diff --git a/targets/TARGET_NUVOTON/TARGET_M2351/serial_api.c b/targets/TARGET_NUVOTON/TARGET_M2351/serial_api.c index 11a7e5a130..277332ccea 100644 --- a/targets/TARGET_NUVOTON/TARGET_M2351/serial_api.c +++ b/targets/TARGET_NUVOTON/TARGET_M2351/serial_api.c @@ -26,14 +26,10 @@ #include "nu_bitutil.h" #include -#define NVT_SERIAL_SYNC_ONLY - #if DEVICE_SERIAL_ASYNCH -#ifndef NVT_SERIAL_SYNC_ONLY #include "dma_api.h" #include "dma.h" #endif -#endif struct nu_uart_var { uint32_t ref_cnt; // Reference count of the H/W module @@ -176,19 +172,17 @@ static const struct nu_modinit_s uart_modinit_tab[] = { {UART_3, UART3_MODULE, CLK_CLKSEL3_UART3SEL_HIRC, CLK_CLKDIV4_UART3(1), UART3_RST, UART3_IRQn, &uart3_var}, {UART_4, UART4_MODULE, CLK_CLKSEL3_UART4SEL_HIRC, CLK_CLKDIV4_UART4(1), UART4_RST, UART4_IRQn, &uart4_var}, {UART_5, UART5_MODULE, CLK_CLKSEL3_UART5SEL_HIRC, CLK_CLKDIV4_UART5(1), UART5_RST, UART5_IRQn, &uart5_var}, - + {NC, 0, 0, 0, 0, (IRQn_Type) 0, NULL} }; extern void mbed_sdk_init(void); -#if defined (__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3U) -__attribute__((cmse_nonsecure_entry)) void serial_init(serial_t *obj, PinName tx, PinName rx) { // NOTE: With armcc, serial_init() gets called from _sys_open() timing of which is before main()/mbed_sdk_init(). mbed_sdk_init(); - + // Determine which UART_x the pins are used for uint32_t uart_tx = pinmap_peripheral(tx, PinMap_UART_TX); uint32_t uart_rx = pinmap_peripheral(rx, PinMap_UART_RX); @@ -199,36 +193,46 @@ void serial_init(serial_t *obj, PinName tx, PinName rx) const struct nu_modinit_s *modinit = get_modinit(obj->serial.uart, uart_modinit_tab); MBED_ASSERT(modinit != NULL); MBED_ASSERT(modinit->modname == (int) obj->serial.uart); - + struct nu_uart_var *var = (struct nu_uart_var *) modinit->var; - + if (! var->ref_cnt) { do { - // Reset this module - SYS_ResetModule(modinit->rsetidx); - - // Select IP clock source - CLK_SetModuleClock(modinit->clkidx, modinit->clksrc, modinit->clkdiv); - // Enable IP clock - CLK_EnableModuleClock(modinit->clkidx); + /* Reset module + * + * NOTE: We must call secure version (from non-secure domain) because SYS/CLK regions are secure. + */ + SYS_ResetModule_S(modinit->rsetidx); + + /* Select IP clock source + * + * NOTE: We must call secure version (from non-secure domain) because SYS/CLK regions are secure. + */ + CLK_SetModuleClock_S(modinit->clkidx, modinit->clksrc, modinit->clkdiv); + + /* Enable IP clock + * + * NOTE: We must call secure version (from non-secure domain) because SYS/CLK regions are secure. + */ + CLK_EnableModuleClock_S(modinit->clkidx); pinmap_pinout(tx, PinMap_UART_TX); pinmap_pinout(rx, PinMap_UART_RX); } while (0); - + obj->serial.pin_tx = tx; obj->serial.pin_rx = rx; } var->ref_cnt ++; - + // Configure the UART module and set its baudrate serial_baud(obj, 9600); // Configure data bits, parity, and stop bits serial_format(obj, 8, ParityNone, 1); - + obj->serial.vec = var->vec; obj->serial.irq_en = 0; - + #if DEVICE_SERIAL_ASYNCH obj->serial.dma_usage_tx = DMA_USAGE_NEVER; obj->serial.dma_usage_rx = DMA_USAGE_NEVER; @@ -242,7 +246,7 @@ void serial_init(serial_t *obj, PinName tx, PinName rx) stdio_uart_inited = 1; memcpy(&stdio_uart, obj, sizeof(serial_t)); } - + if (var->ref_cnt) { // Mark this module to be inited. int i = modinit - uart_modinit_tab; @@ -250,19 +254,17 @@ void serial_init(serial_t *obj, PinName tx, PinName rx) } } -__attribute__((cmse_nonsecure_entry)) void serial_free(serial_t *obj) { const struct nu_modinit_s *modinit = get_modinit(obj->serial.uart, uart_modinit_tab); MBED_ASSERT(modinit != NULL); MBED_ASSERT(modinit->modname == (int) obj->serial.uart); - + struct nu_uart_var *var = (struct nu_uart_var *) modinit->var; - + var->ref_cnt --; if (! var->ref_cnt) { #if DEVICE_SERIAL_ASYNCH -#ifndef NVT_SERIAL_SYNC_ONLY if (obj->serial.dma_chn_id_tx != DMA_ERROR_OUT_OF_CHANNELS) { dma_channel_free(obj->serial.dma_chn_id_tx); obj->serial.dma_chn_id_tx = DMA_ERROR_OUT_OF_CHANNELS; @@ -271,66 +273,73 @@ void serial_free(serial_t *obj) dma_channel_free(obj->serial.dma_chn_id_rx); obj->serial.dma_chn_id_rx = DMA_ERROR_OUT_OF_CHANNELS; } -#endif #endif do { UART_Close((UART_T *) NU_MODBASE(obj->serial.uart)); - + UART_DISABLE_INT(((UART_T *) NU_MODBASE(obj->serial.uart)), (UART_INTEN_RDAIEN_Msk | UART_INTEN_THREIEN_Msk | UART_INTEN_RXTOIEN_Msk)); NVIC_DisableIRQ(modinit->irq_n); - - // Disable IP clock - CLK_DisableModuleClock(modinit->clkidx); + + /* Disable IP clock + * + * NOTE: We must call secure version (from non-secure domain) because SYS/CLK regions are secure. + */ + CLK_DisableModuleClock_S(modinit->clkidx); } while (0); } - + if (var->obj == obj) { var->obj = NULL; } - + if (obj->serial.uart == STDIO_UART) { stdio_uart_inited = 0; } - + if (! var->ref_cnt) { // Mark