Merge pull request #20 from ARMmbed/offir-spif-block-device

Extending SPIF BD SFDP support
pull/7774/head
Offir Kochalsky 2018-08-21 13:59:40 +03:00 committed by GitHub
commit a821b69cd9
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
4 changed files with 1281 additions and 359 deletions

File diff suppressed because it is too large Load Diff

View File

@ -1,5 +1,5 @@
/* mbed Microcontroller Library
* Copyright (c) 2016 ARM Limited
* Copyright (c) 2018 ARM Limited
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
@ -16,15 +16,32 @@
#ifndef MBED_SPIF_BLOCK_DEVICE_H
#define MBED_SPIF_BLOCK_DEVICE_H
#include <mbed.h>
#include "SPI.h"
#include "DigitalOut.h"
#include "BlockDevice.h"
namespace mbed {
/** BlockDevice for SPI based flash devices
* such as the MX25R or SST26F016B
/** Enum spif standard error codes
*
* @enum qpif_bd_error
*/
enum spif_bd_error {
SPIF_BD_ERROR_OK = 0, /*!< no error */
SPIF_BD_ERROR_DEVICE_ERROR = BD_ERROR_DEVICE_ERROR, /*!< device specific error -4001 */
SPIF_BD_ERROR_PARSING_FAILED = -4002, /* SFDP Parsing failed */
SPIF_BD_ERROR_READY_FAILED = -4003, /* Wait for Mem Ready failed */
SPIF_BD_ERROR_WREN_FAILED = -4004, /* Write Enable Failed */
};
#define SPIF_MAX_REGIONS 10
#define MAX_NUM_OF_ERASE_TYPES 4
/** BlockDevice for SFDP based flash devices over SPI bus
*
* @code
* // Here's an example using the MX25R SPI flash device on the K82F
* // Here's an example using SPI flash device on K82F target
* #include "mbed.h"
* #include "SPIFBlockDevice.h"
*
@ -66,26 +83,34 @@ public:
* @param csel SPI chip select pin
* @param freq Clock speed of the SPI bus (defaults to 40MHz)
*/
SPIFBlockDevice(PinName mosi, PinName miso, PinName sclk, PinName csel, int freq=40000000);
SPIFBlockDevice(PinName mosi, PinName miso, PinName sclk, PinName csel, int freq = 40000000);
/** Initialize a block device
*
* @return 0 on success or a negative error code on failure
* @return SPIF_BD_ERROR_OK(0) - success
* SPIF_BD_ERROR_DEVICE_ERROR - device driver transaction failed
* SPIF_BD_ERROR_READY_FAILED - Waiting for Memory ready failed or timedout
* SPIF_BD_ERROR_PARSING_FAILED - unexpected format or values in one of the SFDP tables
*/
virtual int init();
/** Deinitialize a block device
*
* @return 0 on success or a negative error code on failure
* @return SPIF_BD_ERROR_OK(0) - success
*/
virtual int deinit();
/** Desctruct SPIFBlockDevie
*/
~SPIFBlockDevice() {deinit();}
/** Read blocks from a block device
*
* @param buffer Buffer to write blocks to
* @param addr Address of block to begin reading from
* @param size Size to read in bytes, must be a multiple of read block size
* @return 0 on success, negative error code on failure
* @return SPIF_BD_ERROR_OK(0) - success
* SPIF_BD_ERROR_DEVICE_ERROR - device driver transaction failed
*/
virtual int read(void *buffer, bd_addr_t addr, bd_size_t size);
@ -96,7 +121,10 @@ public:
* @param buffer Buffer of data to write to blocks
* @param addr Address of block to begin writing to
* @param size Size to write in bytes, must be a multiple of program block size
* @return 0 on success, negative error code on failure
* @return SPIF_BD_ERROR_OK(0) - success
* SPIF_BD_ERROR_DEVICE_ERROR - device driver transaction failed
* SPIF_BD_ERROR_READY_FAILED - Waiting for Memory ready failed or timed out
* SPIF_BD_ERROR_WREN_FAILED - Write Enable failed
