Add 'components/storage/blockdevice/COMPONENT_DATAFLASH/' from commit 'baabb520973d3e8aa8c4c1dc0af12ed1585200cd'

git-subtree-dir: components/storage/blockdevice/COMPONENT_DATAFLASH
git-subtree-mainline: 5294ef72b7
git-subtree-split: baabb52097
pull/7774/head
Yossi Levy 2018-08-29 11:47:56 +03:00
commit 9a0844a84f
7 changed files with 1375 additions and 0 deletions

View File

@ -0,0 +1,28 @@
script:
# Check that examples compile
- sed -n '/``` cpp/,${/```$/q;/```/d;p}' README.md > main.cpp &&
PYTHONPATH=mbed-os python mbed-os/tools/make.py -t GCC_ARM -m K82F
--source=. --build=BUILD/K82F/GCC_ARM -j0 &&
rm main.cpp
- sed -n '/@code/,${/@endcode/q;/@/d;s/^ \*//;p}' DataFlashBlockDevice.h > main.cpp &&
PYTHONPATH=mbed-os python mbed-os/tools/make.py -t GCC_ARM -m K82F
--source=. --build=BUILD/K82F/GCC_ARM -j0 &&
rm main.cpp
# Check that tests compile
- rm -r BUILD && PYTHONPATH=mbed-os python mbed-os/tools/test.py
-t GCC_ARM -m K82F --source=. --build=BUILD/TESTS/K82F/GCC_ARM -j0
-n tests*
python:
- "2.7"
install:
# Get arm-none-eabi-gcc
- sudo add-apt-repository -y ppa:terry.guo/gcc-arm-embedded
- sudo apt-get update -qq
- sudo apt-get install -qq gcc-arm-none-eabi --force-yes
# Get dependencies
- git clone https://github.com/armmbed/mbed-os.git
# Install python dependencies
- sudo pip install -r mbed-os/requirements.txt