this module to be deinited. int i = modinit - uart_modinit_tab; uart_modinit_mask &= ~(1 << i); } } -#endif -void serial_baud(serial_t *obj, int baudrate) { +void serial_baud(serial_t *obj, int baudrate) +{ // Flush Tx FIFO. Otherwise, output data may get lost on this change. while (! UART_IS_TX_EMPTY((UART_T *) NU_MODBASE(obj->serial.uart))); - + obj->serial.baudrate = baudrate; UART_Open((UART_T *) NU_MODBASE(obj->serial.uart), baudrate); } -void serial_format(serial_t *obj, int data_bits, SerialParity parity, int stop_bits) { +void serial_format(serial_t *obj, int data_bits, SerialParity parity, int stop_bits) +{ // Flush Tx FIFO. Otherwise, output data may get lost on this change. while (! UART_IS_TX_EMPTY((UART_T *) NU_MODBASE(obj->serial.uart))); - - // TODO: Assert for not supported parity and data bits + + // Sanity check arguments + MBED_ASSERT((data_bits == 5) || (data_bits == 6) || (data_bits == 7) || (data_bits == 8)); + MBED_ASSERT((parity == ParityNone) || (parity == ParityOdd) || (parity == ParityEven) || (parity == ParityForced1) || (parity == ParityForced0)); + MBED_ASSERT((stop_bits == 1) || (stop_bits == 2)); + obj->serial.databits = data_bits; obj->serial.parity = parity; obj->serial.stopbits = stop_bits; - + uint32_t databits_intern = (data_bits == 5) ? UART_WORD_LEN_5 : - (data_bits == 6) ? UART_WORD_LEN_6 : - (data_bits == 7) ? UART_WORD_LEN_7 : - UART_WORD_LEN_8; + (data_bits == 6) ? UART_WORD_LEN_6 : + (data_bits == 7) ? UART_WORD_LEN_7 : + UART_WORD_LEN_8; uint32_t parity_intern = (parity == ParityOdd || parity == ParityForced1) ? UART_PARITY_ODD : - (parity == ParityEven || parity == ParityForced0) ? UART_PARITY_EVEN : - UART_PARITY_NONE; + (parity == ParityEven || parity == ParityForced0) ? UART_PARITY_EVEN : + UART_PARITY_NONE; uint32_t stopbits_intern = (stop_bits == 2) ? UART_STOP_BIT_2 : UART_STOP_BIT_1; - UART_SetLineConfig((UART_T *) NU_MODBASE(obj->serial.uart), - 0, // Don't change baudrate - databits_intern, - parity_intern, - stopbits_intern); + UART_SetLineConfig((UART_T *) NU_MODBASE(obj->serial.uart), + 0, // Don't change baudrate + databits_intern, + parity_intern, + stopbits_intern); } #if DEVICE_SERIAL_FC @@ -338,7 +347,7 @@ void serial_format(serial_t *obj, int data_bits, SerialParity parity, int stop_b void serial_set_flow_control(serial_t *obj, FlowControl type, PinName rxflow, PinName txflow) { UART_T *uart_base = (UART_T *) NU_MODBASE(obj->serial.uart); - + // First, disable flow control completely. uart_base->INTEN &= ~(UART_INTEN_ATORTSEN_Msk | UART_INTEN_ATOCTSEN_Msk); @@ -348,7 +357,7 @@ void serial_set_flow_control(serial_t *obj, FlowControl type, PinName rxflow, Pi MBED_ASSERT(uart_rts == obj->serial.uart); // Enable the pin for RTS function pinmap_pinout(rxflow, PinMap_UART_RTS); - + // NOTE: Added in M480/M2351. Before configuring RTSACTLV, disable TX/RX. uart_base->FUNCSEL |= UART_FUNCSEL_TXRXDIS_Msk; while (uart_base->FIFOSTS & UART_FIFOSTS_TXRXACT_Msk); @@ -356,20 +365,20 @@ void serial_set_flow_control(serial_t *obj, FlowControl type, PinName rxflow, Pi uart_base->MODEM |= UART_MODEM_RTSACTLV_Msk; // NOTE: Added in M480/M2351. After configuring RTSACTLV, re-enable TX/RX. uart_base->FUNCSEL &= ~UART_FUNCSEL_TXRXDIS_Msk; - + uart_base->FIFO = (uart_base->FIFO & ~UART_FIFO_RTSTRGLV_Msk) | UART_FIFO_RTSTRGLV_8BYTES; - + // Enable RTS uart_base->INTEN |= UART_INTEN_ATORTSEN_Msk; } - + if ((type == FlowControlCTS || type == FlowControlRTSCTS) && txflow != NC) { // Check if CTS pin matches. uint32_t uart_cts = pinmap_peripheral(txflow, PinMap_UART_CTS); MBED_ASSERT(uart_cts == obj->serial.uart); // Enable the pin for CTS function pinmap_pinout(txflow, PinMap_UART_CTS); - + // NOTE: Added in M480/M2351. Before configuring CTSACTLV, disable TX/RX. uart_base->FUNCSEL |= UART_FUNCSEL_TXRXDIS_Msk; while (uart_base->FIFOSTS & UART_FIFOSTS_TXRXACT_Msk); @@ -377,7 +386,7 @@ void serial_set_flow_control(serial_t *obj, FlowControl type, PinName rxflow, Pi uart_base->MODEMSTS |= UART_MODEMSTS_CTSACTLV_Msk; // NOTE: Added in M480/M2351. After configuring CTSACTLV, re-enable TX/RX. uart_base->FUNCSEL &= ~UART_FUNCSEL_TXRXDIS_Msk; - + // Enable CTS uart_base->INTEN |= UART_INTEN_ATOCTSEN_Msk; } @@ -389,14 +398,14 @@ void serial_irq_handler(serial_t *obj, uart_irq_handler handler, uint32_t id) { // Flush Tx FIFO. Otherwise, output data may get lost on this change. while (! UART_IS_TX_EMPTY((UART_T *) NU_MODBASE(obj->serial.uart))); - + const struct nu_modinit_s *modinit = get_modinit(obj->serial.uart, uart_modinit_tab); MBED_ASSERT(modinit != NULL); MBED_ASSERT(modinit->modname == (int) obj->serial.uart); - + obj->serial.irq_handler = (uint32_t) handler; obj->serial.irq_id = id; - + // Restore sync-mode vector obj->serial.vec = ((struct nu_uart_var *) modinit->var)->vec; } @@ -412,13 +421,13 @@ int serial_getc(serial_t *obj) // NOTE: Every byte access requires accompaniment of one interrupt. This has side effect of performance degradation. while (! serial_readable(obj)); int c = UART_READ(((UART_T *) NU_MODBASE(obj->serial.uart))); - + // NOTE: On Nuvoton targets, no H/W IRQ to match TxIrq/RxIrq. - // Simulation of TxIrq/RxIrq requires the call to Serial::putc()/Serial::getc() respectively. + // Simulation of TxIrq/RxIrq requires the call to Serial::putc()/Serial::getc() respectively. if (obj->serial.inten_msk & (UART_INTEN_RDAIEN_Msk | UART_INTEN_RXTOIEN_Msk)) { UART_ENABLE_INT(((UART_T *) NU_MODBASE(obj->serial.uart)), (UART_INTEN_RDAIEN_Msk | UART_INTEN_RXTOIEN_Msk)); } - + return c; } @@ -427,9 +436,9 @@ void serial_putc(serial_t *obj, int c) // NOTE: Every byte access requires accompaniment of one interrupt. This has side effect of performance degradation. while (! serial_writable(obj)); UART_WRITE(((UART_T *) NU_MODBASE(obj->serial.uart)), c); - + // NOTE: On Nuvoton targets, no H/W IRQ to match TxIrq/RxIrq. - // Simulation of TxIrq/RxIrq requires the call to Serial::putc()/Serial::getc() respectively. + // Simulation of TxIrq/RxIrq requires the call to Serial::putc()/Serial::getc() respectively. if (obj->serial.inten_msk & UART_INTEN_THREIEN_Msk) { UART_ENABLE_INT(((UART_T *) NU_MODBASE(obj->serial.uart)), UART_INTEN_THREIEN_Msk); } @@ -437,7 +446,6 @@ void serial_putc(serial_t *obj, int c) int serial_readable(serial_t *obj) { - //return UART_IS_RX_READY(((UART_T *) NU_MODBASE(obj->serial.uart))); return ! UART_GET_RX_EMPTY(((UART_T *) NU_MODBASE(obj->serial.uart))); } @@ -502,7 +510,7 @@ static void uart_irq(serial_t *obj) ((uart_irq_handler) obj->serial.irq_handler)(obj->serial.irq_id, RxIrq); } } - + if (uart_base->INTSTS & UART_INTSTS_THREINT_Msk) { // Simulate clear of the interrupt flag. Temporarily disable the interrupt here and to be recovered on next write. UART_DISABLE_INT(uart_base, UART_INTEN_THREIEN_Msk); @@ -510,7 +518,7 @@ static void uart_irq(serial_t *obj) ((uart_irq_handler) obj->serial.irq_handler)(obj->serial.irq_id, TxIrq); } } - + // FIXME: Ignore all other interrupt flags. Clear them. Otherwise, program will get stuck in interrupt. uart_base->INTSTS = uart_base->INTSTS; uart_base->FIFOSTS = uart_base->FIFOSTS; @@ -520,19 +528,15 @@ static void uart_irq(serial_t *obj) #if DEVICE_SERIAL_ASYNCH int serial_tx_asynch(serial_t *obj, const void *tx, size_t tx_length, uint8_t tx_width, uint32_t handler, uint32_t event, DMAUsage hint) { -#ifndef NVT_SERIAL_SYNC_ONLY MBED_ASSERT(tx_width == 8 || tx_width == 16 || tx_width == 32); obj->serial.dma_usage_tx = hint; serial_check_dma_usage(&obj->serial.dma_usage_tx, &obj->serial.dma_chn_id_tx); - + // UART IRQ is necessary for both interrupt way and DMA way serial_tx_enable_event(obj, event, 1); serial_tx_buffer_set(obj, tx, tx_length, tx_width); - //UART_HAL_DisableTransmitter(obj->serial.address); - //UART_HAL_FlushTxFifo(obj->serial.address); - //UART_HAL_EnableTransmitter(obj->serial.address); - + int n_word = 0; if (obj->serial.dma_usage_tx == DMA_USAGE_NEVER) { // Interrupt way @@ -543,72 +547,70 @@ int serial_tx_asynch(serial_t *obj, const void *tx, size_t tx_length, uint8_t tx const struct nu_modinit_s *modinit = get_modinit(obj->serial.uart, uart_modinit_tab); MBED_ASSERT(modinit != NULL); MBED_ASSERT(modinit->modname == (int) obj->serial.uart); - + PDMA_T *pdma_base = dma_modbase(); - + pdma_base->CHCTL |= 1 << obj->serial.dma_chn_id_tx; // Enable this DMA channel PDMA_SetTransferMode(pdma_base, - obj->serial.dma_chn_id_tx, - ((struct nu_uart_var *) modinit->var)->pdma_perp_tx, // Peripheral connected to this PDMA - 0, // Scatter-gather disabled - 0); // Scatter-gather descriptor address + obj->serial.dma_chn_id_tx, + ((struct nu_uart_var *) modinit->var)->pdma_perp_tx, // Peripheral connected to this PDMA + 0, // Scatter-gather disabled + 0); // Scatter-gather descriptor address PDMA_SetTransferCnt(pdma_base, - obj->serial.dma_chn_id_tx, - (tx_width == 8) ? PDMA_WIDTH_8 : (tx_width == 16) ? PDMA_WIDTH_16 : PDMA_WIDTH_32, - tx_length); + obj->serial.dma_chn_id_tx, + (tx_width == 8) ? PDMA_WIDTH_8 : (tx_width == 16) ? PDMA_WIDTH_16 : PDMA_WIDTH_32, + tx_length); PDMA_SetTransferAddr(pdma_base, - obj->serial.dma_chn_id_tx, - (uint32_t) tx, // NOTE: - // NUC472: End of source address - // M451: Start of source address - // M480: Start of source address - // M2351: Start of source address - PDMA_SAR_INC, // Source address incremental - (uint32_t) NU_MODBASE(obj->serial.uart), // Destination address - PDMA_DAR_FIX); // Destination address fixed + obj->serial.dma_chn_id_tx, + (uint32_t) tx, // NOTE: + // NUC472: End of source address + // M451: Start of source address + // M480: Start of source address + // M2351: Start of source address + PDMA_SAR_INC, // Source address incremental + (uint32_t) NU_MODBASE(obj->serial.uart), // Destination address + PDMA_DAR_FIX); // Destination address fixed PDMA_SetBurstType(pdma_base, - obj->serial.dma_chn_id_tx, - PDMA_REQ_SINGLE, // Single mode - 0); // Burst size + obj->serial.dma_chn_id_tx, + PDMA_REQ_SINGLE, // Single mode + 0); // Burst size PDMA_EnableInt(pdma_base, - obj->serial.dma_chn_id_tx, - PDMA_INT_TRANS_DONE); // Interrupt type + obj->serial.dma_chn_id_tx, + PDMA_INT_TRANS_DONE); // Interrupt type // Register DMA event handler dma_set_handler(obj->serial.dma_chn_id_tx, (uint32_t) uart_dma_handler_tx, (uint32_t) obj, DMA_EVENT_ALL); serial_tx_enable_interrupt(obj, handler, 1); + /* We needn't actually enable UART INT to go UART ISR -> handler. + * Instead, as PDMA INT is triggered, we will go PDMA ISR -> UART ISR -> handler + * with serial_tx/rx_enable_interrupt having set up this call path. */ + UART_DISABLE_INT(((UART_T *) NU_MODBASE(obj->serial.uart)), UART_INTEN_THREIEN_Msk); + ((UART_T *) NU_MODBASE(obj->serial.uart))->INTEN |= UART_INTEN_TXPDMAEN_Msk; // Start DMA transfer } - + return n_word; -#else - return 0; -#endif } void serial_rx_asynch(serial_t *obj, void *rx, size_t rx_length, uint8_t rx_width, uint32_t handler, uint32_t event, uint8_t char_match, DMAUsage hint) { -#ifndef NVT_SERIAL_SYNC_ONLY MBED_ASSERT(rx_width == 8 || rx_width == 16 || rx_width == 32); obj->serial.dma_usage_rx = hint; serial_check_dma_usage(&obj->serial.dma_usage_rx, &obj->serial.dma_chn_id_rx); // DMA doesn't support char match, so fall back to IRQ if it is requested. - if (obj->serial.dma_usage_rx != DMA_USAGE_NEVER && - (event & SERIAL_EVENT_RX_CHARACTER_MATCH) && - char_match != SERIAL_RESERVED_CHAR_MATCH) { + if (obj->serial.dma_usage_rx != DMA_USAGE_NEVER && + (event & SERIAL_EVENT_RX_CHARACTER_MATCH) && + char_match != SERIAL_RESERVED_CHAR_MATCH) { obj->serial.dma_usage_rx = DMA_USAGE_NEVER; dma_channel_free(obj->serial.dma_chn_id_rx); obj->serial.dma_chn_id_rx = DMA_ERROR_OUT_OF_CHANNELS; } - + // UART IRQ is necessary for both interrupt way and DMA way serial_rx_enable_event(obj, event, 1); serial_rx_buffer_set(obj, rx, rx_length, rx_width); serial_rx_set_char_match(obj, char_match); - //UART_HAL_DisableReceiver(obj->serial.address); - //UART_HAL_FlushRxFifo(obj->serial.address); - //UART_HAL_EnableReceiver(obj->serial.address); - + if (obj->serial.dma_usage_rx == DMA_USAGE_NEVER) { // Interrupt way serial_rx_enable_interrupt(obj, handler, 1); @@ -617,125 +619,113 @@ void serial_rx_asynch(serial_t *obj, void *rx, size_t rx_length, uint8_t rx_widt const struct nu_modinit_s *modinit = get_modinit(obj->serial.uart, uart_modinit_tab); MBED_ASSERT(modinit != NULL); MBED_ASSERT(modinit->modname == (int) obj->serial.uart); - + PDMA_T *pdma_base = dma_modbase(); - + pdma_base->CHCTL |= 1 << obj->serial.dma_chn_id_rx; // Enable this DMA channel PDMA_SetTransferMode(pdma_base, - obj->serial.dma_chn_id_rx, - ((struct nu_uart_var *) modinit->var)->pdma_perp_rx, // Peripheral connected to this PDMA - 0, // Scatter-gather disabled - 0); // Scatter-gather descriptor address + obj->serial.dma_chn_id_rx, + ((struct nu_uart_var *) modinit->var)->pdma_perp_rx, // Peripheral connected to this PDMA + 0, // Scatter-gather disabled + 0); // Scatter-gather descriptor address PDMA_SetTransferCnt(pdma_base, - obj->serial.dma_chn_id_rx, - (rx_width == 8) ? PDMA_WIDTH_8 : (rx_width == 16) ? PDMA_WIDTH_16 : PDMA_WIDTH_32, - rx_length); + obj->serial.dma_chn_id_rx, + (rx_width == 8) ? PDMA_WIDTH_8 : (rx_width == 16) ? PDMA_WIDTH_16 : PDMA_WIDTH_32, + rx_length); PDMA_SetTransferAddr(pdma_base, - obj->serial.dma_chn_id_rx, - (uint32_t) NU_MODBASE(obj->serial.uart), // Source address - PDMA_SAR_FIX, // Source address fixed - (uint32_t) rx, // NOTE: - // NUC472: End of destination address - // M451: Start of destination address - // M480: Start of destination address - // M2351: Start of destination address - PDMA_DAR_INC); // Destination address incremental + obj->serial.dma_chn_id_rx, + (uint32_t) NU_MODBASE(obj->serial.uart), // Source address + PDMA_SAR_FIX, // Source address fixed + (uint32_t) rx, // NOTE: + // NUC472: End of destination address + // M451: Start of destination address + // M480: Start of destination address + // M2351: Start of destination address + PDMA_DAR_INC); // Destination address incremental PDMA_SetBurstType(pdma_base, - obj->serial.dma_chn_id_rx, - PDMA_REQ_SINGLE, // Single mode - 0); // Burst size + obj->serial.dma_chn_id_rx, + PDMA_REQ_SINGLE, // Single mode + 0); // Burst size PDMA_EnableInt(pdma_base, - obj->serial.dma_chn_id_rx, - PDMA_INT_TRANS_DONE); // Interrupt type + obj->serial.dma_chn_id_rx, + PDMA_INT_TRANS_DONE); // Interrupt type // Register DMA event