Updates for IOTDEV-1576 (only TRNG API)

- Added legacy nrf_drv_rng.c as there is no merit in fully adopting nrfx_rng.c
- Added nrf_queue library component
- Removed apply_old_config.h (unused for some time now)
- Updated sdk_config.h for queue and RNG support for nRF52832
- Brought back RNG into targets.json for nRF52832
Note: nRF52840 still uses CryptoCell 310 for TRNG
pull/10652/head
RFulchiero 2018-10-05 18:16:14 -05:00 committed by desmond.chen
parent 38c68e0a45
commit a1d5a4d973
5 changed files with 1261 additions and 1387 deletions

View File

@ -4949,7 +4949,7 @@
// <e> RNG_ENABLED - nrf_drv_rng - RNG peripheral driver - legacy layer
//==========================================================
#ifndef RNG_ENABLED
#define RNG_ENABLED 0
#define RNG_ENABLED 1
#endif
// <q> RNG_CONFIG_ERROR_CORRECTION - Error correction
@ -6844,7 +6844,7 @@
// <e> NRF_QUEUE_ENABLED - nrf_queue - Queue module
//==========================================================
#ifndef NRF_QUEUE_ENABLED
#define NRF_QUEUE_ENABLED 0
#define NRF_QUEUE_ENABLED 1
#endif
// <q> NRF_QUEUE_CLI_CMDS - Enable CLI commands specific to the module

View File

@ -0,0 +1,547 @@
/**
* Copyright (c) 2016 - 2018, Nordic Semiconductor ASA
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form, except as embedded into a Nordic
* Semiconductor ASA integrated circuit in a product or a software update for
* such product, must reproduce the above copyright notice, this list of
* conditions and the following disclaimer in the documentation and/or other
* materials provided with the distribution.
*
* 3. Neither the name of Nordic Semiconductor ASA nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* 4. This software, with or without modification, must only be used with a
* Nordic Semiconductor ASA integrated circuit.
*
* 5. Any software provided in binary form under this license must not be reverse
* engineered, decompiled, modified and/or disassembled.
*
* THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS
* OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
* GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
#include "sdk_common.h"
#if NRF_MODULE_ENABLED(NRF_QUEUE)
#include "nrf_queue.h"
#include "app_util_platform.h"
#if NRF_QUEUE_CONFIG_LOG_ENABLED
#define NRF_LOG_LEVEL NRF_QUEUE_CONFIG_LOG_LEVEL
#define NRF_LOG_INIT_FILTER_LEVEL NRF_QUEUE_CONFIG_LOG_INIT_FILTER_LEVEL
#define NRF_LOG_INFO_COLOR NRF_QUEUE_CONFIG_INFO_COLOR
#define NRF_LOG_DEBUG_COLOR NRF_QUEUE_CONFIG_DEBUG_COLOR
#else
#define NRF_LOG_LEVEL 0
#endif // NRF_QUEUE_CONFIG_LOG_ENABLED
#include "nrf_log.h"
NRF_SECTION_DEF(nrf_queue, nrf_queue_t);
#if NRF_QUEUE_CLI_CMDS
#include "nrf_cli.h"
static void nrf_queue_status(nrf_cli_t const * p_cli, size_t argc, char **argv)
{
UNUSED_PARAMETER(argv);
if (nrf_cli_help_requested(p_cli))
{
nrf_cli_help_print(p_cli, NULL, 0);
return;
}
if (argc > 1)
{
nrf_cli_fprintf(p_cli, NRF_CLI_ERROR, "Bad argument count");
return;
}
uint32_t num_of_instances = NRF_SECTION_ITEM_COUNT(nrf_queue, nrf_queue_t);
uint32_t i;
for (i = 0; i < num_of_instances; i++)
{
const nrf_queue_t * p_instance = NRF_SECTION_ITEM_GET(nrf_queue, nrf_queue_t, i);
uint32_t element_size = p_instance->element_size;
uint32_t size = p_instance->size;
uint32_t max_util = nrf_queue_max_utilization_get(p_instance);
uint32_t util = nrf_queue_utilization_get(p_instance);
const char * p_name = p_instance->p_name;
nrf_cli_fprintf(p_cli, NRF_CLI_NORMAL,
"%s\r\n\t- Element size:\t%d\r\n"
"\t- Usage:\t%u%% (%u out of %u elements)\r\n"
"\t- Maximum:\t%u%% (%u out of %u elements)\r\n"
"\t- Mode:\t\t%s\r\n\r\n",
p_name, element_size,
100ul * util/size, util,size,
100ul * max_util/size, max_util,size,
(p_instance->mode == NRF_QUEUE_MODE_OVERFLOW) ? "Overflow" : "No overflow");
}
}
// Register "queue" command and its subcommands in CLI.
NRF_CLI_CREATE_STATIC_SUBCMD_SET(nrf_queue_commands)
{
NRF_CLI_CMD(status, NULL, "Print status of queue instances.", nrf_queue_status),
NRF_CLI_SUBCMD_SET_END
};
NRF_CLI_CMD_REGISTER(queue, &nrf_queue_commands, "Commands for BALLOC management", nrf_queue_status);
#endif //NRF_QUEUE_CLI_CMDS
/**@brief Get next element index.
*
* @param[in] p_queue Pointer to the queue instance.
* @param[in] idx Current index.
*
* @return Next element index.