View File

@ -0,0 +1,797 @@
/* mbed Microcontroller Library
* Copyright (c) 2016 ARM Limited
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "DataFlashBlockDevice.h"
#include "mbed_critical.h"
#include <inttypes.h>
/* constants */
#define DATAFLASH_READ_SIZE 1
#define DATAFLASH_PROG_SIZE 1
#define DATAFLASH_TIMEOUT 10000
#define DATAFLASH_ID_MATCH 0x1F20
#define DATAFLASH_ID_DENSITY_MASK 0x001F
#define DATAFLASH_PAGE_SIZE_256 0x0100
#define DATAFLASH_PAGE_SIZE_264 0x0108
#define DATAFLASH_PAGE_SIZE_512 0x0200
#define DATAFLASH_PAGE_SIZE_528 0x0210
#define DATAFLASH_BLOCK_SIZE_2K 0x0800
#define DATAFLASH_BLOCK_SIZE_2K1 0x0840
#define DATAFLASH_BLOCK_SIZE_4K 0x1000
#define DATAFLASH_BLOCK_SIZE_4K1 0x1080
#define DATAFLASH_PAGE_BIT_264 9
#define DATAFLASH_PAGE_BIT_528 10
/* enable debug */
#ifndef DATAFLASH_DEBUG
#define DATAFLASH_DEBUG 0
#endif /* DATAFLASH_DEBUG */
#if DATAFLASH_DEBUG
#define DEBUG_PRINTF(...) printf(__VA_ARGS__)
#else
#define DEBUG_PRINTF(...)
#endif
void _print_status(uint16_t status);
/* non-exhaustive opcode list */
enum opcode {
DATAFLASH_OP_NOP = 0x00,
DATAFLASH_OP_STATUS = 0xD7,
DATAFLASH_OP_ID = 0x9F,
DATAFLASH_OP_READ_LOW_POWER = 0x01,
DATAFLASH_OP_READ_LOW_FREQUENCY = 0x03,
DATAFLASH_OP_PROGRAM_DIRECT = 0x02, // Program through Buffer 1 without Built-In Erase
DATAFLASH_OP_PROGRAM_DIRECT_WITH_ERASE = 0x82,
DATAFLASH_OP_ERASE_BLOCK = 0x50,
};
/* non-exhaustive command list */
enum command {
DATAFLASH_COMMAND_WRITE_DISABLE = 0x3D2A7FA9,
DATAFLASH_COMMAND_WRITE_ENABLE = 0x3D2A7F9A,
DATAFLASH_COMMAND_BINARY_PAGE_SIZE = 0x3D2A80A6,
DATAFLASH_COMMAND_DATAFLASH_PAGE_SIZE = 0x3D2A80A7,
};
/* bit masks for interpreting the status register */
enum status_bit {
DATAFLASH_BIT_READY = (0x01 << 15),
DATAFLASH_BIT_COMPARE = (0x01 << 14),
DATAFLASH_BIT_DENSITY = (0x0F << 10),
DATAFLASH_BIT_PROTECT = (0x01 << 9),
DATAFLASH_BIT_PAGE_SIZE = (0x01 << 8),
DATAFLASH_BIT_ERASE_PROGRAM_ERROR = (0x01 << 5),
DATAFLASH_BIT_SECTOR_LOCKDOWN = (0x01 << 3),
DATAFLASH_BIT_PROGRAM_SUSPEND_2 = (0x01 << 2),
DATAFLASH_BIT_PROGRAM_SUSPEND_1 = (0x01 << 1),
DATAFLASH_BIT_ERASE_SUSPEND = (0x01 << 0),
};
/* bit masks for detecting density from status register */
enum status_density {
DATAFLASH_STATUS_DENSITY_2_MBIT = (0x05 << 10),
DATAFLASH_STATUS_DENSITY_4_MBIT = (0x07 << 10),
DATAFLASH_STATUS_DENSITY_8_MBIT = (0x09 << 10),
DATAFLASH_STATUS_DENSITY_16_MBIT = (0x0B << 10),
DATAFLASH_STATUS_DENSITY_32_MBIT = (0x0D << 10),
DATAFLASH_STATUS_DENSITY_64_MBIT = (0x0F << 10),
};
/* code for calculating density */
enum id_density {
DATAFLASH_ID_DENSITY_2_MBIT = 0x03,
DATAFLASH_ID_DENSITY_4_MBIT = 0x04,
DATAFLASH_ID_DENSITY_8_MBIT = 0x05,
DATAFLASH_ID_DENSITY_16_MBIT = 0x06,
DATAFLASH_ID_DENSITY_32_MBIT = 0x07,
DATAFLASH_ID_DENSITY_64_MBIT = 0x08,
};
/* typical duration in milliseconds for each operation */
enum timing {
DATAFLASH_TIMING_ERASE_PROGRAM_PAGE = 17,
DATAFLASH_TIMING_PROGRAM_PAGE = 3,
DATAFLASH_TIMING_ERASE_PAGE = 12,
DATAFLASH_TIMING_ERASE_BLOCK = 45,
DATAFLASH_TIMING_ERASE_SECTOR = 700,
DATAFLASH_TIMING_ERASE_CHIP = 45000
};
/* frequency domains */
enum frequency {
DATAFLASH_LOW_POWER_FREQUENCY = 15000000,
DATAFLASH_LOW_FREQUENCY = 50000000,
DATAFLASH_HIGH_FREQUENCY = 85000000,
DATAFLASH_HIGHEST_FREQUENCY = 104000000
};
/* number of dummy bytes required in each frequency domain */
enum dummy {
DATAFLASH_LOW_POWER_BYTES = 0,
DATAFLASH_LOW_FREQUENCY_BYTES = 0,
DATAFLASH_HIGH_FREQUENCY_BYTES = 1,
DATAFLASH_HIGHEST_FREQUENCY_BYTES = 2
};
DataFlashBlockDevice::DataFlashBlockDevice(PinName mosi,
PinName miso,
PinName sclk,
PinName cs,
int freq,
PinName nwp)
: _spi(mosi, miso, sclk),
_cs(cs, 1),
_nwp(nwp),
_device_size(0),
_page_size(0),
_block_size(0),
_is_initialized(0),
_init_ref_count(0)
{
/* check that frequency is within range */
if (freq > DATAFLASH_LOW_FREQUENCY) {
/* cap frequency at the highest supported one */
_spi.frequency(DATAFLASH_LOW_FREQUENCY);
} else {
/* freqency is valid, use as-is */
_spi.frequency(freq);
}
/* write protect chip if pin is connected */
if (nwp != NC) {
_nwp = 0;
}
}
int DataFlashBlockDevice::init()
{
DEBUG_PRINTF("init\r\n");
if (!_is_initialized) {
_init_ref_count = 0;
}
uint32_t val = core_util_atomic_incr_u32(&_init_ref_count, 1);
if (val != 1) {
return BD_ERROR_OK;
}
int result = BD_ERROR_DEVICE_ERROR;
/* read ID register to validate model and set dimensions */
uint16_t id = _get_register(DATAFLASH_OP_ID);
DEBUG_PRINTF("id: %04X\r\n", id & DATAFLASH_ID_MATCH);
/* get status register to verify the page size mode */
uint16_t status = _get_register(DATAFLASH_OP_STATUS);
/* manufacture ID match */
if ((id & DATAFLASH_ID_MATCH) == DATAFLASH_ID_MATCH) {
/* calculate density */
_device_size = 0x8000 << (id & DATAFLASH_ID_DENSITY_MASK);
bool binary_page_size = true;
/* check if device is configured for binary page sizes */
