[M487] Remove power-down support from us_ticker

pull/4608/head
ccli8 2016-12-22 17:20:40 +08:00
parent 3dc5f2da34
commit acee0379c7
3 changed files with 21 additions and 113 deletions

View File

@ -118,9 +118,6 @@ struct pwmout_s {
};
struct sleep_s {
uint32_t start_us;
uint32_t end_us;
uint32_t period_us;
int powerdown;
};

View File

@ -25,8 +25,6 @@
#include "objects.h"
#include "PeripheralPins.h"
void us_ticker_prepare_sleep(struct sleep_s *obj);
void us_ticker_wakeup_from_sleep(struct sleep_s *obj);
static void mbed_enter_sleep(struct sleep_s *obj);
static void mbed_exit_sleep(struct sleep_s *obj);
@ -57,8 +55,7 @@ void deepsleep(void)
mbed_exit_sleep(&sleep_obj);
}
void mbed_enter_sleep(struct sleep_s *obj)
static void mbed_enter_sleep(struct sleep_s *obj)
{
// Check if serial allows entering power-down mode
if (obj->powerdown) {
@ -77,16 +74,7 @@ void mbed_enter_sleep(struct sleep_s *obj)
obj->powerdown = pwmout_allow_powerdown();
}
// TODO: Check if other peripherals allow entering power-down mode
obj->start_us = lp_ticker_read();
// Let us_ticker prepare for power-down or reject it.
us_ticker_prepare_sleep(obj);
// NOTE(STALE): To pass mbed-drivers test, timer requires to be fine-grained, so its implementation needs HIRC rather than LIRC/LXT as its clock source.
// But as CLK_PowerDown()/CLK_Idle() is called, HIRC will be disabled and timer cannot keep counting and alarm. To overcome the dilemma,
// just make CPU halt and compromise power saving.
// NOTE: As CLK_PowerDown()/CLK_Idle() is called, HIRC/HXT will be disabled in normal mode, but not in ICE mode. This may cause confusion in development.
if (obj->powerdown) { // Power-down mode (HIRC/HXT disabled, LIRC/LXT enabled)
SYS_UnlockReg();
CLK_PowerDown();
@ -101,14 +89,9 @@ void mbed_enter_sleep(struct sleep_s *obj)
__NOP();
__NOP();
__NOP();
obj->end_us = lp_ticker_read();
obj->period_us = (obj->end_us > obj->start_us) ? (obj->end_us - obj->start_us) : (uint32_t) ((uint64_t) obj->end_us + 0xFFFFFFFFu - obj->start_us);
// Let us_ticker recover from power-down.
us_ticker_wakeup_from_sleep(obj);
}
void mbed_exit_sleep(struct sleep_s *obj)
static void mbed_exit_sleep(struct sleep_s *obj)
{
// TODO: TO BE CONTINUED