*/
__STATIC_INLINE size_t nrf_queue_next_idx(nrf_queue_t const * p_queue, size_t idx)
{
ASSERT(p_queue != NULL);
return (idx < p_queue->size) ? (idx + 1) : 0;
}
/**@brief Get current queue utilization. This function assumes that this process will not be interrupted.
*
* @param[in] p_queue Pointer to the queue instance.
*
* @return Current queue utilization.
*/
__STATIC_INLINE size_t queue_utilization_get(nrf_queue_t const * p_queue)
{
size_t front = p_queue->p_cb->front;
size_t back = p_queue->p_cb->back;
return (back >= front) ? (back - front) : (p_queue->size + 1 - front + back);
}
bool nrf_queue_is_full(nrf_queue_t const * p_queue)
{
ASSERT(p_queue != NULL);
size_t front = p_queue->p_cb->front;
size_t back = p_queue->p_cb->back;
return (nrf_queue_next_idx(p_queue, back) == front);
}
ret_code_t nrf_queue_push(nrf_queue_t const * p_queue, void const * p_element)
{
ret_code_t status = NRF_SUCCESS;
ASSERT(p_queue != NULL);
ASSERT(p_element != NULL);
CRITICAL_REGION_ENTER();
bool is_full = nrf_queue_is_full(p_queue);
if (!is_full || (p_queue->mode == NRF_QUEUE_MODE_OVERFLOW))
{
// Get write position.
size_t write_pos = p_queue->p_cb->back;
p_queue->p_cb->back = nrf_queue_next_idx(p_queue, p_queue->p_cb->back);
if (is_full)
{
// Overwrite the oldest element.
NRF_LOG_INST_WARNING(p_queue->p_log, "Queue full. Overwriting oldest element.");
p_queue->p_cb->front = nrf_queue_next_idx(p_queue, p_queue->p_cb->front);
}
// Write a new element.
switch (p_queue->element_size)
{
case sizeof(uint8_t):
((uint8_t *)p_queue->p_buffer)[write_pos] = *((uint8_t *)p_element);
break;
case sizeof(uint16_t):
((uint16_t *)p_queue->p_buffer)[write_pos] = *((uint16_t *)p_element);
break;
case sizeof(uint32_t):
((uint32_t *)p_queue->p_buffer)[write_pos] = *((uint32_t *)p_element);
break;
case sizeof(uint64_t):
((uint64_t *)p_queue->p_buffer)[write_pos] = *((uint64_t *)p_element);
break;
default:
memcpy((void *)((size_t)p_queue->p_buffer + write_pos * p_queue->element_size),
p_element,
p_queue->element_size);
break;
}
// Update utilization.
size_t utilization = queue_utilization_get(p_queue);
if (p_queue->p_cb->max_utilization < utilization)
{
p_queue->p_cb->max_utilization = utilization;
}
}
else
{
status = NRF_ERROR_NO_MEM;
}
CRITICAL_REGION_EXIT();
NRF_LOG_INST_DEBUG(p_queue->p_log, "pushed element 0x%08X, status:%d", p_element, status);
return status;
}
ret_code_t nrf_queue_generic_pop(nrf_queue_t const * p_queue,
void * p_element,
bool just_peek)
{
ret_code_t status = NRF_SUCCESS;
ASSERT(p_queue != NULL);
ASSERT(p_element != NULL);
CRITICAL_REGION_ENTER();
if (!nrf_queue_is_empty(p_queue))
{
// Get read position.
size_t read_pos = p_queue->p_cb->front;
// Update next read position.
if (!just_peek)
{
p_queue->p_cb->front = nrf_queue_next_idx(p_queue, p_queue->p_cb->front);
}
// Read element.
switch (p_queue->element_size)
{
case sizeof(uint8_t):
*((uint8_t *)p_element) = ((uint8_t *)p_queue->p_buffer)[read_pos];
break;
case sizeof(uint16_t):
*((uint16_t *)p_element) = ((uint16_t *)p_queue->p_buffer)[read_pos];
break;
case sizeof(uint32_t):
*((uint32_t *)p_element) = ((uint32_t *)p_queue->p_buffer)[read_pos];
break;
case sizeof(uint64_t):
*((uint64_t *)p_element) = ((uint64_t *)p_queue->p_buffer)[read_pos];
break;
default:
memcpy(p_element,
(void const *)((size_t)p_queue->p_buffer + read_pos * p_queue->element_size),
p_queue->element_size);
break;
}
}
else
{
status = NRF_ERROR_NOT_FOUND;
}
CRITICAL_REGION_EXIT();
NRF_LOG_INST_DEBUG(p_queue->p_log, "%s element 0x%08X, status:%d",
just_peek ? "peeked" : "popped", p_element, status);
return status;
}
/**@brief Write elements to the queue. This function assumes that there is enough room in the queue
* to write the requested number of elements and that this process will not be interrupted.
*
* @param[in] p_queue Pointer to the nrf_queue_t instance.
* @param[in] p_data Pointer to the buffer with elements to write.
* @param[in] element_count Number of elements to write.
