code formating, CR changes corrected spi_init() to properly handle re-initialization… #3842

pull/4134/head
Andrzej Puzdrowski 2017-03-02 16:48:17 +01:00 committed by Anna Bridge
parent afdbcd3db9
commit 842bfc70f7
14 changed files with 710 additions and 371 deletions

View File

@ -49,28 +49,33 @@ extern "C" {
#define STDIO_UART_RX RX_PIN_NUMBER #define STDIO_UART_RX RX_PIN_NUMBER
#define STDIO_UART UART_0 #define STDIO_UART UART_0
typedef enum { typedef enum
{
UART_0 = (int)NRF_UART0_BASE UART_0 = (int)NRF_UART0_BASE
} UARTName; } UARTName;
typedef enum { typedef enum
{
SPI_0 = (int)NRF_SPI0_BASE, SPI_0 = (int)NRF_SPI0_BASE,
SPI_1 = (int)NRF_SPI1_BASE, SPI_1 = (int)NRF_SPI1_BASE,
SPIS = (int)NRF_SPIS1_BASE SPIS = (int)NRF_SPIS1_BASE
} SPIName; } SPIName;
typedef enum { typedef enum
{
PWM_1 = 0, PWM_1 = 0,
PWM_2 PWM_2
} PWMName; } PWMName;
typedef enum { typedef enum
{
I2C_0 = (int)NRF_TWI0_BASE, I2C_0 = (int)NRF_TWI0_BASE,
I2C_1 = (int)NRF_TWI1_BASE I2C_1 = (int)NRF_TWI1_BASE
} I2CName; } I2CName;
typedef enum { typedef enum
{
ADC0_0 = (int)0 ADC0_0 = (int)0
} ADCName; } ADCName;

View File

@ -43,7 +43,8 @@
extern "C" { extern "C" {
#endif #endif
typedef enum { typedef enum
{
Port0 = 0, //GPIO pins 0-31 -> 0.0-0.31 Port0 = 0, //GPIO pins 0-31 -> 0.0-0.31
Port1 = 1 //GPIO pins 32-47 -> 1.0-1.15 Port1 = 1 //GPIO pins 32-47 -> 1.0-1.15
} PortName; } PortName;

