= ier;
}
obj->dev->MOD &= ~(1);
// Enable NVIC if at least 1 interrupt is active
if(((LPC_SC->PCONP & (1 << 13)) && LPC_CAN1->IER) || ((LPC_SC->PCONP & (1 << 14)) && LPC_CAN2->IER)) {
NVIC_SetVector(CAN_IRQn, (uint32_t) &can_irq_n);
NVIC_EnableIRQ(CAN_IRQn);
}
else {
NVIC_DisableIRQ(CAN_IRQn);
}
}
// This table has the sampling points as close to 75% as possible. The first
// value is TSEG1, the second TSEG2.
static const int timing_pts[23][2] = {
{0x0, 0x0}, // 2, 50%
{0x1, 0x0}, // 3, 67%
{0x2, 0x0}, // 4, 75%
{0x3, 0x0}, // 5, 80%
{0x3, 0x1}, // 6, 67%
{0x4, 0x1}, // 7, 71%
{0x5, 0x1}, // 8, 75%
{0x6, 0x1}, // 9, 78%
{0x6, 0x2}, // 10, 70%
{0x7, 0x2}, // 11, 73%
{0x8, 0x2}, // 12, 75%
{0x9, 0x2}, // 13, 77%
{0x9, 0x3}, // 14, 71%
{0xA, 0x3}, // 15, 73%
{0xB, 0x3}, // 16, 75%
{0xC, 0x3}, // 17, 76%
{0xD, 0x3}, // 18, 78%
{0xD, 0x4}, // 19, 74%
{0xE, 0x4}, // 20, 75%
{0xF, 0x4}, // 21, 76%
{0xF, 0x5}, // 22, 73%
{0xF, 0x6}, // 23, 70%
{0xF, 0x7}, // 24, 67%
};
static unsigned int can_speed(unsigned int pclk, unsigned int cclk, unsigned char psjw) {
uint32_t btr;
uint16_t brp = 0;
uint32_t calcbit;
uint32_t bitwidth;
int hit = 0;
int bits;
bitwidth = (pclk / cclk);
brp = bitwidth / 0x18;
while ((!hit) && (brp < bitwidth / 4)) {
brp++;
for (bits = 22; bits > 0; bits--) {
calcbit = (bits + 3) * (brp + 1);
if (calcbit == bitwidth) {
hit = 1;
break;
}
}
}
if (hit) {
btr = ((timing_pts[bits][1] << 20) & 0x00700000)
| ((timing_pts[bits][0] << 16) & 0x000F0000)
| ((psjw << 14) & 0x0000C000)
| ((brp << 0) & 0x000003FF);
} else {
btr = 0xFFFFFFFF;
}
return btr;
}
void can_init(can_t *obj, PinName rd, PinName td) {
CANName can_rd = (CANName)pinmap_peripheral(rd, PinMap_CAN_RD);
CANName can_td = (CANName)pinmap_peripheral(td, PinMap_CAN_TD);
obj->dev = (LPC_CAN_TypeDef *)pinmap_merge(can_rd, can_td);
MBED_ASSERT((int)obj->dev != NC);
switch ((int)obj->dev) {
case CAN_1: LPC_SC->PCONP |= 1 << 13; break;
case CAN_2: LPC_SC->PCONP |= 1 << 14; break;
}
pinmap_pinout(rd, PinMap_CAN_RD);
pinmap_pinout(td, PinMap_CAN_TD);
switch ((int)obj->dev) {
case CAN_1: obj->index = 0; break;
case CAN_2: obj->index = 1; break;
}
can_reset(obj);
obj->dev->IER = 0; // Disable Interrupts
can_frequency(obj, 100000);
LPC_CANAF->AFMR = ACCF_BYPASS; // Bypass Filter
}
void can_free(can_t *obj) {
switch ((int)obj->dev) {
case CAN_1: LPC_SC->PCONP &= ~(1 << 13); break;
case CAN_2: LPC_SC->PCONP &= ~(1 << 14); break;
}
}
int can_frequency(can_t *obj, int f) {
int pclk = PeripheralClock;
int btr = can_speed(pclk, (unsigned int)f, 1);
if (btr > 0) {
uint32_t modmask = can_disable(obj);
obj->dev->BTR = btr;
obj->dev->MOD = modmask;
return 1;
} else {
return 0;
}
}
int can_write(can_t *obj, CAN_Message msg, int cc) {
unsigned int CANStatus;
CANMsg m;
can_enable(obj);
m.id = msg.id ;
m.dlc = msg.len & 0xF;
m.rtr = msg.type;
m.type = msg.format;
memcpy(m.data, msg.data, msg.len);
const unsigned int *buf = (const unsigned int *)&m;
CANStatus = obj->dev->SR;
if (CANStatus & 0x00000004) {
obj->dev->TFI1 = buf[0] & 0xC00F0000;
obj->dev->TID1 = buf[1];
obj->dev->TDA1 = buf[2];
obj->dev->TDB1 = buf[3];
if(cc) {
obj->dev->CMR = 0x30;
} else {
obj->dev->CMR = 0x21;
}
return 1;
} else if (CANStatus & 0x00000400) {
obj->dev->TFI2 = buf[0] & 0xC00F0000;
obj->dev->TID2 = buf[1];
obj->dev->TDA2 = buf[2];
obj->dev->TDB2 = buf[3];
if (cc) {
obj->dev->CMR = 0x50;
} else {
obj->dev->CMR = 0x41;
}
return 1;
} else if (CANStatus & 0x00040000) {
obj->dev->TFI3 = buf[0] & 0xC00F0000;
obj->dev->TID3 = buf[1];
obj->dev->TDA3 = buf[2];
obj->dev->TDB3 = buf[3];
if (cc) {
obj->dev->CMR = 0x90;
} else {
obj->dev->CMR = 0x81;
}
return 1;
}
return 0;
}
int can_read(can_t *obj, CAN_Message *msg, int handle) {
CANMsg x;
unsigned int *i = (unsigned int *)&x;
can_enable(obj);
if (obj->dev->GSR & 0x1) {
*i++ = obj->dev->RFS; // Frame
*i++ = obj->dev->RID; // ID
*i++ = obj->dev->RDA; // Data A
*i++ = obj->dev->RDB; // Data B
obj->dev->CMR = 0x04; // release receive buffer
msg->id = x.id;
msg->len = x.dlc;
msg->format = (x.type)? CANExtended : CANStandard;
msg->type = (x.rtr)? CANRemote: CANData;
memcpy(msg->data,x.data,x.dlc);
return 1;
}
return 0;
}
void can_reset(can_t *obj) {
can_disable(obj);
obj->dev->GSR = 0; // Reset error counter when CAN1MOD is in reset
}
unsigned char can_rderror(can_t *obj) {
return (obj->dev->GSR >> 16) & 0xFF;
}
unsigned char can_tderror(can_t *obj) {
return (obj->dev->GSR >> 24) & 0xFF;
}
void can_monitor(can_t *obj, int silent) {
uint32_t mod_mask = can_disable(obj);
if (silent) {
obj->dev->MOD |= (1 << 1);
} else {
obj->dev->MOD &= ~(1 << 1);
}
if (!(mod_mask & 1)) {
can_enable(obj);
}
}