*/
virtual int program(const void *buffer, bd_addr_t addr, bd_size_t size);
@ -106,7 +134,10 @@ public:
*
* @param addr Address of block to begin erasing
* @param size Size to erase in bytes, must be a multiple of erase block size
* @return 0 on success, negative error code on failure
* @return SPIF_BD_ERROR_OK(0) - success
* SPIF_BD_ERROR_DEVICE_ERROR - device driver transaction failed
* SPIF_BD_ERROR_READY_FAILED - Waiting for Memory ready failed or timed out
* SPIF_BD_ERROR_WREN_FAILED - Write Enable failed
*/
virtual int erase(bd_addr_t addr, bd_size_t size);
@ -130,15 +161,15 @@ public:
*/
virtual bd_size_t get_erase_size() const;
/** Get the size of an erasable block given address
/** Get the size of minimal eraseable sector size of given address
*
* @param addr Address within the erasable block
* @return Size of an erasable block in bytes
* @param addr Any address within block queried for erase sector size (can be any address within flash size offset)
* @return Size of minimal erase sector size, in given address region, in bytes
* @note Must be a multiple of the program size
*/
virtual bd_size_t get_erase_size(bd_addr_t addr) const;
virtual bd_size_t get_erase_size(bd_addr_t addr);
/** Get the value of storage when erased
/** Get the value of storage byte after it was erased
*
* If get_erase_value returns a non-negative byte value, the underlying
* storage is set to that value when erased, and storage containing
@ -156,24 +187,113 @@ public:
virtual bd_size_t size() const;
private:
// Master side hardware
SPI _spi;
DigitalOut _cs;
// Device configuration discovered through sfdp
bd_size_t _size;
bool _is_initialized;
uint32_t _init_ref_count;
// Internal functions
int _wren();
int _sync();
void _cmdread(uint8_t op, uint32_t addrc, uint32_t retc,
uint32_t addr, uint8_t *rets);
void _cmdwrite(uint8_t op, uint32_t addrc, uint32_t argc,
uint32_t addr, const uint8_t *args);
/****************************************/
/* SFDP Detection and Parsing Functions */
/****************************************/
// Parse SFDP Headers and retrieve Basic Param and Sector Map Tables (if exist)
int _sfdp_parse_sfdp_headers(uint32_t& basic_table_addr, size_t& basic_table_size,
uint32_t& sector_map_table_addr, size_t& sector_map_table_size);
// Parse and Detect required Basic Parameters from Table
int _sfdp_parse_basic_param_table(uint32_t basic_table_addr, size_t basic_table_size);
// Parse and read information required by Regions Secotr Map
int _sfdp_parse_sector_map_table(uint32_t sector_map_table_addr, size_t sector_map_table_size);
// Detect fastest read Bus mode supported by device
int _sfdp_detect_best_bus_read_mode(uint8_t *basic_param_table_ptr, int basic_param_table_size, int& read_inst);
// Set Page size for program
unsigned int _sfdp_detect_page_size(uint8_t *basic_param_table_ptr, int basic_param_table_size);
// Detect all supported erase types
int _sfdp_detect_erase_types_inst_and_size(uint8_t *basic_param_table_ptr, int basic_param_table_size,
int& erase4k_inst,
int *erase_type_inst_arr, unsigned int *erase_type_size_arr);
/***********************/
/* Utilities Functions */
/***********************/
// Find the region to which the given offset belong to
int _utils_find_addr_region(bd_size_t offset);
// Iterate on all supported Erase Types of the Region to which the offset belong to.
