[NANO130] Support Serial async mode

pull/4631/head
MS30 CCChang12 2017-04-28 09:59:30 +08:00
parent ac9f59fda5
commit 8d581bbc27
2 changed files with 136 additions and 136 deletions

View File

@ -61,7 +61,9 @@ struct serial_s {
void (*vec)(void);
uint32_t irq_handler;
uint32_t irq_id;
uint32_t irq_en;
uint32_t ier_msk;
uint32_t async_en;
// Async transfer related fields
DMAUsage dma_usage_tx;
@ -119,9 +121,6 @@ struct pwmout_s {
};
struct sleep_s {
uint32_t start_us;
uint32_t end_us;
uint32_t period_us;
int powerdown;
};
#ifdef __cplusplus

View File

@ -38,7 +38,6 @@ struct nu_uart_var {
uint32_t fifo_size_rx;
void (*vec)(void);
#if DEVICE_SERIAL_ASYNCH
void (*vec_async)(void);
uint8_t pdma_perp_tx;
uint8_t pdma_perp_rx;
#endif
@ -49,9 +48,6 @@ void UART1_IRQHandler(void);
static void uart_irq(serial_t *obj);
#if DEVICE_SERIAL_ASYNCH
#if 0
static void uart0_vec_async(void);
static void uart1_vec_async(void);
static void uart_irq_async(serial_t *obj);
static void uart_dma_handler_tx(uint32_t id, uint32_t event);
@ -59,6 +55,8 @@ static void uart_dma_handler_rx(uint32_t id, uint32_t event);
static void serial_tx_enable_interrupt(serial_t *obj, uint32_t address, uint8_t enable);
static void serial_rx_enable_interrupt(serial_t *obj, uint32_t address, uint8_t enable);
static void serial_enable_interrupt(serial_t *obj, SerialIrq irq, uint32_t enable);
static void serial_rollback_interrupt(serial_t *obj, SerialIrq irq);
static int serial_write_async(serial_t *obj);
static int serial_read_async(serial_t *obj);
@ -76,7 +74,6 @@ static int serial_is_rx_complete(serial_t *obj);
static void serial_check_dma_usage(DMAUsage *dma_usage, int *dma_ch);
static int serial_is_irq_en(serial_t *obj, SerialIrq irq);
#endif // #if 0
#endif
static struct nu_uart_var uart0_var = {
@ -86,7 +83,6 @@ static struct nu_uart_var uart0_var = {
.fifo_size_rx = 16,
.vec = UART0_IRQHandler,
#if DEVICE_SERIAL_ASYNCH
.vec_async = UART0_IRQHandler,
.pdma_perp_tx = PDMA_UART0_TX,
.pdma_perp_rx = PDMA_UART0_RX
#endif
@ -98,7 +94,6 @@ static struct nu_uart_var uart1_var = {
.fifo_size_rx = 16,
.vec = UART1_IRQHandler,
#if DEVICE_SERIAL_ASYNCH
.vec_async = UART1_IRQHandler,
.pdma_perp_tx = PDMA_UART1_TX,
.pdma_perp_rx = PDMA_UART1_RX
#endif
@ -132,7 +127,7 @@ void serial_init(serial_t *obj, PinName tx, PinName rx)
const struct nu_modinit_s *modinit = get_modinit(obj->serial.uart, uart_modinit_tab);
MBED_ASSERT(modinit != NULL);
MBED_ASSERT(modinit->modname == obj->serial.uart);
MBED_ASSERT(modinit->modname == (int) obj->serial.uart);
struct nu_uart_var *var = (struct nu_uart_var *) modinit->var;
@ -159,6 +154,7 @@ void serial_init(serial_t *obj, PinName tx, PinName rx)
serial_format(obj, 8, ParityNone, 1);
obj->serial.vec = var->vec;
obj->serial.irq_en = 0;
#if DEVICE_SERIAL_ASYNCH
obj->serial.dma_usage_tx = DMA_USAGE_NEVER;
@ -185,14 +181,13 @@ void serial_free(serial_t *obj)
{
const struct nu_modinit_s *modinit = get_modinit(obj->serial.uart, uart_modinit_tab);
MBED_ASSERT(modinit != NULL);
MBED_ASSERT(modinit->modname == obj->serial.uart);
MBED_ASSERT(modinit->modname == (int) obj->serial.uart);
struct nu_uart_var *var = (struct nu_uart_var *) modinit->var;
var->ref_cnt --;
if (! var->ref_cnt) {
//#if DEVICE_SERIAL_ASYNCH
#if 0
#if DEVICE_SERIAL_ASYNCH
if (obj->serial.dma_chn_id_tx != DMA_ERROR_OUT_OF_CHANNELS) {
dma_channel_free(obj->serial.dma_chn_id_tx);
obj->serial.dma_chn_id_tx = DMA_ERROR_OUT_OF_CHANNELS;
@ -266,8 +261,7 @@ void serial_set_flow_control(serial_t *obj, FlowControl type, PinName rxflow, Pi
UART_T *uart_base = (UART_T *) NU_MODBASE(obj->serial.uart);
// First, disable flow control completely.