View File

@ -29,7 +29,8 @@
#error not recognized gpio count for mcu #error not recognized gpio count for mcu
#endif #endif
typedef struct { typedef struct
{
bool used_as_gpio : 1; bool used_as_gpio : 1;
PinDirection direction : 1; PinDirection direction : 1;
bool init_high : 1; bool init_high : 1;
@ -45,8 +46,8 @@ typedef struct {
typedef uint32_t gpio_mask_t; typedef uint32_t gpio_mask_t;
#endif #endif
gpio_mask_t m_gpio_initialized; static gpio_mask_t m_gpio_initialized;
gpio_cfg_t m_gpio_cfg[GPIO_PIN_COUNT]; static gpio_cfg_t m_gpio_cfg[GPIO_PIN_COUNT];
/*********** /***********
@ -54,20 +55,22 @@ gpio_cfg_t m_gpio_cfg[GPIO_PIN_COUNT];
***********/ ***********/
static gpio_irq_handler m_irq_handler; static gpio_irq_handler m_irq_handler;
static uint32_t m_channel_ids[GPIO_PIN_COUNT] = {0}; static uint32_t m_channel_ids[GPIO_PIN_COUNT] = {0};
gpio_mask_t m_gpio_irq_enabled; static gpio_mask_t m_gpio_irq_enabled;
static void gpiote_irq_handler(nrf_drv_gpiote_pin_t pin, nrf_gpiote_polarity_t action) static void gpiote_irq_handler(nrf_drv_gpiote_pin_t pin, nrf_gpiote_polarity_t action)
{ {
nrf_gpio_pin_sense_t sense = nrf_gpio_pin_sense_get(pin); nrf_gpio_pin_sense_t sense = nrf_gpio_pin_sense_get(pin);
gpio_irq_event event = (sense == NRF_GPIO_PIN_SENSE_LOW) ? IRQ_RISE : IRQ_FALL; gpio_irq_event event = (sense == NRF_GPIO_PIN_SENSE_LOW) ? IRQ_RISE : IRQ_FALL;
if (m_gpio_irq_enabled & ((gpio_mask_t)1 << pin)) { if (m_gpio_irq_enabled & ((gpio_mask_t)1 << pin))
{
if (((event == IRQ_RISE) && m_gpio_cfg[pin].irq_rise) if (((event == IRQ_RISE) && m_gpio_cfg[pin].irq_rise)
|| ((event == IRQ_FALL) && m_gpio_cfg[pin].irq_fall)) { || ((event == IRQ_FALL) && m_gpio_cfg[pin].irq_fall))
m_irq_handler(m_channel_ids[pin], event); {
} m_irq_handler(m_channel_ids[pin], event);
}
} }
} }
@ -76,7 +79,8 @@ void GPIOTE_IRQHandler(void);// exported from nrf_drv_gpiote.c
void gpio_init(gpio_t *obj, PinName pin) void gpio_init(gpio_t *obj, PinName pin)
{ {
obj->pin = pin; obj->pin = pin;
if (pin == (PinName)NC) { if (pin == (PinName)NC)
{
return; return;
} }
MBED_ASSERT((uint32_t)pin < GPIO_PIN_COUNT); MBED_ASSERT((uint32_t)pin < GPIO_PIN_COUNT);
@ -92,20 +96,26 @@ void gpio_init(gpio_t *obj, PinName pin)
int gpio_read(gpio_t *obj) int gpio_read(gpio_t *obj)
{ {
MBED_ASSERT(obj->pin != (PinName)NC); MBED_ASSERT(obj->pin != (PinName)NC);
if (m_gpio_cfg[obj->pin].direction == PIN_OUTPUT) { if (m_gpio_cfg[obj->pin].direction == PIN_OUTPUT)
{
return (nrf_gpio_pin_out_read(obj->pin) ? 1 : 0); return (nrf_gpio_pin_out_read(obj->pin) ? 1 : 0);
} else { }
else
{
return nrf_gpio_pin_read(obj->pin); return nrf_gpio_pin_read(obj->pin);
} }
} }
static void gpiote_pin_uninit(uint8_t pin) static void gpiote_pin_uninit(uint8_t pin)
{ {
if (m_gpio_initialized & ((gpio_mask_t)1 << pin)) { if (m_gpio_initialized & ((gpio_mask_t)1 << pin))
if ((m_gpio_cfg[pin].direction == PIN_OUTPUT) && (!m_gpio_cfg[pin].used_as_irq)) { {
if ((m_gpio_cfg[pin].direction == PIN_OUTPUT) && (!m_gpio_cfg[pin].used_as_irq))
{
nrf_drv_gpiote_out_uninit(pin); nrf_drv_gpiote_out_uninit(pin);
} }
else { else
{
nrf_drv_gpiote_in_uninit(pin); nrf_drv_gpiote_in_uninit(pin);
} }
} }
@ -113,16 +123,19 @@ static void gpiote_pin_uninit(uint8_t pin)
static void gpio_apply_config(uint8_t pin) static void gpio_apply_config(uint8_t pin)
{ {
if (m_gpio_cfg[pin].used_as_gpio || m_gpio_cfg[pin].used_as_irq) { if (m_gpio_cfg[pin].used_as_gpio || m_gpio_cfg[pin].used_as_irq)
{
if ((m_gpio_cfg[pin].direction == PIN_INPUT) if ((m_gpio_cfg[pin].direction == PIN_INPUT)
|| (m_gpio_cfg[pin].used_as_irq)) { || (m_gpio_cfg[pin].used_as_irq))
{
//Configure as input. //Configure as input.
nrf_drv_gpiote_in_config_t cfg; nrf_drv_gpiote_in_config_t cfg;
cfg.hi_accuracy = false; cfg.hi_accuracy = false;
cfg.is_watcher = false; cfg.is_watcher = false;
cfg.sense = NRF_GPIOTE_POLARITY_TOGGLE; cfg.sense = NRF_GPIOTE_POLARITY_TOGGLE;
if (m_gpio_cfg[pin].used_as_irq) { if (m_gpio_cfg[pin].used_as_irq)
{
cfg.pull = NRF_GPIO_PIN_PULLUP; cfg.pull = NRF_GPIO_PIN_PULLUP;
nrf_drv_gpiote_in_init(pin, &cfg, gpiote_irq_handler); nrf_drv_gpiote_in_init(pin, &cfg, gpiote_irq_handler);
if ((m_gpio_irq_enabled & ((gpio_mask_t)1 << pin)) if ((m_gpio_irq_enabled & ((gpio_mask_t)1 << pin))
@ -131,8 +144,10 @@ static void gpio_apply_config(uint8_t pin)
nrf_drv_gpiote_in_event_enable(pin, true); nrf_drv_gpiote_in_event_enable(pin, true);
} }
} }
else { else
switch(m_gpio_cfg[pin].pull) { {
switch (m_gpio_cfg[pin].pull)
{
case PullUp: case PullUp:
cfg.pull = NRF_GPIO_PIN_PULLUP; cfg.pull = NRF_GPIO_PIN_PULLUP;
break; break;
@ -146,14 +161,16 @@ static void gpio_apply_config(uint8_t pin)
nrf_drv_gpiote_in_init(pin, &cfg, NULL); nrf_drv_gpiote_in_init(pin, &cfg, NULL);
} }
} }
else { else
{
// Configure as output. // Configure as output.
nrf_drv_gpiote_out_config_t cfg = GPIOTE_CONFIG_OUT_SIMPLE(m_gpio_cfg[pin].init_high); nrf_drv_gpiote_out_config_t cfg = GPIOTE_CONFIG_OUT_SIMPLE(m_gpio_cfg[pin].init_high);
nrf_drv_gpiote_out_init(pin, &cfg); nrf_drv_gpiote_out_init(pin, &cfg);
} }
m_gpio_initialized |= ((gpio_mask_t)1 << pin); m_gpio_initialized |= ((gpio_mask_t)1 << pin);
} }
else { else
{
m_gpio_initialized &= ~((gpio_mask_t)1 << pin); m_gpio_initialized &= ~((gpio_mask_t)1 << pin);
} }
} }
@ -161,7 +178,7 @@ static void gpio_apply_config(uint8_t pin)
void gpio_mode(gpio_t *obj, PinMode mode) void gpio_mode(gpio_t *obj, PinMode mode)
{ {
MBED_ASSERT(obj->pin <= GPIO_PIN_COUNT); MBED_ASSERT(obj->pin != (PinName)NC);
gpiote_pin_uninit(obj->pin); // try to uninitialize gpio before a change. gpiote_pin_uninit(obj->pin); // try to uninitialize gpio before a change.
@ -172,7 +189,7 @@ void gpio_mode(gpio_t *obj, PinMode mode)
void gpio_dir(gpio_t *obj, PinDirection direction) void gpio_dir(gpio_t *obj, PinDirection direction)
{ {
MBED_ASSERT(obj->pin <= GPIO_PIN_COUNT); MBED_ASSERT(obj->pin != (PinName)NC);
gpiote_pin_uninit(obj->pin); // try to uninitialize gpio before a change. gpiote_pin_uninit(obj->pin); // try to uninitialize gpio before a change.
@ -187,7 +204,8 @@ void gpio_dir(gpio_t *obj, PinDirection direction)
int gpio_irq_init(gpio_irq_t *obj, PinName pin, gpio_irq_handler handler, uint32_t id) int gpio_irq_init(gpio_irq_t *obj, PinName pin, gpio_irq_handler handler, uint32_t id)
{ {
if (pin == NC) { if (pin == NC)
{
return -1; return -1;
} }
MBED_ASSERT((uint32_t)pin < GPIO_PIN_COUNT); MBED_ASSERT((uint32_t)pin < GPIO_PIN_COUNT);
@ -223,19 +241,25 @@ void gpio_irq_set(gpio_irq_t *obj, gpio_irq_event event, uint32_t enable)
(m_gpio_irq_enabled & ((gpio_mask_t)1 << obj->ch)) && (m_gpio_irq_enabled & ((gpio_mask_t)1 << obj->ch)) &&
(cfg->irq_rise || cfg->irq_fall); (cfg->irq_rise || cfg->irq_fall);
if (event == IRQ_RISE) { if (event == IRQ_RISE)
{
cfg->irq_rise = enable ? true : false; cfg->irq_rise = enable ? true : false;
} }
else if (event == IRQ_FALL) { else if (event == IRQ_FALL)
{
cfg->irq_fall = enable ? true : false; cfg->irq_fall = enable ? true : false;
} }
bool irq_enabled_after = cfg->irq_rise || cfg->irq_fall; bool irq_enabled_after = cfg->irq_rise || cfg->irq_fall;
if (irq_enabled_before != irq_enabled_after) { if (irq_enabled_before != irq_enabled_after)
if (irq_enabled_after) { {
if (irq_enabled_after)
{
gpio_irq_enable(obj); gpio_irq_enable(obj);
} else { }
else
{
gpio_irq_disable(obj); gpio_irq_disable(obj);
} }
} }
@ -245,7 +269,8 @@ void gpio_irq_set(gpio_irq_t *obj, gpio_irq_event event, uint32_t enable)
void gpio_irq_enable(gpio_irq_t *obj) void gpio_irq_enable(gpio_irq_t *obj)
{ {
m_gpio_irq_enabled |= ((gpio_mask_t)1 << obj->ch); m_gpio_irq_enabled |= ((gpio_mask_t)1 << obj->ch);
if (m_gpio_cfg[obj->ch].irq_rise || m_gpio_cfg[obj->ch].irq_fall) { if (m_gpio_cfg[obj->ch].irq_rise || m_gpio_cfg[obj->ch].irq_fall)
{
nrf_drv_gpiote_in_event_enable(obj->ch, true); nrf_drv_gpiote_in_event_enable(obj->ch, true);
} }
} }

