Add TRNG support

Adding support for the TRNG peripheral present on Series 1 Configuration 2 devices.
pull/4521/head
Steven Cooreman 2017-03-28 13:42:13 +02:00 committed by adbridge
parent c678ac8f50
commit aaac6adaa9
5 changed files with 675 additions and 2 deletions

View File

@ -148,6 +148,12 @@ typedef enum {
#endif
#if DEVICE_TRNG
struct trng_s {
TRNG_TypeDef *instance;
};
#endif
#ifdef __cplusplus
}
#endif

View File

@ -0,0 +1,373 @@
/*
* True Random Number Generator (TRNG) driver for Silicon Labs devices
*
* Copyright (C) 2016, Silicon Labs, http://www.silabs.com
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License"); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "sl_trng.h"
#if defined(TRNG_PRESENT)
#include "em_cmu.h"
#include "em_common.h"
#include <string.h>
#define FIFO_LEVEL_RETRY (1000)
#define TEST_WORDS_MIN (257)
#define TEST_VECTOR_CONDITIONING_KEY_SIZE (4)
static const uint32_t
test_vector_conditioning_key[TEST_VECTOR_CONDITIONING_KEY_SIZE] =
{0x16157E2B, 0xA6D2AE28, 0x8815F7AB, 0x3C4FCF09};
#define TEST_VECTOR_CONDITIONING_INPUT_SIZE (16)
static const uint32_t
test_vector_conditioning_input[TEST_VECTOR_CONDITIONING_INPUT_SIZE] =
{0xE1BCC06B, 0x9199452A, 0x1A7434E1, 0x25199E7F,
0x578A2DAE, 0x9CAC031E, 0xAC6FB79E, 0x518EAF45,
0x461CC830, 0x11E45CA3, 0x19C1FBE5, 0xEF520A1A,
0x45249FF6, 0x179B4FDF, 0x7B412BAD, 0x10376CE6};
#define TEST_VECTOR_CONDITIONING_OUTPUT_SIZE (4)
static const uint32_t
test_vector_conditioning_output[TEST_VECTOR_CONDITIONING_OUTPUT_SIZE] =
{0xA1CAF13F, 0x09AC1F68, 0x30CA0E12, 0xA7E18675};
#define TRNG_STARTUP_TEST_WAIT_RETRY (10000)
typedef struct {
TRNG_TypeDef *instance;
CMU_Clock_TypeDef clock;
} sl_trng_device_t;
static const sl_trng_device_t sl_trng_devices[TRNG_COUNT] =
{
#if defined(TRNG0)
{
TRNG0,
cmuClock_TRNG0
},
#endif
};
static CMU_Clock_TypeDef sl_trng_get_clock( TRNG_TypeDef *device )
{
for(int i = 0; i < TRNG_COUNT; i++) {
if(sl_trng_devices[i].instance == device) {
return sl_trng_devices[i].clock;
}
}
return cmuClock_TRNG0;
}
void sl_trng_init( TRNG_TypeDef *device )
{
int i;
/* Enable the TRNG's clock. */
CMU_ClockEnable( sl_trng_get_clock(device), true );
device->CONTROL =
TRNG_CONTROL_ENABLE |
TRNG_CONTROL_REPCOUNTIEN |
TRNG_CONTROL_APT64IEN |
TRNG_CONTROL_APT4096IEN |
TRNG_CONTROL_PREIEN |
TRNG_CONTROL_ALMIEN;
/* Apply software reset */
sl_trng_soft_reset(device);
/* Wait for TRNG to complete startup tests and start filling the FIFO. */
for (i=0; (device->FIFOLEVEL == 0) && (i<TRNG_STARTUP_TEST_WAIT_RETRY); i++);
EFM_ASSERT(i<TRNG_STARTUP_TEST_WAIT_RETRY);
}
void sl_trng_free( TRNG_TypeDef *device )
{
/* Disable TRNG. */
device->CONTROL = 0;
/* Disable the TRNG clock. */
CMU_ClockEnable( sl_trng_get_clock(device), false );