if ((status & DATAFLASH_BIT_PAGE_SIZE) == DATAFLASH_BIT_PAGE_SIZE) {
DEBUG_PRINTF("Page size is binary\r\n");
#if MBED_CONF_DATAFLASH_DATAFLASH_SIZE
/* send reconfiguration command */
_write_command(DATAFLASH_COMMAND_DATAFLASH_PAGE_SIZE, NULL, 0);
/* wait for device to be ready and update return code */
result = _sync();
/* set binary flag */
binary_page_size = false;
#else
/* set binary flag */
binary_page_size = true;
#endif
} else {
DEBUG_PRINTF("Page size is not binary\r\n");
#if MBED_CONF_DATAFLASH_BINARY_SIZE
/* send reconfiguration command */
_write_command(DATAFLASH_COMMAND_BINARY_PAGE_SIZE, NULL, 0);
/* wait for device to be ready and update return code */
result = _sync();
/* set binary flag */
binary_page_size = true;
#else
/* set binary flag */
binary_page_size = false;
#endif
}
/* set page program size and block erase size */
switch (id & DATAFLASH_ID_DENSITY_MASK) {
case DATAFLASH_ID_DENSITY_2_MBIT:
case DATAFLASH_ID_DENSITY_4_MBIT:
case DATAFLASH_ID_DENSITY_8_MBIT:
case DATAFLASH_ID_DENSITY_64_MBIT:
if (binary_page_size) {
_page_size = DATAFLASH_PAGE_SIZE_256;
_block_size = DATAFLASH_BLOCK_SIZE_2K;
} else {
_page_size = DATAFLASH_PAGE_SIZE_264;
_block_size = DATAFLASH_BLOCK_SIZE_2K1;
/* adjust device size */
_device_size = (_device_size / DATAFLASH_PAGE_SIZE_256) *
DATAFLASH_PAGE_SIZE_264;
}
break;
case DATAFLASH_ID_DENSITY_16_MBIT:
case DATAFLASH_ID_DENSITY_32_MBIT:
if (binary_page_size) {
_page_size = DATAFLASH_PAGE_SIZE_512;
_block_size = DATAFLASH_BLOCK_SIZE_4K;
} else {
_page_size = DATAFLASH_PAGE_SIZE_528;
_block_size = DATAFLASH_BLOCK_SIZE_4K1;
/* adjust device size */
_device_size = (_device_size / DATAFLASH_PAGE_SIZE_512) *
DATAFLASH_PAGE_SIZE_528;
}
break;
default:
break;
}
DEBUG_PRINTF("density: %" PRIu16 "\r\n", id & DATAFLASH_ID_DENSITY_MASK);
DEBUG_PRINTF("size: %" PRIu32 "\r\n", _device_size);
DEBUG_PRINTF("page: %" PRIu16 "\r\n", _page_size);
DEBUG_PRINTF("block: %" PRIu16 "\r\n", _block_size);
/* device successfully detected, set OK error code */
result = BD_ERROR_OK;
}
/* write protect device when idle */
_write_enable(false);
if (result == BD_ERROR_OK) {
_is_initialized = true;
}
return result;
}
int DataFlashBlockDevice::deinit()
{
DEBUG_PRINTF("deinit\r\n");
if (!_is_initialized) {
_init_ref_count = 0;
return BD_ERROR_OK;
}
uint32_t val = core_util_atomic_decr_u32(&_init_ref_count, 1);
if (val) {
return BD_ERROR_OK;
}
_is_initialized = false;
return BD_ERROR_OK;
}
int DataFlashBlockDevice::read(void *buffer, bd_addr_t addr, bd_size_t size)
{
DEBUG_PRINTF("read: %p %" PRIX64 " %" PRIX64 "\r\n", buffer, addr, size);
if (!_is_initialized) {
return BD_ERROR_DEVICE_ERROR;
}
int result = BD_ERROR_DEVICE_ERROR;
/* check parameters are valid and the read is within bounds */
if (is_valid_read(addr, size) && buffer) {
uint8_t *external_buffer = static_cast<uint8_t *>(buffer);
/* activate device */
_cs = 0;
/* send read opcode */
_spi.write(DATAFLASH_OP_READ_LOW_FREQUENCY);
/* translate address */
uint32_t address = _translate_address(addr);
DEBUG_PRINTF("address: %" PRIX32 "\r\n", address);
/* send read address */
_spi.write((address >> 16) & 0xFF);
_spi.write((address >> 8) & 0xFF);
_spi.write(address & 0xFF);
/* clock out one byte at a time and store in external buffer */
for (uint32_t index = 0; index < size; index++) {
external_buffer[index] = _spi.write(DATAFLASH_OP_NOP);
}
/* deactivate device */
_cs = 1;
result = BD_ERROR_OK;
}
return result;
}
int DataFlashBlockDevice::program(const void *buffer, bd_addr_t addr, bd_size_t size)
{
DEBUG_PRINTF("program: %p %" PRIX64 " %" PRIX64 "\r\n", buffer, addr, size);
if (!_is_initialized) {
return BD_ERROR_DEVICE_ERROR;
}
int result = BD_ERROR_DEVICE_ERROR;
/* check parameters are valid and the write is within bounds */
if (is_valid_program(addr, size) && buffer) {
const uint8_t * external_buffer = static_cast<const uint8_t*>(buffer);
/* Each write command can only cover one page at a time.
Find page and current page offset for handling unaligned writes.
*/
uint32_t page_number = addr / _page_size;
uint32_t page_offset = addr % _page_size;
/* disable write protection */
_write_enable(true);
/* continue until all bytes have been written */
uint32_t bytes_written = 0;
while (bytes_written < size) {
/* find remaining bytes to be written */
uint32_t bytes_remaining = size - bytes_written;
/* cap the value at the page size and offset */
if (bytes_remaining > (_page_size - page_offset)) {
bytes_remaining = _page_size - page_offset;
}
/* Write one page, bytes_written keeps track of the progress,
page_number is the page address, and page_offset is non-zero for
unaligned writes.
*/
result = _write_page(&external_buffer[bytes_written],
page_number,
page_offset,
bytes_remaining);
/* update loop variables upon success otherwise break loop */
if (result == BD_ERROR_OK) {