View File

@ -24,20 +24,26 @@
extern "C" { extern "C" {
#endif #endif
typedef struct { typedef struct
{
PinName pin; PinName pin;
} gpio_t; } gpio_t;
static inline void gpio_write(gpio_t *obj, int value) { static inline void gpio_write(gpio_t *obj, int value)
{
MBED_ASSERT(obj->pin != (PinName)NC); MBED_ASSERT(obj->pin != (PinName)NC);
if (value) { if (value)
{
nrf_gpio_pin_set(obj->pin); nrf_gpio_pin_set(obj->pin);
} else { }
else
{
nrf_gpio_pin_clear(obj->pin); nrf_gpio_pin_clear(obj->pin);
} }
} }
static inline int gpio_is_connected(const gpio_t *obj) { static inline int gpio_is_connected(const gpio_t *obj)
{
return obj->pin != (PinName)NC; return obj->pin != (PinName)NC;
} }

View File

@ -101,18 +101,18 @@ void SPI1_TWI1_IRQHandler(void);
static const peripheral_handler_desc_t twi_handlers[TWI_COUNT] = static const peripheral_handler_desc_t twi_handlers[TWI_COUNT] =
{ {
#if TWI0_ENABLED #if TWI0_ENABLED
{ {
SPI0_TWI0_IRQn, SPI0_TWI0_IRQn,
(uint32_t) SPI0_TWI0_IRQHandler (uint32_t) SPI0_TWI0_IRQHandler
}, },
#endif #endif
#if TWI1_ENABLED #if TWI1_ENABLED
{ {
SPI1_TWI1_IRQn, SPI1_TWI1_IRQn,
(uint32_t) SPI1_TWI1_IRQHandler (uint32_t) SPI1_TWI1_IRQHandler
} }
#endif #endif
}; };
#ifdef NRF51 #ifdef NRF51
#define TWI_IRQ_PRIORITY APP_IRQ_PRIORITY_LOW #define TWI_IRQ_PRIORITY APP_IRQ_PRIORITY_LOW
@ -124,9 +124,12 @@ static const peripheral_handler_desc_t twi_handlers[TWI_COUNT] =
#if DEVICE_I2C_ASYNCH #if DEVICE_I2C_ASYNCH
static void start_asynch_rx(twi_info_t *twi_info, NRF_TWI_Type *twi) static void start_asynch_rx(twi_info_t *twi_info, NRF_TWI_Type *twi)
{ {
if (twi_info->rx_length == 1 && twi_info->stop) { if (twi_info->rx_length == 1 && twi_info->stop)
{
nrf_twi_shorts_set(twi, NRF_TWI_SHORT_BB_STOP_MASK); nrf_twi_shorts_set(twi, NRF_TWI_SHORT_BB_STOP_MASK);
} else { }
else
{
nrf_twi_shorts_set(twi, NRF_TWI_SHORT_BB_SUSPEND_MASK); nrf_twi_shorts_set(twi, NRF_TWI_SHORT_BB_SUSPEND_MASK);
} }
nrf_twi_task_trigger(twi, NRF_TWI_TASK_STARTRX); nrf_twi_task_trigger(twi, NRF_TWI_TASK_STARTRX);
@ -137,7 +140,8 @@ static void twi_irq_handler(uint8_t instance_idx)
twi_info_t *twi_info = &m_twi_info[instance_idx]; twi_info_t *twi_info = &m_twi_info[instance_idx];
NRF_TWI_Type *twi = m_twi_instances[instance_idx]; NRF_TWI_Type *twi = m_twi_instances[instance_idx];
if (nrf_twi_event_check(twi, NRF_TWI_EVENT_ERROR)) { if (nrf_twi_event_check(twi, NRF_TWI_EVENT_ERROR))
{
nrf_twi_event_clear(twi, NRF_TWI_EVENT_ERROR); nrf_twi_event_clear(twi, NRF_TWI_EVENT_ERROR);
// In case of an error, force STOP. // In case of an error, force STOP.
@ -148,33 +152,44 @@ static void twi_irq_handler(uint8_t instance_idx)
uint32_t errorsrc = nrf_twi_errorsrc_get_and_clear(twi); uint32_t errorsrc = nrf_twi_errorsrc_get_and_clear(twi);
twi_info->events |= I2C_EVENT_ERROR; twi_info->events |= I2C_EVENT_ERROR;
if (errorsrc & NRF_TWI_ERROR_ADDRESS_NACK) { if (errorsrc & NRF_TWI_ERROR_ADDRESS_NACK)
{
twi_info->events |= I2C_EVENT_ERROR_NO_SLAVE; twi_info->events |= I2C_EVENT_ERROR_NO_SLAVE;
} }
if (errorsrc & NRF_TWI_ERROR_DATA_NACK) { if (errorsrc & NRF_TWI_ERROR_DATA_NACK)
{
twi_info->events |= I2C_EVENT_TRANSFER_EARLY_NACK; twi_info->events |= I2C_EVENT_TRANSFER_EARLY_NACK;
} }
} }
bool finished = false; bool finished = false;
if (nrf_twi_event_check(twi, NRF_TWI_EVENT_TXDSENT)) { if (nrf_twi_event_check(twi, NRF_TWI_EVENT_TXDSENT))
{
nrf_twi_event_clear(twi, NRF_TWI_EVENT_TXDSENT); nrf_twi_event_clear(twi, NRF_TWI_EVENT_TXDSENT);
MBED_ASSERT(twi_info->tx_length > 0); MBED_ASSERT(twi_info->tx_length > 0);
--(twi_info->tx_length); --(twi_info->tx_length);
// Send next byte if there is still something to be sent. // Send next byte if there is still something to be sent.
if (twi_info->tx_length > 0) { if (twi_info->tx_length > 0)
{
nrf_twi_txd_set(twi, *(twi_info->tx)); nrf_twi_txd_set(twi, *(twi_info->tx));
++(twi_info->tx); ++(twi_info->tx);
// It TX is done, start RX if requested. // It TX is done, start RX if requested.
} else if (twi_info->rx_length > 0) { }
else if (twi_info->rx_length > 0)
{
start_asynch_rx(twi_info, twi); start_asynch_rx(twi_info, twi);
// If there is nothing more to do, finalize the transfer. // If there is nothing more to do, finalize the transfer.
} else { }
if (twi_info->stop) { else
{
if (twi_info->stop)
{
nrf_twi_task_trigger(twi, NRF_TWI_TASK_STOP); nrf_twi_task_trigger(twi, NRF_TWI_TASK_STOP);
} else { }
else
{
nrf_twi_task_trigger(twi, NRF_TWI_TASK_SUSPEND); nrf_twi_task_trigger(twi, NRF_TWI_TASK_SUSPEND);
finished = true; finished = true;
} }
@ -182,7 +197,8 @@ static void twi_irq_handler(uint8_t instance_idx)
} }
} }
if (nrf_twi_event_check(twi, NRF_TWI_EVENT_RXDREADY)) { if (nrf_twi_event_check(twi, NRF_TWI_EVENT_RXDREADY))
{
nrf_twi_event_clear(twi, NRF_TWI_EVENT_RXDREADY); nrf_twi_event_clear(twi, NRF_TWI_EVENT_RXDREADY);
MBED_ASSERT(twi_info->rx_length > 0); MBED_ASSERT(twi_info->rx_length > 0);