*/
static void queue_write(nrf_queue_t const * p_queue, void const * p_data, uint32_t element_count)
{
size_t prev_available = nrf_queue_available_get(p_queue);
size_t continuous = p_queue->size + 1 - p_queue->p_cb->back;
void * p_write_ptr = (void *)((size_t)p_queue->p_buffer
+ p_queue->p_cb->back * p_queue->element_size);
if (element_count <= continuous)
{
memcpy(p_write_ptr,
p_data,
element_count * p_queue->element_size);
p_queue->p_cb->back = ((p_queue->p_cb->back + element_count) <= p_queue->size)
? (p_queue->p_cb->back + element_count)
: 0;
}
else
{
size_t first_write_length = continuous * p_queue->element_size;
memcpy(p_write_ptr,
p_data,
first_write_length);
size_t elements_left = element_count - continuous;
memcpy(p_queue->p_buffer,
(void const *)((size_t)p_data + first_write_length),
elements_left * p_queue->element_size);
p_queue->p_cb->back = elements_left;
if (prev_available < element_count)
{
// Overwrite the oldest elements.
p_queue->p_cb->front = nrf_queue_next_idx(p_queue, p_queue->p_cb->back);
}
}
// Update utilization.
size_t utilization = queue_utilization_get(p_queue);
if (p_queue->p_cb->max_utilization < utilization)
{
p_queue->p_cb->max_utilization = utilization;
}
}
ret_code_t nrf_queue_write(nrf_queue_t const * p_queue,
void const * p_data,
size_t element_count)
{
ret_code_t status = NRF_SUCCESS;
ASSERT(p_queue != NULL);
ASSERT(p_data != NULL);
ASSERT(element_count <= p_queue->size);
if (element_count == 0)
{
return NRF_SUCCESS;
}
CRITICAL_REGION_ENTER();
if ((nrf_queue_available_get(p_queue) >= element_count)
|| (p_queue->mode == NRF_QUEUE_MODE_OVERFLOW))
{
queue_write(p_queue, p_data, element_count);
}
else
{
status = NRF_ERROR_NO_MEM;
}
CRITICAL_REGION_EXIT();
NRF_LOG_INST_DEBUG(p_queue->p_log, "Write %d elements (start address: 0x%08X), status:%d",
element_count, p_data, status);
return status;
}
size_t nrf_queue_in(nrf_queue_t const * p_queue,
void const * p_data,
size_t element_count)
{
ASSERT(p_queue != NULL);
ASSERT(p_data != NULL);
size_t req_element_count = element_count;
if (element_count == 0)
{
return 0;
}
CRITICAL_REGION_ENTER();
if (p_queue->mode == NRF_QUEUE_MODE_OVERFLOW)
{
element_count = MIN(element_count, p_queue->size);
}
else
{
size_t available = nrf_queue_available_get(p_queue);
element_count = MIN(element_count, available);
}
queue_write(p_queue, p_data, element_count);
CRITICAL_REGION_EXIT();
NRF_LOG_INST_DEBUG(p_queue->p_log, "Put in %d elements (start address: 0x%08X), requested :%d",
element_count, p_data, req_element_count);
return element_count;
}
/**@brief Read elements from the queue. This function assumes that there are enough elements
* in the queue to read and that this process will not be interrupted.
*
* @param[in] p_queue Pointer to the nrf_queue_t instance.
* @param[out] p_data Pointer to the buffer where elements will be copied.
* @param[in] element_count Number of elements to read.
*/
static void queue_read(nrf_queue_t const * p_queue, void * p_data, uint32_t element_count)
{
size_t front = p_queue->p_cb->front;
size_t back = p_queue->p_cb->back;
size_t continuous = (front <= back) ? (back - front) : (p_queue->size + 1 - front);
void const * p_read_ptr = (void const *)((size_t)p_queue->p_buffer
+ front * p_queue->element_size);
if (element_count <= continuous)
{
memcpy(p_data,
p_read_ptr,
element_count * p_queue->element_size);
p_queue->p_cb->front = ((front + element_count) <= p_queue->size)
? (front + element_count)
: 0;
}
else
{
size_t first_read_length = continuous * p_queue->element_size;
memcpy(p_data,
p_read_ptr,
first_read_length);
size_t elements_left = element_count - continuous;
memcpy((void *)((size_t)p_data + first_read_length),
p_queue->p_buffer,
elements_left * p_queue->element_size);
p_queue->p_cb->front = elements_left;
}
}
ret_code_t nrf_queue_read(nrf_queue_t const * p_queue,
void * p_data,
size_t element_count)
{
ret_code_t status = NRF_SUCCESS;
ASSERT(p_queue != NULL);
ASSERT(p_data != NULL);
if (element_count == 0)
{
return NRF_SUCCESS;
}
CRITICAL_REGION_ENTER();
if (element_count <= queue_utilization_get(p_queue))
{
queue_read(p_queue, p_data, element_count);
}
else
{
status = NRF_ERROR_NOT_FOUND;
}
CRITICAL_REGION_EXIT();
NRF_LOG_INST_DEBUG(p_queue->p_log, "Read %d elements (start address: 0x%08X), status :%d",
element_count, p_data, status);
return status;
}
size_t nrf_queue_out(nrf_queue_t const * p_queue,
void * p_data,
size_t element_count)
{
ASSERT(p_queue != NULL);
ASSERT(p_data != NULL);
size_t req_element_count = element_count;
if (element_count == 0)
{
return 0;
}
CRITICAL_REGION_ENTER();
size_t utilization = queue_utilization_get(p_queue);
element_count = MIN(element_count, utilization);
queue_read(p_queue, p_data, element_count);
CRITICAL_REGION_EXIT();
NRF_LOG_INST_DEBUG(p_queue->p_log, "Out %d elements (start address: 0x%08X), requested :%d",