View File

@ -0,0 +1,964 @@
/* mbed Microcontroller Library
* Copyright (c) 2006-2013 ARM Limited
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <string.h>
#include "ethernet_api.h"
#include "cmsis.h"
#include "mbed_interface.h"
#include "toolchain.h"
#include "mbed_error.h"
#define NEW_LOGIC 0
#define NEW_ETH_BUFFER 0
#if NEW_ETH_BUFFER
#define NUM_RX_FRAG 4 // Number of Rx Fragments (== packets)
#define NUM_TX_FRAG 3 // Number of Tx Fragments (== packets)
#define ETH_MAX_FLEN 1536 // Maximum Ethernet Frame Size
#define ETH_FRAG_SIZE ETH_MAX_FLEN // Packet Fragment size (same as packet length)
#else
// Memfree calculation:
// (16 * 1024) - ((2 * 4 * NUM_RX) + (2 * 4 * NUM_RX) + (0x300 * NUM_RX) +
// (2 * 4 * NUM_TX) + (1 * 4 * NUM_TX) + (0x300 * NUM_TX)) = 8556
/* EMAC Memory Buffer configuration for 16K Ethernet RAM. */
#define NUM_RX_FRAG 4 /* Num.of RX Fragments 4*1536= 6.0kB */
#define NUM_TX_FRAG 3 /* Num.of TX Fragments 3*1536= 4.6kB */
//#define ETH_FRAG_SIZE 1536 /* Packet Fragment size 1536 Bytes */
//#define ETH_MAX_FLEN 1536 /* Max. Ethernet Frame Size */
#define ETH_FRAG_SIZE 0x300 /* Packet Fragment size 1536/2 Bytes */
#define ETH_MAX_FLEN 0x300 /* Max. Ethernet Frame Size */
const int ethernet_MTU_SIZE = 0x300;
#endif
#define ETHERNET_ADDR_SIZE 6
PACKED struct RX_DESC_TypeDef { /* RX Descriptor struct */
unsigned int Packet;
unsigned int Ctrl;
};
typedef struct RX_DESC_TypeDef RX_DESC_TypeDef;
PACKED struct RX_STAT_TypeDef { /* RX Status struct */
unsigned int Info;
unsigned int HashCRC;
};
typedef struct RX_STAT_TypeDef RX_STAT_TypeDef;
PACKED struct TX_DESC_TypeDef { /* TX Descriptor struct */
unsigned int Packet;
unsigned int Ctrl;
};
typedef struct TX_DESC_TypeDef TX_DESC_TypeDef;
PACKED struct TX_STAT_TypeDef { /* TX Status struct */
unsigned int Info;
};
typedef struct TX_STAT_TypeDef TX_STAT_TypeDef;
/* MAC Configuration Register 1 */
#define MAC1_REC_EN 0x00000001 /* Receive Enable */
#define MAC1_PASS_ALL 0x00000002 /* Pass All Receive Frames */
#define MAC1_RX_FLOWC 0x00000004 /* RX Flow Control */
#define MAC1_TX_FLOWC 0x00000008 /* TX Flow Control */
#define MAC1_LOOPB 0x00000010 /* Loop Back Mode */
#define MAC1_RES_TX 0x00000100 /* Reset TX Logic */
#define MAC1_RES_MCS_TX 0x00000200 /* Reset MAC TX Control Sublayer */
#define MAC1_RES_RX 0x00000400 /* Reset RX Logic */
#define MAC1_RES_MCS_RX 0x00000800 /* Reset MAC RX Control Sublayer */
#define MAC1_SIM_RES 0x00004000 /* Simulation Reset */
#define MAC1_SOFT_RES 0x00008000 /* Soft Reset MAC */
/* MAC Configuration Register 2 */
#define MAC2_FULL_DUP 0x00000001 /* Full Duplex Mode */
#define MAC2_FRM_LEN_CHK 0x00000002 /* Frame Length Checking */
#define MAC2_HUGE_FRM_EN 0x00000004 /* Huge Frame Enable */
#define MAC2_DLY_CRC 0x00000008 /* Delayed CRC Mode */
#define MAC2_CRC_EN 0x00000010 /* Append CRC to every Frame */
#define MAC2_PAD_EN 0x00000020 /* Pad all Short Frames */
#define MAC2_VLAN_PAD_EN 0x00000040 /* VLAN Pad Enable */
#define MAC2_ADET_PAD_EN 0x00000080 /* Auto Detect Pad Enable */
#define MAC2_PPREAM_ENF 0x00000100 /* Pure Preamble Enforcement */
#define MAC2_LPREAM_ENF 0x00000200 /* Long Preamble Enforcement */
#define MAC2_NO_BACKOFF 0x00001000 /* No Backoff Algorithm */
#define MAC2_BACK_PRESSURE 0x00002000 /* Backoff Presurre / No Backoff */
#define MAC2_EXCESS_DEF 0x00004000 /* Excess Defer */
/* Back-to-Back Inter-Packet-Gap Register */
#define IPGT_FULL_DUP 0x00000015 /* Recommended value for Full Duplex */
#define IPGT_HALF_DUP 0x00000012 /* Recommended value for Half Duplex */
/* Non Back-to-Back Inter-Packet-Gap Register */
#define IPGR_DEF 0x00000012 /* Recommended value */
/* Collision Window/Retry Register */
#define CLRT_DEF 0x0000370F /* Default value */
/* PHY Support Register */
#define SUPP_SPEED 0x00000100 /* Reduced MII Logic Current Speed */
//#define SUPP_RES_RMII 0x00000800 /* Reset Reduced MII Logic */
#define SUPP_RES_RMII 0x00000000 /* Reset Reduced MII Logic */
/* Test Register */
#define TEST_SHCUT_PQUANTA 0x00000001 /* Shortcut Pause Quanta */
#define TEST_TST_PAUSE 0x00000002 /* Test Pause */
#define TEST_TST_BACKP 0x00000004 /* Test Back Pressure */
/* MII Management Configuration Register */
#define MCFG_SCAN_INC 0x00000001 /* Scan Increment PHY Address */
#define MCFG_SUPP_PREAM 0x00000002 /* Suppress Preamble */
#define MCFG_CLK_SEL 0x0000003C /* Clock Select Mask */
#define MCFG_RES_MII 0x00008000 /* Reset MII Management Hardware */
/* MII Management Command Register */
#define MCMD_READ 0x00000001 /* MII Read */
#define MCMD_SCAN 0x00000002 /* MII Scan continuously */
#define MII_WR_TOUT 0x00050000 /* MII Write timeout count */
#define MII_RD_TOUT 0x00050000 /* MII Read timeout count */
/* MII Management Address Register */
#define MADR_REG_ADR 0x0000001F /* MII Register Address Mask */
#define MADR_PHY_ADR 0x00001F00 /* PHY Address Mask */
/* MII Management Indicators Register */
#define MIND_BUSY 0x00000001 /* MII is Busy */
#define MIND_SCAN 0x00000002 /* MII Scanning in Progress */
#define MIND_NOT_VAL 0x00000004 /* MII Read Data not valid */
#define MIND_MII_LINK_FAIL 0x00000008 /* MII Link Failed */
/* Command Register */
#define CR_RX_EN 0x00000001 /* Enable Receive */
#define CR_TX_EN 0x00000002 /* Enable Transmit */
#define CR_REG_RES 0x00000008 /* Reset Host Registers */
#define CR_TX_RES 0x00000010 /* Reset Transmit Datapath */
#define CR_RX_RES 0x00000020 /* Reset Receive Datapath */
#define CR_PASS_RUNT_FRM 0x00000040 /* Pass Runt Frames */
#define CR_PASS_RX_FILT 0x00000080 /* Pass RX Filter */
#define CR_TX_FLOW_CTRL 0x00000100 /* TX Flow Control */
#define CR_RMII 0x00000200 /* Reduced MII Interface */
#define CR_FULL_DUP 0x00000400 /* Full Duplex */
/* Status Register */
#define SR_RX_EN 0x00000001 /* Enable Receive */
#define SR_TX_EN 0x00000002 /* Enable Transmit */
/* Transmit Status Vector 0 Register */
#define TSV0_CRC_ERR 0x00000001 /* CRC error */
#define TSV0_LEN_CHKERR 0x00000002 /* Length Check Error */
#define TSV0_LEN_OUTRNG 0x00000004 /* Length Out of Range */
#define TSV0_DONE 0x00000008 /* Tramsmission Completed */
#define TSV0_MCAST 0x00000010 /* Multicast Destination */
#define TSV0_BCAST 0x00000020 /* Broadcast Destination */
#define TSV0_PKT_DEFER 0x00000040 /* Packet Deferred */
#define TSV0_EXC_DEFER 0x00000080 /* Excessive Packet Deferral */
#define TSV0_EXC_COLL 0x00000100 /* Excessive Collision */
#define TSV0_LATE_COLL 0x00000200 /* Late Collision Occured */
#define TSV0_GIANT 0x00000400 /* Giant Frame */
#define TSV0_UNDERRUN 0x00000800 /* Buffer Underrun */
#define TSV0_BYTES 0x0FFFF000 /* Total Bytes Transferred */
#define TSV0_CTRL_FRAME 0x10000000 /* Control Frame */
#define TSV0_PAUSE 0x20000000 /* Pause Frame */
#define TSV0_BACK_PRESS 0x40000000 /* Backpressure Method Applied */
#define TSV0_VLAN 0x80000000 /* VLAN Frame */
/* Transmit Status Vector 1 Register */
#define TSV1_BYTE_CNT 0x0000FFFF /* Transmit Byte Count */
#define TSV1_COLL_CNT 0x000F0000 /* Transmit Collision Count */
/* Receive Status Vector Register */
#define RSV_BYTE_CNT 0x0000FFFF /* Receive Byte Count */
#define RSV_PKT_IGNORED 0x00010000 /* Packet Previously Ignored */
#define RSV_RXDV_SEEN 0x00020000 /* RXDV Event Previously Seen */
#define RSV_CARR_SEEN 0x00040000 /* Carrier Event Previously Seen */
#define RSV_REC_CODEV 0x00080000 /* Receive Code Violation */
#define RSV_CRC_ERR 0x00100000 /* CRC Error */
#define RSV_LEN_CHKERR 0x00200000 /* Length Check Error */
#define RSV_LEN_OUTRNG 0x00400000 /* Length Out of Range */