@ -190,15 +206,19 @@ static void twi_irq_handler(uint8_t instance_idx)
++(twi_info->rx); ++(twi_info->rx);
--(twi_info->rx_length); --(twi_info->rx_length);
if (twi_info->rx_length > 0) { if (twi_info->rx_length > 0)
{
// If more bytes should be received, resume the transfer // If more bytes should be received, resume the transfer
// (in case the stop condition should be generated after the next // (in case the stop condition should be generated after the next
// byte, change the shortcuts configuration first). // byte, change the shortcuts configuration first).
if (twi_info->rx_length == 1 && twi_info->stop) { if (twi_info->rx_length == 1 && twi_info->stop)
{
nrf_twi_shorts_set(twi, NRF_TWI_SHORT_BB_STOP_MASK); nrf_twi_shorts_set(twi, NRF_TWI_SHORT_BB_STOP_MASK);
} }
nrf_twi_task_trigger(twi, NRF_TWI_TASK_RESUME); nrf_twi_task_trigger(twi, NRF_TWI_TASK_RESUME);
} else { }
else
{
// If all requested bytes were received, finalize the transfer. // If all requested bytes were received, finalize the transfer.
finished = true; finished = true;
twi_info->events |= I2C_EVENT_TRANSFER_COMPLETE; twi_info->events |= I2C_EVENT_TRANSFER_COMPLETE;
@ -208,7 +228,8 @@ static void twi_irq_handler(uint8_t instance_idx)
if (finished || if (finished ||
nrf_twi_event_check(twi, NRF_TWI_EVENT_STOPPED) || nrf_twi_event_check(twi, NRF_TWI_EVENT_STOPPED) ||
(nrf_twi_int_enable_check(twi, NRF_TWI_INT_SUSPENDED_MASK) && (nrf_twi_int_enable_check(twi, NRF_TWI_INT_SUSPENDED_MASK) &&
nrf_twi_event_check(twi, NRF_TWI_EVENT_SUSPENDED))) { nrf_twi_event_check(twi, NRF_TWI_EVENT_SUSPENDED)))
{
// There is no need to clear the STOPPED and SUSPENDED events here, // There is no need to clear the STOPPED and SUSPENDED events here,
// they will no longer generate the interrupt - see below. // they will no longer generate the interrupt - see below.
@ -217,7 +238,8 @@ static void twi_irq_handler(uint8_t instance_idx)
nrf_twi_int_disable(twi, UINT32_MAX); nrf_twi_int_disable(twi, UINT32_MAX);
twi_info->active = false; twi_info->active = false;
if (twi_info->handler) { if (twi_info->handler)
{
twi_info->handler(); twi_info->handler();
} }
} }
@ -264,13 +286,16 @@ static void twi_clear_bus(twi_info_t *twi_info)
configure_twi_pin(twi_info->pselsda, NRF_GPIO_PIN_DIR_OUTPUT); configure_twi_pin(twi_info->pselsda, NRF_GPIO_PIN_DIR_OUTPUT);
// In case SDA is low, make up to 9 cycles on SCL line to help the slave // In case SDA is low, make up to 9 cycles on SCL line to help the slave
// that pulls SDA low release it. // that pulls SDA low release it.
if (!nrf_gpio_pin_read(twi_info->pselsda)) { if (!nrf_gpio_pin_read(twi_info->pselsda))
{
nrf_gpio_pin_set(twi_info->pselscl); nrf_gpio_pin_set(twi_info->pselscl);
configure_twi_pin(twi_info->pselscl, NRF_GPIO_PIN_DIR_OUTPUT); configure_twi_pin(twi_info->pselscl, NRF_GPIO_PIN_DIR_OUTPUT);
nrf_delay_us(4); nrf_delay_us(4);
for (int i = 0; i < 9; i++) { for (int i = 0; i < 9; i++)
if (nrf_gpio_pin_read(twi_info->pselsda)) { {
if (nrf_gpio_pin_read(twi_info->pselsda))
{
break; break;
} }
nrf_gpio_pin_clear(twi_info->pselscl); nrf_gpio_pin_clear(twi_info->pselscl);
@ -289,10 +314,13 @@ static void twi_clear_bus(twi_info_t *twi_info)
void i2c_init(i2c_t *obj, PinName sda, PinName scl) void i2c_init(i2c_t *obj, PinName sda, PinName scl)
{ {
int i; int i;
for (i = 0; i < TWI_COUNT; ++i) {
for (i = 0; i < TWI_COUNT; ++i)
{
if (m_twi_info[i].initialized && if (m_twi_info[i].initialized &&
m_twi_info[i].pselsda == (uint32_t)sda && m_twi_info[i].pselsda == (uint32_t)sda &&
m_twi_info[i].pselscl == (uint32_t)scl) { m_twi_info[i].pselscl == (uint32_t)scl)
{
TWI_IDX(obj) = i; TWI_IDX(obj) = i;
TWI_INFO(obj)->frequency = NRF_TWI_FREQ_100K; TWI_INFO(obj)->frequency = NRF_TWI_FREQ_100K;
i2c_reset(obj); i2c_reset(obj);
@ -300,8 +328,10 @@ void i2c_init(i2c_t *obj, PinName sda, PinName scl)
} }
} }
for (i = 0; i < TWI_COUNT; ++i) { for (i = 0; i < TWI_COUNT; ++i)
if (!m_twi_info[i].initialized) { {
if (!m_twi_info[i].initialized)
{
TWI_IDX(obj) = i; TWI_IDX(obj) = i;
twi_info_t *twi_info = TWI_INFO(obj); twi_info_t *twi_info = TWI_INFO(obj);
@ -350,7 +380,8 @@ int i2c_start(i2c_t *obj)
{ {
twi_info_t *twi_info = TWI_INFO(obj); twi_info_t *twi_info = TWI_INFO(obj);
#if DEVICE_I2C_ASYNCH #if DEVICE_I2C_ASYNCH
if (twi_info->active) { if (twi_info->active)
{
return I2C_ERROR_BUS_BUSY; return I2C_ERROR_BUS_BUSY;
} }
#endif #endif
@ -368,11 +399,15 @@ int i2c_stop(i2c_t *obj)
nrf_twi_task_trigger(twi, NRF_TWI_TASK_RESUME); nrf_twi_task_trigger(twi, NRF_TWI_TASK_RESUME);
nrf_twi_task_trigger(twi, NRF_TWI_TASK_STOP); nrf_twi_task_trigger(twi, NRF_TWI_TASK_STOP);
uint32_t remaining_time = TIMEOUT_VALUE; uint32_t remaining_time = TIMEOUT_VALUE;
do {
if (nrf_twi_event_check(twi, NRF_TWI_EVENT_STOPPED)) { do
{
if (nrf_twi_event_check(twi, NRF_TWI_EVENT_STOPPED))
{
return 0; return 0;
} }
} while (--remaining_time); }