}
void sl_trng_soft_reset( TRNG_TypeDef *device )
{
uint32_t ctrl = device->CONTROL;
ctrl |= TRNG_CONTROL_SOFTRESET;
device->CONTROL = ctrl;
ctrl &= ~TRNG_CONTROL_SOFTRESET;
device->CONTROL = ctrl;
}
static inline
void sl_trng_write_test_data( TRNG_TypeDef *device, uint32_t data )
{
/* Wait for TESTDATA register to become ready for next word. */
while (device->STATUS & TRNG_STATUS_TESTDATABUSY);
device->TESTDATA = data;
}
static void sl_trng_clear_fifo( TRNG_TypeDef *device )
{
volatile uint32_t val32;
/* Empty FIFO */
while ( device->FIFOLEVEL )
{
val32 = device->FIFO;
(void)val32;
}
}
int sl_trng_set_key( TRNG_TypeDef *device, const unsigned char *key )
{
uint32_t *_key = (uint32_t*) key;
sl_trng_clear_fifo(device);
/* Program key in KEY registers of the TRNG. */
device->KEY0 = *_key++;
device->KEY1 = *_key++;
device->KEY2 = *_key++;
device->KEY3 = *_key++;
return 0;
}
int sl_trng_check_conditioning( TRNG_TypeDef *device )
{
uint32_t val32;
int i, ret=0;
uint32_t ctrl = device->CONTROL;
/* Setup control register */
device->CONTROL = TRNG_CONTROL_ENABLE | TRNG_CONTROL_TESTEN |
TRNG_CONTROL_BYPNIST | TRNG_CONTROL_BYPAIS31;
/* Apply software reset */
sl_trng_soft_reset(device);
/* Write test vector to the key register. */
sl_trng_set_key(device,
(const unsigned char*)test_vector_conditioning_key);
/* Write test vector to the TESTDATA register */
for (i=0; i<TEST_VECTOR_CONDITIONING_INPUT_SIZE; i++)
{
sl_trng_write_test_data(device,
test_vector_conditioning_input[i]);
}
for (i=0; i<TEST_VECTOR_CONDITIONING_OUTPUT_SIZE; i++)
{
/* Wait for data to become available in the FIFO. */
while ( 0 == device->FIFOLEVEL );
/* Read output from the conditioning function */
val32 = device->FIFO;
/* Compare with expected test vector. */
if (val32 != test_vector_conditioning_output[i])
{
/*
mbedtls_printf("Conditioning test failed. "
"Test output word %d 0x%lx. Expected 0x%lx\n",
i, val32, test_vector_conditioning_output[i]);
*/
ret = SL_TRNG_ERR_CONDITIONING_TEST_FAILED;
}
}
/* Restore initial value of control register */
device->CONTROL = ctrl;
return ret;
}
static int sl_trng_check_status( TRNG_TypeDef *device )
{
uint32_t status = device->STATUS;
if ( (status & (TRNG_STATUS_PREIF
| TRNG_STATUS_REPCOUNTIF
| TRNG_STATUS_APT64IF
| TRNG_STATUS_APT4096IF
| TRNG_STATUS_ALMIF)) == 0 )
{
/* No errors */
return 0;
}
if ( status & TRNG_STATUS_PREIF )
{
/* On a preliminary noise alarm we clear the FIFO and clear
* the alarm. The preliminary noise alarm is not critical. */
status &= ~TRNG_STATUS_PREIF;
device->STATUS = status;
sl_trng_clear_fifo(device);
return SL_TRNG_ERR_PRELIMINARY_NOISE_ALARM;
}
else
{
/* Clear alarm conditions by doing a TRNG soft reset. */
sl_trng_soft_reset( device );