#define RSV_REC_OK 0x00800000 /* Frame Received OK */
#define RSV_MCAST 0x01000000 /* Multicast Frame */
#define RSV_BCAST 0x02000000 /* Broadcast Frame */
#define RSV_DRIB_NIBB 0x04000000 /* Dribble Nibble */
#define RSV_CTRL_FRAME 0x08000000 /* Control Frame */
#define RSV_PAUSE 0x10000000 /* Pause Frame */
#define RSV_UNSUPP_OPC 0x20000000 /* Unsupported Opcode */
#define RSV_VLAN 0x40000000 /* VLAN Frame */
/* Flow Control Counter Register */
#define FCC_MIRR_CNT 0x0000FFFF /* Mirror Counter */
#define FCC_PAUSE_TIM 0xFFFF0000 /* Pause Timer */
/* Flow Control Status Register */
#define FCS_MIRR_CNT 0x0000FFFF /* Mirror Counter Current */
/* Receive Filter Control Register */
#define RFC_UCAST_EN 0x00000001 /* Accept Unicast Frames Enable */
#define RFC_BCAST_EN 0x00000002 /* Accept Broadcast Frames Enable */
#define RFC_MCAST_EN 0x00000004 /* Accept Multicast Frames Enable */
#define RFC_UCAST_HASH_EN 0x00000008 /* Accept Unicast Hash Filter Frames */
#define RFC_MCAST_HASH_EN 0x00000010 /* Accept Multicast Hash Filter Fram.*/
#define RFC_PERFECT_EN 0x00000020 /* Accept Perfect Match Enable */
#define RFC_MAGP_WOL_EN 0x00001000 /* Magic Packet Filter WoL Enable */
#define RFC_PFILT_WOL_EN 0x00002000 /* Perfect Filter WoL Enable */
/* Receive Filter WoL Status/Clear Registers */
#define WOL_UCAST 0x00000001 /* Unicast Frame caused WoL */
#define WOL_BCAST 0x00000002 /* Broadcast Frame caused WoL */
#define WOL_MCAST 0x00000004 /* Multicast Frame caused WoL */
#define WOL_UCAST_HASH 0x00000008 /* Unicast Hash Filter Frame WoL */
#define WOL_MCAST_HASH 0x00000010 /* Multicast Hash Filter Frame WoL */
#define WOL_PERFECT 0x00000020 /* Perfect Filter WoL */
#define WOL_RX_FILTER 0x00000080 /* RX Filter caused WoL */
#define WOL_MAG_PACKET 0x00000100 /* Magic Packet Filter caused WoL */
/* Interrupt Status/Enable/Clear/Set Registers */
#define INT_RX_OVERRUN 0x00000001 /* Overrun Error in RX Queue */
#define INT_RX_ERR 0x00000002 /* Receive Error */
#define INT_RX_FIN 0x00000004 /* RX Finished Process Descriptors */
#define INT_RX_DONE 0x00000008 /* Receive Done */
#define INT_TX_UNDERRUN 0x00000010 /* Transmit Underrun */
#define INT_TX_ERR 0x00000020 /* Transmit Error */
#define INT_TX_FIN 0x00000040 /* TX Finished Process Descriptors */
#define INT_TX_DONE 0x00000080 /* Transmit Done */
#define INT_SOFT_INT 0x00001000 /* Software Triggered Interrupt */
#define INT_WAKEUP 0x00002000 /* Wakeup Event Interrupt */
/* Power Down Register */
#define PD_POWER_DOWN 0x80000000 /* Power Down MAC */
/* RX Descriptor Control Word */
#define RCTRL_SIZE 0x000007FF /* Buffer size mask */
#define RCTRL_INT 0x80000000 /* Generate RxDone Interrupt */
/* RX Status Hash CRC Word */
#define RHASH_SA 0x000001FF /* Hash CRC for Source Address */
#define RHASH_DA 0x001FF000 /* Hash CRC for Destination Address */
/* RX Status Information Word */
#define RINFO_SIZE 0x000007FF /* Data size in bytes */
#define RINFO_CTRL_FRAME 0x00040000 /* Control Frame */
#define RINFO_VLAN 0x00080000 /* VLAN Frame */
#define RINFO_FAIL_FILT 0x00100000 /* RX Filter Failed */
#define RINFO_MCAST 0x00200000 /* Multicast Frame */
#define RINFO_BCAST 0x00400000 /* Broadcast Frame */
#define RINFO_CRC_ERR 0x00800000 /* CRC Error in Frame */
#define RINFO_SYM_ERR 0x01000000 /* Symbol Error from PHY */
#define RINFO_LEN_ERR 0x02000000 /* Length Error */
#define RINFO_RANGE_ERR 0x04000000 /* Range Error (exceeded max. size) */
#define RINFO_ALIGN_ERR 0x08000000 /* Alignment Error */
#define RINFO_OVERRUN 0x10000000 /* Receive overrun */
#define RINFO_NO_DESCR 0x20000000 /* No new Descriptor available */
#define RINFO_LAST_FLAG 0x40000000 /* Last Fragment in Frame */
#define RINFO_ERR 0x80000000 /* Error Occured (OR of all errors) */
//#define RINFO_ERR_MASK (RINFO_FAIL_FILT | RINFO_CRC_ERR | RINFO_SYM_ERR | RINFO_LEN_ERR | RINFO_ALIGN_ERR | RINFO_OVERRUN)
#define RINFO_ERR_MASK (RINFO_FAIL_FILT | RINFO_SYM_ERR | \
RINFO_LEN_ERR | RINFO_ALIGN_ERR | RINFO_OVERRUN)
/* TX Descriptor Control Word */
#define TCTRL_SIZE 0x000007FF /* Size of data buffer in bytes */
#define TCTRL_OVERRIDE 0x04000000 /* Override Default MAC Registers */
#define TCTRL_HUGE 0x08000000 /* Enable Huge Frame */
#define TCTRL_PAD 0x10000000 /* Pad short Frames to 64 bytes */
#define TCTRL_CRC 0x20000000 /* Append a hardware CRC to Frame */
#define TCTRL_LAST 0x40000000 /* Last Descriptor for TX Frame */
#define TCTRL_INT 0x80000000 /* Generate TxDone Interrupt */
/* TX Status Information Word */
#define TINFO_COL_CNT 0x01E00000 /* Collision Count */
#define TINFO_DEFER 0x02000000 /* Packet Deferred (not an error) */
#define TINFO_EXCESS_DEF 0x04000000 /* Excessive Deferral */
#define TINFO_EXCESS_COL 0x08000000 /* Excessive Collision */
#define TINFO_LATE_COL 0x10000000 /* Late Collision Occured */
#define TINFO_UNDERRUN 0x20000000 /* Transmit Underrun */
#define TINFO_NO_DESCR 0x40000000 /* No new Descriptor available */
#define TINFO_ERR 0x80000000 /* Error Occured (OR of all errors) */
/* ENET Device Revision ID */
#define OLD_EMAC_MODULE_ID 0x39022000 /* Rev. ID for first rev '-' */
/* DP83848C PHY Registers */
#define PHY_REG_BMCR 0x00 /* Basic Mode Control Register */
#define PHY_REG_BMSR 0x01 /* Basic Mode Status Register */
#define PHY_REG_IDR1 0x02 /* PHY Identifier 1 */
#define PHY_REG_IDR2 0x03 /* PHY Identifier 2 */
#define PHY_REG_ANAR 0x04 /* Auto-Negotiation Advertisement */
#define PHY_REG_ANLPAR 0x05 /* Auto-Neg. Link Partner Abitily */
#define PHY_REG_ANER 0x06 /* Auto-Neg. Expansion Register */
#define PHY_REG_ANNPTR 0x07 /* Auto-Neg. Next Page TX */
/* PHY Extended Registers */
#define PHY_REG_STS 0x10 /* Status Register */
#define PHY_REG_MICR 0x11 /* MII Interrupt Control Register */
#define PHY_REG_MISR 0x12 /* MII Interrupt Status Register */
#define PHY_REG_FCSCR 0x14 /* False Carrier Sense Counter */
#define PHY_REG_RECR 0x15 /* Receive Error Counter */
#define PHY_REG_PCSR 0x16 /* PCS Sublayer Config. and Status */
#define PHY_REG_RBR 0x17 /* RMII and Bypass Register */
#define PHY_REG_LEDCR 0x18 /* LED Direct Control Register */
#define PHY_REG_PHYCR 0x19 /* PHY Control Register */
#define PHY_REG_10BTSCR 0x1A /* 10Base-T Status/Control Register */
#define PHY_REG_CDCTRL1 0x1B /* CD Test Control and BIST Extens. */
#define PHY_REG_EDCR 0x1D /* Energy Detect Control Register */
#define PHY_REG_SCSR 0x1F /* PHY Special Control/Status Register */
#define PHY_FULLD_100M 0x2100 /* Full Duplex 100Mbit */
#define PHY_HALFD_100M 0x2000 /* Half Duplex 100Mbit */
#define PHY_FULLD_10M 0x0100 /* Full Duplex 10Mbit */
#define PHY_HALFD_10M 0x0000 /* Half Duplex 10MBit */
#define PHY_AUTO_NEG 0x3000 /* Select Auto Negotiation */
#define DP83848C_DEF_ADR 0x0100 /* Default PHY device address */
#define DP83848C_ID 0x20005C90 /* PHY Identifier - DP83848C */
#define LAN8720_ID 0x0007C0F0 /* PHY Identifier - LAN8720 */
#define PHY_STS_LINK 0x0001 /* PHY Status Link Mask */
#define PHY_STS_SPEED 0x0002 /* PHY Status Speed Mask */
#define PHY_STS_DUPLEX 0x0004 /* PHY Status Duplex Mask */
#define PHY_BMCR_RESET 0x8000 /* PHY Reset */
#define PHY_BMSR_LINK 0x0004 /* PHY BMSR Link valid */
#define PHY_SCSR_100MBIT 0x0008 /* Speed: 1=100 MBit, 0=10Mbit */
#define PHY_SCSR_DUPLEX 0x0010 /* PHY Duplex Mask */
static int phy_read(unsigned int PhyReg);
static int phy_write(unsigned int PhyReg, unsigned short Data);
static void txdscr_init(void);
static void rxdscr_init(void);
#if defined (__ICCARM__)
# define AHBSRAM1
#elif defined(TOOLCHAIN_GCC_CR)
# define AHBSRAM1 __attribute__((section(".data.$RamPeriph32")))
#else