// UART_DisableFlowCtrl(uart_base);
uart_base->CTL &= ~(UART_CTL_AUTO_RTS_EN_Msk | UART_CTL_AUTO_CTS_EN_Msk);
UART_DisableFlowCtrl(uart_base);
if ((type == FlowControlRTS || type == FlowControlRTSCTS) && rxflow != NC) {
// Check if RTS pin matches.
@ -280,7 +274,7 @@ void serial_set_flow_control(serial_t *obj, FlowControl type, PinName rxflow, Pi
// Set RTS Trigger Level as 8 bytes
uart_base->TLCTL = (uart_base->TLCTL & ~UART_TLCTL_RTS_TRI_LEV_Msk) | UART_TLCTL_RTS_TRI_LEV_8BYTES;
// Set RX Trigger Level as 8 bytes
// uart_base->TLCTL = (uart_base->TLCTL & ~UART_TLCTL_RFITL_Msk) | UART_TLCTL_RFITL_8BYTES;
uart_base->TLCTL = (uart_base->TLCTL & ~UART_TLCTL_RFITL_Msk) | UART_TLCTL_RFITL_8BYTES;
// Enable RTS
uart_base->CTL |= UART_CTL_AUTO_RTS_EN_Msk;
}
@ -307,62 +301,29 @@ void serial_irq_handler(serial_t *obj, uart_irq_handler handler, uint32_t id)
const struct nu_modinit_s *modinit = get_modinit(obj->serial.uart, uart_modinit_tab);
MBED_ASSERT(modinit != NULL);
MBED_ASSERT(modinit->modname == obj->serial.uart);
MBED_ASSERT(modinit->modname == (int) obj->serial.uart);
obj->serial.irq_handler = (uint32_t) handler;
obj->serial.irq_id = id;
// Restore sync-mode vector
obj->serial.vec = ((struct nu_uart_var *) modinit->var)->vec;
obj->serial.async_en = 0;
}
void serial_irq_set(serial_t *obj, SerialIrq irq, uint32_t enable)
{
if (enable) {
const struct nu_modinit_s *modinit = get_modinit(obj->serial.uart, uart_modinit_tab);
MBED_ASSERT(modinit != NULL);
MBED_ASSERT(modinit->modname == obj->serial.uart);
NVIC_SetVector(modinit->irq_n, (uint32_t) obj->serial.vec);
NVIC_EnableIRQ(modinit->irq_n);
struct nu_uart_var *var = (struct nu_uart_var *) modinit->var;
// Multiple serial S/W objects for single UART H/W module possibly.
// Bind serial S/W object to UART H/W module as interrupt is enabled.
var->obj = obj;
switch (irq) {
// NOTE: Setting ier_msk first to avoid race condition
case RxIrq:
obj->serial.ier_msk = obj->serial.ier_msk | (UART_IER_RDA_IE_Msk | UART_IER_RTO_IE_Msk);
UART_ENABLE_INT(((UART_T *) NU_MODBASE(obj->serial.uart)), (UART_IER_RDA_IE_Msk | UART_IER_RTO_IE_Msk));
break;
case TxIrq:
obj->serial.ier_msk = obj->serial.ier_msk | UART_IER_THRE_IE_Msk;
UART_ENABLE_INT(((UART_T *) NU_MODBASE(obj->serial.uart)), UART_IER_THRE_IE_Msk);
break;
}
} else { // disable
switch (irq) {
case RxIrq:
UART_DISABLE_INT(((UART_T *) NU_MODBASE(obj->serial.uart)), (UART_IER_RDA_IE_Msk | UART_IER_RTO_IE_Msk));
obj->serial.ier_msk = obj->serial.ier_msk & ~(UART_IER_RDA_IE_Msk | UART_IER_RTO_IE_Msk);
break;
case TxIrq:
UART_DISABLE_INT(((UART_T *) NU_MODBASE(obj->serial.uart)), UART_IER_THRE_IE_Msk);
obj->serial.ier_msk = obj->serial.ier_msk & ~UART_IER_THRE_IE_Msk;
break;
}
}
obj->serial.irq_en = enable;
serial_enable_interrupt(obj, irq, enable);
}
int serial_getc(serial_t *obj)
{
// TODO: Fix every byte access requires accompaniness of one interrupt. This degrades performance much.