if ( status & TRNG_STATUS_REPCOUNTIF )
{
return SL_TRNG_ERR_REPETITION_COUNT_TEST_FAILED;
}
if ( status & TRNG_STATUS_APT64IF )
{
return SL_TRNG_ERR_ADAPTIVE_PROPORTION_TEST_64_FAILED;
}
if ( status & TRNG_STATUS_APT4096IF )
{
return SL_TRNG_ERR_ADAPTIVE_PROPORTION_TEST_4096_FAILED;
}
if ( status & TRNG_STATUS_ALMIF )
{
return SL_TRNG_ERR_NOISE_ALARM;
}
}
return 0;
}
int sl_trng_check_entropy( TRNG_TypeDef *device )
{
volatile uint32_t val32;
int i, ret = 0;
uint32_t ctrl = device->CONTROL;
/* Setup control register */
device->CONTROL =
TRNG_CONTROL_ENABLE |
TRNG_CONTROL_REPCOUNTIEN |
TRNG_CONTROL_APT64IEN |
TRNG_CONTROL_APT4096IEN |
TRNG_CONTROL_PREIEN |
TRNG_CONTROL_ALMIEN;
/* Apply software reset */
sl_trng_soft_reset(device);
/* Check FIFO level is non-zero . */
for (i=0; i<FIFO_LEVEL_RETRY; i++)
{
if ( device->FIFOLEVEL )
{
break;
}
}
/* Check for no data within timeout (max retry count) */
if (i>=FIFO_LEVEL_RETRY)
{
ret = SL_TRNG_ERR_NO_DATA;
}
else
{
/* Read at least 4097x2 bits (~257 x 32 bits) in order for the longest
test to complete (adaptive proportion test of 4096 samples). */
for (i=0; i<TEST_WORDS_MIN; i++)
{
val32 = device->FIFO;
(void)val32;
}
/* Check in status register for errors. */
ret = sl_trng_check_status( device );
}
/* Restore initial value of control register */
device->CONTROL = ctrl;
return ret;
}
static void sl_trng_read_chunk( TRNG_TypeDef *device,
unsigned char *output,
size_t len )
{
uint32_t * out32 = (uint32_t *) output;
uint32_t tmp;
/* Read known good available data. */
while ( len >= 4)
{
*out32++ = device->FIFO;
len -= 4;
}
/* Handle the case where len is not a multiple of 4. */
if ( len < 4 )
{
tmp = device->FIFO;
memcpy((uint8_t *)out32, (const uint8_t *) &tmp, len);
}
}
int sl_trng_poll( TRNG_TypeDef *device,
unsigned char *output,
size_t len,
size_t *olen )
{
size_t output_len = 0;
size_t count = 0;
size_t available;
int ret = 0;
while (len > 0)
{
available = device->FIFOLEVEL * 4;
if (available == 0)
{
break;
}
#if !defined(SL_TRNG_IGNORE_ALL_ALARMS)
/* Check status for current data in FIFO
* and handle any error conditions. */
ret = sl_trng_check_status( device );
#if defined(SL_TRNG_IGNORE_NOISE_ALARMS)
/* Ignore noise alarms by returning 0 (OK) if they occur and
* keeping the already generated random data. */
if ( (ret == SL_TRNG_ERR_PRELIMINARY_NOISE_ALARM) ||
(ret == SL_TRNG_ERR_NOISE_ALARM) )
{
ret = 0;
break;
}
#endif
/* Alarm has been signaled so we throw the generated data away. */
if (ret != 0)
{
output_len = 0;
break;
}
#endif
count = SL_MIN(len, available);
sl_trng_read_chunk(device, output, count);
output += count;
output_len += count;
len -= count;
}
*olen = output_len;
return ret;
}
#endif /* TRNG_PRESENT */