while (--remaining_time);
return 1; return 1;
} }
@ -382,11 +417,16 @@ void i2c_frequency(i2c_t *obj, int hz)
twi_info_t *twi_info = TWI_INFO(obj); twi_info_t *twi_info = TWI_INFO(obj);
NRF_TWI_Type *twi = m_twi_instances[TWI_IDX(obj)]; NRF_TWI_Type *twi = m_twi_instances[TWI_IDX(obj)];
if (hz < 250000) { if (hz < 250000)
{
twi_info->frequency = NRF_TWI_FREQ_100K; twi_info->frequency = NRF_TWI_FREQ_100K;
} else if (hz < 400000) { }
else if (hz < 400000)
{
twi_info->frequency = NRF_TWI_FREQ_250K; twi_info->frequency = NRF_TWI_FREQ_250K;
} else { }
else
{
twi_info->frequency = NRF_TWI_FREQ_400K; twi_info->frequency = NRF_TWI_FREQ_400K;
} }
nrf_twi_frequency_set(twi, twi_info->frequency); nrf_twi_frequency_set(twi, twi_info->frequency);
@ -422,7 +462,8 @@ int i2c_read(i2c_t *obj, int address, char *data, int length, int stop)
twi_info_t *twi_info = TWI_INFO(obj); twi_info_t *twi_info = TWI_INFO(obj);
#if DEVICE_I2C_ASYNCH #if DEVICE_I2C_ASYNCH
if (twi_info->active) { if (twi_info->active)
{
return I2C_ERROR_BUS_BUSY; return I2C_ERROR_BUS_BUSY;
} }
#endif #endif
@ -432,9 +473,12 @@ int i2c_read(i2c_t *obj, int address, char *data, int length, int stop)
start_twi_read(twi, address); start_twi_read(twi, address);
int result = length; int result = length;
while (length > 0) {
while (length > 0)
{
int byte_read_result = i2c_byte_read(obj, (stop && length == 1)); int byte_read_result = i2c_byte_read(obj, (stop && length == 1));
if (byte_read_result < 0) { if (byte_read_result < 0)
{
// When an error occurs, return the number of bytes that have been // When an error occurs, return the number of bytes that have been
// received successfully. // received successfully.
result -= length; result -= length;
@ -446,7 +490,8 @@ int i2c_read(i2c_t *obj, int address, char *data, int length, int stop)
--length; --length;
} }
if (stop) { if (stop)
{
(void)i2c_stop(obj); (void)i2c_stop(obj);
} }
@ -460,16 +505,21 @@ static uint8_t twi_byte_write(NRF_TWI_Type *twi, uint8_t data)
nrf_twi_txd_set(twi, data); nrf_twi_txd_set(twi, data);
uint32_t remaining_time = TIMEOUT_VALUE; uint32_t remaining_time = TIMEOUT_VALUE;
do {
if (nrf_twi_event_check(twi, NRF_TWI_EVENT_TXDSENT)) { do
{
if (nrf_twi_event_check(twi, NRF_TWI_EVENT_TXDSENT))
{
nrf_twi_event_clear(twi, NRF_TWI_EVENT_TXDSENT); nrf_twi_event_clear(twi, NRF_TWI_EVENT_TXDSENT);
return 1; // ACK received return 1; // ACK received
} }
if (nrf_twi_event_check(twi, NRF_TWI_EVENT_ERROR)) { if (nrf_twi_event_check(twi, NRF_TWI_EVENT_ERROR))
{
nrf_twi_event_clear(twi, NRF_TWI_EVENT_ERROR); nrf_twi_event_clear(twi, NRF_TWI_EVENT_ERROR);
return 0; // some error occurred return 0; // some error occurred
} }
} while (--remaining_time); }
while (--remaining_time);
return 2; // timeout; return 2; // timeout;
} }
@ -492,7 +542,8 @@ int i2c_write(i2c_t *obj, int address, const char *data, int length, int stop)
{ {
twi_info_t *twi_info = TWI_INFO(obj); twi_info_t *twi_info = TWI_INFO(obj);
#if DEVICE_I2C_ASYNCH #if DEVICE_I2C_ASYNCH
if (twi_info->active) { if (twi_info->active)
{
return I2C_ERROR_BUS_BUSY; return I2C_ERROR_BUS_BUSY;
} }
#endif #endif
@ -503,26 +554,36 @@ int i2c_write(i2c_t *obj, int address, const char *data, int length, int stop)
// Special case - transaction with no data. // Special case - transaction with no data.
// It can be used to check if a slave acknowledges the address. // It can be used to check if a slave acknowledges the address.
if (length == 0) { if (length == 0)
{
nrf_twi_event_t event; nrf_twi_event_t event;
if (stop) { if (stop)
{
event = NRF_TWI_EVENT_STOPPED; event = NRF_TWI_EVENT_STOPPED;
nrf_twi_task_trigger(twi, NRF_TWI_TASK_STOP); nrf_twi_task_trigger(twi, NRF_TWI_TASK_STOP);
} else { }
else
{
event = NRF_TWI_EVENT_SUSPENDED; event = NRF_TWI_EVENT_SUSPENDED;
nrf_twi_event_clear(twi, event); nrf_twi_event_clear(twi, event);
nrf_twi_task_trigger(twi, NRF_TWI_TASK_SUSPEND); nrf_twi_task_trigger(twi, NRF_TWI_TASK_SUSPEND);
} }
uint32_t remaining_time = TIMEOUT_VALUE; uint32_t remaining_time = TIMEOUT_VALUE;
do {
if (nrf_twi_event_check(twi, event)) { do
{
if (nrf_twi_event_check(twi, event))
{
break; break;
} }
} while (--remaining_time); }
while (--remaining_time);
uint32_t errorsrc = nrf_twi_errorsrc_get_and_clear(twi); uint32_t errorsrc = nrf_twi_errorsrc_get_and_clear(twi);
if (errorsrc & NRF_TWI_ERROR_ADDRESS_NACK) { if (errorsrc & NRF_TWI_ERROR_ADDRESS_NACK)
if (!stop) { {
if (!stop)
{
i2c_stop(obj); i2c_stop(obj);
} }
return I2C_ERROR_NO_SLAVE; return I2C_ERROR_NO_SLAVE;
@ -532,20 +593,29 @@ int i2c_write(i2c_t *obj, int address, const char *data, int length, int stop)
} }
int result = length; int result = length;
do {
do
{
uint8_t byte_write_result = twi_byte_write(twi, (uint8_t)*data++); uint8_t byte_write_result = twi_byte_write(twi, (uint8_t)*data++);
if (byte_write_result != 1) { if (byte_write_result != 1)
if (byte_write_result == 0) { {