View File

@ -27,29 +27,22 @@
#define TMR0HIRES_CLK_PER_SEC (1000 * 1000)
#define TMR1HIRES_CLK_PER_SEC (1000 * 1000)
#define TMR1LORES_CLK_PER_SEC (__LXT)
#define US_PER_TMR0HIRES_CLK (US_PER_SEC / TMR0HIRES_CLK_PER_SEC)
#define US_PER_TMR1HIRES_CLK (US_PER_SEC / TMR1HIRES_CLK_PER_SEC)
#define US_PER_TMR1LORES_CLK (US_PER_SEC / TMR1LORES_CLK_PER_SEC)
#define US_PER_TMR0HIRES_INT (1000 * 1000 * 10)
#define TMR0HIRES_CLK_PER_TMR0HIRES_INT ((uint32_t) ((uint64_t) US_PER_TMR0HIRES_INT * TMR0HIRES_CLK_PER_SEC / US_PER_SEC))
// Determine to use lo-res/hi-res timer according to CD period
#define US_TMR_SEP_CD 1000
static void tmr0_vec(void);
static void tmr1_vec(void);
static void us_ticker_arm_cd(void);
static int us_ticker_inited = 0;
static volatile uint32_t counter_major = 0;
static volatile uint32_t pd_comp_us = 0; // Power-down compenstaion for normal counter
static volatile uint32_t cd_major_minor_us = 0;
static volatile uint32_t cd_minor_us = 0;
static volatile int cd_hires_tmr_armed = 0; // Flag of armed or not of hi-res timer for CD counter
// NOTE: PCLK is set up in mbed_sdk_init(), invocation of which must be before C++ global object constructor. See init_api.c for details.
// NOTE: Choose clock source of timer:
@ -58,7 +51,6 @@ static volatile int cd_hires_tmr_armed = 0; // Flag of armed or not of hi-res ti
// 3. PCLK(HXT): Less accurate but can pass mbed-drivers test.
// NOTE: TIMER_0 for normal counter, TIMER_1 for countdown.
static const struct nu_modinit_s timer0hires_modinit = {TIMER_0, TMR0_MODULE, CLK_CLKSEL1_TMR0SEL_PCLK0, 0, TMR0_RST, TMR0_IRQn, (void *) tmr0_vec};
static const struct nu_modinit_s timer1lores_modinit = {TIMER_1, TMR1_MODULE, CLK_CLKSEL1_TMR1SEL_LXT, 0, TMR1_RST, TMR1_IRQn, (void *) tmr1_vec};
static const struct nu_modinit_s timer1hires_modinit = {TIMER_1, TMR1_MODULE, CLK_CLKSEL1_TMR1SEL_PCLK0, 0, TMR1_RST, TMR1_IRQn, (void *) tmr1_vec};
#define TMR_CMP_MIN 2
@ -71,22 +63,20 @@ void us_ticker_init(void)
}
counter_major = 0;
pd_comp_us = 0;
cd_major_minor_us = 0;
cd_minor_us = 0;
cd_hires_tmr_armed = 0;
us_ticker_inited = 1;
// Reset IP
SYS_ResetModule(timer0hires_modinit.rsetidx);
SYS_ResetModule(timer1lores_modinit.rsetidx);
SYS_ResetModule(timer1hires_modinit.rsetidx);
// Select IP clock source
CLK_SetModuleClock(timer0hires_modinit.clkidx, timer0hires_modinit.clksrc, timer0hires_modinit.clkdiv);
CLK_SetModuleClock(timer1lores_modinit.clkidx, timer1lores_modinit.clksrc, timer1lores_modinit.clkdiv);
CLK_SetModuleClock(timer1hires_modinit.clkidx, timer1hires_modinit.clksrc, timer1hires_modinit.clkdiv);
// Enable IP clock
CLK_EnableModuleClock(timer0hires_modinit.clkidx);
CLK_EnableModuleClock(timer1lores_modinit.clkidx);
CLK_EnableModuleClock(timer1hires_modinit.clkidx);
// Timer for normal counter
uint32_t clk_timer0 = TIMER_GetModuleClock((TIMER_T *) NU_MODBASE(timer0hires_modinit.modname));
@ -100,10 +90,10 @@ void us_ticker_init(void)