# define AHBSRAM1 __attribute__((section("AHBSRAM1"),aligned))
#endif
AHBSRAM1 volatile uint8_t rxbuf[NUM_RX_FRAG][ETH_FRAG_SIZE];
AHBSRAM1 volatile uint8_t txbuf[NUM_TX_FRAG][ETH_FRAG_SIZE];
AHBSRAM1 volatile RX_DESC_TypeDef rxdesc[NUM_RX_FRAG];
AHBSRAM1 volatile RX_STAT_TypeDef rxstat[NUM_RX_FRAG];
AHBSRAM1 volatile TX_DESC_TypeDef txdesc[NUM_TX_FRAG];
AHBSRAM1 volatile TX_STAT_TypeDef txstat[NUM_TX_FRAG];
#if NEW_LOGIC
static int rx_consume_offset = -1;
static int tx_produce_offset = -1;
#else
static int send_doff = 0;
static int send_idx = -1;
static int send_size = 0;
static int receive_soff = 0;
static int receive_idx = -1;
#endif
static uint32_t phy_id = 0;
static inline int rinc(int idx, int mod) {
++idx;
idx %= mod;
return idx;
}
//extern unsigned int SystemFrequency;
static inline unsigned int clockselect() {
if(SystemCoreClock < 10000000) {
return 1;
} else if(SystemCoreClock < 15000000) {
return 2;
} else if(SystemCoreClock < 20000000) {
return 3;
} else if(SystemCoreClock < 25000000) {
return 4;
} else if(SystemCoreClock < 35000000) {
return 5;
} else if(SystemCoreClock < 50000000) {
return 6;
} else if(SystemCoreClock < 70000000) {
return 7;
} else if(SystemCoreClock < 80000000) {
return 8;
} else if(SystemCoreClock < 90000000) {
return 9;
} else if(SystemCoreClock < 100000000) {
return 10;
} else if(SystemCoreClock < 120000000) {
return 11;
} else if(SystemCoreClock < 130000000) {
return 12;
} else if(SystemCoreClock < 140000000) {
return 13;
} else if(SystemCoreClock < 150000000) {
return 15;
} else if(SystemCoreClock < 160000000) {
return 16;
} else {
return 0;
}
}
#ifndef min
#define min(x, y) (((x)<(y))?(x):(y))
#endif
/*----------------------------------------------------------------------------
Ethernet Device initialize
*----------------------------------------------------------------------------*/
int ethernet_init() {
int regv, tout;
char mac[ETHERNET_ADDR_SIZE];
unsigned int clock = clockselect();
LPC_SC->PCONP |= 0x40000000; /* Power Up the EMAC controller. */
LPC_IOCON->P1_0 &= ~0x07; /* ENET I/O config */
LPC_IOCON->P1_0 |= 0x01; /* ENET_TXD0 */
LPC_IOCON->P1_1 &= ~0x07;
LPC_IOCON->P1_1 |= 0x01; /* ENET_TXD1 */
LPC_IOCON->P1_4 &= ~0x07;
LPC_IOCON->P1_4 |= 0x01; /* ENET_TXEN */
LPC_IOCON->P1_8 &= ~0x07;
LPC_IOCON->P1_8 |= 0x01; /* ENET_CRS */
LPC_IOCON->P1_9 &= ~0x07;
LPC_IOCON->P1_9 |= 0x01; /* ENET_RXD0 */
LPC_IOCON->P1_10 &= ~0x07;
LPC_IOCON->P1_10 |= 0x01; /* ENET_RXD1 */
LPC_IOCON->P1_14 &= ~0x07;
LPC_IOCON->P1_14 |= 0x01; /* ENET_RX_ER */
LPC_IOCON->P1_15 &= ~0x07;
LPC_IOCON->P1_15 |= 0x01; /* ENET_REF_CLK */
LPC_IOCON->P1_16 &= ~0x07; /* ENET/PHY I/O config */
LPC_IOCON->P1_16 |= 0x01; /* ENET_MDC */
LPC_IOCON->P1_17 &= ~0x07;
LPC_IOCON->P1_17 |= 0x01; /* ENET_MDIO */
/* Reset all EMAC internal modules. */
LPC_EMAC->MAC1 = MAC1_RES_TX | MAC1_RES_MCS_TX | MAC1_RES_RX |
MAC1_RES_MCS_RX | MAC1_SIM_RES | MAC1_SOFT_RES;
LPC_EMAC->Command = CR_REG_RES | CR_TX_RES | CR_RX_RES | CR_PASS_RUNT_FRM;
for(tout = 100; tout; tout--) __NOP(); /* A short delay after reset. */
LPC_EMAC->MAC1 = MAC1_PASS_ALL; /* Initialize MAC control registers. */
LPC_EMAC->MAC2 = MAC2_CRC_EN | MAC2_PAD_EN;
LPC_EMAC->MAXF = ETH_MAX_FLEN;
LPC_EMAC->CLRT = CLRT_DEF;
LPC_EMAC->IPGR = IPGR_DEF;
LPC_EMAC->Command = CR_RMII | CR_PASS_RUNT_FRM; /* Enable Reduced MII interface. */
LPC_EMAC->MCFG = (clock << 0x2) & MCFG_CLK_SEL; /* Set clock */
LPC_EMAC->MCFG |= MCFG_RES_MII; /* and reset */
for(tout = 100; tout; tout--) __NOP(); /* A short delay */
LPC_EMAC->MCFG = (clock << 0x2) & MCFG_CLK_SEL;
LPC_EMAC->MCMD = 0;
LPC_EMAC->SUPP = SUPP_RES_RMII; /* Reset Reduced MII Logic. */
for (tout = 100; tout; tout--) __NOP(); /* A short delay */
LPC_EMAC->SUPP = 0;
phy_write(PHY_REG_BMCR, PHY_BMCR_RESET); /* perform PHY reset */
for(tout = 0x20000; ; tout--) { /* Wait for hardware reset to end. */
regv = phy_read(PHY_REG_BMCR);
if(regv < 0 || tout == 0) {
return -1; /* Error */
}
if(!(regv & PHY_BMCR_RESET)) {
break; /* Reset complete. */
}
}
phy_id = (phy_read(PHY_REG_IDR1) << 16);
phy_id |= (phy_read(PHY_REG_IDR2) & 0XFFF0);
if (phy_id != DP83848C_ID && phy_id != LAN8720_ID) {
error("Unknown Ethernet PHY (%x)", (unsigned int)phy_id);
}
ethernet_set_link(-1, 0);
/* Set the Ethernet MAC Address registers */
ethernet_address(mac);
LPC_EMAC->SA0 = ((uint32_t)mac[5] << 8) | (uint32_t)mac[4];
LPC_EMAC->SA1 = ((uint32_t)mac[3] << 8) | (uint32_t)mac[2];
LPC_EMAC->SA2 = ((uint32_t)mac[1] << 8) | (uint32_t)mac[0];
txdscr_init(); /* initialize DMA TX Descriptor */
rxdscr_init(); /* initialize DMA RX Descriptor */
LPC_EMAC->RxFilterCtrl = RFC_UCAST_EN | RFC_MCAST_EN | RFC_BCAST_EN | RFC_PERFECT_EN;
/* Receive Broadcast, Perfect Match Packets */
LPC_EMAC->IntEnable = INT_RX_DONE | INT_TX_DONE; /* Enable EMAC interrupts. */
LPC_EMAC->IntClear = 0xFFFF; /* Reset all interrupts */
LPC_EMAC->Command |= (CR_RX_EN | CR_TX_EN); /* Enable receive and transmit mode of MAC Ethernet core */
LPC_EMAC->MAC1 |= MAC1_REC_EN;
#if NEW_LOGIC
rx_consume_offset = -1;
tx_produce_offset = -1;
#else
send_doff = 0;
send_idx = -1;
send_size = 0;
receive_soff = 0;
receive_idx = -1;
#endif
return 0;
}
/*----------------------------------------------------------------------------
Ethernet Device Uninitialize
*----------------------------------------------------------------------------*/
void ethernet_free() {
LPC_EMAC->IntEnable &= ~(INT_RX_DONE | INT_TX_DONE);
LPC_EMAC->IntClear = 0xFFFF;
LPC_SC->PCONP &= ~0x40000000; /* Power down the EMAC controller. */
LPC_IOCON->P1_0 &= ~0x07; /* ENET I/O config */
LPC_IOCON->P1_1 &= ~0x07;
LPC_IOCON->P1_4 &= ~0x07;
LPC_IOCON->P1_8 &= ~0x07;
LPC_IOCON->P1_9 &= ~0x07;
LPC_IOCON->P1_10 &= ~0x07;
LPC_IOCON->P1_14 &= ~0x07;
LPC_IOCON->P1_15 &= ~0x07;
LPC_IOCON->P1_16 &= ~0x07; /* ENET/PHY I/O config */
LPC_IOCON->P1_17 &= ~0x07;
}
// if(TxProduceIndex == TxConsumeIndex) buffer array is empty
// if(TxProduceIndex == TxConsumeIndex - 1) buffer is full, should not fill
// TxProduceIndex - The buffer that will/is being fileld by driver, s/w increment
// TxConsumeIndex - The buffer that will/is beign sent by hardware
int ethernet_write(const char *data, int slen) {
#if NEW_LOGIC
if(tx_produce_offset < 0) { // mark as active if not already
tx_produce_offset = 0;
}
int index = LPC_EMAC->TxProduceIndex;
int remaining = ETH_MAX_FLEN - tx_produce_offset - 4; // bytes written plus checksum
int requested = slen;
int ncopy = min(remaining, requested);
void *pdst = (void *)(txdesc[index].Packet + tx_produce_offset);
void *psrc = (void *)(data);
if(ncopy > 0 ){
if(data != NULL) {
memcpy(pdst, psrc, ncopy);
} else {
memset(pdst, 0, ncopy);
}
}
tx_produce_offset += ncopy;
return ncopy;
#else
void *pdst, *psrc;
const int dlen = ETH_FRAG_SIZE;
int copy = 0;
int soff = 0;
if(send_idx == -1) {
send_idx = LPC_EMAC->TxProduceIndex;
}
if(slen + send_doff > ethernet_MTU_SIZE) {
return -1;
}
do {
copy = min(slen - soff, dlen - send_doff);
pdst = (void *)(txdesc[send_idx].Packet + send_doff);
psrc = (void *)(data + soff);
if(send_doff + copy > ETH_FRAG_SIZE) {
txdesc[send_idx].Ctrl = (send_doff-1) | (TCTRL_INT);
send_idx = rinc(send_idx, NUM_TX_FRAG);
send_doff = 0;
}
if(data != NULL) {
memcpy(pdst, psrc, copy);
} else {
memset(pdst, 0, copy);
}
soff += copy;
send_doff += copy;
send_size += copy;
} while(soff != slen);
return soff;
#endif
}
int ethernet_send() {
#if NEW_LOGIC
if(tx_produce_offset < 0) { // no buffer active
return -1;
}
// ensure there is a link
if(!ethernet_link()) {
return -2;
}
// we have been writing in to a buffer, so finalise it