if (byte_write_result == 0)
{
// Check what kind of error has been signaled by TWI. // Check what kind of error has been signaled by TWI.
uint32_t errorsrc = nrf_twi_errorsrc_get_and_clear(twi); uint32_t errorsrc = nrf_twi_errorsrc_get_and_clear(twi);
if (errorsrc & NRF_TWI_ERROR_ADDRESS_NACK) { if (errorsrc & NRF_TWI_ERROR_ADDRESS_NACK)
{
result = I2C_ERROR_NO_SLAVE; result = I2C_ERROR_NO_SLAVE;
} else { }
else
{
// Some other error - return the number of bytes that // Some other error - return the number of bytes that
// have been sent successfully. // have been sent successfully.
result -= length; result -= length;
} }
} else { }
else
{
result = I2C_ERROR_BUS_BUSY; result = I2C_ERROR_BUS_BUSY;
} }
// Force STOP condition. // Force STOP condition.
@ -553,9 +623,11 @@ int i2c_write(i2c_t *obj, int address, const char *data, int length, int stop)
break; break;
} }
--length; --length;
} while (length > 0); }
while (length > 0);
if (stop) { if (stop)
{
(void)i2c_stop(obj); (void)i2c_stop(obj);
} }
@ -566,22 +638,28 @@ int i2c_byte_read(i2c_t *obj, int last)
{ {
NRF_TWI_Type *twi = m_twi_instances[TWI_IDX(obj)]; NRF_TWI_Type *twi = m_twi_instances[TWI_IDX(obj)];
if (last) { if (last)
{
nrf_twi_shorts_set(twi, NRF_TWI_SHORT_BB_STOP_MASK); nrf_twi_shorts_set(twi, NRF_TWI_SHORT_BB_STOP_MASK);
} }
nrf_twi_task_trigger(twi, NRF_TWI_TASK_RESUME); nrf_twi_task_trigger(twi, NRF_TWI_TASK_RESUME);
uint32_t remaining_time = TIMEOUT_VALUE; uint32_t remaining_time = TIMEOUT_VALUE;
do {
if (nrf_twi_event_check(twi, NRF_TWI_EVENT_RXDREADY)) { do
{
if (nrf_twi_event_check(twi, NRF_TWI_EVENT_RXDREADY))
{
nrf_twi_event_clear(twi, NRF_TWI_EVENT_RXDREADY); nrf_twi_event_clear(twi, NRF_TWI_EVENT_RXDREADY);
return nrf_twi_rxd_get(twi); return nrf_twi_rxd_get(twi);
} }
if (nrf_twi_event_check(twi, NRF_TWI_EVENT_ERROR)) { if (nrf_twi_event_check(twi, NRF_TWI_EVENT_ERROR))
{
nrf_twi_event_clear(twi, NRF_TWI_EVENT_ERROR); nrf_twi_event_clear(twi, NRF_TWI_EVENT_ERROR);
return I2C_ERROR_NO_SLAVE; return I2C_ERROR_NO_SLAVE;
} }
} while (--remaining_time); }
while (--remaining_time);
return I2C_ERROR_BUS_BUSY; return I2C_ERROR_BUS_BUSY;
} }
@ -590,16 +668,22 @@ int i2c_byte_write(i2c_t *obj, int data)
{ {
NRF_TWI_Type *twi = m_twi_instances[TWI_IDX(obj)]; NRF_TWI_Type *twi = m_twi_instances[TWI_IDX(obj)];
twi_info_t *twi_info = TWI_INFO(obj); twi_info_t *twi_info = TWI_INFO(obj);
if (twi_info->start_twi) { if (twi_info->start_twi)
{
twi_info->start_twi = false; twi_info->start_twi = false;
if (data & 1) { if (data & 1)
{
start_twi_read(twi, data); start_twi_read(twi, data);
} else { }
else
{
start_twi_write(twi, data); start_twi_write(twi, data);
} }
return 1; return 1;
} else { }
else
{
nrf_twi_task_trigger(twi, NRF_TWI_TASK_RESUME); nrf_twi_task_trigger(twi, NRF_TWI_TASK_RESUME);
// 0 - TWI signaled error (NAK is the only possibility here) // 0 - TWI signaled error (NAK is the only possibility here)
// 1 - ACK received // 1 - ACK received
@ -618,7 +702,8 @@ void i2c_transfer_asynch(i2c_t *obj, const void *tx, size_t tx_length,
(void)hint; (void)hint;
twi_info_t *twi_info = TWI_INFO(obj); twi_info_t *twi_info = TWI_INFO(obj);
if (twi_info->active) { if (twi_info->active)
{
return; return;
} }
twi_info->active = true; twi_info->active = true;
@ -643,21 +728,29 @@ void i2c_transfer_asynch(i2c_t *obj, const void *tx, size_t tx_length,
nrf_twi_address_set(twi, twi_address(address)); nrf_twi_address_set(twi, twi_address(address));
nrf_twi_task_trigger(twi, NRF_TWI_TASK_RESUME); nrf_twi_task_trigger(twi, NRF_TWI_TASK_RESUME);
// TX only, or TX + RX (after a repeated start). // TX only, or TX + RX (after a repeated start).
if (tx_length > 0) { if (tx_length > 0)
{
nrf_twi_task_trigger(twi, NRF_TWI_TASK_STARTTX); nrf_twi_task_trigger(twi, NRF_TWI_TASK_STARTTX);
nrf_twi_txd_set(twi, *(twi_info->tx)); nrf_twi_txd_set(twi, *(twi_info->tx));
++(twi_info->tx); ++(twi_info->tx);
// RX only. // RX only.
} else if (rx_length > 0) { }
else if (rx_length > 0)
{
start_asynch_rx(twi_info, twi); start_asynch_rx(twi_info, twi);
// Both 'tx_length' and 'rx_length' are 0 - this case may be used // Both 'tx_length' and 'rx_length' are 0 - this case may be used
// to test if the slave is presentand ready for transfer (by just // to test if the slave is presentand ready for transfer (by just
// sending the address and checking if it is acknowledged). // sending the address and checking if it is acknowledged).
} else { }
else
{
nrf_twi_task_trigger(twi, NRF_TWI_TASK_STARTTX); nrf_twi_task_trigger(twi, NRF_TWI_TASK_STARTTX);
if (stop) { if (stop)
{
nrf_twi_task_trigger(twi, NRF_TWI_TASK_STOP); nrf_twi_task_trigger(twi, NRF_TWI_TASK_STOP);
} else { }
else
{
nrf_twi_task_trigger(twi, NRF_TWI_TASK_SUSPEND); nrf_twi_task_trigger(twi, NRF_TWI_TASK_SUSPEND);
nrf_twi_int_enable(twi, NRF_TWI_INT_SUSPENDED_MASK); nrf_twi_int_enable(twi, NRF_TWI_INT_SUSPENDED_MASK);
} }