bytes_written += bytes_remaining;
page_number++;
/* After the first successful write,
all subsequent writes will be aligned.
*/
page_offset = 0;
} else {
break;
}
}
/* enable write protection */
_write_enable(false);
}
return result;
}
int DataFlashBlockDevice::erase(bd_addr_t addr, bd_size_t size)
{
DEBUG_PRINTF("erase: %" PRIX64 " %" PRIX64 "\r\n", addr, size);
if (!_is_initialized) {
return BD_ERROR_DEVICE_ERROR;
}
int result = BD_ERROR_DEVICE_ERROR;
/* check parameters are valid and the erase is within bounds */
if (is_valid_erase(addr, size)) {
/* disable write protection */
_write_enable(true);
/* erase one block at a time until the full size has been erased */
uint32_t erased = 0;
while (erased < size) {
/* set block erase opcode */
uint32_t command = DATAFLASH_OP_ERASE_BLOCK;
/* translate address */
uint32_t address = _translate_address(addr);
/* set block address */
command = (command << 8) | ((address >> 16) & 0xFF);
command = (command << 8) | ((address >> 8) & 0xFF);
command = (command << 8) | (address & 0xFF);
/* send command to device */
_write_command(command, NULL, 0);
/* wait until device is ready and update return value */
result = _sync();
/* if erase failed, break loop */
if (result != BD_ERROR_OK) {
break;
}
/* update loop variables */
addr += _block_size;
erased += _block_size;
}
/* enable write protection */
_write_enable(false);
}
return result;
}
bd_size_t DataFlashBlockDevice::get_read_size() const
{
DEBUG_PRINTF("read size: %d\r\n", DATAFLASH_READ_SIZE);
return DATAFLASH_READ_SIZE;
}
bd_size_t DataFlashBlockDevice::get_program_size() const
{
DEBUG_PRINTF("program size: %d\r\n", DATAFLASH_PROG_SIZE);
return DATAFLASH_PROG_SIZE;
}
bd_size_t DataFlashBlockDevice::get_erase_size() const
{
DEBUG_PRINTF("erase size: %" PRIX16 "\r\n", _block_size);
return _block_size;
}
bd_size_t DataFlashBlockDevice::get_erase_size(bd_addr_t addr) const
{
DEBUG_PRINTF("erase size: %" PRIX16 "\r\n", _block_size);
return _block_size;
}
bd_size_t DataFlashBlockDevice::size() const
{
DEBUG_PRINTF("device size: %" PRIX32 "\r\n", _device_size);
return _device_size;
}
/**
* @brief Function for reading a specific register.
* @details Used for reading either the Status Register or Manufacture and ID Register.
*
* @param opcode Register to be read.
* @return value.
*/
uint16_t DataFlashBlockDevice::_get_register(uint8_t opcode)
{
DEBUG_PRINTF("_get_register: %" PRIX8 "\r\n", opcode);
/* activate device */
_cs = 0;
/* write opcode */
_spi.write(opcode);
/* read and store result */
int status = (_spi.write(DATAFLASH_OP_NOP));
status = (status << 8) | (_spi.write(DATAFLASH_OP_NOP));
/* deactivate device */
_cs = 1;
return status;
}
/**
* @brief Function for sending command and data to device.
* @details The command can be an opcode with address and data or
* a 4 byte command without data.
*
* The supported frequencies and the opcode used do not
* require dummy bytes to be sent after command.
*
* @param command Opcode with address or 4 byte command.
* @param buffer Data to be sent after command.
* @param size Size of buffer.
*/
void DataFlashBlockDevice::_write_command(uint32_t command, const uint8_t *buffer, uint32_t size)
{
DEBUG_PRINTF("_write_command: %" PRIX32 " %p %" PRIX32 "\r\n", command, buffer, size);
/* activate device */
_cs = 0;
/* send command (opcode with data or 4 byte command) */
_spi.write((command >> 24) & 0xFF);
_spi.write((command >> 16) & 0xFF);
_spi.write((command >> 8) & 0xFF);
_spi.write(command & 0xFF);
/* send optional data */
if (buffer && size) {
for (uint32_t index = 0; index < size; index++) {
_spi.write(buffer[index]);
}
}
/* deactivate device */
_cs = 1;
}
/**
* @brief Enable and disable write protection.
*
* @param enable Boolean for enabling or disabling write protection.
*/
void DataFlashBlockDevice::_write_enable(bool enable)
{
DEBUG_PRINTF("_write_enable: %d\r\n", enable);
/* enable writing, disable write protection */
if (enable) {
/* if not-write-protected pin is connected, select it */
if (_nwp.is_connected()) {
_nwp = 1;
}
/* send 4 byte command enabling writes */
_write_command(DATAFLASH_COMMAND_WRITE_ENABLE, NULL, 0);
} else {
/* if not-write-protected pin is connected, deselect it */
if (_nwp.is_connected()) {
_nwp = 0;
}
/* send 4 byte command disabling writes */
_write_command(DATAFLASH_COMMAND_WRITE_DISABLE, NULL, 0);
}
}
/**
* @brief Sleep and poll status register until device is ready for next command.
*
* @return BlockDevice compatible error code.
*/
int DataFlashBlockDevice::_sync(void)
{
DEBUG_PRINTF("_sync\r\n");
/* default return value if operation times out */
int result = BD_ERROR_DEVICE_ERROR;
/* Poll device until a hard coded timeout is reached.
The polling interval is based on the typical page program time.
*/
for (uint32_t timeout = 0;
timeout < DATAFLASH_TIMEOUT;
timeout += DATAFLASH_TIMING_ERASE_PROGRAM_PAGE) {