int size = tx_produce_offset;
int index = LPC_EMAC->TxProduceIndex;
txdesc[index].Ctrl = (tx_produce_offset-1) | (TCTRL_INT | TCTRL_LAST);
// Increment ProduceIndex to allow it to be sent
// We can only do this if the next slot is free
int next = rinc(index, NUM_TX_FRAG);
while(next == LPC_EMAC->TxConsumeIndex) {
for(int i=0; i<1000; i++) { __NOP(); }
}
LPC_EMAC->TxProduceIndex = next;
tx_produce_offset = -1;
return size;
#else
int s = send_size;
txdesc[send_idx].Ctrl = (send_doff-1) | (TCTRL_INT | TCTRL_LAST);
send_idx = rinc(send_idx, NUM_TX_FRAG);
LPC_EMAC->TxProduceIndex = send_idx;
send_doff = 0;
send_idx = -1;
send_size = 0;
return s;
#endif
}
// RxConsmeIndex - The index of buffer the driver will/is reading from. Driver should inc once read
// RxProduceIndex - The index of buffer that will/is being filled by MAC. H/w will inc once rxd
//
// if(RxConsumeIndex == RxProduceIndex) buffer array is empty
// if(RxConsumeIndex == RxProduceIndex + 1) buffer array is full
// Recevies an arrived ethernet packet.
// Receiving an ethernet packet will drop the last received ethernet packet
// and make a new ethernet packet ready to read.
// Returns size of packet, else 0 if nothing to receive
// We read from RxConsumeIndex from position rx_consume_offset
// if rx_consume_offset < 0, then we have not recieved the RxConsumeIndex packet for reading
// rx_consume_offset = -1 // no frame
// rx_consume_offset = 0 // start of frame
// Assumption: A fragment should alway be a whole frame
int ethernet_receive() {
#if NEW_LOGIC
// if we are currently reading a valid RxConsume buffer, increment to the next one
if(rx_consume_offset >= 0) {
LPC_EMAC->RxConsumeIndex = rinc(LPC_EMAC->RxConsumeIndex, NUM_RX_FRAG);
}
// if the buffer is empty, mark it as no valid buffer
if(LPC_EMAC->RxConsumeIndex == LPC_EMAC->RxProduceIndex) {
rx_consume_offset = -1;
return 0;
}
uint32_t info = rxstat[LPC_EMAC->RxConsumeIndex].Info;
rx_consume_offset = 0;
// check if it is not marked as last or for errors
if(!(info & RINFO_LAST_FLAG) || (info & RINFO_ERR_MASK)) {
return -1;
}
int size = (info & RINFO_SIZE) + 1;
return size - 4; // don't include checksum bytes
#else
if(receive_idx == -1) {
receive_idx = LPC_EMAC->RxConsumeIndex;
} else {
while(!(rxstat[receive_idx].Info & RINFO_LAST_FLAG) && ((uint32_t)receive_idx != LPC_EMAC->RxProduceIndex)) {
receive_idx = rinc(receive_idx, NUM_RX_FRAG);
}
unsigned int info = rxstat[receive_idx].Info;
int slen = (info & RINFO_SIZE) + 1;
if(slen > ethernet_MTU_SIZE || (info & RINFO_ERR_MASK)) {
/* Invalid frame, ignore it and free buffer. */
receive_idx = rinc(receive_idx, NUM_RX_FRAG);
}
receive_idx = rinc(receive_idx, NUM_RX_FRAG);
receive_soff = 0;
LPC_EMAC->RxConsumeIndex = receive_idx;
}
if((uint32_t)receive_idx == LPC_EMAC->RxProduceIndex) {
receive_idx = -1;
return 0;
}
return (rxstat[receive_idx].Info & RINFO_SIZE) - 3;
#endif
}
// Read from an recevied ethernet packet.
// After receive returnd a number bigger than 0 it is
// possible to read bytes from this packet.
// Read will write up to size bytes into data.
// It is possible to use read multible times.
// Each time read will start reading after the last read byte before.
int ethernet_read(char *data, int dlen) {
#if NEW_LOGIC
// Check we have a valid buffer to read
if(rx_consume_offset < 0) {
return 0;
}
// Assume 1 fragment block
uint32_t info = rxstat[LPC_EMAC->RxConsumeIndex].Info;
int size = (info & RINFO_SIZE) + 1 - 4; // exclude checksum
int remaining = size - rx_consume_offset;
int requested = dlen;
int ncopy = min(remaining, requested);
void *psrc = (void *)(rxdesc[LPC_EMAC->RxConsumeIndex].Packet + rx_consume_offset);
void *pdst = (void *)(data);
if(data != NULL && ncopy > 0) {
memcpy(pdst, psrc, ncopy);
}
rx_consume_offset += ncopy;
return ncopy;
#else
int slen;
int copy = 0;
unsigned int more;
unsigned int info;
void *pdst, *psrc;
int doff = 0;
if((uint32_t)receive_idx == LPC_EMAC->RxProduceIndex || receive_idx == -1) {
return 0;
}
do {
info = rxstat[receive_idx].Info;
more = !(info & RINFO_LAST_FLAG);
slen = (info & RINFO_SIZE) + 1;
if(slen > ethernet_MTU_SIZE || (info & RINFO_ERR_MASK)) {
/* Invalid frame, ignore it and free buffer. */
receive_idx = rinc(receive_idx, NUM_RX_FRAG);
} else {
copy = min(slen - receive_soff, dlen - doff);
psrc = (void *)(rxdesc[receive_idx].Packet + receive_soff);
pdst = (void *)(data + doff);
if(data != NULL) {
/* check if Buffer available */
memcpy(pdst, psrc, copy);
}
receive_soff += copy;
doff += copy;
if((more && (receive_soff == slen))) {
receive_idx = rinc(receive_idx, NUM_RX_FRAG);
receive_soff = 0;
}
}
} while(more && !(doff == dlen) && !receive_soff);
return doff;
#endif
}
int ethernet_link(void) {
if (phy_id == DP83848C_ID) {
return (phy_read(PHY_REG_STS) & PHY_STS_LINK);
}
else { // LAN8720_ID
return (phy_read(PHY_REG_BMSR) & PHY_BMSR_LINK);
}
}
static int phy_write(unsigned int PhyReg, unsigned short Data) {
unsigned int timeOut;
LPC_EMAC->MADR = DP83848C_DEF_ADR | PhyReg;
LPC_EMAC->MWTD = Data;
for(timeOut = 0; timeOut < MII_WR_TOUT; timeOut++) { /* Wait until operation completed */
if((LPC_EMAC->MIND & MIND_BUSY) == 0) {
return 0;
}
}
return -1;
}
static int phy_read(unsigned int PhyReg) {
unsigned int timeOut;
LPC_EMAC->MADR = DP83848C_DEF_ADR | PhyReg;
LPC_EMAC->MCMD = MCMD_READ;
for(timeOut = 0; timeOut < MII_RD_TOUT; timeOut++) { /* Wait until operation completed */
if((LPC_EMAC->MIND & MIND_BUSY) == 0) {
LPC_EMAC->MCMD = 0;
return LPC_EMAC->MRDD; /* Return a 16-bit value. */
}
}
return -1;
}
static void txdscr_init() {
int i;
for(i = 0; i < NUM_TX_FRAG; i++) {
txdesc[i].Packet = (uint32_t)&txbuf[i];
txdesc[i].Ctrl = 0;
txstat[i].Info = 0;
}
LPC_EMAC->TxDescriptor = (uint32_t)txdesc; /* Set EMAC Transmit Descriptor Registers. */
LPC_EMAC->TxStatus = (uint32_t)txstat;
LPC_EMAC->TxDescriptorNumber = NUM_TX_FRAG-1;
LPC_EMAC->TxProduceIndex = 0; /* Tx Descriptors Point to 0 */
}
static void rxdscr_init() {
int i;
for(i = 0; i < NUM_RX_FRAG; i++) {
rxdesc[i].Packet = (uint32_t)&rxbuf[i];
rxdesc[i].Ctrl = RCTRL_INT | (ETH_FRAG_SIZE-1);
rxstat[i].Info = 0;
rxstat[i].HashCRC = 0;
}
LPC_EMAC->RxDescriptor = (uint32_t)rxdesc; /* Set EMAC Receive Descriptor Registers. */
LPC_EMAC->RxStatus = (uint32_t)rxstat;
LPC_EMAC->RxDescriptorNumber = NUM_RX_FRAG-1;
LPC_EMAC->RxConsumeIndex = 0; /* Rx Descriptors Point to 0 */
}
void ethernet_address(char *mac) {
mbed_mac_address(mac);
}
void ethernet_set_link(int speed, int duplex) {
unsigned short phy_data;
int tout;
if((speed < 0) || (speed > 1)) {
phy_data = PHY_AUTO_NEG;
} else {
phy_data = (((unsigned short) speed << 13) |
((unsigned short) duplex << 8));
}
phy_write(PHY_REG_BMCR, phy_data);
for (tout = 100; tout; tout--) { __NOP(); } /* A short delay */
switch(phy_id) {
case DP83848C_ID:
phy_data = phy_read(PHY_REG_STS);
if(phy_data & PHY_STS_DUPLEX) {
LPC_EMAC->MAC2 |= MAC2_FULL_DUP;
LPC_EMAC->Command |= CR_FULL_DUP;
LPC_EMAC->IPGT = IPGT_FULL_DUP;
} else {
LPC_EMAC->MAC2 &= ~MAC2_FULL_DUP;
LPC_EMAC->Command &= ~CR_FULL_DUP;
LPC_EMAC->IPGT = IPGT_HALF_DUP;
}
if(phy_data & PHY_STS_SPEED) {
LPC_EMAC->SUPP &= ~SUPP_SPEED;
} else {
LPC_EMAC->SUPP |= SUPP_SPEED;
}
break;
case LAN8720_ID:
phy_data = phy_read(PHY_REG_SCSR);
if (phy_data & PHY_SCSR_DUPLEX) {
LPC_EMAC->MAC2 |= MAC2_FULL_DUP;
LPC_EMAC->Command |= CR_FULL_DUP;
LPC_EMAC->IPGT = IPGT_FULL_DUP;
} else {
LPC_EMAC->Command &= ~CR_FULL_DUP;
LPC_EMAC->IPGT = IPGT_HALF_DUP;
}
if(phy_data & PHY_SCSR_100MBIT) {
LPC_EMAC->SUPP |= SUPP_SPEED;
} else {
LPC_EMAC->SUPP &= ~SUPP_SPEED;
}
break;
}
}