// TODO: Fix every byte access requires accompaniment of one interrupt. This has side effect of performance degradation.
while (! serial_readable(obj));
int c = UART_READ(((UART_T *) NU_MODBASE(obj->serial.uart)));
// Simulate clear of the interrupt flag
// NOTE: On Nuvoton targets, no H/W IRQ to match TxIrq/RxIrq.
// Simulation of TxIrq/RxIrq requires the call to Serial::putc()/Serial::getc() respectively.
if (obj->serial.ier_msk & (UART_IER_RDA_IE_Msk | UART_IER_RTO_IE_Msk)) {
UART_ENABLE_INT(((UART_T *) NU_MODBASE(obj->serial.uart)), (UART_IER_RDA_IE_Msk | UART_IER_RTO_IE_Msk));
}
@ -372,11 +333,12 @@ int serial_getc(serial_t *obj)
void serial_putc(serial_t *obj, int c)
{
// TODO: Fix every byte access requires accompaniness of one interrupt. This degrades performance much.
// TODO: Fix every byte access requires accompaniment of one interrupt. This has side effect of performance degradation.
while (! serial_writable(obj));
UART_WRITE(((UART_T *) NU_MODBASE(obj->serial.uart)), c);
// Simulate clear of the interrupt flag
// NOTE: On Nuvoton targets, no H/W IRQ to match TxIrq/RxIrq.
// Simulation of TxIrq/RxIrq requires the call to Serial::putc()/Serial::getc() respectively.
if (obj->serial.ier_msk & UART_IER_THRE_IE_Msk) {
UART_ENABLE_INT(((UART_T *) NU_MODBASE(obj->serial.uart)), UART_IER_THRE_IE_Msk);
}
@ -410,11 +372,21 @@ void serial_break_clear(serial_t *obj)
void UART0_IRQHandler(void)
{
#if DEVICE_SERIAL_ASYNCH
if (uart0_var.obj->serial.async_en)
uart_irq_async(uart0_var.obj);
else
#endif
uart_irq(uart0_var.obj);
}
void UART1_IRQHandler(void)
{
#if DEVICE_SERIAL_ASYNCH
if (uart1_var.obj->serial.async_en)
uart_irq_async(uart1_var.obj);
else
#endif
uart_irq(uart1_var.obj);
}
@ -447,7 +419,6 @@ static void uart_irq(serial_t *obj)
#if DEVICE_SERIAL_ASYNCH
int serial_tx_asynch(serial_t *obj, const void *tx, size_t tx_length, uint8_t tx_width, uint32_t handler, uint32_t event, DMAUsage hint)
{
#if 0
MBED_ASSERT(tx_width == 8 || tx_width == 16 || tx_width == 32);
obj->serial.dma_usage_tx = hint;
@ -469,11 +440,9 @@ int serial_tx_asynch(serial_t *obj, const void *tx, size_t tx_length, uint8_t tx
// DMA way
const struct nu_modinit_s *modinit = get_modinit(obj->serial.uart, uart_modinit_tab);
MBED_ASSERT(modinit != NULL);
MBED_ASSERT(modinit->modname == obj->serial.uart);
MBED_ASSERT(modinit->modname == (int) obj->serial.uart);
PDMA_T *pdma_base = dma_modbase();
pdma_base->CHCTL |= 1 << obj->serial.dma_chn_id_tx; // Enable this DMA channel
dma_enable(obj->serial.dma_chn_id_tx, 1); // Enable this DMA channel
PDMA_SetTransferMode(obj->serial.dma_chn_id_tx,
((struct nu_uart_var *) modinit->var)->pdma_perp_tx, // Peripheral connected to this PDMA
0, // Scatter-gather disabled
@ -488,25 +457,26 @@ int serial_tx_asynch(serial_t *obj, const void *tx, size_t tx_length, uint8_t tx
PDMA_SAR_INC, // Source address incremental