View File

@ -28,7 +28,8 @@ static volatile uint32_t _entry_count = 0;
void core_util_critical_section_enter() void core_util_critical_section_enter()
{ {
// if a critical section has already been entered, just update the counter // if a critical section has already been entered, just update the counter
if (_entry_count) { if (_entry_count)
{
++_entry_count; ++_entry_count;
return; return;
} }
@ -47,7 +48,8 @@ void core_util_critical_section_exit()
--_entry_count; --_entry_count;
// If their is other segments which have entered the critical section, just leave // If their is other segments which have entered the critical section, just leave
if (_entry_count) { if (_entry_count)
{
return; return;
} }

View File

@ -48,36 +48,43 @@
extern "C" { extern "C" {
#endif #endif
struct serial_s { struct serial_s
{
uint32_t placeholder; // struct is unused by nRF5x API implementation uint32_t placeholder; // struct is unused by nRF5x API implementation
}; // but it must be not empty (required by strict compiler - IAR) }; // but it must be not empty (required by strict compiler - IAR)
struct spi_s { struct spi_s
{
uint8_t spi_idx; uint8_t spi_idx;
}; };
struct port_s { struct port_s
{
PortName port; PortName port;
uint32_t mask; uint32_t mask;
}; };
struct pwmout_s { struct pwmout_s
{
PWMName pwm_name; PWMName pwm_name;
PinName pin; PinName pin;
uint8_t pwm_channel; uint8_t pwm_channel;
void * pwm_struct; void * pwm_struct;
}; };
struct i2c_s { struct i2c_s
{
uint8_t twi_idx; uint8_t twi_idx;
}; };
struct analogin_s { struct analogin_s
{
ADCName adc; ADCName adc;
uint8_t adc_pin; uint8_t adc_pin;
}; };
struct gpio_irq_s { struct gpio_irq_s
{
uint32_t ch; uint32_t ch;
}; };