/* get status register */
uint16_t status = _get_register(DATAFLASH_OP_STATUS);
/* erase/program bit set, exit with error code set */
if (status & DATAFLASH_BIT_ERASE_PROGRAM_ERROR) {
DEBUG_PRINTF("DATAFLASH_BIT_ERASE_PROGRAM_ERROR\r\n");
break;
/* device ready, set OK code set */
} else if (status & DATAFLASH_BIT_READY) {
DEBUG_PRINTF("DATAFLASH_BIT_READY\r\n");
result = BD_ERROR_OK;
break;
/* wait the typical write period before trying again */
} else {
DEBUG_PRINTF("wait_ms: %d\r\n", DATAFLASH_TIMING_ERASE_PROGRAM_PAGE);
wait_ms(DATAFLASH_TIMING_ERASE_PROGRAM_PAGE);
}
}
return result;
}
/**
* @brief Write single page.
* @details Address can be unaligned.
*
* @param buffer Data to write.
* @param addr Address to write from.
* @param size Bytes to write. Can at most be the full page.
* @return BlockDevice error code.
*/
int DataFlashBlockDevice::_write_page(const uint8_t *buffer,
uint32_t page,
uint32_t offset,
uint32_t size)
{
DEBUG_PRINTF("_write_page: %p %" PRIX32 " %" PRIX32 "\r\n", buffer, page, size);
uint32_t command = DATAFLASH_OP_NOP;
/* opcode for writing directly to device, in a single command,
assuming the page has been erased before hand.
*/
command = DATAFLASH_OP_PROGRAM_DIRECT;
uint32_t address = 0;
/* convert page number and offset into device address based on address format */
if (_page_size == DATAFLASH_PAGE_SIZE_264) {
address = (page << DATAFLASH_PAGE_BIT_264) | offset;
} else if (_page_size == DATAFLASH_PAGE_SIZE_528) {
address = (page << DATAFLASH_PAGE_BIT_528) | offset;
} else {
address = (page * _page_size) | offset;
}
/* set write address */
command = (command << 8) | ((address >> 16) & 0xFF);
command = (command << 8) | ((address >> 8) & 0xFF);
command = (command << 8) | (address & 0xFF);
/* send write command with data */
_write_command(command, buffer, size);
/* wait until device is ready before continuing */
int result = _sync();
return result;
}
/**
* @brief Translate address.
* @details If the device is configured for non-binary page sizes,
* the address is translated from binary to non-binary form.
*
* @param addr Binary address.
* @return Address in format expected by device.
*/
uint32_t DataFlashBlockDevice::_translate_address(bd_addr_t addr)
{
uint32_t address = addr;
/* translate address if page size is non-binary */
if (_page_size == DATAFLASH_PAGE_SIZE_264) {
address = ((addr / DATAFLASH_PAGE_SIZE_264) << DATAFLASH_PAGE_BIT_264) |
(addr % DATAFLASH_PAGE_SIZE_264);
} else if (_page_size == DATAFLASH_PAGE_SIZE_528) {
address = ((addr / DATAFLASH_PAGE_SIZE_528) << DATAFLASH_PAGE_BIT_528) |
(addr % DATAFLASH_PAGE_SIZE_528);
}
return address;
}
/**
* @brief Internal function for printing out each bit set in status register.
*
* @param status Status register.
*/
void _print_status(uint16_t status)
{
#if DATAFLASH_DEBUG
DEBUG_PRINTF("%04X\r\n", status);
/* device is ready (after write/erase) */
if (status & DATAFLASH_BIT_READY) {
DEBUG_PRINTF("DATAFLASH_BIT_READY\r\n");
}
/* Buffer comparison failed */
if (status & DATAFLASH_BIT_COMPARE) {
DEBUG_PRINTF("DATAFLASH_BIT_COMPARE\r\n");
}
/* device size is 2 MB */
if (status & DATAFLASH_STATUS_DENSITY_2_MBIT) {
DEBUG_PRINTF("DATAFLASH_STATUS_DENSITY_2_MBIT\r\n");
}
/* device size is 4 MB */
if (status & DATAFLASH_STATUS_DENSITY_4_MBIT) {
DEBUG_PRINTF("DATAFLASH_STATUS_DENSITY_4_MBIT\r\n");
}
/* device size is 8 MB */
if (status & DATAFLASH_STATUS_DENSITY_8_MBIT) {
DEBUG_PRINTF("DATAFLASH_STATUS_DENSITY_8_MBIT\r\n");
}
/* device size is 16 MB */
if (status & DATAFLASH_STATUS_DENSITY_16_MBIT) {
DEBUG_PRINTF("DATAFLASH_STATUS_DENSITY_16_MBIT\r\n");
}
/* device size is 32 MB */
if (status & DATAFLASH_STATUS_DENSITY_32_MBIT) {
DEBUG_PRINTF("DATAFLASH_STATUS_DENSITY_32_MBIT\r\n");
}
/* device size is 64 MB */
if (status & DATAFLASH_STATUS_DENSITY_64_MBIT) {
DEBUG_PRINTF("DATAFLASH_STATUS_DENSITY_64_MBIT\r\n");
}
/* sector protectino enabled */
if (status & DATAFLASH_BIT_PROTECT) {
DEBUG_PRINTF("DATAFLASH_BIT_PROTECT\r\n");
}
/* page size is a power of 2 */
if (status & DATAFLASH_BIT_PAGE_SIZE) {
DEBUG_PRINTF("DATAFLASH_BIT_PAGE_SIZE\r\n");
}
/* erase/program error */
if (status & DATAFLASH_BIT_ERASE_PROGRAM_ERROR) {
DEBUG_PRINTF("DATAFLASH_BIT_ERASE_PROGRAM_ERROR\r\n");
}
/* sector lockdown still possible */
if (status & DATAFLASH_BIT_SECTOR_LOCKDOWN) {
DEBUG_PRINTF("DATAFLASH_BIT_SECTOR_LOCKDOWN\r\n");
}
/* program operation suspended while using buffer 2 */
if (status & DATAFLASH_BIT_PROGRAM_SUSPEND_2) {
DEBUG_PRINTF("DATAFLASH_BIT_PROGRAM_SUSPEND_2\r\n");
}
/* program operation suspended while using buffer 1 */
if (status & DATAFLASH_BIT_PROGRAM_SUSPEND_1) {
DEBUG_PRINTF("DATAFLASH_BIT_PROGRAM_SUSPEND_1\r\n");
}
/* erase has been suspended */
if (status & DATAFLASH_BIT_ERASE_SUSPEND) {
DEBUG_PRINTF("DATAFLASH_BIT_ERASE_SUSPEND\r\n");
}
#endif
}