View File

@ -0,0 +1,402 @@
/* mbed Microcontroller Library
* Copyright (c) 2006-2013 ARM Limited
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "mbed_assert.h"
#include "i2c_api.h"
#include "cmsis.h"
#include "pinmap.h"
static const PinMap PinMap_I2C_SDA[] = {
{P0_0 , I2C_1, 3},
{P0_27, I2C_0, 1},
{P2_14, I2C_1, 2},
{NC , NC , 0}
};
static const PinMap PinMap_I2C_SCL[] = {
{P0_1 , I2C_1, 3},
{P0_28, I2C_0, 1},
{P2_15, I2C_1, 2},
{NC , NC, 0}
};
#define I2C_CONSET(x) (x->i2c->CONSET)
#define I2C_CONCLR(x) (x->i2c->CONCLR)
#define I2C_STAT(x) (x->i2c->STAT)
#define I2C_DAT(x) (x->i2c->DAT)
#define I2C_SCLL(x, val) (x->i2c->SCLL = val)
#define I2C_SCLH(x, val) (x->i2c->SCLH = val)
static const uint32_t I2C_addr_offset[2][4] = {
{0x0C, 0x20, 0x24, 0x28},
{0x30, 0x34, 0x38, 0x3C}
};
static inline void i2c_conclr(i2c_t *obj, int start, int stop, int interrupt, int acknowledge) {
I2C_CONCLR(obj) = (start << 5)
| (stop << 4)
| (interrupt << 3)
| (acknowledge << 2);
}
static inline void i2c_conset(i2c_t *obj, int start, int stop, int interrupt, int acknowledge) {
I2C_CONSET(obj) = (start << 5)
| (stop << 4)
| (interrupt << 3)
| (acknowledge << 2);
}
// Clear the Serial Interrupt (SI)
static inline void i2c_clear_SI(i2c_t *obj) {
i2c_conclr(obj, 0, 0, 1, 0);
}
static inline int i2c_status(i2c_t *obj) {
return I2C_STAT(obj);
}
// Wait until the Serial Interrupt (SI) is set
static int i2c_wait_SI(i2c_t *obj) {
int timeout = 0;
while (!(I2C_CONSET(obj) & (1 << 3))) {
timeout++;
if (timeout > 100000) return -1;
}
return 0;
}
static inline void i2c_interface_enable(i2c_t *obj) {
I2C_CONSET(obj) = 0x40;
}
static inline void i2c_power_enable(i2c_t *obj) {
switch ((int)obj->i2c) {
case I2C_0: LPC_SC->PCONP |= 1 << 7; break;
case I2C_1: LPC_SC->PCONP |= 1 << 19; break;
case I2C_2: LPC_SC->PCONP |= 1 << 26; break;
}
}
void i2c_init(i2c_t *obj, PinName sda, PinName scl) {
// determine the SPI to use
I2CName i2c_sda = (I2CName)pinmap_peripheral(sda, PinMap_I2C_SDA);
I2CName i2c_scl = (I2CName)pinmap_peripheral(scl, PinMap_I2C_SCL);
obj->i2c = (LPC_I2C_TypeDef *)pinmap_merge(i2c_sda, i2c_scl);
MBED_ASSERT((int)obj->i2c != NC);
// enable power
i2c_power_enable(obj);
// set default frequency at 100k
i2c_frequency(obj, 100000);
i2c_conclr(obj, 1, 1, 1, 1);
i2c_interface_enable(obj);
pinmap_pinout(sda, PinMap_I2C_SDA);
pinmap_pinout(scl, PinMap_I2C_SCL);
// OpenDrain must explicitly be enabled for p0.0 and p0.1
if (sda == P0_0) {
pin_mode(sda, OpenDrain);
}
if (scl == P0_1) {
pin_mode(scl, OpenDrain);
}
}
inline int i2c_start(i2c_t *obj) {
int status = 0;
// 8.1 Before master mode can be entered, I2CON must be initialised to:
// - I2EN STA STO SI AA - -
// - 1 0 0 0 x - -
// if AA = 0, it can't enter slave mode
i2c_conclr(obj, 1, 1, 1, 1);
// The master mode may now be entered by setting the STA bit
// this will generate a start condition when the bus becomes free
i2c_conset(obj, 1, 0, 0, 1);
i2c_wait_SI(obj);
status = i2c_status(obj);
// Clear start bit now transmitted, and interrupt bit
i2c_conclr(obj, 1, 0, 0, 0);
return status;
}
inline int i2c_stop(i2c_t *obj) {
int timeout = 0;
// write the stop bit
i2c_conset(obj, 0, 1, 0, 0);
i2c_clear_SI(obj);
// wait for STO bit to reset
while(I2C_CONSET(obj) & (1 << 4)) {
timeout ++;
if (timeout > 100000) return 1;
}
return 0;
}
static inline int i2c_do_write(i2c_t *obj, int value, uint8_t addr) {
// write the data
I2C_DAT(obj) = value;
// clear SI to init a send
i2c_clear_SI(obj);
// wait and return status
i2c_wait_SI(obj);
return i2c_status(obj);
}
static inline int i2c_do_read(i2c_t *obj, int last) {
// we are in state 0x40 (SLA+R tx'd) or 0x50 (data rx'd and ack)
if(last) {
i2c_conclr(obj, 0, 0, 0, 1); // send a NOT ACK
} else {
i2c_conset(obj, 0, 0, 0, 1); // send a ACK
}
// accept byte
i2c_clear_SI(obj);
// wait for it to arrive
i2c_wait_SI(obj);
// return the data
return (I2C_DAT(obj) & 0xFF);
}
void i2c_frequency(i2c_t *obj, int hz) {
uint32_t PCLK = PeripheralClock;
uint32_t pulse = PCLK / (hz * 2);
// I2C Rate
I2C_SCLL(obj, pulse);
I2C_SCLH(obj, pulse);
}
// The I2C does a read or a write as a whole operation
// There are two types of error conditions it can encounter
// 1) it can not obtain the bus
// 2) it gets error responses at part of the transmission
//
// We tackle them as follows:
// 1) we retry until we get the bus. we could have a "timeout" if we can not get it
// which basically turns it in to a 2)
// 2) on error, we use the standard error mechanisms to report/debug
//
// Therefore an I2C transaction should always complete. If it doesn't it is usually
// because something is setup wrong (e.g. wiring), and we don't need to programatically
// check for that
int i2c_read(i2c_t *obj, int address, char *data, int length, int stop) {
int count, status;
status = i2c_start(obj);
if ((status != 0x10) && (status != 0x08)) {
i2c_stop(obj);
return I2C_ERROR_BUS_BUSY;
}
status = i2c_do_write(obj, (address | 0x01), 1);
if (status != 0x40) {
i2c_stop(obj);
return I2C_ERROR_NO_SLAVE;
}
// Read in all except last byte
for (count = 0; count < (length - 1); count++) {
int value = i2c_do_read(obj, 0);
status = i2c_status(obj);
if (status != 0x50) {
i2c_stop(obj);
return count;
}
data[count] = (char) value;
}
// read in last byte
int value = i2c_do_read(obj, 1);
status = i2c_status(obj);
if (status != 0x58) {
i2c_stop(obj);
return length - 1;
}
data[count] = (char) value;
// If not repeated start, send stop.
if (stop) {
i2c_stop(obj);
}
return length;
}
int i2c_write(i2c_t *obj, int address, const char *data, int length, int stop) {
int i, status;
status = i2c_start(obj);
if ((status != 0x10) && (status != 0x08)) {
i2c_stop(obj);
return I2C_ERROR_BUS_BUSY;
}
status = i2c_do_write(obj, (address & 0xFE), 1);
if (status != 0x18) {
i2c_stop(obj);
return I2C_ERROR_NO_SLAVE;
}
for (i=0; i<length; i++) {
status = i2c_do_write(obj, data[i], 0);
if (status != 0x28) {
i2c_stop(obj);
return i;
}
}
// clearing the serial interrupt here might cause an unintended rewrite of the last byte
// see also issue report https://mbed.org/users/mbed_official/code/mbed/issues/1
// i2c_clear_SI(obj);
// If not repeated start, send stop.
if (stop) {
i2c_stop(obj);
}
return length;
}
void i2c_reset(i2c_t *obj) {
i2c_stop(obj);
}
int i2c_byte_read(i2c_t *obj, int last) {
return (i2c_do_read(obj, last) & 0xFF);
}
int i2c_byte_write(i2c_t *obj, int data) {
int ack;
int status = i2c_do_write(obj, (data & 0xFF), 0);
switch(status) {
case 0x18: case 0x28: // Master transmit ACKs
ack = 1;
break;
case 0x40: // Master receive address transmitted ACK
ack = 1;
break;
case 0xB8: // Slave transmit ACK
ack = 1;
break;
default:
ack = 0;
break;
}
return ack;
}
void i2c_slave_mode(i2c_t *obj, int enable_slave) {
if (enable_slave != 0) {
i2c_conclr(obj, 1, 1, 1, 0);
i2c_conset(obj, 0, 0, 0, 1);
} else {
i2c_conclr(obj, 1, 1, 1, 1);
}
}
int i2c_slave_receive(i2c_t *obj) {
int status;
int retval;
status = i2c_status(obj);
switch(status) {
case 0x60: retval = 3; break;
case 0x70: retval = 2; break;
case 0xA8: retval = 1; break;
default : retval = 0; break;
}
return(retval);
}
int i2c_slave_read(i2c_t *obj, char *data, int length) {
int count = 0;
int status;
do {
i2c_clear_SI(obj);
i2c_wait_SI(obj);
status = i2c_status(obj);
if((status == 0x80) || (status == 0x90)) {
data[count] = I2C_DAT(obj) & 0xFF;
}
count++;
} while (((status == 0x80) || (status == 0x90) ||
(status == 0x060) || (status == 0x70)) && (count < length));
if(status != 0xA0) {
i2c_stop(obj);
}
i2c_clear_SI(obj);
return count;
}
int i2c_slave_write(i2c_t *obj, const char *data, int length) {
int count = 0;
int status;
if(length <= 0) {
return(0);
}
do {
status = i2c_do_write(obj, data[count], 0);
count++;
} while ((count < length) && (status == 0xB8));
if((status != 0xC0) && (status != 0xC8)) {
i2c_stop(obj);
}
i2c_clear_SI(obj);
return(count);
}
void i2c_slave_address(i2c_t *obj, int idx, uint32_t address, uint32_t mask) {
uint32_t addr;
if ((idx >= 0) && (idx <= 3)) {
addr = ((uint32_t)obj->i2c) + I2C_addr_offset[0][idx];
*((uint32_t *) addr) = address & 0xFF;
addr = ((uint32_t)obj->i2c) + I2C_addr_offset[1][idx];
*((uint32_t *) addr) = mask & 0xFE;
}
}

View File

@ -0,0 +1,163 @@
/* mbed Microcontroller Library
* Copyright (c) 2006-2013 ARM Limited
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "mbed_assert.h"
#include "pwmout_api.h"
#include "cmsis.h"
#include "pinmap.h"
#define TCR_CNT_EN 0x00000001
#define TCR_RESET 0x00000002
// PORT ID, PWM ID, Pin function
static const PinMap PinMap_PWM[] = {
{P1_5, PWM0_3, 3},
{P1_20, PWM1_2, 2},
{P1_23, PWM1_4, 2},
{P1_24, PWM1_5, 2},
{NC, NC, 0}
};
static const uint32_t PWM_mr_offset[7] = {
0x18, 0x1C, 0x20, 0x24, 0x40, 0x44, 0x48
};
#define TCR_PWM_EN 0x00000008
static unsigned int pwm_clock_mhz;
void pwmout_init(pwmout_t* obj, PinName pin) {
// determine the channel
PWMName pwm = (PWMName)pinmap_peripheral(pin, PinMap_PWM);
MBED_ASSERT(pwm != (PWMName)NC);
obj->channel = pwm;
obj->pwm = LPC_PWM0;
if (obj->channel > 6) { // PWM1 is used if pwm > 6
obj->channel -= 6;
obj->pwm = LPC_PWM1;
}
obj->MR = (__IO uint32_t *)((uint32_t)obj->pwm + PWM_mr_offset[obj->channel]);
// ensure the power is on
if (obj->pwm == LPC_PWM0) {
LPC_SC->PCONP |= 1 << 5;
} else {
LPC_SC->PCONP |= 1 << 6;
}
obj->pwm->PR = 0; // no pre-scale
// ensure single PWM mode
obj->pwm->MCR = 1 << 1; // reset TC on match 0
// enable the specific PWM output
obj->pwm->PCR |= 1 << (8 + obj->channel);
pwm_clock_mhz = PeripheralClock / 1000000;
// default to 20ms: standard for servos, and fine for e.g. brightness control
pwmout_period_ms(obj, 20);
pwmout_write (obj, 0);
// Wire pinout
pinmap_pinout(pin, PinMap_PWM);
}
void pwmout_free(pwmout_t* obj) {
// [TODO]
}
void pwmout_write(pwmout_t* obj, float value) {
if (value < 0.0f) {
value = 0.0;
} else if (value > 1.0f) {
value = 1.0;
}
// set channel match to percentage
uint32_t v = (uint32_t)((float)(obj->pwm->MR0) * value);
// workaround for PWM1[1] - Never make it equal MR0, else we get 1 cycle dropout
if (v == obj->pwm->MR0) {
v++;
}
*obj->MR = v;
// accept on next period start
obj->pwm->LER |= 1 << obj->channel;
}
float pwmout_read(pwmout_t* obj) {
float v = (float)(*obj->MR) / (float)(obj->pwm->MR0);
return (v > 1.0f) ? (1.0f) : (v);
}
void pwmout_period(pwmout_t* obj, float seconds) {
pwmout_period_us(obj, seconds * 1000000.0f);
}
void pwmout_period_ms(pwmout_t* obj, int ms) {
pwmout_period_us(obj, ms * 1000);
}
// Set the PWM period, keeping the duty cycle the same.
void pwmout_period_us(pwmout_t* obj, int us) {
// calculate number of ticks
uint32_t ticks = pwm_clock_mhz * us;
// set reset
obj->pwm->TCR = TCR_RESET;
// set the global match register
obj->pwm->MR0 = ticks;
// Scale the pulse width to preserve the duty ratio
if (obj->pwm->MR0 > 0) {
*obj->MR = (*obj->MR * ticks) / obj->pwm->MR0;
}
// set the channel latch to update value at next period start
obj->pwm->LER |= 1 << 0;
// enable counter and pwm, clear reset
obj->pwm->TCR = TCR_CNT_EN | TCR_PWM_EN;
}
void pwmout_pulsewidth(pwmout_t* obj, float seconds) {
pwmout_pulsewidth_us(obj, seconds * 1000000.0f);
}
void pwmout_pulsewidth_ms(pwmout_t* obj, int ms) {
pwmout_pulsewidth_us(obj, ms * 1000);
}
void pwmout_pulsewidth_us(pwmout_t* obj, int us) {
// calculate number of ticks
uint32_t v = pwm_clock_mhz * us;
// workaround for PWM1[1] - Never make it equal MR0, else we get 1 cycle dropout
if (v == obj->pwm->MR0) {
v++;
}
// set the match register value
*obj->MR = v;
// set the channel latch to update value at next period start
obj->pwm->LER |= 1 << obj->channel;
}