element_count, p_data, req_element_count);
return element_count;
}
void nrf_queue_reset(nrf_queue_t const * p_queue)
{
ASSERT(p_queue != NULL);
CRITICAL_REGION_ENTER();
memset(p_queue->p_cb, 0, sizeof(nrf_queue_cb_t));
CRITICAL_REGION_EXIT();
NRF_LOG_INST_DEBUG(p_queue->p_log, "Reset");
}
size_t nrf_queue_utilization_get(nrf_queue_t const * p_queue)
{
size_t utilization;
ASSERT(p_queue != NULL);
CRITICAL_REGION_ENTER();
utilization = queue_utilization_get(p_queue);
CRITICAL_REGION_EXIT();
return utilization;
}
bool nrf_queue_is_empty(nrf_queue_t const * p_queue)
{
ASSERT(p_queue != NULL);
size_t front = p_queue->p_cb->front;
size_t back = p_queue->p_cb->back;
return (front == back);
}
size_t nrf_queue_available_get(nrf_queue_t const * p_queue)
{
ASSERT(p_queue != NULL);
return p_queue->size - nrf_queue_utilization_get(p_queue);
}
size_t nrf_queue_max_utilization_get(nrf_queue_t const * p_queue)
{
ASSERT(p_queue != NULL);
return p_queue->p_cb->max_utilization;
}
void nrf_queue_max_utilization_reset(nrf_queue_t const * p_queue)
{
ASSERT(p_queue != NULL);
p_queue->p_cb->max_utilization = 0;
}
#endif // NRF_MODULE_ENABLED(NRF_QUEUE)

View File

@ -0,0 +1,429 @@
/**
* Copyright (c) 2016 - 2018, Nordic Semiconductor ASA
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form, except as embedded into a Nordic
* Semiconductor ASA integrated circuit in a product or a software update for
* such product, must reproduce the above copyright notice, this list of
* conditions and the following disclaimer in the documentation and/or other
* materials provided with the distribution.
*
* 3. Neither the name of Nordic Semiconductor ASA nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* 4. This software, with or without modification, must only be used with a
* Nordic Semiconductor ASA integrated circuit.
*
* 5. Any software provided in binary form under this license must not be reverse
* engineered, decompiled, modified and/or disassembled.
*
* THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS
* OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
* GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
/**
* @defgroup nrf_queue Queue module
* @{
* @ingroup app_common
* @brief Functions that handle the queue instances.
*/
#ifndef NRF_QUEUE_H__
#define NRF_QUEUE_H__
#include <stdint.h>
#include <stdint.h>
#include <string.h>
#include "nrf_assert.h"
#include "sdk_errors.h"
#include "app_util.h"
#include "app_util_platform.h"
#include "nrf_log_instance.h"
#include "nrf_section.h"
#ifdef __cplusplus
extern "C" {
#endif
/** @brief Name of the module used for logger messaging.
*/
#define NRF_QUEUE_LOG_NAME queue
/**@brief Queue control block. */
typedef struct
{
volatile size_t front; //!< Queue front index.
volatile size_t back; //!< Queue back index.
size_t max_utilization; //!< Maximum utilization of the queue.
} nrf_queue_cb_t;
/**@brief Supported queue modes. */
typedef enum
{
NRF_QUEUE_MODE_OVERFLOW, //!< If the queue is full, new element will overwrite the oldest.
NRF_QUEUE_MODE_NO_OVERFLOW, //!< If the queue is full, new element will not be accepted.
} nrf_queue_mode_t;
/**@brief Instance of the queue. */
typedef struct
{
nrf_queue_cb_t * p_cb; //!< Pointer to the instance control block.
void * p_buffer; //!< Pointer to the memory that is used as storage.
size_t size; //!< Size of the queue.
size_t element_size; //!< Size of one element.
nrf_queue_mode_t mode; //!< Mode of the queue.
#if NRF_QUEUE_CLI_CMDS
const char * p_name; //!< Pointer to string with queue name.
#endif
NRF_LOG_INSTANCE_PTR_DECLARE(p_log) //!< Pointer to instance of the logger object (Conditionally compiled).
} nrf_queue_t;
#if NRF_QUEUE_CLI_CMDS
#define __NRF_QUEUE_ASSIGN_POOL_NAME(_name) .p_name = STRINGIFY(_name),
#else
#define __NRF_QUEUE_ASSIGN_POOL_NAME(_name)
#endif
/**@brief Create a queue instance.
*
* @note This macro reserves memory for the given queue instance.
*
* @param[in] _type Type which is stored.
* @param[in] _name Name of the queue.
* @param[in] _size Size of the queue.
* @param[in] _mode Mode of the queue.
*/
#define NRF_QUEUE_DEF(_type, _name, _size, _mode) \
static _type CONCAT_2(_name, _nrf_queue_buffer[(_size) + 1]); \
static nrf_queue_cb_t CONCAT_2(_name, _nrf_queue_cb); \
NRF_LOG_INSTANCE_REGISTER(NRF_QUEUE_LOG_NAME, _name, \
NRF_QUEUE_CONFIG_INFO_COLOR, \
NRF_QUEUE_CONFIG_DEBUG_COLOR, \
NRF_QUEUE_CONFIG_LOG_INIT_FILTER_LEVEL, \
NRF_QUEUE_CONFIG_LOG_ENABLED ? \
NRF_QUEUE_CONFIG_LOG_LEVEL : NRF_LOG_SEVERITY_NONE); \
NRF_SECTION_ITEM_REGISTER(nrf_queue, const nrf_queue_t _name) = \
{ \
.p_cb = &CONCAT_2(_name, _nrf_queue_cb), \
.p_buffer = CONCAT_2(_name,_nrf_queue_buffer), \
.size = (_size), \
.element_size = sizeof(_type), \
.mode = _mode, \
__NRF_QUEUE_ASSIGN_POOL_NAME(_name) \
NRF_LOG_INSTANCE_PTR_INIT(p_log, NRF_QUEUE_LOG_NAME, _name) \
}
/**@brief Declare a queue interface.