((TIMER_T *) NU_MODBASE(timer0hires_modinit.modname))->CMP = cmp_timer0;
NVIC_SetVector(timer0hires_modinit.irq_n, (uint32_t) timer0hires_modinit.var);
NVIC_SetVector(timer1lores_modinit.irq_n, (uint32_t) timer1lores_modinit.var);
NVIC_SetVector(timer1hires_modinit.irq_n, (uint32_t) timer1hires_modinit.var);
NVIC_EnableIRQ(timer0hires_modinit.irq_n);
NVIC_EnableIRQ(timer1lores_modinit.irq_n);
NVIC_EnableIRQ(timer1hires_modinit.irq_n);
TIMER_EnableInt((TIMER_T *) NU_MODBASE(timer0hires_modinit.modname));
TIMER_Start((TIMER_T *) NU_MODBASE(timer0hires_modinit.modname));
@ -141,26 +131,24 @@ uint32_t us_ticker_read()
}
while (minor_us == 0 || minor_us == US_PER_TMR0HIRES_INT);
// Add power-down compensation
return (major_minor_us + pd_comp_us) / US_PER_TICK;
return (major_minor_us / US_PER_TICK);
}
while (0);
}
void us_ticker_disable_interrupt(void)
{
TIMER_DisableInt((TIMER_T *) NU_MODBASE(timer1lores_modinit.modname));
TIMER_DisableInt((TIMER_T *) NU_MODBASE(timer1hires_modinit.modname));
}
void us_ticker_clear_interrupt(void)
{
TIMER_ClearIntFlag((TIMER_T *) NU_MODBASE(timer1lores_modinit.modname));
TIMER_ClearIntFlag((TIMER_T *) NU_MODBASE(timer1hires_modinit.modname));
}
void us_ticker_set_interrupt(timestamp_t timestamp)
{
TIMER_Stop((TIMER_T *) NU_MODBASE(timer1lores_modinit.modname));
cd_hires_tmr_armed = 0;
TIMER_Stop((TIMER_T *) NU_MODBASE(timer1hires_modinit.modname));
int delta = (int) (timestamp - us_ticker_read());
if (delta > 0) {
@ -173,42 +161,10 @@ void us_ticker_set_interrupt(timestamp_t timestamp)
* This event was in the past. Set the interrupt as pending, but don't process it here.
* This prevents a recurive loop under heavy load which can lead to a stack overflow.
*/
NVIC_SetPendingIRQ(timer1lores_modinit.irq_n);
NVIC_SetPendingIRQ(timer1hires_modinit.irq_n);
}
}
void us_ticker_prepare_sleep(struct sleep_s *obj)
{
// Reject power-down if hi-res timer (HIRC/HXT) is now armed for CD counter.
if (obj->powerdown) {
obj->powerdown = ! cd_hires_tmr_armed;
}
core_util_critical_section_enter();
if (obj->powerdown) {
// NOTE: On entering power-down mode, HIRC/HXT will be disabled in normal mode, but not in ICE mode. This may cause confusion in development.
// To not be inconsistent due to above, always disable clock source of normal counter, and then re-enable it and make compensation on wakeup from power-down.
CLK_DisableModuleClock(timer0hires_modinit.clkidx);
}
core_util_critical_section_exit();
}
void us_ticker_wakeup_from_sleep(struct sleep_s *obj)
{
core_util_critical_section_enter();
if (obj->powerdown) {
// Calculate power-down compensation
pd_comp_us += obj->period_us;
CLK_EnableModuleClock(timer0hires_modinit.clkidx);
}
core_util_critical_section_exit();
}
static void tmr0_vec(void)
{
TIMER_ClearIntFlag((TIMER_T *) NU_MODBASE(timer0hires_modinit.modname));
@ -217,9 +173,8 @@ static void tmr0_vec(void)
static void tmr1_vec(void)