View File

@ -0,0 +1,317 @@
/* mbed Microcontroller Library
* Copyright (c) 2006-2013 ARM Limited
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
// math.h required for floating point operations for baud rate calculation
#include <math.h>
#include <string.h>
#include <stdlib.h>
#include "serial_api.h"
#include "cmsis.h"
#include "pinmap.h"
#include "mbed_error.h"
/******************************************************************************
* INITIALIZATION
******************************************************************************/
static const PinMap PinMap_UART_TX[] = {
{P0_0, UART_3, 2},
{P0_2, UART_0, 1},
{P0_25, UART_3, 3},
{P4_22, UART_2, 2},
{P5_4, UART_4, 4},
{NC , NC , 0}
};
static const PinMap PinMap_UART_RX[] = {
{P0_1 , UART_3, 2},
{P0_3 , UART_0, 1},
{P0_26, UART_3, 3},
{P4_23, UART_2, 2},
{P5_3, UART_4, 4},
{NC , NC , 0}
};
#define UART_NUM 5
static uint32_t serial_irq_ids[UART_NUM] = {0};
static uart_irq_handler irq_handler;
int stdio_uart_inited = 0;
serial_t stdio_uart;
void serial_init(serial_t *obj, PinName tx, PinName rx) {
int is_stdio_uart = 0;
// determine the UART to use
UARTName uart_tx = (UARTName)pinmap_peripheral(tx, PinMap_UART_TX);
UARTName uart_rx = (UARTName)pinmap_peripheral(rx, PinMap_UART_RX);
UARTName uart = (UARTName)pinmap_merge(uart_tx, uart_rx);
MBED_ASSERT((int)uart != NC);
obj->uart = (LPC_UART_TypeDef *)uart;
// enable power
switch (uart) {
case UART_0: LPC_SC->PCONP |= 1 << 3; break;
case UART_1: LPC_SC->PCONP |= 1 << 4; break;
case UART_2: LPC_SC->PCONP |= 1 << 24; break;
case UART_3: LPC_SC->PCONP |= 1 << 25; break;
case UART_4: LPC_SC->PCONP |= 1 << 8; break;
}
// enable fifos and default rx trigger level
obj->uart->FCR = 1 << 0 // FIFO Enable - 0 = Disables, 1 = Enabled
| 0 << 1 // Rx Fifo Reset
| 0 << 2 // Tx Fifo Reset
| 0 << 6; // Rx irq trigger level - 0 = 1 char, 1 = 4 chars, 2 = 8 chars, 3 = 14 chars
// disable irqs
obj->uart->IER = 0 << 0 // Rx Data available irq enable
| 0 << 1 // Tx Fifo empty irq enable
| 0 << 2; // Rx Line Status irq enable
// set default baud rate and format
serial_baud (obj, 9600);
serial_format(obj, 8, ParityNone, 1);
// pinout the chosen uart
pinmap_pinout(tx, PinMap_UART_TX);
pinmap_pinout(rx, PinMap_UART_RX);
// set rx/tx pins in PullUp mode
if (tx != NC) {
pin_mode(tx, PullUp);
}
if (rx != NC) {
pin_mode(rx, PullUp);
}
switch (uart) {
case UART_0: obj->index = 0; break;
case UART_1: obj->index = 1; break;
case UART_2: obj->index = 2; break;
case UART_3: obj->index = 3; break;
case UART_4: obj->index = 4; break;
}
is_stdio_uart = (uart == STDIO_UART) ? (1) : (0);
if (is_stdio_uart) {
stdio_uart_inited = 1;
memcpy(&stdio_uart, obj, sizeof(serial_t));
}
}
void serial_free(serial_t *obj) {
serial_irq_ids[obj->index] = 0;
}
// serial_baud
// set the baud rate, taking in to account the current SystemFrequency
void serial_baud(serial_t *obj, int baudrate) {
uint32_t PCLK = PeripheralClock;
// First we check to see if the basic divide with no DivAddVal/MulVal
// ratio gives us an integer result. If it does, we set DivAddVal = 0,
// MulVal = 1. Otherwise, we search the valid ratio value range to find
// the closest match. This could be more elegant, using search methods
// and/or lookup tables, but the brute force method is not that much
// slower, and is more maintainable.
uint16_t DL = PCLK / (16 * baudrate);
uint8_t DivAddVal = 0;
uint8_t MulVal = 1;
int hit = 0;
uint16_t dlv;
uint8_t mv, dav;
if ((PCLK % (16 * baudrate)) != 0) { // Checking for zero remainder
int err_best = baudrate, b;
for (mv = 1; mv < 16 && !hit; mv++)
{
for (dav = 0; dav < mv; dav++)
{
// baudrate = PCLK / (16 * dlv * (1 + (DivAdd / Mul))
// solving for dlv, we get dlv = mul * PCLK / (16 * baudrate * (divadd + mul))
// mul has 4 bits, PCLK has 27 so we have 1 bit headroom which can be used for rounding
// for many values of mul and PCLK we have 2 or more bits of headroom which can be used to improve precision
// note: X / 32 doesn't round correctly. Instead, we use ((X / 16) + 1) / 2 for correct rounding
if ((mv * PCLK * 2) & 0x80000000) // 1 bit headroom
dlv = ((((2 * mv * PCLK) / (baudrate * (dav + mv))) / 16) + 1) / 2;
else // 2 bits headroom, use more precision
dlv = ((((4 * mv * PCLK) / (baudrate * (dav + mv))) / 32) + 1) / 2;
// datasheet says if DLL==DLM==0, then 1 is used instead since divide by zero is ungood
if (dlv == 0)
dlv = 1;
// datasheet says if dav > 0 then DL must be >= 2
if ((dav > 0) && (dlv < 2))
dlv = 2;
// integer rearrangement of the baudrate equation (with rounding)
b = ((PCLK * mv / (dlv * (dav + mv) * 8)) + 1) / 2;
// check to see how we went
b = abs(b - baudrate);
if (b < err_best)
{
err_best = b;
DL = dlv;
MulVal = mv;
DivAddVal = dav;
if (b == baudrate)
{
hit = 1;
break;
}
}
}
}
}
// set LCR[DLAB] to enable writing to divider registers
obj->uart->LCR |= (1 << 7);
// set divider values
obj->uart->DLM = (DL >> 8) & 0xFF;
obj->uart->DLL = (DL >> 0) & 0xFF;
obj->uart->FDR = (uint32_t) DivAddVal << 0
| (uint32_t) MulVal << 4;
// clear LCR[DLAB]
obj->uart->LCR &= ~(1 << 7);
}
void serial_format(serial_t *obj, int data_bits, SerialParity parity, int stop_bits) {
MBED_ASSERT((stop_bits == 1) || (stop_bits == 2)); // 0: 1 stop bits, 1: 2 stop bits
MBED_ASSERT((data_bits > 4) && (data_bits < 9)); // 0: 5 data bits ... 3: 8 data bits
MBED_ASSERT((parity == ParityNone) || (parity == ParityOdd) || (parity == ParityEven) ||
(parity == ParityForced1) || (parity == ParityForced0));
stop_bits -= 1;
data_bits -= 5;
int parity_enable, parity_select;
switch (parity) {
case ParityNone: parity_enable = 0; parity_select = 0; break;
case ParityOdd : parity_enable = 1; parity_select = 0; break;
case ParityEven: parity_enable = 1; parity_select = 1; break;
case ParityForced1: parity_enable = 1; parity_select = 2; break;
case ParityForced0: parity_enable = 1; parity_select = 3; break;
default:
break;
}
obj->uart->LCR = data_bits << 0
| stop_bits << 2
| parity_enable << 3
| parity_select << 4;
}
/******************************************************************************
* INTERRUPTS HANDLING
******************************************************************************/
static inline void uart_irq(uint32_t iir, uint32_t index) {
// [Chapter 14] LPC17xx UART0/2/3: UARTn Interrupt Handling
SerialIrq irq_type;
switch (iir) {
case 1: irq_type = TxIrq; break;
case 2: irq_type = RxIrq; break;
default: return;
}
if (serial_irq_ids[index] != 0)
irq_handler(serial_irq_ids[index], irq_type);
}
void uart0_irq() {uart_irq((LPC_UART0->IIR >> 1) & 0x7, 0);}
void uart1_irq() {uart_irq((LPC_UART1->IIR >> 1) & 0x7, 1);}
void uart2_irq() {uart_irq((LPC_UART2->IIR >> 1) & 0x7, 2);}
void uart3_irq() {uart_irq((LPC_UART3->IIR >> 1) & 0x7, 3);}
void uart4_irq() {uart_irq((LPC_UART4->IIR >> 1) & 0x7, 4);}
void serial_irq_handler(serial_t *obj, uart_irq_handler handler, uint32_t id) {
irq_handler = handler;
serial_irq_ids[obj->index] = id;
}
void serial_irq_set(serial_t *obj, SerialIrq irq, uint32_t enable) {
IRQn_Type irq_n = (IRQn_Type)0;
uint32_t vector = 0;
switch ((int)obj->uart) {
case UART_0: irq_n=UART0_IRQn; vector = (uint32_t)&uart0_irq; break;
case UART_1: irq_n=UART1_IRQn; vector = (uint32_t)&uart1_irq; break;
case UART_2: irq_n=UART2_IRQn; vector = (uint32_t)&uart2_irq; break;
case UART_3: irq_n=UART3_IRQn; vector = (uint32_t)&uart3_irq; break;
case UART_4: irq_n=UART4_IRQn; vector = (uint32_t)&uart4_irq; break;
}
if (enable) {
obj->uart->IER |= 1 << irq;
NVIC_SetVector(irq_n, vector);
NVIC_EnableIRQ(irq_n);
} else { // disable
int all_disabled = 0;
SerialIrq other_irq = (irq == RxIrq) ? (TxIrq) : (RxIrq);
obj->uart->IER &= ~(1 << irq);
all_disabled = (obj->uart->IER & (1 << other_irq)) == 0;
if (all_disabled)
NVIC_DisableIRQ(irq_n);
}
}
/******************************************************************************
* READ/WRITE
******************************************************************************/
int serial_getc(serial_t *obj) {
while (!serial_readable(obj));
return obj->uart->RBR;
}
void serial_putc(serial_t *obj, int c) {
while (!serial_writable(obj));
obj->uart->THR = c;
}
int serial_readable(serial_t *obj) {
return obj->uart->LSR & 0x01;
}
int serial_writable(serial_t *obj) {
return obj->uart->LSR & 0x20;
}
void serial_clear(serial_t *obj) {
obj->uart->FCR = 1 << 0 // FIFO Enable - 0 = Disables, 1 = Enabled
| 1 << 1 // rx FIFO reset
| 1 << 2 // tx FIFO reset
| 0 << 6; // interrupt depth
}
void serial_pinout_tx(PinName tx) {
pinmap_pinout(tx, PinMap_UART_TX);
}
void serial_break_set(serial_t *obj) {
obj->uart->LCR |= (1 << 6);
}
void serial_break_clear(serial_t *obj) {
obj->uart->LCR &= ~(1 << 6);
}