*
* @param[in] _type Type which is stored.
* @param[in] _name Name of the queue.
*/
#define NRF_QUEUE_INTERFACE_DEC(_type, _name) \
ret_code_t _name##_push(_type const * p_element); \
ret_code_t _name##_pop(_type * p_element); \
ret_code_t _name##_peek(_type * p_element); \
ret_code_t _name##_write(_type const * p_data, \
size_t element_count); \
ret_code_t _name##_read(_type * p_data, \
size_t element_count); \
size_t _name##_out(_type * p_data, \
size_t element_count); \
size_t _name##_in(_type const * p_data, \
size_t element_count); \
bool _name##_is_full(void); \
bool _name##_is_empty(void); \
size_t _name##_utilization_get(void); \
size_t _name##_available_get(void); \
size_t _name##_max_utilization_get(void); \
void _name##_reset(void)
/**@brief Define a queue interface.
*
* @param[in] _type Type which is stored.
* @param[in] _name Name of the queue.
* @param[in] _p_queue Queue instance.
*/
#define NRF_QUEUE_INTERFACE_DEF(_type, _name, _p_queue) \
ret_code_t _name##_push(_type const * p_element) \
{ \
GCC_PRAGMA("GCC diagnostic push") \
GCC_PRAGMA("GCC diagnostic ignored \"-Waddress\"") \
ASSERT((_p_queue) != NULL); \
ASSERT((_p_queue)->element_size == sizeof(_type)); \
GCC_PRAGMA("GCC diagnostic pop") \
return nrf_queue_push((_p_queue), p_element); \
} \
ret_code_t _name##_pop(_type * p_element) \
{ \
GCC_PRAGMA("GCC diagnostic push") \
GCC_PRAGMA("GCC diagnostic ignored \"-Waddress\"") \
ASSERT((_p_queue) != NULL); \
ASSERT((_p_queue)->element_size == sizeof(_type)); \
GCC_PRAGMA("GCC diagnostic pop") \
return nrf_queue_pop((_p_queue), p_element); \
} \
ret_code_t _name##_peek(_type * p_element) \
{ \
GCC_PRAGMA("GCC diagnostic push") \
GCC_PRAGMA("GCC diagnostic ignored \"-Waddress\"") \
ASSERT((_p_queue) != NULL); \
ASSERT((_p_queue)->element_size == sizeof(_type)); \
GCC_PRAGMA("GCC diagnostic pop") \
return nrf_queue_peek((_p_queue), p_element); \
} \
ret_code_t _name##_write(_type const * p_data, \
size_t element_count) \
{ \
GCC_PRAGMA("GCC diagnostic push") \
GCC_PRAGMA("GCC diagnostic ignored \"-Waddress\"") \
ASSERT((_p_queue) != NULL); \
ASSERT((_p_queue)->element_size == sizeof(_type)); \
GCC_PRAGMA("GCC diagnostic pop") \
return nrf_queue_write((_p_queue), p_data, element_count); \
} \
ret_code_t _name##_read(_type * p_data, \
size_t element_count) \
{ \
GCC_PRAGMA("GCC diagnostic push") \
GCC_PRAGMA("GCC diagnostic ignored \"-Waddress\"") \
ASSERT((_p_queue) != NULL); \
ASSERT((_p_queue)->element_size == sizeof(_type)); \
GCC_PRAGMA("GCC diagnostic pop") \
return nrf_queue_read((_p_queue), p_data, element_count); \
} \
size_t _name##_in(_type const * p_data, \
size_t element_count) \
{ \
GCC_PRAGMA("GCC diagnostic push") \
GCC_PRAGMA("GCC diagnostic ignored \"-Waddress\"") \
ASSERT((_p_queue) != NULL); \
ASSERT((_p_queue)->element_size == sizeof(_type)); \
GCC_PRAGMA("GCC diagnostic pop") \
return nrf_queue_in((_p_queue), p_data, element_count); \
} \
size_t _name##_out(_type * p_data, \
size_t element_count) \
{ \
GCC_PRAGMA("GCC diagnostic push") \
GCC_PRAGMA("GCC diagnostic ignored \"-Waddress\"") \
ASSERT((_p_queue) != NULL); \
ASSERT((_p_queue)->element_size == sizeof(_type)); \
GCC_PRAGMA("GCC diagnostic pop") \
return nrf_queue_out((_p_queue), p_data, element_count); \
} \
bool _name##_is_full(void) \
{ \
GCC_PRAGMA("GCC diagnostic push") \
GCC_PRAGMA("GCC diagnostic ignored \"-Waddress\"") \
ASSERT((_p_queue) != NULL); \
return nrf_queue_is_full(_p_queue); \
GCC_PRAGMA("GCC diagnostic pop") \
} \
bool _name##_is_empty(void) \
{ \
GCC_PRAGMA("GCC diagnostic push") \
GCC_PRAGMA("GCC diagnostic ignored \"-Waddress\"") \
ASSERT((_p_queue) != NULL); \
GCC_PRAGMA("GCC diagnostic pop") \
return nrf_queue_is_empty(_p_queue); \
} \
size_t _name##_utilization_get(void) \
{ \
GCC_PRAGMA("GCC diagnostic push") \
GCC_PRAGMA("GCC diagnostic ignored \"-Waddress\"") \
ASSERT((_p_queue) != NULL); \
GCC_PRAGMA("GCC diagnostic pop") \
return nrf_queue_utilization_get(_p_queue); \
} \
size_t _name##_available_get(void) \
{ \
GCC_PRAGMA("GCC diagnostic push") \
GCC_PRAGMA("GCC diagnostic ignored \"-Waddress\"") \
ASSERT((_p_queue) != NULL); \
GCC_PRAGMA("GCC diagnostic pop") \
return nrf_queue_available_get(_p_queue); \
} \
size_t _name##_max_utilization_get(void) \
{ \
GCC_PRAGMA("GCC diagnostic push") \
GCC_PRAGMA("GCC diagnostic ignored \"-Waddress\"") \
ASSERT((_p_queue) != NULL); \
GCC_PRAGMA("GCC diagnostic pop") \
return nrf_queue_max_utilization_get(_p_queue); \
} \
void _name##_reset(void) \
{ \
GCC_PRAGMA("GCC diagnostic push") \
GCC_PRAGMA("GCC diagnostic ignored \"-Waddress\"") \
ASSERT((_p_queue) != NULL); \
GCC_PRAGMA("GCC diagnostic pop") \
nrf_queue_reset(_p_queue); \
}
/**@brief Function for pushing an element to the end of queue.