View File

@ -0,0 +1,239 @@
/**
* \file sl_trng.h
*
* \brief True Random Number Generator (TRNG) driver for Silicon Labs devices
*
* Copyright (C) 2016, Silicon Labs, http://www.silabs.com
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License"); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef SL_TRNG_H
#define SL_TRNG_H
/***************************************************************************//**
* \addtogroup sl_crypto_trng Silicon Labs True Random Number Generator Plugin
* \brief True Random Number Generator (TRNG) driver for Silicon Labs devices.
*
* \details The EFR32xG12 and EFM32xG12 and newer Silicon Labs devices contains
* a True Random Number Generator (TRNG) peripheral. The TRNG is a
* non-deterministic random number generator based on a full hardware solution.
* The TRNG contains a 64 x 32-bit FIFO for reading out random numbers.
*
* The samples from entropy source within the TRNG are monitored permanently by
* 4 built in tests that detect issues with the noise source. The tests are
* specified in NIST-800-90B and AIS31. The tests that are always checking the
* entropy source are "Repetition Count Test", "Adaptive Proportion Test
* (64-sample window)", "Adaptive Proportion Test (4096-sample window)" and
* the "AIS31 Online Test".
*
* In addition the TRNG has options for running startup tests. When these tests
* are enabled the TRNG FIFO will not contains any data before all the startup
* tests have passed. There are 4 TRNG startup tests, 3 of the tests are
* specified in NIST-800-90B. These are the "Repetition Count Test", "Adaptive
* Proportion Test (64-sample window)" and "Adaptive Proportion Test
* (4096-sample window)". The last startup test is the AIS31 startup test. By
* default when using this driver all the startup tests are enabled.
* The TRNG module implements an entropy source plugin module for mbed TLS that can
* be used in applications needing random numbers or indirectly using mbed TLS
* modules that depend on the random number generation interfaces of mbed TLS.
* The define @ref MBEDTLS_TRNG_C will compile the TRNG module. The TRNG is enabled as
* an mbed TLS entropy source by defining @ref MBEDTLS_ENTROPY_ALT,
* @ref MBEDTLS_ENTROPY_INIT_ALT and @ref MBEDTLS_ENTROPY_FREE_ALT.
* The TRNG functions are declared in the 'mbedtls/sl_crypto/include/trng.h' file.
*
* \{
******************************************************************************/
#include "em_device.h"
#include <stddef.h>
/* TRNG specific error codes: */
#define SL_TRNG_ERR_BASE (0xF100E000)
/** Conditioning test failed. */
#define SL_TRNG_ERR_CONDITIONING_TEST_FAILED ((int)SL_TRNG_ERR_BASE | 0x00000001)
/** No data received in the TRNG FIFO. */
#define SL_TRNG_ERR_NO_DATA ((int)SL_TRNG_ERR_BASE | 0x00000002)
/** Repetition Count test failed. The repetition count test fails when the
* TRNG detects that the output become "stuck" on a single value for a long
* period of time. The repetition count test is described in NIST-800-90B.
*
* If an application detects this error then the TRNG should be reset. The
* repetition count test is always enabled. */
#define SL_TRNG_ERR_REPETITION_COUNT_TEST_FAILED ((int)SL_TRNG_ERR_BASE | 0x00000003)
/** Adaptive Proportion test over 64 samples failed. The adaptive proportion
* test is designed to detect a large loss of entropy that might occur as a
* result of some physical failure or environmental change affecting the
* TRNG.
*
* The test will fail when a 2 bit sample from the TRNG is repeated an
* unusual amount of times within a window of 64 bits. The adaptive
* proportion test is further described in NIST-800-90B.
*
* If an application detects this error then the TRNG should be reset. The
* adaptive proportion test over 64 samples is always enabled. */
#define SL_TRNG_ERR_ADAPTIVE_PROPORTION_TEST_64_FAILED ((int)SL_TRNG_ERR_BASE | 0x00000004)
/** Adaptive Proportion test over 4096 samples failed. The adaptive proportion
* test is designed to detect a large loss of entropy that might occur as a
* result of some physical failure or environmental change affecting the
* TRNG.
*
* The test will fail when a 2 bit sample from the TRNG is repeated an
* unusual amount of times within a window of 4096 bits. The adaptive
* proportion test is further described in NIST-800-90B.
*
* If an application detects this error then the TRNG should be reset. The
* adaptive proportion test over 4096 samples is always enabled. */
#define SL_TRNG_ERR_ADAPTIVE_PROPORTION_TEST_4096_FAILED ((int)SL_TRNG_ERR_BASE | 0x00000005)