(uint32_t) NU_MODBASE(obj->serial.uart), // Destination address
PDMA_DAR_FIX); // Destination address fixed
#if 0 // NOTE:
// NANO130: No burst type setting
PDMA_SetBurstType(obj->serial.dma_chn_id_tx,
PDMA_REQ_SINGLE, // Single mode
0); // Burst size
#endif
PDMA_EnableInt(obj->serial.dma_chn_id_tx,
PDMA_INT_TRANS_DONE); // Interrupt type
PDMA_IER_TD_IE_Msk); // Interrupt type
// Register DMA event handler
dma_set_handler(obj->serial.dma_chn_id_tx, (uint32_t) uart_dma_handler_tx, (uint32_t) obj, DMA_EVENT_ALL);
serial_tx_enable_interrupt(obj, handler, 1);
((UART_T *) NU_MODBASE(obj->serial.uart))->IER |= UART_INTEN_TXPDMAEN_Msk; // Start DMA transfer
PDMA_Trigger(obj->serial.dma_chn_id_tx);
((UART_T *) NU_MODBASE(obj->serial.uart))->CTL |= UART_CTL_DMA_TX_EN_Msk; // Start DMA transfer
}
return n_word;
#endif // #if 0
return 0;
}
void serial_rx_asynch(serial_t *obj, void *rx, size_t rx_length, uint8_t rx_width, uint32_t handler, uint32_t event, uint8_t char_match, DMAUsage hint)
{
#if 0
MBED_ASSERT(rx_width == 8 || rx_width == 16 || rx_width == 32);
obj->serial.dma_usage_rx = hint;
@ -535,11 +505,9 @@ void serial_rx_asynch(serial_t *obj, void *rx, size_t rx_length, uint8_t rx_widt
// DMA way
const struct nu_modinit_s *modinit = get_modinit(obj->serial.uart, uart_modinit_tab);
MBED_ASSERT(modinit != NULL);
MBED_ASSERT(modinit->modname == obj->serial.uart);
MBED_ASSERT(modinit->modname == (int) obj->serial.uart);
PDMA_T *pdma_base = dma_modbase();
pdma_base->CHCTL |= 1 << obj->serial.dma_chn_id_rx; // Enable this DMA channel
dma_enable(obj->serial.dma_chn_id_rx, 1); // Enable this DMA channel
PDMA_SetTransferMode(obj->serial.dma_chn_id_rx,
((struct nu_uart_var *) modinit->var)->pdma_perp_rx, // Peripheral connected to this PDMA
0, // Scatter-gather disabled
@ -554,83 +522,81 @@ void serial_rx_asynch(serial_t *obj, void *rx, size_t rx_length, uint8_t rx_widt
// NUC472: End of destination address
// M451: Start of destination address
PDMA_DAR_INC); // Destination address incremental
#if 0 // NOTE:
// NANO130: No burst type setting
PDMA_SetBurstType(obj->serial.dma_chn_id_rx,
PDMA_REQ_SINGLE, // Single mode
0); // Burst size
#endif
PDMA_EnableInt(obj->serial.dma_chn_id_rx,
PDMA_INT_TRANS_DONE); // Interrupt type
PDMA_IER_TD_IE_Msk); // Interrupt type
// Register DMA event handler
dma_set_handler(obj->serial.dma_chn_id_rx, (uint32_t) uart_dma_handler_rx, (uint32_t) obj, DMA_EVENT_ALL);
serial_rx_enable_interrupt(obj, handler, 1);
((UART_T *) NU_MODBASE(obj->serial.uart))->IER |= UART_INTEN_RXPDMAEN_Msk; // Start DMA transfer
PDMA_Trigger(obj->serial.dma_chn_id_rx);
((UART_T *) NU_MODBASE(obj->serial.uart))->CTL |= UART_CTL_DMA_RX_EN_Msk; // Start DMA transfer
}
#endif // #if 0
}
void serial_tx_abort_asynch(serial_t *obj)
{
#if 0
// Flush Tx FIFO. Otherwise, output data may get lost on this change.