*
* @param[in] p_queue Pointer to the nrf_queue_t instance.
* @param[in] p_element Pointer to the element that will be stored in the queue.
*
* @return NRF_SUCCESS If an element has been successfully added.
* @return NRF_ERROR_NO_MEM If the queue is full (only in @ref NRF_QUEUE_MODE_NO_OVERFLOW).
*/
ret_code_t nrf_queue_push(nrf_queue_t const * p_queue, void const * p_element);
/**@brief Generic pop implementation.
*
* @param[in] p_queue Pointer to the nrf_queue_t instance.
* @param[out] p_element Pointer where the element will be copied.
* @param[out] just_peek If true, the returned element will not be removed from queue.
*
* @return NRF_SUCCESS If an element was returned.
* @return NRF_ERROR_NOT_FOUND If there are no more elements in the queue.
*/
ret_code_t nrf_queue_generic_pop(nrf_queue_t const * p_queue,
void * p_element,
bool just_peek);
/**@brief Pop element from the front of the queue.
*
* @param[in] _p_queue Pointer to the nrf_queue_t instance.
* @param[out] _p_element Pointer where the element will be copied.
*
* @return NRF_SUCCESS If an element was returned.
* @return NRF_ERROR_NOT_FOUND If there are no more elements in the queue.
*/
#define nrf_queue_pop(_p_queue, _p_element) nrf_queue_generic_pop((_p_queue), (_p_element), false)
/**@brief Peek element from the front of the queue.
*
* @param[in] _p_queue Pointer to the nrf_queue_t instance.
* @param[out] _p_element Pointer where the element will be copied.
*
* @return NRF_SUCCESS If an element was returned.
* @return NRF_ERROR_NOT_FOUND If there are no more elements in the queue.
*/
#define nrf_queue_peek(_p_queue, _p_element) nrf_queue_generic_pop((_p_queue), (_p_element), true)
/**@brief Function for writing elements to the queue.
*
* @param[in] p_queue Pointer to the nrf_queue_t instance.
* @param[in] p_data Pointer to the buffer with elements to write.
* @param[in] element_count Number of elements to write.
*
* @return NRF_SUCCESS If an element was written.
* @return NRF_ERROR_NO_MEM There is not enough space in the queue. No element was written.
*/
ret_code_t nrf_queue_write(nrf_queue_t const * p_queue,
void const * p_data,
size_t element_count);
/**@brief Function for writing a portion of elements to the queue.
*
* @param[in] p_queue Pointer to the nrf_queue_t instance.
* @param[in] p_data Pointer to the buffer with elements to write.
* @param[in] element_count Number of elements to write.
*
* @return The number of added elements.
*/
size_t nrf_queue_in(nrf_queue_t const * p_queue,
void const * p_data,
size_t element_count);
/**@brief Function for reading elements from the queue.
*
* @param[in] p_queue Pointer to the nrf_queue_t instance.
* @param[out] p_data Pointer to the buffer where elements will be copied.
* @param[in] element_count Number of elements to read.
*
* @return NRF_SUCCESS If an element was returned.
* @return NRF_ERROR_NOT_FOUND There is not enough elements in the queue.
*/
ret_code_t nrf_queue_read(nrf_queue_t const * p_queue,
void * p_data,
size_t element_count);
/**@brief Function for reading a portion of elements from the queue.
*
* @param[in] p_queue Pointer to the nrf_queue_t instance.
* @param[out] p_data Pointer to the buffer where elements will be copied.
* @param[in] element_count Number of elements to read.
*
* @return The number of read elements.
*/
size_t nrf_queue_out(nrf_queue_t const * p_queue,
void * p_data,
size_t element_count);
/**@brief Function for checking if the queue is full.
*
* @param[in] p_queue Pointer to the queue instance.
*
* @return True if the queue is full.
*/
bool nrf_queue_is_full(nrf_queue_t const * p_queue);
/**@brief Function for checking if the queue is empty.