/** AIS31 test noise alarm. The AIS31 test is designed to monitor and verify
* the statistical distribution of the random numbers from the TRNG. The test
* performs 512 consecutive 128 bit X^2 calculations with 4 bit words. The
* details of the AIS31 test can be found in the AIS31 specification.
*
* The test will fail when an unusual statistical distribution of the TRNG
* output is found.
*
* If an application detects this error then the TRNG should be reset. The
* AIS31 test is always enabled. */
#define SL_TRNG_ERR_NOISE_ALARM ((int)SL_TRNG_ERR_BASE | 0x00000006)
/** AIS31 test Preliminary Noise alarm. The preliminary noise alarms generated
* from the same AIS31 test that generates \ref SL_TRNG_ERR_NOISE_ALARM.
* The difference between a preliminary noise alarm and a noise alarm is the
* severity and the expected frequency. A preliminary noise alarm will happen
* more frequently than a noise alarm, and a preliminary noise alarm is not
* considered critical. The preliminary noise alarm is not uncommon and should
* be expected from time to time when reading data from the TRNG.
*
* If an application detects a preliminary noise alarm then the recommended
* action is to flush the TRNG FIFO, or reset the TRNG. */
#define SL_TRNG_ERR_PRELIMINARY_NOISE_ALARM ((int)SL_TRNG_ERR_BASE | 0x00000007)
#if defined(TRNG_PRESENT)
/**
* \brief Initialize TRNG context
*
* \details This function will enable the TRNG device by starting
* the device's clock, initializing the control register, perform
* soft reset and wait until data is available in the FIFO.
*
* \param ctx TRNG device to be initialized
*/
void sl_trng_init( TRNG_TypeDef *ctx );
/**
* \brief Free TRNG context
*
* \details This function will disable the TRNG peripheral by stopping
* the TRNG's clock.
*
* \param ctx TRNG device to be released
*/
void sl_trng_free( TRNG_TypeDef *ctx );
/**
* \brief Set the TRNG conditioning key
*
* \param ctx TRNG device
* \param key 128-bit AES key
*
* \return
* 0 if success. Error code if failure.
*/
int sl_trng_set_key( TRNG_TypeDef *ctx, const unsigned char *key );
/**
* \brief Check the TRNG conditioning function
*
* \param ctx TRNG device
*
* \return
* 0 if success. \ref SL_TRNG_ERR_CONDITIONING_TEST_FAILED on failure.
*/
int sl_trng_check_conditioning( TRNG_TypeDef *ctx );
/**
* \brief Check the TRNG entropy source is producing random data
*
* \param ctx TRNG device
*
* \return
* 0 if success. Error code if failure. Note that this function can return
* a \ref SL_TRNG_ERR_PRELIMINARY_NOISE_ALARM on some occasions.
*/
int sl_trng_check_entropy( TRNG_TypeDef *ctx );
/**
* \brief Poll for entropy data
*
* \details This function will read available random data from the TRNG
* FIFO and place it into the output buffer. The len parameter
* tells this function the maximum number of bytes to read.
*
* Note that the number of bytes read from the TRNG might differ
* from the number of bytes requested. If any alarms are signaled
* or the TRNG FIFO is empty then this function will return early.
*
* The return value should be used to see if the operation was
* successful of if an alarm was encountered while reading the
* FIFO. The content of the olen parameter can be used to check
* how many bytes were actually read.
*
* \param ctx TRNG context
* \param output Buffer to fill with data from the TRNG
* \param len Maximum number of bytes to fill in output buffer.
* \param olen The actual amount of bytes put into the buffer (Can be 0)
*
* \return \li 0 if no critical failures occurred,
* \li SL_TRNG_ERR_PRELIMINARY_NOISE_ALARM if a AIS31
* preliminary noise alarm was detected while reading the FIFO,
* \li SL_TRNG_ERR_NOISE_ALARM if an AIS31 noise alarm
* was detected.
* \li SL_TRNG_ERR_REPETITION_COUNT_TEST_FAILED if the
* repetition count test failed while reading the FIFO.
* \li SL_TRNG_ERR_ADAPTIVE_PROPORTION_TEST_64_FAILED if the
* adaptive proportion test over 64 samples failed while reading
* the FIFO.
* \li SL_TRNG_ERR_ADAPTIVE_PROPORTION_TEST_4096_FAILED if
* the adaptive proportion test over 4096 samples failed while
* reading from the FIFO.
*/
int sl_trng_poll( TRNG_TypeDef *ctx,
unsigned char *output,
size_t len,
size_t *olen );
/**
* \brief Execute TRNG soft reset
*
* \details This function performs a TRNG soft reset. The TRNG soft
* reset can be used to clear error conditions such as Noise
* Alarms, etc.
*
* \param ctx TRNG device
*/
void sl_trng_soft_reset( TRNG_TypeDef *ctx );
#endif /* TRNG_PRESENT */
/** \} (end addtogroup sl_crypto_trng) */
#endif /* SL_TRNG_H */