while (! UART_IS_TX_EMPTY(((UART_T *) obj->serial.uart)));
while (! UART_IS_TX_EMPTY(((UART_T *) NU_MODBASE(obj->serial.uart))));
if (obj->serial.dma_usage_tx != DMA_USAGE_NEVER) {
PDMA_T *pdma_base = dma_modbase();
if (obj->serial.dma_chn_id_tx != DMA_ERROR_OUT_OF_CHANNELS) {
PDMA_DisableInt(obj->serial.dma_chn_id_tx, PDMA_INT_TRANS_DONE);
PDMA_DisableInt(obj->serial.dma_chn_id_tx, PDMA_IER_TD_IE_Msk);
// FIXME: On NUC472, next PDMA transfer will fail with PDMA_STOP() called. Cause is unknown.
//PDMA_STOP(obj->serial.dma_chn_id_tx);
pdma_base->CHCTL &= ~(1 << obj->serial.dma_chn_id_tx);
dma_enable(obj->serial.dma_chn_id_tx, 0);
}
UART_DISABLE_INT(((UART_T *) NU_MODBASE(obj->serial.uart)), UART_INTEN_TXPDMAEN_Msk);
((UART_T *) NU_MODBASE(obj->serial.uart))->CTL &= ~UART_CTL_DMA_TX_EN_Msk;
}
// Necessary for both interrupt way and DMA way
serial_irq_set(obj, TxIrq, 0);
// FIXME: more complete abort operation
//UART_HAL_DisableTransmitter(obj->serial.serial.address);
//UART_HAL_FlushTxFifo(obj->serial.serial.address);
#endif // #if 0
serial_enable_interrupt(obj, TxIrq, 0);
serial_rollback_interrupt(obj, TxIrq);
}
void serial_rx_abort_asynch(serial_t *obj)
{
#if 0
if (obj->serial.dma_usage_rx != DMA_USAGE_NEVER) {
PDMA_T *pdma_base = dma_modbase();
if (obj->serial.dma_chn_id_rx != DMA_ERROR_OUT_OF_CHANNELS) {
PDMA_DisableInt(obj->serial.dma_chn_id_rx, PDMA_INT_TRANS_DONE);
PDMA_DisableInt(obj->serial.dma_chn_id_rx, PDMA_IER_TD_IE_Msk);
// FIXME: On NUC472, next PDMA transfer will fail with PDMA_STOP() called. Cause is unknown.
//PDMA_STOP(obj->serial.dma_chn_id_rx);
pdma_base->CHCTL &= ~(1 << obj->serial.dma_chn_id_rx);
dma_enable(obj->serial.dma_chn_id_rx, 0);
}
UART_DISABLE_INT(((UART_T *) NU_MODBASE(obj->serial.uart)), UART_INTEN_RXPDMAEN_Msk);
((UART_T *) NU_MODBASE(obj->serial.uart))->CTL &= ~UART_CTL_DMA_RX_EN_Msk;
}
// Necessary for both interrupt way and DMA way
serial_irq_set(obj, RxIrq, 0);
// FIXME: more complete abort operation
//UART_HAL_DisableReceiver(obj->serial.serial.address);
//UART_HAL_FlushRxFifo(obj->serial.serial.address);
#endif // #if 0
serial_enable_interrupt(obj, RxIrq, 0);
serial_rollback_interrupt(obj, RxIrq);
}
uint8_t serial_tx_active(serial_t *obj)
{
// return serial_is_irq_en(obj, TxIrq);
return 0;
// NOTE: Judge by serial_is_irq_en(obj, TxIrq) doesn't work with sync/async modes interleaved. Change with TX FIFO empty flag.
const struct nu_modinit_s *modinit = get_modinit(obj->serial.uart, uart_modinit_tab);
MBED_ASSERT(modinit != NULL);
MBED_ASSERT(modinit->modname == (int) obj->serial.uart);
return (obj->serial.async_en);
}
uint8_t serial_rx_active(serial_t *obj)
{
// return serial_is_irq_en(obj, RxIrq);
return 0;
// NOTE: Judge by serial_is_irq_en(obj, RxIrq) doesn't work with sync/async modes interleaved. Change with RX FIFO empty flag.