View File

@ -0,0 +1,179 @@
/* mbed Microcontroller Library
* Copyright (c) 2016 ARM Limited
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MBED_DATAFLASH_BLOCK_DEVICE_H
#define MBED_DATAFLASH_BLOCK_DEVICE_H
#include <mbed.h>
#include "BlockDevice.h"
/** BlockDevice for DataFlash flash devices
*
* @code
* // Here's an example using the AT45DB on the K64F
* #include "mbed.h"
* #include "DataFlashBlockDevice.h"
*
* // Create DataFlash on SPI bus with PTE5 as chip select
* DataFlashBlockDevice dataflash(PTE2, PTE4, PTE1, PTE5);
*
* // Create DataFlash on SPI bus with PTE6 as write-protect
* DataFlashBlockDevice dataflash2(PTE2, PTE4, PTE1, PTE5, PTE6);
*
* int main() {
* printf("dataflash test\n");
*
* // Initialize the SPI flash device and print the memory layout
* dataflash.init();
* printf("dataflash size: %llu\n", dataflash.size());
* printf("dataflash read size: %llu\n", dataflash.get_read_size());
* printf("dataflash program size: %llu\n", dataflash.get_program_size());
* printf("dataflash erase size: %llu\n", dataflash.get_erase_size());
*
* // Write "Hello World!" to the first block
* char *buffer = (char*)malloc(dataflash.get_erase_size());
* sprintf(buffer, "Hello World!\n");
* dataflash.erase(0, dataflash.get_erase_size());
* dataflash.program(buffer, 0, dataflash.get_erase_size());
*
* // Read back what was stored
* dataflash.read(buffer, 0, dataflash.get_erase_size());
* printf("%s", buffer);
*
* // Deinitialize the device
* dataflash.deinit();
* }
* @endcode
*/
class DataFlashBlockDevice : public BlockDevice {
public:
/** Creates a DataFlashBlockDevice on a SPI bus specified by pins
*
* @param mosi SPI master out, slave in pin
* @param miso SPI master in, slave out pin
* @param sclk SPI clock pin
* @param csel SPI chip select pin
* @param nowp GPIO not-write-protect
* @param freq Clock speed of the SPI bus (defaults to 40MHz)
*/
DataFlashBlockDevice(PinName mosi,
PinName miso,
PinName sclk,
PinName csel,
int freq = 40000000,
PinName nowp = NC);
/** Initialize a block device
*
* @return 0 on success or a negative error code on failure
*/
virtual int init();
/** Deinitialize a block device
*
* @return 0 on success or a negative error code on failure
*/
virtual int deinit();
/** Read blocks from a block device
*
* @param buffer Buffer to write blocks to
* @param addr Address of block to begin reading from
* @param size Size to read in bytes, must be a multiple of read block size
* @return 0 on success, negative error code on failure
*/
virtual int read(void *buffer, bd_addr_t addr, bd_size_t size);
/** Program blocks to a block device
*
* The blocks must have been erased prior to being programmed
*
* @param buffer Buffer of data to write to blocks
* @param addr Address of block to begin writing to
* @param size Size to write in bytes, must be a multiple of program block size
* @return 0 on success, negative error code on failure
*/
virtual int program(const void *buffer, bd_addr_t addr, bd_size_t size);
/** Erase blocks on a block device
*
* The state of an erased block is undefined until it has been programmed
*
* @param addr Address of block to begin erasing
* @param size Size to erase in bytes, must be a multiple of erase block size
* @return 0 on success, negative error code on failure
*/
virtual int erase(bd_addr_t addr, bd_size_t size);
/** Get the size of a readable block
*
* @return Size of a readable block in bytes
*/
virtual bd_size_t get_read_size() const;
/** Get the size of a programable block
*
* @return Size of a programable block in bytes
* @note Must be a multiple of the read size
*/
virtual bd_size_t get_program_size() const;
/** Get the size of a eraseable block
*
* @return Size of a eraseable block in bytes
* @note Must be a multiple of the program size
*/
virtual bd_size_t get_erase_size() const;
/** Get the size of an erasable block given address
*
* @param addr Address within the erasable block
* @return Size of an erasable block in bytes
* @note Must be a multiple of the program size
*/
virtual bd_size_t get_erase_size(bd_addr_t addr) const;
/** Get the total size of the underlying device
*
* @return Size of the underlying device in bytes
*/
virtual bd_size_t size() const;
private:
// Master side hardware
SPI _spi;
DigitalOut _cs;
DigitalOut _nwp;
// Device configuration
uint32_t _device_size;
uint16_t _page_size;
uint16_t _block_size;
bool _is_initialized;
uint32_t _init_ref_count;
// Internal functions
uint16_t _get_register(uint8_t opcode);
void _write_command(uint32_t command, const uint8_t *buffer, uint32_t size);
void _write_enable(bool enable);
int _sync(void);
int _write_page(const uint8_t *buffer, uint32_t addr, uint32_t offset, uint32_t size);
uint32_t _translate_address(bd_addr_t addr);
};
#endif /* MBED_DATAFLASH_BLOCK_DEVICE_H */