handler dma_set_handler(obj->serial.dma_chn_id_rx, (uint32_t) uart_dma_handler_rx, (uint32_t) obj, DMA_EVENT_ALL); serial_rx_enable_interrupt(obj, handler, 1); - ((UART_T *) NU_MODBASE(obj->serial.uart))->INTEN |= UART_INTEN_RXPDMAEN_Msk; // Start DMA transfer + /* We needn't actually enable UART INT to go UART ISR -> handler. + * Instead, as PDMA INT is triggered, we will go PDMA ISR -> UART ISR -> handler + * with serial_tx/rx_enable_interrupt having set up this call path. */ + UART_DISABLE_INT(((UART_T *) NU_MODBASE(obj->serial.uart)), (UART_INTEN_RDAIEN_Msk | UART_INTEN_RXTOIEN_Msk)); + ((UART_T *) NU_MODBASE(obj->serial.uart))->INTEN |= UART_INTEN_RXPDMAEN_Msk; // Start DMA transfer } -#endif } void serial_tx_abort_asynch(serial_t *obj) { -#ifndef NVT_SERIAL_SYNC_ONLY // Flush Tx FIFO. Otherwise, output data may get lost on this change. while (! UART_IS_TX_EMPTY((UART_T *) NU_MODBASE(obj->serial.uart))); - + if (obj->serial.dma_usage_tx != DMA_USAGE_NEVER) { PDMA_T *pdma_base = dma_modbase(); - + if (obj->serial.dma_chn_id_tx != DMA_ERROR_OUT_OF_CHANNELS) { PDMA_DisableInt(pdma_base, obj->serial.dma_chn_id_tx, PDMA_INT_TRANS_DONE); - // FIXME: On NUC472, next PDMA transfer will fail with PDMA_STOP() called. Cause is unknown. - //PDMA_STOP(obj->serial.dma_chn_id_tx); + // NOTE: On NUC472, next PDMA transfer will fail with PDMA_STOP() called. Cause is unknown. pdma_base->CHCTL &= ~(1 << obj->serial.dma_chn_id_tx); } UART_DISABLE_INT(((UART_T *) NU_MODBASE(obj->serial.uart)), UART_INTEN_TXPDMAEN_Msk); } - + // Necessary for both interrupt way and DMA way serial_enable_interrupt(obj, TxIrq, 0); serial_rollback_interrupt(obj, TxIrq); -#endif } void serial_rx_abort_asynch(serial_t *obj) { -#ifndef NVT_SERIAL_SYNC_ONLY if (obj->serial.dma_usage_rx != DMA_USAGE_NEVER) { PDMA_T *pdma_base = dma_modbase(); - + if (obj->serial.dma_chn_id_rx != DMA_ERROR_OUT_OF_CHANNELS) { PDMA_DisableInt(pdma_base, obj->serial.dma_chn_id_rx, PDMA_INT_TRANS_DONE); - // FIXME: On NUC472, next PDMA transfer will fail with PDMA_STOP() called. Cause is unknown. - //PDMA_STOP(obj->serial.dma_chn_id_rx); + // NOTE: On NUC472, next PDMA transfer will fail with PDMA_STOP() called. Cause is unknown. pdma_base->CHCTL &= ~(1 << obj->serial.dma_chn_id_rx); } UART_DISABLE_INT(((UART_T *) NU_MODBASE(obj->serial.uart)), UART_INTEN_RXPDMAEN_Msk); } - + // Necessary for both interrupt way and DMA way serial_enable_interrupt(obj, RxIrq, 0); serial_rollback_interrupt(obj, RxIrq); -#endif } uint8_t serial_tx_active(serial_t *obj) { -#ifndef NVT_SERIAL_SYNC_ONLY // NOTE: Judge by serial_is_irq_en(obj, TxIrq) doesn't work with sync/async modes interleaved. Change with TX FIFO empty flag. const struct nu_modinit_s *modinit = get_modinit(obj->serial.uart, uart_modinit_tab); MBED_ASSERT(modinit != NULL); MBED_ASSERT(modinit->modname == (int) obj->serial.uart); - - struct nu_uart_var *var = (struct nu_uart_var *) modinit->var; + + struct nu_uart_var *var = (struct nu_uart_var *) modinit->var; return (obj->serial.vec == var->vec_async); -#else - return 1; -#endif } uint8_t serial_rx_active(serial_t *obj) { -#ifndef NVT_SERIAL_SYNC_ONLY // NOTE: Judge by serial_is_irq_en(obj, RxIrq) doesn't work with sync/async modes interleaved. Change with RX FIFO empty flag. const struct nu_modinit_s *modinit = get_modinit(obj->serial.uart, uart_modinit_tab); MBED_ASSERT(modinit != NULL); MBED_ASSERT(modinit->modname == (int) obj->serial.uart); - - struct nu_uart_var *var = (struct nu_uart_var *) modinit->var; + + struct nu_uart_var *var = (struct nu_uart_var *) modinit->var; return (obj->serial.vec == var->vec_async); -#else - return 1; -#endif } int serial_irq_handler_asynch(serial_t *obj) { -#ifndef NVT_SERIAL_SYNC_ONLY int event_rx = 0; int event_tx = 0; - + // Necessary for both interrupt way and DMA way if (serial_is_irq_en(obj, RxIrq)) { event_rx = serial_rx_event_check(obj); @@ -743,49 +733,17 @@ int serial_irq_handler_asynch(serial_t *obj) serial_rx_abort_asynch(obj); } } - + if (serial_is_irq_en(obj, TxIrq)) { event_tx = serial_tx_event_check(obj); if (event_tx) { serial_tx_abort_asynch(obj); } } - + return (obj->serial.event & (event_rx | event_tx)); -#else - return 0; -#endif } -int serial_allow_powerdown(void) -{ -#ifndef NVT_SERIAL_SYNC_ONLY - uint32_t modinit_mask = uart_modinit_mask; - while (modinit_mask) { - int uart_idx = nu_ctz(modinit_mask); - const struct nu_modinit_s *modinit = uart_modinit_tab + uart_idx; - if (modinit->modname != NC) { - UART_T *uart_base = (UART_T *) NU_MODBASE(modinit->modname); - // Disallow entering power-down mode if Tx FIFO has data to flush - if (! UART_IS_TX_EMPTY((uart_base))) { - return 0; - } - // Disallow entering power-down mode if async Rx transfer (not PDMA) is on-going - if (uart_base->INTEN & (UART_INTEN_RDAIEN_Msk | UART_INTEN_RXTOIEN_Msk)) { - return 0; - } - // Disallow entering power-down mode if async Rx transfer (PDMA) is on-going - if (uart_base->INTEN & UART_INTEN_RXPDMAEN_Msk) { - return 0; - } - } - modinit_mask &= ~(1 << uart_idx); - } -#endif - return 1; -} - - static void uart0_vec_async(void) { uart_irq_async(uart0_var.obj); @@ -826,62 +784,6 @@ static void uart_irq_async(serial_t *obj) } } -static void serial_enable_interrupt(serial_t *obj, SerialIrq irq, uint32_t enable) -{ - if (enable) { - const struct nu_modinit_s *modinit = get_modinit(obj->serial.uart, uart_modinit_tab); - MBED_ASSERT(modinit != NULL); - MBED_ASSERT(modinit->modname == (int) obj->serial.uart); - - NVIC_SetVector(modinit->irq_n, (uint32_t) obj->serial.vec); - NVIC_EnableIRQ(modinit->irq_n); - - struct nu_uart_var *var = (struct nu_uart_var *) modinit->var; - // Multiple serial S/W objects for single UART H/W module possibly. - // Bind serial S/W object to UART H/W module as interrupt is enabled. - var->obj = obj; - - switch (irq) { - // NOTE: Setting inten_msk first to avoid race condition - case RxIrq: - obj->serial.inten_msk = obj->serial.inten_msk | (UART_INTEN_RDAIEN_Msk | UART_INTEN_RXTOIEN_Msk); - UART_ENABLE_INT(((UART_T *) NU_MODBASE(obj->serial.uart)), (UART_INTEN_RDAIEN_Msk | UART_INTEN_RXTOIEN_Msk)); - break; - case TxIrq: - obj->serial.inten_msk = obj->serial.inten_msk | UART_INTEN_THREIEN_Msk; - UART_ENABLE_INT(((UART_T *) NU_MODBASE(obj->serial.uart)), UART_INTEN_THREIEN_Msk); - break; - } - } - else { // disable - switch (irq) { - case RxIrq: - UART_DISABLE_INT(((UART_T *) NU_MODBASE(obj->serial.uart)), (UART_INTEN_RDAIEN_Msk | UART_INTEN_RXTOIEN_Msk)); - obj->serial.inten_msk = obj->serial.inten_msk & ~(UART_INTEN_RDAIEN_Msk | UART_INTEN_RXTOIEN_Msk); - break; - case TxIrq: - UART_DISABLE_INT(((UART_T *) NU_MODBASE(obj->serial.uart)), UART_INTEN_THREIEN_Msk); - obj->serial.inten_msk = obj->serial.inten_msk & ~UART_INTEN_THREIEN_Msk; - break; - } - } -} - -static int serial_is_irq_en(serial_t *obj, SerialIrq irq) -{ - int inten_msk = 0; - switch (irq) { - case RxIrq: - inten_msk = obj->serial.inten_msk & (UART_INTEN_RDAIEN_Msk | UART_INTEN_RXTOIEN_Msk); - break; - case TxIrq: - inten_msk = obj->serial.inten_msk & UART_INTEN_THREIEN_Msk; - break; - } - return !! inten_msk; -} - -#ifndef NVT_SERIAL_SYNC_ONLY static void serial_rx_set_char_match(serial_t *obj, uint8_t char_match) { obj->char_match = char_match; @@ -892,20 +794,23 @@ static void serial_tx_enable_event(serial_t *obj, int event, uint8_t enable) { obj->serial.event &= ~SERIAL_EVENT_TX_MASK; obj->serial.event |= (event & SERIAL_EVENT_TX_MASK); - - //if (event & SERIAL_EVENT_TX_COMPLETE) { - //} + + if (event & SERIAL_EVENT_TX_COMPLETE) { + // N/A + } } static void serial_rx_enable_event(serial_t *obj, int event, uint8_t enable) { obj->serial.event &= ~SERIAL_EVENT_RX_MASK; obj->serial.event |= (event & SERIAL_EVENT_RX_MASK); - - //if (event & SERIAL_EVENT_RX_COMPLETE) { - //} - //if (event & SERIAL_EVENT_RX_OVERRUN_ERROR) { - //} + + if (event & SERIAL_EVENT_RX_COMPLETE) { + // N/A + } + if (event & SERIAL_EVENT_RX_OVERRUN_ERROR) { + // N/A + } if (event & SERIAL_EVENT_RX_FRAMING_ERROR) { UART_ENABLE_INT(((UART_T *) NU_MODBASE(obj->serial.uart)), UART_INTEN_RLSIEN_Msk); } @@ -915,57 +820,55 @@ static void serial_rx_enable_event(serial_t *obj, int event, uint8_t enable) if (event & SERIAL_EVENT_RX_OVERFLOW) { UART_ENABLE_INT(((UART_T *) NU_MODBASE(obj->serial.uart)), UART_INTEN_BUFERRIEN_Msk); } - //if (event & SERIAL_EVENT_RX_CHARACTER_MATCH) { - //} + if (event & SERIAL_EVENT_RX_CHARACTER_MATCH) { + // N/A + } } static int serial_is_tx_complete(serial_t *obj) { // NOTE: Exclude tx fifo empty check due to no such interrupt on DMA way - //return (obj->tx_buff.pos == obj->tx_buff.length) && UART_GET_TX_EMPTY(((UART_T *) NU_MODBASE(obj->serial.uart))); - // FIXME: Premature abort??? return (obj->tx_buff.pos == obj->tx_buff.length); } static int serial_is_rx_complete(serial_t *obj) { - //return (obj->rx_buff.pos == obj->rx_buff.length) && UART_GET_RX_EMPTY(((UART_T *) NU_MODBASE(obj->serial.uart))); return (obj->rx_buff.pos == obj->rx_buff.length); } static uint32_t serial_tx_event_check(serial_t *obj) { UART_T *uart_base = (UART_T *) NU_MODBASE(obj->serial.uart); - + if (uart_base->INTSTS & UART_INTSTS_THREINT_Msk) { // Simulate clear of the interrupt flag. Temporarily disable the interrupt here and to be recovered on next write. UART_DISABLE_INT(uart_base, UART_INTEN_THREIEN_Msk); } - + uint32_t event = 0; - + if (obj->serial.dma_usage_tx == DMA_USAGE_NEVER) { serial_write_async(obj); } - + if (serial_is_tx_complete(obj)) { event |= SERIAL_EVENT_TX_COMPLETE; } - + return event; } static uint32_t serial_rx_event_check(serial_t *obj) { UART_T *uart_base = (UART_T *) NU_MODBASE(obj->serial.uart); - + if (uart_base->INTSTS & (UART_INTSTS_RDAINT_Msk | UART_INTSTS_RXTOINT_Msk)) { // Simulate clear of the interrupt flag. Temporarily disable the interrupt here and to be recovered on next read. UART_DISABLE_INT(uart_base, (UART_INTEN_RDAIEN_Msk | UART_INTEN_RXTOIEN_Msk)); } - + uint32_t event = 0; - + if (uart_base->FIFOSTS & UART_FIFOSTS_BIF_Msk) { uart_base->FIFOSTS = UART_FIFOSTS_BIF_Msk; } @@ -977,7 +880,7 @@ static uint32_t serial_rx_event_check(serial_t *obj) uart_base->FIFOSTS = UART_FIFOSTS_PEF_Msk; event |= SERIAL_EVENT_RX_PARITY_ERROR; } - + if (uart_base->FIFOSTS & UART_FIFOSTS_RXOVIF_Msk) { uart_base->FIFOSTS = UART_FIFOSTS_RXOVIF_Msk; event |= SERIAL_EVENT_RX_OVERFLOW; @@ -986,23 +889,21 @@ static uint32_t serial_rx_event_check(serial_t *obj) if (obj->serial.dma_usage_rx == DMA_USAGE_NEVER) { serial_read_async(obj); } - + if (serial_is_rx_complete(obj)) { event |= SERIAL_EVENT_RX_COMPLETE; } if ((obj->char_match != SERIAL_RESERVED_CHAR_MATCH) && obj->char_found) { event |= SERIAL_EVENT_RX_CHARACTER_MATCH; - // FIXME: Timing to reset char_found? - //obj->char_found = 0; } - + return event; } static void uart_dma_handler_tx(uint32_t id, uint32_t event_dma) { serial_t *obj = (serial_t *) id; - + // FIXME: Pass this error to caller if (event_dma & DMA_EVENT_ABORT) { } @@ -1013,14 +914,14 @@ static void uart_dma_handler_tx(uint32_t id, uint32_t event_dma) // FIXME: Pass this error to caller if (event_dma & DMA_EVENT_TIMEOUT) { } - + uart_irq_async(obj); } static void uart_dma_handler_rx(uint32_t id, uint32_t event_dma) { serial_t *obj = (serial_t *) id; - + // FIXME: Pass this error to caller if (event_dma & DMA_EVENT_ABORT) { } @@ -1031,18 +932,18 @@ static void uart_dma_handler_rx(uint32_t id, uint32_t event_dma) // FIXME: Pass this error to caller if (event_dma & DMA_EVENT_TIMEOUT) { } - + uart_irq_async(obj); } static int serial_write_async(serial_t *obj) -{ +{ const struct nu_modinit_s *modinit = get_modinit(obj->serial.uart, uart_modinit_tab); MBED_ASSERT(modinit != NULL); MBED_ASSERT(modinit->modname == (int) obj->serial.uart); - + UART_T *uart_base = (UART_T *) NU_MODBASE(obj->serial.uart); - + uint32_t tx_fifo_max = ((struct nu_uart_var *) modinit->var)->fifo_size_tx; uint32_t tx_fifo_busy = (uart_base->FIFOSTS & UART_FIFOSTS_TXPTR_Msk) >> UART_FIFOSTS_TXPTR_Pos; if (uart_base->FIFOSTS & UART_FIFOSTS_TXFULL_Msk) { @@ -1056,34 +957,34 @@ static int serial_write_async(serial_t *obj) } return 0; } - + uint32_t bytes_per_word = obj->tx_buff.width / 8; - + uint8_t *tx = (uint8_t *)(obj->tx_buff.buffer) + bytes_per_word * obj->tx_buff.pos; int n_words = 0; while (obj->tx_buff.pos < obj->tx_buff.length && tx_fifo_free >= bytes_per_word) { switch (bytes_per_word) { - case 4: - UART_WRITE(((UART_T *) NU_MODBASE(obj->serial.uart)), *tx ++); - UART_WRITE(((UART_T *) NU_MODBASE(obj->serial.uart)), *tx ++); - case 2: - UART_WRITE(((UART_T *) NU_MODBASE(obj->serial.uart)), *tx ++); - case 1: - UART_WRITE(((UART_T *) NU_MODBASE(obj->serial.uart)), *tx ++); + case 4: + UART_WRITE(((UART_T *) NU_MODBASE(obj->serial.uart)), *tx ++); + UART_WRITE(((UART_T *) NU_MODBASE(obj->serial.uart)), *tx ++); + case 2: + UART_WRITE(((UART_T *) NU_MODBASE(obj->serial.uart)), *tx ++); + case 1: + UART_WRITE(((UART_T *) NU_MODBASE(obj->serial.uart)), *tx ++); } - + n_words ++; tx_fifo_free -= bytes_per_word; obj->tx_buff.pos ++; } - + if (n_words) { // Simulate clear of the interrupt flag if (obj->serial.inten_msk & UART_INTEN_THREIEN_Msk) { UART_ENABLE_INT(((UART_T *) NU_MODBASE(obj->serial.uart)), UART_INTEN_THREIEN_Msk); } } - + return n_words; } @@ -1092,42 +993,38 @@ static int serial_read_async(serial_t *obj) const struct nu_modinit_s *modinit = get_modinit(obj->serial.uart, uart_modinit_tab); MBED_ASSERT(modinit != NULL); MBED_ASSERT(modinit->modname == (int) obj->serial.uart); - + uint32_t rx_fifo_busy = (((UART_T *) NU_MODBASE(obj->serial.uart))->FIFOSTS & UART_FIFOSTS_RXPTR_Msk) >> UART_FIFOSTS_RXPTR_Pos; - //uint32_t rx_fifo_free = ((struct nu_uart_var *) modinit->var)->fifo_size_rx - rx_fifo_busy; - //if (rx_fifo_free == 0) { - // return 0; - //} - + uint32_t bytes_per_word = obj->rx_buff.width / 8; - + uint8_t *rx = (uint8_t *)(obj->rx_buff.buffer) + bytes_per_word * obj->rx_buff.pos; int n_words = 0; while (obj->rx_buff.pos < obj->rx_buff.length && rx_fifo_busy >= bytes_per_word) { switch (bytes_per_word) { - case 4: - *rx ++ = UART_READ(((UART_T *) NU_MODBASE(obj->serial.uart))); - *rx ++ = UART_READ(((UART_T *) NU_MODBASE(obj->serial.uart))); - case 2: - *rx ++ = UART_READ(((UART_T *) NU_MODBASE(obj->serial.uart))); - case 1: - *rx ++ = UART_READ(((UART_T *) NU_MODBASE(obj->serial.uart))); + case 4: + *rx ++ = UART_READ(((UART_T *) NU_MODBASE(obj->serial.uart))); + *rx ++ = UART_READ(((UART_T *) NU_MODBASE(obj->serial.uart))); + case 2: + *rx ++ = UART_READ(((UART_T *) NU_MODBASE(obj->serial.uart))); + case 1: + *rx ++ = UART_READ(((UART_T *) NU_MODBASE(obj->serial.uart))); } - + n_words ++; rx_fifo_busy -= bytes_per_word; obj->rx_buff.pos ++; - + if ((obj->serial.event & SERIAL_EVENT_RX_CHARACTER_MATCH) && - obj->char_match != SERIAL_RESERVED_CHAR_MATCH) { + obj->char_match != SERIAL_RESERVED_CHAR_MATCH) { uint8_t *rx_cmp = rx; switch (bytes_per_word) { - case 4: - rx_cmp -= 2; - case 2: - rx_cmp --; - case 1: - rx_cmp --; + case 4: + rx_cmp -= 2; + case 2: + rx_cmp --; + case 1: + rx_cmp --; } if (*rx_cmp == obj->char_match) { obj->char_found = 1; @@ -1135,14 +1032,14 @@ static int serial_read_async(serial_t *obj) } } } - + if (n_words) { // Simulate clear of the interrupt flag if (obj->serial.inten_msk & (UART_INTEN_RDAIEN_Msk | UART_INTEN_RXTOIEN_Msk)) { UART_ENABLE_INT(((UART_T *) NU_MODBASE(obj->serial.uart)), (UART_INTEN_RDAIEN_Msk | UART_INTEN_RXTOIEN_Msk)); } } - + return n_words; } @@ -1167,7 +1064,7 @@ static void serial_tx_enable_interrupt(serial_t *obj, uint32_t handler, uint8_t const struct nu_modinit_s *modinit = get_modinit(obj->serial.uart, uart_modinit_tab); MBED_ASSERT(modinit != NULL); MBED_ASSERT(modinit->modname == (int) obj->serial.uart); - + // Necessary for both interrupt way and DMA way struct nu_uart_var *var = (struct nu_uart_var *) modinit->var; // With our own async vector, tx/rx handlers can be different. @@ -1181,7 +1078,7 @@ static void serial_rx_enable_interrupt(serial_t *obj, uint32_t handler, uint8_t const struct nu_modinit_s *modinit = get_modinit(obj->serial.uart, uart_modinit_tab); MBED_ASSERT(modinit != NULL); MBED_ASSERT(modinit->modname == (int) obj->serial.uart); - + // Necessary for both interrupt way and DMA way struct nu_uart_var *var = (struct nu_uart_var *) modinit->var; // With our own async vector, tx/rx handlers can be different. @@ -1190,15 +1087,54 @@ static void serial_rx_enable_interrupt(serial_t *obj, uint32_t handler, uint8_t serial_enable_interrupt(obj, RxIrq, enable); } +static void serial_enable_interrupt(serial_t *obj, SerialIrq irq, uint32_t enable) +{ + if (enable) { + const struct nu_modinit_s *modinit = get_modinit(obj->serial.uart, uart_modinit_tab); + MBED_ASSERT(modinit != NULL); + MBED_ASSERT(modinit->modname == (int) obj->serial.uart); + + NVIC_SetVector(modinit->irq_n, (uint32_t) obj->serial.vec); + NVIC_EnableIRQ(modinit->irq_n); + + struct nu_uart_var *var = (struct nu_uart_var *) modinit->var; + // Multiple serial S/W objects for single UART H/W module possibly. + // Bind serial S/W object to UART H/W module as interrupt is enabled. + var->obj = obj; + + switch (irq) { + // NOTE: Setting inten_msk first to avoid race condition + case RxIrq: + obj->serial.inten_msk = obj->serial.inten_msk | (UART_INTEN_RDAIEN_Msk | UART_INTEN_RXTOIEN_Msk); + UART_ENABLE_INT(((UART_T *) NU_MODBASE(obj->serial.uart)), (UART_INTEN_RDAIEN_Msk | UART_INTEN_RXTOIEN_Msk)); + break; + case TxIrq: + obj->serial.inten_msk = obj->serial.inten_msk | UART_INTEN_THREIEN_Msk; + UART_ENABLE_INT(((UART_T *) NU_MODBASE(obj->serial.uart)), UART_INTEN_THREIEN_Msk); + break; + } + } else { // disable + switch (irq) { + case RxIrq: + UART_DISABLE_INT(((UART_T *) NU_MODBASE(obj->serial.uart)), (UART_INTEN_RDAIEN_Msk | UART_INTEN_RXTOIEN_Msk)); + obj->serial.inten_msk = obj->serial.inten_msk & ~(UART_INTEN_RDAIEN_Msk | UART_INTEN_RXTOIEN_Msk); + break; + case TxIrq: + UART_DISABLE_INT(((UART_T *) NU_MODBASE(obj->serial.uart)), UART_INTEN_THREIEN_Msk); + obj->serial.inten_msk = obj->serial.inten_msk & ~UART_INTEN_THREIEN_Msk; + break; + } + } +} static void serial_rollback_interrupt(serial_t *obj, SerialIrq irq) { const struct nu_modinit_s *modinit = get_modinit(obj->serial.uart, uart_modinit_tab); MBED_ASSERT(modinit != NULL); MBED_ASSERT(modinit->modname == (int) obj->serial.uart); - + struct nu_uart_var *var = (struct nu_uart_var *) modinit->var; - + obj->serial.vec = var->vec; serial_enable_interrupt(obj, irq, obj->serial.irq_en); } @@ -1212,13 +1148,27 @@ static void serial_check_dma_usage(DMAUsage *dma_usage, int *dma_ch) if (*dma_ch == DMA_ERROR_OUT_OF_CHANNELS) { *dma_usage = DMA_USAGE_NEVER; } - } - else { + } else { dma_channel_free(*dma_ch); *dma_ch = DMA_ERROR_OUT_OF_CHANNELS; } } -#endif //#ifndef NVT_SERIAL_SYNC_ONLY +static int serial_is_irq_en(serial_t *obj, SerialIrq irq) +{ + int inten_msk = 0; + + switch (irq) { + case RxIrq: + inten_msk = obj->serial.inten_msk & (UART_INTEN_RDAIEN_Msk | UART_INTEN_RXTOIEN_Msk); + break; + case TxIrq: + inten_msk = obj->serial.inten_msk & UART_INTEN_THREIEN_Msk; + break; + } + + return !! inten_msk; +} + #endif // #if DEVICE_SERIAL_ASYNCH -#endif // #if DEVICE_SERIAL +#endif // #if DEVICE_SERIAL