const struct nu_modinit_s *modinit = get_modinit(obj->serial.uart, uart_modinit_tab);
MBED_ASSERT(modinit != NULL);
MBED_ASSERT(modinit->modname == (int) obj->serial.uart);
return (obj->serial.async_en);
}
int serial_irq_handler_asynch(serial_t *obj)
{
#if 0
int event_rx = 0;
int event_tx = 0;
@ -650,11 +616,8 @@ int serial_irq_handler_asynch(serial_t *obj)
}
return (obj->serial.event & (event_rx | event_tx));
#endif // #if 0
return 0;
}
#if 0
int serial_allow_powerdown(void)
{
uint32_t modinit_mask = uart_modinit_mask;
@ -672,7 +635,7 @@ int serial_allow_powerdown(void)
return 0;
}
// Disallow entering power-down mode if async Rx transfer (PDMA) is on-going
if (uart_base->IER & UART_INTEN_RXPDMAEN_Msk) {
if (uart_base->CTL & UART_CTL_DMA_RX_EN_Msk) {
return 0;
}
}
@ -682,16 +645,6 @@ int serial_allow_powerdown(void)
return 1;
}
static void uart0_vec_async(void)
{
uart_irq_async(uart0_var.obj);
}
static void uart1_vec_async(void)
{
uart_irq_async(uart1_var.obj);
}
static void uart_irq_async(serial_t *obj)
{
if (serial_is_irq_en(obj, RxIrq)) {
@ -727,13 +680,13 @@ static void serial_rx_enable_event(serial_t *obj, int event, uint8_t enable)
//if (event & SERIAL_EVENT_RX_OVERRUN_ERROR) {
//}
if (event & SERIAL_EVENT_RX_FRAMING_ERROR) {
UART_ENABLE_INT(((UART_T *) NU_MODBASE(obj->serial.uart)), UART_INTEN_RLSIEN_Msk);
UART_ENABLE_INT(((UART_T *) NU_MODBASE(obj->serial.uart)), UART_IER_RLS_IE_Msk);
}
if (event & SERIAL_EVENT_RX_PARITY_ERROR) {
UART_ENABLE_INT(((UART_T *) NU_MODBASE(obj->serial.uart)), UART_INTEN_RLSIEN_Msk);
UART_ENABLE_INT(((UART_T *) NU_MODBASE(obj->serial.uart)), UART_IER_RLS_IE_Msk);
}
if (event & SERIAL_EVENT_RX_OVERFLOW) {
UART_ENABLE_INT(((UART_T *) NU_MODBASE(obj->serial.uart)), UART_INTEN_BUFERRIEN_Msk);
UART_ENABLE_INT(((UART_T *) NU_MODBASE(obj->serial.uart)), UART_IER_BUF_ERR_IE_Msk);
}
//if (event & SERIAL_EVENT_RX_CHARACTER_MATCH) {
//}
@ -859,7 +812,7 @@ static int serial_write_async(serial_t *obj)
{
const struct nu_modinit_s *modinit = get_modinit(obj->serial.uart, uart_modinit_tab);
MBED_ASSERT(modinit != NULL);
MBED_ASSERT(modinit->modname == obj->serial.uart);
MBED_ASSERT(modinit->modname == (int) obj->serial.uart);
UART_T *uart_base = (UART_T *) NU_MODBASE(obj->serial.uart);
@ -911,7 +864,7 @@ static int serial_read_async(serial_t *obj)
{
const struct nu_modinit_s *modinit = get_modinit(obj->serial.uart, uart_modinit_tab);
MBED_ASSERT(modinit != NULL);
MBED_ASSERT(modinit->modname == obj->serial.uart);
MBED_ASSERT(modinit->modname == (int) obj->serial.uart);
uint32_t rx_fifo_busy = (((UART_T *) NU_MODBASE(obj->serial.uart))->FSR & UART_FSR_RX_POINTER_F_Msk) >> UART_FSR_RX_POINTER_F_Pos;
//uint32_t rx_fifo_free = ((struct nu_uart_var *) modinit->var)->fifo_size_rx - rx_fifo_busy;
@ -986,28 +939,77 @@ static void serial_tx_enable_interrupt(serial_t *obj, uint32_t handler, uint8_t
{
const struct nu_modinit_s *modinit = get_modinit(obj->serial.uart, uart_modinit_tab);
MBED_ASSERT(modinit != NULL);
MBED_ASSERT(modinit->modname == obj->serial.uart);
MBED_ASSERT(modinit->modname == (int) obj->serial.uart);
// Necessary for both interrupt way and DMA way
struct nu_uart_var *var = (struct nu_uart_var *) modinit->var;
// With our own async vector, tx/rx handlers can be different.