// Iterates from highest type to lowest
int _utils_iterate_next_largest_erase_type(uint8_t& bitfield, int size, int offset, int boundry);
/********************************/
/* Calls to SPI Driver APIs */
/********************************/
// Send Program => Write command to Driver
spif_bd_error _spi_send_program_command(int prog_inst, const void *buffer, bd_addr_t addr, bd_size_t size);
// Send Read command to Driver
//spif_bd_error _spi_send_read_command(uint8_t read_inst, void *buffer, bd_addr_t addr, bd_size_t size);
spif_bd_error _spi_send_read_command(int read_inst, uint8_t *buffer, bd_addr_t addr, bd_size_t size);
// Send Erase Instruction using command_transfer command to Driver
spif_bd_error _spi_send_erase_command(int erase_inst, bd_addr_t addr, bd_size_t size);
// Send Generic command_transfer command to Driver
spif_bd_error _spi_send_general_command(int instruction, bd_addr_t addr, char *tx_buffer,
size_t tx_length, char *rx_buffer, size_t rx_length);
// Send set_frequency command to Driver
spif_bd_error _spi_set_frequency(int freq);
/********************************/
// Soft Reset Flash Memory
int _reset_flash_mem();
// Configure Write Enable in Status Register
int _set_write_enable();
// Wait on status register until write not-in-progress
bool _is_mem_ready();
private:
// Master side hardware
SPI _spi;
// Enable CS control (low/high) for SPI driver operatios
DigitalOut _cs;
// Mutex is used to protect Flash device for some SPI Driver commands that must be done sequentially with no other commands in between
// e.g. (1)Set Write Enable, (2)Program, (3)Wait Memory Ready
static SingletonPtr<PlatformMutex> _mutex;
// Command Instructions
int _read_instruction;
int _prog_instruction;
int _erase_instruction;
int _erase4k_inst; // Legacy 4K erase instruction (default 0x20h)
// Up To 4 Erase Types are supported by SFDP (each with its own command Instruction and Size)
int _erase_type_inst_arr[MAX_NUM_OF_ERASE_TYPES];
unsigned int _erase_type_size_arr[MAX_NUM_OF_ERASE_TYPES];
// Sector Regions Map
int _regions_count; //number of regions
int _region_size_bytes[SPIF_MAX_REGIONS]; //regions size in bytes
bd_size_t _region_high_boundary[SPIF_MAX_REGIONS]; //region high address offset boundary
//Each Region can support a bit combination of any of the 4 Erase Types
uint8_t _region_erase_types_bitfield[SPIF_MAX_REGIONS];
unsigned int _min_common_erase_size; // minimal common erase size for all regions (0 if none exists)
unsigned int _page_size_bytes; // Page size - 256 Bytes default
bd_size_t _device_size_bytes;
// Bus configuration
unsigned int _address_size; // number of bytes for address
unsigned int _read_dummy_and_mode_cycles; // Number of Dummy and Mode Bits required by Read Bus Mode
unsigned int _write_dummy_and_mode_cycles; // Number of Dummy and Mode Bits required by Write Bus Mode
unsigned int _dummy_and_mode_cycles; // Number of Dummy and Mode Bits required by Current Bus Mode
uint32_t _init_ref_count;
bool _is_initialized;
};
} //namespace mbed
#endif /* MBED_SPIF_BLOCK_DEVICE_H */

View File

@ -1,23 +1,30 @@
#include "mbed.h"
/* mbed Microcontroller Library
* Copyright (c) 2018 ARM Limited
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "greentea-client/test_env.h"
#include "unity.h"
#include "utest.h"
#include "SPIFBlockDevice.h"
#include "mbed_trace.h"
#include <stdlib.h>
using namespace utest::v1;
#if defined(TARGET_K82F)
#define TEST_PINS PTE2, PTE4, PTE1, PTE5
#define TEST_FREQ 40000000
#else
#define TEST_PINS D11, D12, D13, D10
#define TEST_FREQ 1000000
#endif
#define TEST_BLOCK_COUNT 10
#define TEST_ERROR_MASK 16
#define SPIF_TEST_NUM_OF_THREADS 5
const struct {
const char *name;
@ -29,34 +36,133 @@ const struct {
{"total size", &BlockDevice::size},
};
static SingletonPtr<PlatformMutex> _mutex;
void test_read_write() {
SPIFBlockDevice bd(TEST_PINS, TEST_FREQ);
// Mutex is protecting rand() per srand for buffer writing and verification.
// Mutex is also protecting printouts for clear logs.