*
* @param[in] p_queue Pointer to the queue instance.
*
* @return True if the queue is empty.
*/
bool nrf_queue_is_empty(nrf_queue_t const * p_queue);
/**@brief Function for getting the current queue utilization.
*
* @param[in] p_queue Pointer to the queue instance.
*
* @return Current queue utilization.
*/
size_t nrf_queue_utilization_get(nrf_queue_t const * p_queue);
/**@brief Function for getting the size of available space.
*
* @param[in] p_queue Pointer to the queue instance.
*
* @return Size of available space.
*/
size_t nrf_queue_available_get(nrf_queue_t const * p_queue);
/**@brief Function for getting the maximal queue utilization.
*
* @param[in] p_queue Pointer to the queue instance.
*
* @return Maximal queue utilization.
*/
size_t nrf_queue_max_utilization_get(nrf_queue_t const * p_queue);
/**@brief Function for resetting the maximal queue utilization.
*
* @param[in] p_queue Pointer to the queue instance.
*
*/
void nrf_queue_max_utilization_reset(nrf_queue_t const * p_queue);
/**@brief Function for resetting the queue state.
*
* @param[in] p_queue Pointer to the queue instance.
*/
void nrf_queue_reset(nrf_queue_t const * p_queue);
#ifdef __cplusplus
}
#endif
#endif // NRF_QUEUE_H__
/** @} */

View File

@ -0,0 +1,283 @@
/**
* Copyright (c) 2016 - 2018, Nordic Semiconductor ASA
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form, except as embedded into a Nordic
* Semiconductor ASA integrated circuit in a product or a software update for
* such product, must reproduce the above copyright notice, this list of
* conditions and the following disclaimer in the documentation and/or other
* materials provided with the distribution.
*
* 3. Neither the name of Nordic Semiconductor ASA nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* 4. This software, with or without modification, must only be used with a
* Nordic Semiconductor ASA integrated circuit.
*
* 5. Any software provided in binary form under this license must not be reverse
* engineered, decompiled, modified and/or disassembled.
*
* THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS
* OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
* GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
#include "sdk_common.h"
#if NRF_MODULE_ENABLED(RNG)
#include <stdint.h>
#include <stddef.h>
#include "nrf_drv_rng.h"
#include "nordic_common.h"
#include "app_util_platform.h"
#include "nrf_assert.h"
#include "nrf_queue.h"
#ifdef SOFTDEVICE_PRESENT
#include "nrf_sdh.h"
#endif // SOFTDEVICE_PRESENT
#define NRF_LOG_MODULE_NAME rng
#if RNG_CONFIG_LOG_ENABLED
#define NRF_LOG_LEVEL RNG_CONFIG_LOG_LEVEL
#define NRF_LOG_INFO_COLOR RNG_CONFIG_INFO_COLOR
#define NRF_LOG_DEBUG_COLOR RNG_CONFIG_DEBUG_COLOR
#else //RNG_CONFIG_LOG_ENABLED
#define NRF_LOG_LEVEL 0
#endif //RNG_CONFIG_LOG_ENABLED
#include "nrf_log.h"
NRF_LOG_MODULE_REGISTER();
typedef struct
{
nrfx_drv_state_t state;
nrf_drv_rng_config_t config;
} nrf_drv_rng_cb_t;
static nrf_drv_rng_cb_t m_rng_cb;
NRF_QUEUE_DEF(uint8_t, m_rand_pool, RNG_CONFIG_POOL_SIZE, NRF_QUEUE_MODE_OVERFLOW);
static const nrf_drv_rng_config_t m_default_config = NRF_DRV_RNG_DEFAULT_CONFIG;
#ifdef SOFTDEVICE_PRESENT
#define SD_RAND_POOL_SIZE (64)
STATIC_ASSERT(RNG_CONFIG_POOL_SIZE == SD_RAND_POOL_SIZE);
#define NRF_DRV_RNG_LOCK() CRITICAL_REGION_ENTER()
#define NRF_DRV_RNG_RELEASE() CRITICAL_REGION_EXIT()
#define NRF_DRV_RNG_SD_IS_ENABLED() nrf_sdh_is_enabled()
#else
#define NRF_DRV_RNG_LOCK() do { } while (0)
#define NRF_DRV_RNG_RELEASE() do { } while (0)
#define NRF_DRV_RNG_SD_IS_ENABLED() false
#endif // SOFTDEVICE_PRESENT
static void nrfx_rng_handler(uint8_t rng_val)
{
NRF_DRV_RNG_LOCK();
if (!NRF_DRV_RNG_SD_IS_ENABLED())
{
UNUSED_RETURN_VALUE(nrf_queue_push(&m_rand_pool, &rng_val));