obj->serial.vec = var->vec_async;
// A flag to indicate async mode, and tx/rx handlers can be different.
obj->serial.async_en = 1;
obj->serial.irq_handler_tx_async = (void (*)(void)) handler;
serial_irq_set(obj, TxIrq, enable);
serial_enable_interrupt(obj, TxIrq, enable);
}
static void serial_rx_enable_interrupt(serial_t *obj, uint32_t handler, uint8_t enable)
{
const struct nu_modinit_s *modinit = get_modinit(obj->serial.uart, uart_modinit_tab);
MBED_ASSERT(modinit != NULL);
MBED_ASSERT(modinit->modname == obj->serial.uart);
MBED_ASSERT(modinit->modname == (int) obj->serial.uart);
// Necessary for both interrupt way and DMA way
struct nu_uart_var *var = (struct nu_uart_var *) modinit->var;
// With our own async vector, tx/rx handlers can be different.
obj->serial.vec = var->vec_async;
// A flag to indicate async mode, and tx/rx handlers can be different.
obj->serial.async_en = 1;
obj->serial.irq_handler_rx_async = (void (*) (void)) handler;
serial_irq_set(obj, RxIrq, enable);
serial_enable_interrupt(obj, RxIrq, enable);
}
static void serial_enable_interrupt(serial_t *obj, SerialIrq irq, uint32_t enable)
{
if (enable) {
const struct nu_modinit_s *modinit = get_modinit(obj->serial.uart, uart_modinit_tab);
MBED_ASSERT(modinit != NULL);
MBED_ASSERT(modinit->modname == (int) obj->serial.uart);
NVIC_SetVector(modinit->irq_n, (uint32_t) obj->serial.vec);
NVIC_EnableIRQ(modinit->irq_n);
struct nu_uart_var *var = (struct nu_uart_var *) modinit->var;
// Multiple serial S/W objects for single UART H/W module possibly.
// Bind serial S/W object to UART H/W module as interrupt is enabled.
var->obj = obj;
switch (irq) {
// NOTE: Setting ier_msk first to avoid race condition
case RxIrq:
obj->serial.ier_msk = obj->serial.ier_msk | (UART_IER_RDA_IE_Msk | UART_IER_RTO_IE_Msk);
UART_ENABLE_INT(((UART_T *) NU_MODBASE(obj->serial.uart)), (UART_IER_RDA_IE_Msk | UART_IER_RTO_IE_Msk));
break;
case TxIrq:
obj->serial.ier_msk = obj->serial.ier_msk | UART_IER_THRE_IE_Msk;
UART_ENABLE_INT(((UART_T *) NU_MODBASE(obj->serial.uart)), UART_IER_THRE_IE_Msk);
break;
}
}
else { // disable
switch (irq) {
case RxIrq:
UART_DISABLE_INT(((UART_T *) NU_MODBASE(obj->serial.uart)), (UART_IER_RDA_IE_Msk | UART_IER_RTO_IE_Msk));
obj->serial.ier_msk = obj->serial.ier_msk & ~(UART_IER_RDA_IE_Msk | UART_IER_RTO_IE_Msk);
break;
case TxIrq:
UART_DISABLE_INT(((UART_T *) NU_MODBASE(obj->serial.uart)), UART_IER_THRE_IE_Msk);
obj->serial.ier_msk = obj->serial.ier_msk & ~UART_IER_THRE_IE_Msk;
break;
}
}
}
static void serial_rollback_interrupt(serial_t *obj, SerialIrq irq)
{
const struct nu_modinit_s *modinit = get_modinit(obj->serial.uart, uart_modinit_tab);
MBED_ASSERT(modinit != NULL);
MBED_ASSERT(modinit->modname == (int) obj->serial.uart);
obj->serial.async_en = 0;
serial_enable_interrupt(obj, irq, obj->serial.irq_en);
}
static void serial_check_dma_usage(DMAUsage *dma_usage, int *dma_ch)
@ -1041,7 +1043,6 @@ static int serial_is_irq_en(serial_t *obj, SerialIrq irq)
return !! ier_msk;
}
#endif // #if 0
#endif // #if DEVICE_SERIAL_ASYNCH
#endif // #if DEVICE_SERIAL