// Mutex is NOT protecting Block Device actions: erase/program/read - which is the purpose of the multithreaded test!
void basic_erase_program_read_test(SPIFBlockDevice& blockD, bd_size_t block_size, uint8_t *write_block,
uint8_t *read_block, unsigned addrwidth)
{
int err = 0;
_mutex->lock();
// Find a random block
bd_addr_t block = (rand() * block_size) % blockD.size();
int err = bd.init();
// Use next random number as temporary seed to keep
// the address progressing in the pseudorandom sequence
unsigned seed = rand();
// Fill with random sequence
srand(seed);
for (bd_size_t i_ind = 0; i_ind < block_size; i_ind++) {
write_block[i_ind] = 0xff & rand();
}
// Write, sync, and read the block
utest_printf("\ntest %0*llx:%llu...", addrwidth, block, block_size);
_mutex->unlock();
err = blockD.erase(block, block_size);
TEST_ASSERT_EQUAL(0, err);
for (unsigned a = 0; a < sizeof(ATTRS)/sizeof(ATTRS[0]); a++) {
err = blockD.program(write_block, block, block_size);
TEST_ASSERT_EQUAL(0, err);
err = blockD.read(read_block, block, block_size);
TEST_ASSERT_EQUAL(0, err);
_mutex->lock();
// Check that the data was unmodified
srand(seed);
int val_rand;
for (bd_size_t i_ind = 0; i_ind < block_size; i_ind++) {
val_rand = rand();
if ( (0xff & val_rand) != read_block[i_ind] ) {
utest_printf("\n Assert Failed Buf Read - block:size: %llx:%llu \n", block, block_size);
utest_printf("\n pos: %llu, exp: %02x, act: %02x, wrt: %02x \n", i_ind, (0xff & val_rand), read_block[i_ind],
write_block[i_ind] );
}
TEST_ASSERT_EQUAL(0xff & val_rand, read_block[i_ind]);
}
_mutex->unlock();
}
void test_spif_random_program_read_erase()
{
utest_printf("\nTest Random Program Read Erase Starts..\n");
SPIFBlockDevice blockD(MBED_CONF_SPIF_SPI_MOSI, MBED_CONF_SPIF_SPI_MISO, MBED_CONF_SPIF_SPI_CLK, MBED_CONF_SPIF_SPI_CS);
int err = blockD.init();
TEST_ASSERT_EQUAL(0, err);
for (unsigned atr = 0; atr < sizeof(ATTRS) / sizeof(ATTRS[0]); atr++) {
static const char *prefixes[] = {"", "k", "M", "G"};
for (int i = 3; i >= 0; i--) {
bd_size_t size = (bd.*ATTRS[a].method)();
if (size >= (1ULL << 10*i)) {
printf("%s: %llu%sbytes (%llubytes)\n",
ATTRS[a].name, size >> 10*i, prefixes[i], size);
for (int i_ind = 3; i_ind >= 0; i_ind--) {
bd_size_t size = (blockD.*ATTRS[atr].method)();
if (size >= (1ULL << 10 * i_ind)) {
utest_printf("%s: %llu%sbytes (%llubytes)\n",
ATTRS[atr].name, size >> 10 * i_ind, prefixes[i_ind], size);
break;
}
}
}
bd_size_t block_size = bd.get_erase_size();
uint8_t *write_block = new uint8_t[block_size];
uint8_t *read_block = new uint8_t[block_size];
uint8_t *error_mask = new uint8_t[TEST_ERROR_MASK];
unsigned addrwidth = ceil(log(float(bd.size()-1)) / log(float(16)))+1;
bd_size_t block_size = blockD.get_erase_size();
unsigned addrwidth = ceil(log(float(blockD.size() - 1)) / log(float(16))) + 1;
uint8_t *write_block = new (std::nothrow) uint8_t[block_size];
uint8_t *read_block = new (std::nothrow) uint8_t[block_size];
if (!write_block || !read_block) {
utest_printf("\n Not enough memory for test");
goto end;
}
for (int b = 0; b < TEST_BLOCK_COUNT; b++) {
// Find a random block