if (nrf_queue_is_full(&m_rand_pool))
{
nrfx_rng_stop();
}
NRF_LOG_DEBUG("Event: NRF_RNG_EVENT_VALRDY.");
}
NRF_DRV_RNG_RELEASE();
}
ret_code_t nrf_drv_rng_init(nrf_drv_rng_config_t const * p_config)
{
ret_code_t err_code = NRF_SUCCESS;
if (m_rng_cb.state != NRFX_DRV_STATE_UNINITIALIZED)
{
return NRF_ERROR_MODULE_ALREADY_INITIALIZED;
}
if (p_config == NULL)
{
p_config = &m_default_config;
}
m_rng_cb.config = *p_config;
NRF_DRV_RNG_LOCK();
if (!NRF_DRV_RNG_SD_IS_ENABLED())
{
err_code = nrfx_rng_init(&m_rng_cb.config, nrfx_rng_handler);
if (err_code != NRF_SUCCESS)
{
return err_code;
}
nrfx_rng_start();
}
m_rng_cb.state = NRFX_DRV_STATE_INITIALIZED;
NRF_DRV_RNG_RELEASE();
return err_code;
}
void nrf_drv_rng_uninit(void)
{
ASSERT(m_rng_cb.state == NRFX_DRV_STATE_INITIALIZED);
NRF_DRV_RNG_LOCK();
if (!NRF_DRV_RNG_SD_IS_ENABLED())
{
nrfx_rng_stop();
nrfx_rng_uninit();
}
NRF_DRV_RNG_RELEASE();
nrf_queue_reset(&m_rand_pool);
m_rng_cb.state = NRFX_DRV_STATE_UNINITIALIZED;
NRF_LOG_INFO("Uninitialized.");
}
void nrf_drv_rng_bytes_available(uint8_t * p_bytes_available)
{
ASSERT(m_rng_cb.state == NRFX_DRV_STATE_INITIALIZED);
#ifdef SOFTDEVICE_PRESENT
if (NRF_DRV_RNG_SD_IS_ENABLED())
{
if (NRF_SUCCESS == sd_rand_application_bytes_available_get(p_bytes_available))
{
return;
}
}
#endif // SOFTDEVICE_PRESENT
*p_bytes_available = nrf_queue_utilization_get(&m_rand_pool);
NRF_LOG_INFO("Function: %s, available bytes: %d.", (uint32_t)__func__, *p_bytes_available);
}
ret_code_t nrf_drv_rng_rand(uint8_t * p_buff, uint8_t length)
{
ret_code_t err_code = NRF_SUCCESS;
ASSERT(m_rng_cb.state == NRFX_DRV_STATE_INITIALIZED);
#ifdef SOFTDEVICE_PRESENT
do {
bool sd_is_enabled;
NRF_DRV_RNG_LOCK();
sd_is_enabled = NRF_DRV_RNG_SD_IS_ENABLED();
if (!sd_is_enabled)
#endif // SOFTDEVICE_PRESENT
{
err_code = nrf_queue_read(&m_rand_pool, p_buff, (uint32_t)length);
nrfx_rng_start();
}
#ifdef SOFTDEVICE_PRESENT
NRF_DRV_RNG_RELEASE();
if (sd_is_enabled)
{
err_code = sd_rand_application_vector_get(p_buff, length);
if (err_code == NRF_ERROR_SOC_RAND_NOT_ENOUGH_VALUES)
{
err_code = NRF_ERROR_NOT_FOUND;
}
}
} while (err_code == NRF_ERROR_SOFTDEVICE_NOT_ENABLED);
#endif // SOFTDEVICE_PRESENT
ASSERT((err_code == NRF_SUCCESS) || (err_code == NRF_ERROR_NOT_FOUND));
#if defined(RNG_CONFIG_RANDOM_NUMBER_LOG_ENABLED) && (RNG_CONFIG_RANDOM_NUMBER_LOG_ENABLED != 0)
NRF_LOG_DEBUG("Rand buffer data:");
NRF_LOG_HEXDUMP_DEBUG((uint8_t *)p_buff, length);
#endif // RNG_CONFIG_RANDOM_NUMBER_LOG_ENABLED
NRF_LOG_WARNING("Function: %s, error code: %s.",
(uint32_t)__func__,
(uint32_t)NRF_LOG_ERROR_STRING_GET(err_code));
return err_code;
}
void nrf_drv_rng_block_rand(uint8_t * p_buff, uint32_t length)
{
ASSERT(m_rng_cb.state == NRFX_DRV_STATE_INITIALIZED);
while (length)
{
uint32_t len = MIN(length, RNG_CONFIG_POOL_SIZE);
ret_code_t err_code;
do {
err_code = nrf_drv_rng_rand(p_buff, len);
} while (err_code != NRF_SUCCESS);
length -= len;
p_buff += len;
}
NRF_LOG_DEBUG("Rand buffer data:");
NRF_LOG_HEXDUMP_DEBUG((uint8_t *)p_buff, length);
}
#ifdef SOFTDEVICE_PRESENT
static void sd_state_evt_handler(nrf_sdh_state_evt_t state, void * p_context)
{
switch (state)
{
case NRF_SDH_EVT_STATE_ENABLE_PREPARE:
if (m_rng_cb.state == NRFX_DRV_STATE_INITIALIZED)
{
nrfx_rng_stop();
nrfx_rng_uninit();
}
break;
case NRF_SDH_EVT_STATE_DISABLED:
NRF_DRV_RNG_LOCK();
if (m_rng_cb.state == NRFX_DRV_STATE_INITIALIZED)
{
ret_code_t err_code = nrfx_rng_init(&m_rng_cb.config, nrfx_rng_handler);
if (err_code != NRF_SUCCESS)
{
ASSERT(false);
}
nrfx_rng_start();
}
NRF_DRV_RNG_RELEASE();
break;
default:
break;
}
}
NRF_SDH_STATE_OBSERVER(m_sd_state_observer, RNG_CONFIG_STATE_OBSERVER_PRIO) =
{
.handler = sd_state_evt_handler,
.p_context = NULL,
};
#endif // SOFTDEVICE_PRESENT
#endif // NRF_MODULE_ENABLED(RNG)