View File

@ -0,0 +1,206 @@
/* mbed Microcontroller Library
* Copyright (c) 2006-2013 ARM Limited
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <math.h>
#include "spi_api.h"
#include "cmsis.h"
#include "pinmap.h"
#include "mbed_error.h"
static const PinMap PinMap_SPI_SCLK[] = {
{P0_7 , SPI_1, 2},
{P1_19, SPI_1, 5},
{P1_20, SPI_0, 5},
{P2_22, SPI_0, 2},
{P5_2, SPI_2, 2},
{NC , NC , 0}
};
static const PinMap PinMap_SPI_MOSI[] = {
{P0_9 , SPI_1, 2},
{P1_24, SPI_0, 5},
{P2_27, SPI_0, 2},
{P5_0, SPI_2, 2},
{NC , NC , 0}
};
static const PinMap PinMap_SPI_MISO[] = {
{P0_8 , SPI_1, 2},
{P1_23, SPI_0, 5},
{P2_26, SPI_0, 2},
{P5_1, SPI_2, 2},
{NC , NC , 0}
};
static const PinMap PinMap_SPI_SSEL[] = {
{P0_6 , SPI_1, 2},
{P2_23, SPI_0, 2},
{P5_3, SPI_2, 2},
{NC , NC , 0}
};
static inline int ssp_disable(spi_t *obj);
static inline int ssp_enable(spi_t *obj);
void spi_init(spi_t *obj, PinName mosi, PinName miso, PinName sclk, PinName ssel) {
// determine the SPI to use
SPIName spi_mosi = (SPIName)pinmap_peripheral(mosi, PinMap_SPI_MOSI);
SPIName spi_miso = (SPIName)pinmap_peripheral(miso, PinMap_SPI_MISO);
SPIName spi_sclk = (SPIName)pinmap_peripheral(sclk, PinMap_SPI_SCLK);
SPIName spi_ssel = (SPIName)pinmap_peripheral(ssel, PinMap_SPI_SSEL);
SPIName spi_data = (SPIName)pinmap_merge(spi_mosi, spi_miso);
SPIName spi_cntl = (SPIName)pinmap_merge(spi_sclk, spi_ssel);
obj->spi = (LPC_SSP_TypeDef*)pinmap_merge(spi_data, spi_cntl);
MBED_ASSERT((int)obj->spi != NC);
// enable power and clocking
switch ((int)obj->spi) {
case SPI_0: LPC_SC->PCONP |= 1 << 21; break;
case SPI_1: LPC_SC->PCONP |= 1 << 10; break;
case SPI_2: LPC_SC->PCONP |= 1 << 20; break;
}
// set default format and frequency
if (ssel == NC) {
spi_format(obj, 8, 0, 0); // 8 bits, mode 0, master
} else {
spi_format(obj, 8, 0, 1); // 8 bits, mode 0, slave
}
spi_frequency(obj, 1000000);
// enable the ssp channel
ssp_enable(obj);
// pin out the spi pins
pinmap_pinout(mosi, PinMap_SPI_MOSI);
pinmap_pinout(miso, PinMap_SPI_MISO);
pinmap_pinout(sclk, PinMap_SPI_SCLK);
if (ssel != NC) {
pinmap_pinout(ssel, PinMap_SPI_SSEL);
}
}
void spi_free(spi_t *obj) {}
void spi_format(spi_t *obj, int bits, int mode, int slave) {
MBED_ASSERT(((bits >= 4) && (bits <= 16)) && ((mode >= 0) && (mode <= 3)));
ssp_disable(obj);
int polarity = (mode & 0x2) ? 1 : 0;
int phase = (mode & 0x1) ? 1 : 0;
// set it up
int DSS = bits - 1; // DSS (data select size)
int SPO = (polarity) ? 1 : 0; // SPO - clock out polarity
int SPH = (phase) ? 1 : 0; // SPH - clock out phase
int FRF = 0; // FRF (frame format) = SPI
uint32_t tmp = obj->spi->CR0;
tmp &= ~(0xFFFF);
tmp |= DSS << 0
| FRF << 4
| SPO << 6
| SPH << 7;
obj->spi->CR0 = tmp;
tmp = obj->spi->CR1;
tmp &= ~(0xD);
tmp |= 0 << 0 // LBM - loop back mode - off
| ((slave) ? 1 : 0) << 2 // MS - master slave mode, 1 = slave
| 0 << 3; // SOD - slave output disable - na
obj->spi->CR1 = tmp;
ssp_enable(obj);
}
void spi_frequency(spi_t *obj, int hz) {
ssp_disable(obj);
uint32_t PCLK = PeripheralClock;
int prescaler;
for (prescaler = 2; prescaler <= 254; prescaler += 2) {
int prescale_hz = PCLK / prescaler;
// calculate the divider
int divider = floor(((float)prescale_hz / (float)hz) + 0.5f);
// check we can support the divider
if (divider < 256) {
// prescaler
obj->spi->CPSR = prescaler;
// divider
obj->spi->CR0 &= ~(0xFFFF << 8);
obj->spi->CR0 |= (divider - 1) << 8;
ssp_enable(obj);
return;
}
}
error("Couldn't setup requested SPI frequency");
}
static inline int ssp_disable(spi_t *obj) {
return obj->spi->CR1 &= ~(1 << 1);
}
static inline int ssp_enable(spi_t *obj) {
return obj->spi->CR1 |= (1 << 1);
}
static inline int ssp_readable(spi_t *obj) {
return obj->spi->SR & (1 << 2);
}
static inline int ssp_writeable(spi_t *obj) {
return obj->spi->SR & (1 << 1);
}
static inline void ssp_write(spi_t *obj, int value) {
while (!ssp_writeable(obj));
obj->spi->DR = value;
}
static inline int ssp_read(spi_t *obj) {
while (!ssp_readable(obj));
return obj->spi->DR;
}
static inline int ssp_busy(spi_t *obj) {
return (obj->spi->SR & (1 << 4)) ? (1) : (0);
}
int spi_master_write(spi_t *obj, int value) {
ssp_write(obj, value);
return ssp_read(obj);
}
int spi_slave_receive(spi_t *obj) {
return (ssp_readable(obj) && !ssp_busy(obj)) ? (1) : (0);
}
int spi_slave_read(spi_t *obj) {
return obj->spi->DR;
}
void spi_slave_write(spi_t *obj, int value) {
while (ssp_writeable(obj) == 0) ;
obj->spi->DR = value;
}
int spi_busy(spi_t *obj) {
return ssp_busy(obj);
}

View File

@ -28,7 +28,6 @@
* Clock Control Register
* RTC_CCR[0] : Enable - 0 = Disabled, 1 = Enabled
* RTC_CCR[1] : Reset - 0 = Normal, 1 = Reset
* RTC_CCR[4] : Clock Source - 0 = Prescaler, 1 = 32k Xtal
*
* The RTC may already be running, so we should set it up
* without impacting if it is the case
@ -37,7 +36,6 @@ void rtc_init(void) {
LPC_SC->PCONP |= 0x200; // Ensure power is on
LPC_RTC->CCR = 0x00;
// clock source on 2368 is special test mode on 1768!
LPC_RTC->CCR |= 1 << 0; // Ensure the RTC is enabled
}

View File

@ -112,6 +112,7 @@ if __name__ == '__main__':
('uvision', 'LPC1347'),
('uvision', 'LPC1114'),
('uvision', 'LPC4088'),
('uvision', 'LPC4088_DM'),
('uvision', 'LPC4337'),
('uvision', 'HRM1017'),
@ -131,6 +132,7 @@ if __name__ == '__main__':
('lpcxpresso', 'LPC1768'),
('lpcxpresso', 'LPC4088'),
('lpcxpresso', 'LPC4088_DM'),
('lpcxpresso', 'LPC1114'),
('lpcxpresso', 'LPC11U35_401'),
('lpcxpresso', 'LPC11U35_501'),
@ -144,6 +146,7 @@ if __name__ == '__main__':
# Linux path: /home/emimon01/bin/gcc-arm/bin/
# Windows path: C:/arm-none-eabi-gcc-4_7/bin/
('gcc_arm', 'LPC1768'),
('gcc_arm', 'LPC4088_DM'),
('gcc_arm', 'LPC1549'),
('gcc_arm', 'LPC1114'),
('gcc_arm', 'LPC11U35_401'),
@ -168,6 +171,7 @@ if __name__ == '__main__':
('ds5_5', 'LPC1768'), ('ds5_5', 'LPC11U24'),
('iar', 'LPC1768'),
('iar', 'LPC4088_DM'),
('iar', 'LPC1347'),
('iar', 'NUCLEO_F030R8'),

View File

@ -306,6 +306,11 @@ class LPC4088(LPCTarget):
t_self.debug("Generated custom binary file (internal flash + SPIFI)")
LPCTarget.lpc_patch(t_self, resources, elf, binf)
class LPC4088_DM(LPC4088):
def __init__(self):
LPC4088.__init__(self)
self.extra_labels.append('LPC4088_DM')
class LPC4330_M4(LPCTarget):
def __init__(self):
LPCTarget.__init__(self)
@ -913,6 +918,7 @@ TARGETS = [
LPC824(),
SSCI824(), # LPC824
LPC4088(),
LPC4088_DM(),
LPC4330_M4(),
LPC4330_M0(),
LPC4337(),
@ -989,7 +995,7 @@ for t in TARGETS:
TARGET_NAMES = TARGET_MAP.keys()
# Some targets with different name have the same exporters
EXPORT_MAP = {}
EXPORT_MAP = { "LPC4088_DM" : "LPC4088"}
# Detection APIs
def get_target_detect_codes():

View File

@ -222,14 +222,16 @@ TESTS = [
"source_dir": join(TEST_DIR, "mbed", "spifi1"),
"dependencies": [MBED_LIBRARIES, TEST_MBED_LIB],
"automated": True,
"mcu": ["LPC4088"]
"duration": 30,
"mcu": ["LPC4088","LPC4088_DM"]
},
{
"id": "MBED_A23", "description": "SPIFI for LPC4088 (test 2)",
"source_dir": join(TEST_DIR, "mbed", "spifi2"),
"dependencies": [MBED_LIBRARIES, TEST_MBED_LIB],
"automated": True,
"mcu": ["LPC4088"]
"duration": 30,
"mcu": ["LPC4088","LPC4088_DM"]
},
{
"id": "MBED_A24", "description": "Serial echo with RTS/CTS flow control",
@ -349,7 +351,7 @@ TESTS = [
"source_dir": join(TEST_DIR, "mbed", "sleep"),
"dependencies": [MBED_LIBRARIES, TEST_MBED_LIB],
"duration": 30,
"mcu": ["LPC1768", "LPC11U24", "LPC4088","NRF51822"]
"mcu": ["LPC1768", "LPC11U24", "LPC4088","LPC4088_DM","NRF51822"]
},
{
"id": "MBED_5", "description": "PWM",