bd_addr_t block = (rand()*block_size) % bd.size();
basic_erase_program_read_test(blockD, block_size, write_block, read_block, addrwidth);
}
err = blockD.deinit();
TEST_ASSERT_EQUAL(0, err);
end:
delete[] write_block;
delete[] read_block;
}
void test_spif_unaligned_program()
{
utest_printf("\nTest Unaligned Program Starts..\n");
SPIFBlockDevice blockD(MBED_CONF_SPIF_SPI_MOSI, MBED_CONF_SPIF_SPI_MISO, MBED_CONF_SPIF_SPI_CLK, MBED_CONF_SPIF_SPI_CS);
int err = blockD.init();
TEST_ASSERT_EQUAL(0, err);
for (unsigned atr = 0; atr < sizeof(ATTRS) / sizeof(ATTRS[0]); atr++) {
static const char *prefixes[] = {"", "k", "M", "G"};
for (int i_ind = 3; i_ind >= 0; i_ind--) {
bd_size_t size = (blockD.*ATTRS[atr].method)();
if (size >= (1ULL << 10 * i_ind)) {
utest_printf("%s: %llu%sbytes (%llubytes)\n",
ATTRS[atr].name, size >> 10 * i_ind, prefixes[i_ind], size);
break;
}
}
}
bd_size_t block_size = blockD.get_erase_size();
unsigned addrwidth = ceil(log(float(blockD.size() - 1)) / log(float(16))) + 1;
uint8_t *write_block = new (std::nothrow) uint8_t[block_size];
uint8_t *read_block = new (std::nothrow) uint8_t[block_size];
if (!write_block || !read_block ) {
utest_printf("\n Not enough memory for test");
goto end;
}
{
bd_addr_t block = (rand() * block_size) % blockD.size() + 15;
// Use next random number as temporary seed to keep
// the address progressing in the pseudorandom sequence
@ -64,77 +170,121 @@ void test_read_write() {
// Fill with random sequence
srand(seed);
for (bd_size_t i = 0; i < block_size; i++) {
write_block[i] = 0xff & rand();
for (bd_size_t i_ind = 0; i_ind < block_size; i_ind++) {
write_block[i_ind] = 0xff & rand();
}
// Write, sync, and read the block
printf("test %0*llx:%llu...\n", addrwidth, block, block_size);
utest_printf("\ntest %0*llx:%llu...", addrwidth, block, block_size);
err = bd.erase(block, block_size);
err = blockD.erase(block, block_size);
TEST_ASSERT_EQUAL(0, err);
err = bd.program(write_block, block, block_size);
err = blockD.program(write_block, block, block_size);
TEST_ASSERT_EQUAL(0, err);
printf("write %0*llx:%llu ", addrwidth, block, block_size);
for (int i = 0; i < 16; i++) {
printf("%02x", write_block[i]);
}
printf("...\n");
err = bd.read(read_block, block, block_size);
err = blockD.read(read_block, block, block_size);
TEST_ASSERT_EQUAL(0, err);
printf("read %0*llx:%llu ", addrwidth, block, block_size);
for (int i = 0; i < 16; i++) {
printf("%02x", read_block[i]);
}
printf("...\n");
// Find error mask for debugging
memset(error_mask, 0, TEST_ERROR_MASK);
bd_size_t error_scale = block_size / (TEST_ERROR_MASK*8);
srand(seed);
for (bd_size_t i = 0; i < TEST_ERROR_MASK*8; i++) {
for (bd_size_t j = 0; j < error_scale; j++) {
if ((0xff & rand()) != read_block[i*error_scale + j]) {
error_mask[i/8] |= 1 << (i%8);
}
}
}
printf("error %0*llx:%llu ", addrwidth, block, block_size);
for (int i = 0; i < 16; i++) {
printf("%02x", error_mask[i]);
}
printf("\n");
// Check that the data was unmodified
srand(seed);
for (bd_size_t i = 0; i < block_size; i++) {
TEST_ASSERT_EQUAL(0xff & rand(), read_block[i]);
for (bd_size_t i_ind = 0; i_ind < block_size; i_ind++) {