View File

@ -0,0 +1,55 @@
/***************************************************************************//**
* @file trng_api.c
*******************************************************************************
* @section License
* <b>(C) Copyright 2017 Silicon Labs, http://www.silabs.com</b>
*******************************************************************************
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License"); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
******************************************************************************/
#include "trng_api.h"
#include "sl_trng.h"
#if defined(DEVICE_TRNG)
static bool is_trng_enabled = false;
void trng_init(trng_t *obj)
{
/* Use TRNG0 for all HW entropy collection */
obj->instance = TRNG0;
if(!is_trng_enabled) {
sl_trng_init(obj->instance);
is_trng_enabled = true;
}
}
void trng_free(trng_t *obj)
{
/* Don't turn off the TRNG to avoid clearing its FIFO */
(void) obj;
}
int trng_get_bytes(trng_t *obj, uint8_t *output, size_t length, size_t *output_length)
{
int ret = sl_trng_poll(obj->instance,
output,
length,
output_length);
return (ret == 0) ? 0 : -1;
}
#endif /* DEVICE_TRNG */

View File

@ -2454,7 +2454,7 @@
},
"EFM32PG12_STK3402": {
"inherits": ["EFM32PG12B500F1024GL125"],
"device_has": ["ANALOGIN", "ERROR_PATTERN", "I2C", "I2CSLAVE", "I2C_ASYNCH", "INTERRUPTIN", "LOWPOWERTIMER", "PORTIN", "PORTINOUT", "PORTOUT", "PWMOUT", "RTC", "SERIAL", "SERIAL_ASYNCH", "SLEEP", "SPI", "SPISLAVE", "SPI_ASYNCH", "STDIO_MESSAGES"],
"device_has": ["ANALOGIN", "ERROR_PATTERN", "I2C", "I2CSLAVE", "I2C_ASYNCH", "INTERRUPTIN", "LOWPOWERTIMER", "PORTIN", "PORTINOUT", "PORTOUT", "PWMOUT", "RTC", "SERIAL", "SERIAL_ASYNCH", "SLEEP", "SPI", "SPISLAVE", "SPI_ASYNCH", "STDIO_MESSAGES", "TRNG"],
"forced_reset_timeout": 2,
"config": {
"hf_clock_src": {
@ -2505,7 +2505,7 @@
},
"TB_SENSE_12": {
"inherits": ["EFR32MG12P332F1024GL125"],
"device_has": ["ANALOGIN", "ERROR_PATTERN", "I2C", "I2CSLAVE", "I2C_ASYNCH", "INTERRUPTIN", "LOWPOWERTIMER", "PORTIN", "PORTINOUT", "PORTOUT", "PWMOUT", "RTC", "SERIAL", "SERIAL_ASYNCH", "SLEEP", "SPI", "SPISLAVE", "SPI_ASYNCH", "STDIO_MESSAGES"],
"device_has": ["ANALOGIN", "ERROR_PATTERN", "I2C", "I2CSLAVE", "I2C_ASYNCH", "INTERRUPTIN", "LOWPOWERTIMER", "PORTIN", "PORTINOUT", "PORTOUT", "PWMOUT", "RTC", "SERIAL", "SERIAL_ASYNCH", "SLEEP", "SPI", "SPISLAVE", "SPI_ASYNCH", "STDIO_MESSAGES", "TRNG"],
"forced_reset_timeout": 5,
"config": {
"hf_clock_src": {