View File

@ -0,0 +1,165 @@
Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.
"License" shall mean the terms and conditions for use, reproduction, and
distribution as defined by Sections 1 through 9 of this document.
"Licensor" shall mean the copyright owner or entity authorized by the copyright
owner that is granting the License.
"Legal Entity" shall mean the union of the acting entity and all other entities
that control, are controlled by, or are under common control with that entity.
For the purposes of this definition, "control" means (i) the power, direct or
indirect, to cause the direction or management of such entity, whether by
contract or otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.
"You" (or "Your") shall mean an individual or Legal Entity exercising
permissions granted by this License.
"Source" form shall mean the preferred form for making modifications, including
but not limited to software source code, documentation source, and configuration
files.
"Object" form shall mean any form resulting from mechanical transformation or
translation of a Source form, including but not limited to compiled object code,
generated documentation, and conversions to other media types.
"Work" shall mean the work of authorship, whether in Source or Object form, made
available under the License, as indicated by a copyright notice that is included
in or attached to the work (an example is provided in the Appendix below).
"Derivative Works" shall mean any work, whether in Source or Object form, that
is based on (or derived from) the Work and for which the editorial revisions,
annotations, elaborations, or other modifications represent, as a whole, an
original work of authorship. For the purposes of this License, Derivative Works
shall not include works that remain separable from, or merely link (or bind by
name) to the interfaces of, the Work and Derivative Works thereof.
"Contribution" shall mean any work of authorship, including the original version
of the Work and any modifications or additions to that Work or Derivative Works
thereof, that is intentionally submitted to Licensor for inclusion in the Work
by the copyright owner or by an individual or Legal Entity authorized to submit
on behalf of the copyright owner. For the purposes of this definition,
"submitted" means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems, and
issue tracking systems that are managed by, or on behalf of, the Licensor for
the purpose of discussing and improving the Work, but excluding communication
that is conspicuously marked or otherwise designated in writing by the copyright
owner as "Not a Contribution."
"Contributor" shall mean Licensor and any individual or Legal Entity on behalf
of whom a Contribution has been received by Licensor and subsequently
incorporated within the Work.
2. Grant of Copyright License.
Subject to the terms and conditions of this License, each Contributor hereby
grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free,
irrevocable copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the Work and such
Derivative Works in Source or Object form.
3. Grant of Patent License.
Subject to the terms and conditions of this License, each Contributor hereby
grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free,
irrevocable (except as stated in this section) patent license to make, have
made, use, offer to sell, sell, import, and otherwise transfer the Work, where
such license applies only to those patent claims licensable by such Contributor
that are necessarily infringed by their Contribution(s) alone or by combination
of their Contribution(s) with the Work to which such Contribution(s) was
submitted. If You institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work or a
Contribution incorporated within the Work constitutes direct or contributory
patent infringement, then any patent licenses granted to You under this License
for that Work shall terminate as of the date such litigation is filed.
4. Redistribution.
You may reproduce and distribute copies of the Work or Derivative Works thereof
in any medium, with or without modifications, and in Source or Object form,
provided that You meet the following conditions:
You must give any other recipients of the Work or Derivative Works a copy of
this License; and
You must cause any modified files to carry prominent notices stating that You
changed the files; and
You must retain, in the Source form of any Derivative Works that You distribute,
all copyright, patent, trademark, and attribution notices from the Source form
of the Work, excluding those notices that do not pertain to any part of the
Derivative Works; and
If the Work includes a "NOTICE" text file as part of its distribution, then any
Derivative Works that You distribute must include a readable copy of the
attribution notices contained within such NOTICE file, excluding those notices
that do not pertain to any part of the Derivative Works, in at least one of the
following places: within a NOTICE text file distributed as part of the
Derivative Works; within the Source form or documentation, if provided along
with the Derivative Works; or, within a display generated by the Derivative
Works, if and wherever such third-party notices normally appear. The contents of
the NOTICE file are for informational purposes only and do not modify the
License. You may add Your own attribution notices within Derivative Works that
You distribute, alongside or as an addendum to the NOTICE text from the Work,
provided that such additional attribution notices cannot be construed as
modifying the License.
You may add Your own copyright statement to Your modifications and may provide
additional or different license terms and conditions for use, reproduction, or
distribution of Your modifications, or for any such Derivative Works as a whole,
provided Your use, reproduction, and distribution of the Work otherwise complies
with the conditions stated in this License.
5. Submission of Contributions.
Unless You explicitly state otherwise, any Contribution intentionally submitted
for inclusion in the Work by You to the Licensor shall be under the terms and
conditions of this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify the terms of
any separate license agreement you may have executed with Licensor regarding
such Contributions.
6. Trademarks.
This License does not grant permission to use the trade names, trademarks,
service marks, or product names of the Licensor, except as required for
reasonable and customary use in describing the origin of the Work and
reproducing the content of the NOTICE file.
7. Disclaimer of Warranty.
Unless required by applicable law or agreed to in writing, Licensor provides the
Work (and each Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied,
including, without limitation, any warranties or conditions of TITLE,
NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. You are
solely responsible for determining the appropriateness of using or
redistributing the Work and assume any risks associated with Your exercise of
permissions under this License.
8. Limitation of Liability.
In no event and under no legal theory, whether in tort (including negligence),
contract, or otherwise, unless required by applicable law (such as deliberate
and grossly negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special, incidental,
or consequential damages of any character arising as a result of this License or
out of the use or inability to use the Work (including but not limited to
damages for loss of goodwill, work stoppage, computer failure or malfunction, or
any and all other commercial damages or losses), even if such Contributor has
been advised of the possibility of such damages.
9. Accepting Warranty or Additional Liability.
While redistributing the Work or Derivative Works thereof, You may choose to
offer, and charge a fee for, acceptance of support, warranty, indemnity, or
other liability obligations and/or rights consistent with this License. However,
in accepting such obligations, You may act only on Your own behalf and on Your
sole responsibility, not on behalf of any other Contributor, and only if You
agree to indemnify, defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason of your
accepting any such warranty or additional liability.