{
TIMER_ClearIntFlag((TIMER_T *) NU_MODBASE(timer1lores_modinit.modname));
TIMER_ClearIntFlag((TIMER_T *) NU_MODBASE(timer1hires_modinit.modname));
cd_major_minor_us = (cd_major_minor_us > cd_minor_us) ? (cd_major_minor_us - cd_minor_us) : 0;
cd_hires_tmr_armed = 0;
if (cd_major_minor_us == 0) {
// NOTE: us_ticker_set_interrupt() may get called in us_ticker_irq_handler();
us_ticker_irq_handler();
@ -231,37 +186,10 @@ static void tmr1_vec(void)
static void us_ticker_arm_cd(void)
{
TIMER_T * timer1_base = (TIMER_T *) NU_MODBASE(timer1lores_modinit.modname);
uint32_t tmr1_clk_per_sec;
uint32_t us_per_tmr1_clk;
/**
* Reserve US_TMR_SEP_CD-plus alarm period for hi-res timer
* 1. period >= US_TMR_SEP_CD * 2. Divide into two rounds:
* US_TMR_SEP_CD * n (lo-res timer)
* US_TMR_SEP_CD + period % US_TMR_SEP_CD (hi-res timer)
* 2. period < US_TMR_SEP_CD * 2. Just one round:
* period (hi-res timer)
*/
if (cd_major_minor_us >= US_TMR_SEP_CD * 2) {
cd_minor_us = cd_major_minor_us - cd_major_minor_us % US_TMR_SEP_CD - US_TMR_SEP_CD;
CLK_SetModuleClock(timer1lores_modinit.clkidx, timer1lores_modinit.clksrc, timer1lores_modinit.clkdiv);
tmr1_clk_per_sec = TMR1LORES_CLK_PER_SEC;
us_per_tmr1_clk = US_PER_TMR1LORES_CLK;
cd_hires_tmr_armed = 0;
}
else {
cd_minor_us = cd_major_minor_us;
CLK_SetModuleClock(timer1hires_modinit.clkidx, timer1hires_modinit.clksrc, timer1hires_modinit.clkdiv);
tmr1_clk_per_sec = TMR1HIRES_CLK_PER_SEC;
us_per_tmr1_clk = US_PER_TMR1HIRES_CLK;
cd_hires_tmr_armed = 1;
}
TIMER_T * timer1_base = (TIMER_T *) NU_MODBASE(timer1hires_modinit.modname);
cd_minor_us = cd_major_minor_us;
// Reset 8-bit PSC counter, 24-bit up counter value and CNTEN bit
// NUC472/M451
//timer1_base->CTL |= TIMER_CTL_RSTCNT_Msk;
@ -269,15 +197,15 @@ static void us_ticker_arm_cd(void)
timer1_base->CNT = 0;
while (timer1_base->CNT & TIMER_CNT_RSTACT_Msk);
// One-shot mode, Clock = 1 MHz
uint32_t clk_timer1 = TIMER_GetModuleClock((TIMER_T *) NU_MODBASE(timer1lores_modinit.modname));
uint32_t prescale_timer1 = clk_timer1 / tmr1_clk_per_sec - 1;
uint32_t clk_timer1 = TIMER_GetModuleClock((TIMER_T *) NU_MODBASE(timer1hires_modinit.modname));
uint32_t prescale_timer1 = clk_timer1 / TMR1HIRES_CLK_PER_SEC - 1;
MBED_ASSERT((prescale_timer1 != (uint32_t) -1) && prescale_timer1 <= 127);
MBED_ASSERT((clk_timer1 % tmr1_clk_per_sec) == 0);
MBED_ASSERT((clk_timer1 % TMR1HIRES_CLK_PER_SEC) == 0);
// NOTE: TIMER_CTL_CNTDATEN_Msk exists in NUC472, but not in M451/M480. In M451/M480, TIMER_CNT is updated continuously by default.
timer1_base->CTL &= ~(TIMER_CTL_OPMODE_Msk | TIMER_CTL_PSC_Msk/* | TIMER_CTL_CNTDATEN_Msk*/);
timer1_base->CTL |= TIMER_ONESHOT_MODE | prescale_timer1/* | TIMER_CTL_CNTDATEN_Msk*/;
uint32_t cmp_timer1 = cd_minor_us / us_per_tmr1_clk;
uint32_t cmp_timer1 = cd_minor_us / US_PER_TMR1HIRES_CLK;
cmp_timer1 = NU_CLAMP(cmp_timer1, TMR_CMP_MIN, TMR_CMP_MAX);
timer1_base->CMP = cmp_timer1;