TEST_ASSERT_EQUAL(0xff & rand(), read_block[i_ind]);
}
err = blockD.deinit();
TEST_ASSERT_EQUAL(0, err);
}
end:
delete[] write_block;
delete[] read_block;
}
static void test_spif_thread_job(void *vBlockD/*, int thread_num*/)
{
static int thread_num = 0;
thread_num++;
SPIFBlockDevice *blockD = (SPIFBlockDevice *)vBlockD;
utest_printf("\n Thread %d Started \n", thread_num);
bd_size_t block_size = blockD->get_erase_size();
unsigned addrwidth = ceil(log(float(blockD->size() - 1)) / log(float(16))) + 1;
uint8_t *write_block = new (std::nothrow) uint8_t[block_size];
uint8_t *read_block = new (std::nothrow) uint8_t[block_size];
if (!write_block || !read_block ) {
utest_printf("\n Not enough memory for test");
goto end;
}
for (int b = 0; b < TEST_BLOCK_COUNT; b++) {
basic_erase_program_read_test((*blockD), block_size, write_block, read_block, addrwidth);
}
end:
delete[] write_block;
delete[] read_block;
}
void test_spif_multi_threads()
{
utest_printf("\nTest Multi Threaded Erase/Program/Read Starts..\n");
SPIFBlockDevice blockD(MBED_CONF_SPIF_SPI_MOSI, MBED_CONF_SPIF_SPI_MISO, MBED_CONF_SPIF_SPI_CLK, MBED_CONF_SPIF_SPI_CS);
int err = blockD.init();
TEST_ASSERT_EQUAL(0, err);
for (unsigned atr = 0; atr < sizeof(ATTRS) / sizeof(ATTRS[0]); atr++) {
static const char *prefixes[] = {"", "k", "M", "G"};
for (int i_ind = 3; i_ind >= 0; i_ind--) {
bd_size_t size = (blockD.*ATTRS[atr].method)();
if (size >= (1ULL << 10 * i_ind)) {
utest_printf("%s: %llu%sbytes (%llubytes)\n",
ATTRS[atr].name, size >> 10 * i_ind, prefixes[i_ind], size);
break;
}
}
}
err = bd.deinit();
rtos::Thread spif_bd_thread[SPIF_TEST_NUM_OF_THREADS];
osStatus threadStatus;
int i_ind;
for (i_ind = 0; i_ind < SPIF_TEST_NUM_OF_THREADS; i_ind++) {
threadStatus = spif_bd_thread[i_ind].start(test_spif_thread_job, (void *)&blockD);
if (threadStatus != 0) {
utest_printf("\n Thread %d Start Failed!", i_ind + 1);
}
}
for (i_ind = 0; i_ind < SPIF_TEST_NUM_OF_THREADS; i_ind++) {
spif_bd_thread[i_ind].join();
}
err = blockD.deinit();
TEST_ASSERT_EQUAL(0, err);
}
// Test setup
utest::v1::status_t test_setup(const size_t number_of_cases) {
GREENTEA_SETUP(30, "default_auto");
utest::v1::status_t test_setup(const size_t number_of_cases)
{
GREENTEA_SETUP(60, "default_auto");
return verbose_test_setup_handler(number_of_cases);
}
Case cases[] = {
Case("Testing read write random blocks", test_read_write),
Case("Testing unaligned program blocks", test_spif_unaligned_program),
Case("Testing read write random blocks", test_spif_random_program_read_erase),
Case("Testing Multi Threads Erase Program Read", test_spif_multi_threads)
};
Specification specification(test_setup, cases);
int main() {
int main()
{
mbed_trace_init();
utest_printf("MAIN STARTS\n");
return !Harness::run(specification);
}

View File

@ -1,5 +1,5 @@
{
"name": "spif-driver",
"name": "spif",
"config": {
"SPI_MOSI": "NC",
"SPI_MISO": "NC",
@ -9,10 +9,10 @@
},
"target_overrides": {
"K82F": {
"SPI_MOSI": "PTE2",
"SPI_MISO": "PTE4",
"SPI_CLK": "PTE1",
"SPI_CS": "PTE5"
"SPI_MOSI": "PTE2",
"SPI_MISO": "PTE4",
"SPI_CLK": "PTE1",
"SPI_CS": "PTE5"
},
"LPC54114": {
"SPI_MOSI": "P0_20",