View File

@ -0,0 +1,54 @@
# DataFlash Driver
Block device driver for I2C based EEPROM devices such as the Adesto AT45DB
series of devices.
DataFlash is a memory protocol that combines flash with SRAM buffers for a
simple programming interface. DataFlash supports byte-sized read and writes,
with an erase size of around 528 bytes or sometimes 1056 bytes. DataFlash
provides erase sizes with and extra 16 bytes for error correction codes (ECC)
so that a flash translation layer (FTL) may still present 512 byte erase sizes.
The DataFlashBlockDevice can be configured to force the underlying device
to use either the binary size (ie 512 bytes) or the raw DataFlash size
(ie 528 bytes).
More info on DataFlash can be found on wikipedia:
https://en.wikipedia.org/wiki/DataFlash
``` cpp
// Here's an example using the AT45DB on the K64F
#include "mbed.h"
#include "DataFlashBlockDevice.h"
// Create DataFlash on SPI bus with PTE5 as chip select
DataFlashBlockDevice dataflash(PTE2, PTE4, PTE1, PTE5);
// Create DataFlash on SPI bus with PTE6 as write-protect
DataFlashBlockDevice dataflash2(PTE2, PTE4, PTE1, PTE5, PTE6);
int main() {
printf("dataflash test\n");
// Initialize the SPI flash device and print the memory layout
dataflash.init();
printf("dataflash size: %llu\n", dataflash.size());
printf("dataflash read size: %llu\n", dataflash.get_read_size());
printf("dataflash program size: %llu\n", dataflash.get_program_size());
printf("dataflash erase size: %llu\n", dataflash.get_erase_size());
// Write "Hello World!" to the first block
char *buffer = (char*)malloc(dataflash.get_erase_size());
sprintf(buffer, "Hello World!\n");
dataflash.erase(0, dataflash.get_erase_size());
dataflash.program(buffer, 0, dataflash.get_erase_size());
// Read back what was stored
dataflash.read(buffer, 0, dataflash.get_erase_size());
printf("%s", buffer);
// Deinitialize the device
dataflash.deinit();
}
```

View File

@ -0,0 +1,135 @@
#include "mbed.h"
#include "greentea-client/test_env.h"
#include "unity.h"
#include "utest.h"
#include "DataFlashBlockDevice.h"
#include <stdlib.h>
using namespace utest::v1;
#define TEST_PINS PTB22, PTB23, PTB21, PTB20
#define TEST_FREQ 40000000
#define TEST_BLOCK_COUNT 10
#define TEST_ERROR_MASK 16
const struct {
const char *name;
bd_size_t (BlockDevice::*method)() const;
} ATTRS[] = {
{"read size", &BlockDevice::get_read_size},
{"program size", &BlockDevice::get_program_size},
{"erase size", &BlockDevice::get_erase_size},
{"total size", &BlockDevice::size},
};
void test_read_write() {
DataFlashBlockDevice bd(TEST_PINS, TEST_FREQ);
int err = bd.init();
TEST_ASSERT_EQUAL(0, err);
for (unsigned a = 0; a < sizeof(ATTRS)/sizeof(ATTRS[0]); a++) {
static const char *prefixes[] = {"", "k", "M", "G"};
for (int i = 3; i >= 0; i--) {
bd_size_t size = (bd.*ATTRS[a].method)();
if (size >= (1ULL << 10*i)) {
printf("%s: %llu%sbytes (%llubytes)\n",
ATTRS[a].name, size >> 10*i, prefixes[i], size);
break;
}
}
}
bd_size_t block_size = bd.get_erase_size();
uint8_t *write_block = new uint8_t[block_size];
uint8_t *read_block = new uint8_t[block_size];
uint8_t *error_mask = new uint8_t[TEST_ERROR_MASK];
unsigned addrwidth = ceil(log(float(bd.size()-1)) / log(float(16)))+1;
for (int b = 0; b < TEST_BLOCK_COUNT; b++) {
// Find a random block
bd_addr_t block = (rand()*block_size) % bd.size();
// Use next random number as temporary seed to keep
// the address progressing in the pseudorandom sequence
unsigned seed = rand();
// Fill with random sequence
srand(seed);
for (bd_size_t i = 0; i < block_size; i++) {
write_block[i] = 0xff & rand();
}
// Write, sync, and read the block
printf("test %0*llx:%llu...\n", addrwidth, block, block_size);
err = bd.erase(block, block_size);
TEST_ASSERT_EQUAL(0, err);
err = bd.program(write_block, block, block_size);
TEST_ASSERT_EQUAL(0, err);
printf("write %0*llx:%llu ", addrwidth, block, block_size);
for (int i = 0; i < 16; i++) {
printf("%02x", write_block[i]);
}
printf("...\n");
err = bd.read(read_block, block, block_size);
TEST_ASSERT_EQUAL(0, err);
printf("read %0*llx:%llu ", addrwidth, block, block_size);
for (int i = 0; i < 16; i++) {
printf("%02x", read_block[i]);
}
printf("...\n");
// Find error mask for debugging
memset(error_mask, 0, TEST_ERROR_MASK);
bd_size_t error_scale = block_size / (TEST_ERROR_MASK*8);
srand(seed);
for (bd_size_t i = 0; i < TEST_ERROR_MASK*8; i++) {
for (bd_size_t j = 0; j < error_scale; j++) {
if ((0xff & rand()) != read_block[i*error_scale + j]) {
error_mask[i/8] |= 1 << (i%8);
}
}
}
printf("error %0*llx:%llu ", addrwidth, block, block_size);
for (int i = 0; i < 16; i++) {
printf("%02x", error_mask[i]);
}
printf("\n");
// Check that the data was unmodified
srand(seed);
for (bd_size_t i = 0; i < block_size; i++) {
TEST_ASSERT_EQUAL(0xff & rand(), read_block[i]);
}
}
err = bd.deinit();
TEST_ASSERT_EQUAL(0, err);
}
// Test setup
utest::v1::status_t test_setup(const size_t number_of_cases) {
GREENTEA_SETUP(30, "default_auto");
return verbose_test_setup_handler(number_of_cases);
}
Case cases[] = {
Case("Testing read write random blocks", test_read_write),
};
Specification specification(test_setup, cases);
int main() {
return !Harness::run(specification);
}

View File

@ -0,0 +1,17 @@
{
"name": "dataflash",
"config": {
"SPI_MOSI": "NC",
"SPI_MISO": "NC",
"SPI_CLK": "NC",
"SPI_CS": "NC",
"binary-size": {
"help": "Configure device to use binary address space.",
"value": "0"
},
"dataflash-size": {
"help": "Configure device to use DataFlash address space.",
"value": "0"
}
}
}