View File

@ -38,10 +38,21 @@
#include "port_api.h" #include "port_api.h"
#include "pinmap.h" #include "pinmap.h"
#include "gpio_api.h"
static NRF_GPIO_Type * const m_ports[] = GPIO_REG_LIST; static NRF_GPIO_Type * const m_ports[] = GPIO_REG_LIST;
#if defined(TARGET_MCU_NRF51822)
static const uint32_t m_gpio_pin_count[] = {31};
#elif defined(TARGET_MCU_NRF52832)
static const uint32_t m_gpio_pin_count[] = {32};
#elif defined(TARGET_MCU_NRF52840)
static const uint32_t m_gpio_pin_count[] = {32, 16};
#else
#error not recognized gpio count for mcu
#endif
#define GPIO_PORT_COUNT (sizeof(m_gpio_pin_count)/sizeof(uint32_t))
PinName port_pin(PortName port, int pin_n) PinName port_pin(PortName port, int pin_n)
{ {
@ -50,6 +61,8 @@ PinName port_pin(PortName port, int pin_n)
void port_init(port_t *obj, PortName port, int mask, PinDirection dir) void port_init(port_t *obj, PortName port, int mask, PinDirection dir)
{ {
MBED_ASSERT((uint32_t)port < GPIO_PORT_COUNT);
obj->port = port; obj->port = port;
obj->mask = mask; obj->mask = mask;
@ -60,8 +73,10 @@ void port_mode(port_t *obj, PinMode mode)
{ {
uint32_t i; uint32_t i;
// The mode is set per pin: reuse pinmap logic // The mode is set per pin: reuse pinmap logic
for (i = 0; i<31; i++) { for (i = 0; i < m_gpio_pin_count[obj->port]; i++)
if (obj->mask & (1 << i)) { {
if (obj->mask & (1 << i))
{
pin_mode(port_pin(obj->port, i), mode); pin_mode(port_pin(obj->port, i), mode);
} }
} }
@ -72,29 +87,37 @@ void port_dir(port_t *obj, PinDirection dir)
int i; int i;
volatile uint32_t *reg_cnf = (volatile uint32_t*) m_ports[obj->port]->PIN_CNF; volatile uint32_t *reg_cnf = (volatile uint32_t*) m_ports[obj->port]->PIN_CNF;
switch (dir) { switch (dir)
case PIN_INPUT: {
for (i = 0; i<31; i++) { case PIN_INPUT:
if (obj->mask & (1 << i)) {
reg_cnf[i] = (GPIO_PIN_CNF_SENSE_Disabled << GPIO_PIN_CNF_SENSE_Pos) for (i = 0; i < m_gpio_pin_count[obj->port]; i++)
| (GPIO_PIN_CNF_DRIVE_S0S1 << GPIO_PIN_CNF_DRIVE_Pos) {
| (GPIO_PIN_CNF_INPUT_Connect << GPIO_PIN_CNF_INPUT_Pos) if (obj->mask & (1 << i))
| (GPIO_PIN_CNF_DIR_Input << GPIO_PIN_CNF_DIR_Pos); {
reg_cnf[i] = (GPIO_PIN_CNF_SENSE_Disabled << GPIO_PIN_CNF_SENSE_Pos)
| (GPIO_PIN_CNF_DRIVE_S0S1 << GPIO_PIN_CNF_DRIVE_Pos)
| (GPIO_PIN_CNF_INPUT_Connect << GPIO_PIN_CNF_INPUT_Pos)
| (GPIO_PIN_CNF_DIR_Input << GPIO_PIN_CNF_DIR_Pos);
}
} }
} break;
break;
case PIN_OUTPUT: case PIN_OUTPUT:
for (i = 0; i<31; i++) {
if (obj->mask & (1 << i)) { for (i = 0; i < m_gpio_pin_count[obj->port]; i++)
reg_cnf[i] = (GPIO_PIN_CNF_SENSE_Disabled << GPIO_PIN_CNF_SENSE_Pos) {
| (GPIO_PIN_CNF_DRIVE_S0S1 << GPIO_PIN_CNF_DRIVE_Pos) if (obj->mask & (1 << i))
| (GPIO_PIN_CNF_PULL_Disabled << GPIO_PIN_CNF_PULL_Pos) {
| (GPIO_PIN_CNF_INPUT_Connect << GPIO_PIN_CNF_INPUT_Pos) reg_cnf[i] = (GPIO_PIN_CNF_SENSE_Disabled << GPIO_PIN_CNF_SENSE_Pos)
| (GPIO_PIN_CNF_DIR_Output << GPIO_PIN_CNF_DIR_Pos); | (GPIO_PIN_CNF_DRIVE_S0S1 << GPIO_PIN_CNF_DRIVE_Pos)
| (GPIO_PIN_CNF_PULL_Disabled << GPIO_PIN_CNF_PULL_Pos)
| (GPIO_PIN_CNF_INPUT_Connect << GPIO_PIN_CNF_INPUT_Pos)
| (GPIO_PIN_CNF_DIR_Output << GPIO_PIN_CNF_DIR_Pos);
}
} }
} break;
break;
} }
} }

View File

@ -66,11 +66,13 @@ extern uint32_t __Vectors[];
void nrf_reloc_vector_table(void) void nrf_reloc_vector_table(void)
{ {
// Copy and switch to dynamic vectors // Copy and switch to dynamic vectors
uint32_t *old_vectors = (uint32_t*)VECTORS_FLASH_START; uint32_t *old_vectors = (uint32_t*)VECTORS_FLASH_START;
uint32_t i; uint32_t i;
for (i = 0; i< NVIC_NUM_VECTORS; i++) {
nrf_dispatch_vector[i] = old_vectors[i]; for (i = 0; i< NVIC_NUM_VECTORS; i++)
} {
nrf_dispatch_vector[i] = old_vectors[i];
}
sd_softdevice_vector_table_base_set((uint32_t) nrf_dispatch_vector); sd_softdevice_vector_table_base_set((uint32_t) nrf_dispatch_vector);
} }

View File

@ -80,7 +80,9 @@ time_t rtc_read(void)
void rtc_write(time_t t) void rtc_write(time_t t)
{ {
uint32_t seconds; uint32_t seconds;
do {
do
{
seconds = rtc_seconds_get(); seconds = rtc_seconds_get();
m_time_base = t - seconds; m_time_base = t - seconds;
// If the number of seconds indicated by the counter changed during the // If the number of seconds indicated by the counter changed during the

View File

@ -83,39 +83,40 @@
int stdio_uart_inited = 0; int stdio_uart_inited = 0;
serial_t stdio_uart; serial_t stdio_uart;
typedef struct { typedef struct
bool initialized; {
uint32_t irq_context; bool initialized;
uart_irq_handler irq_handler; uint32_t irq_context;
uart_irq_handler irq_handler;
uint32_t pselrxd; uint32_t pselrxd;
uint32_t pseltxd; uint32_t pseltxd;
uint32_t pselcts; uint32_t pselcts;
uint32_t pselrts; uint32_t pselrts;
nrf_uart_hwfc_t hwfc; nrf_uart_hwfc_t hwfc;
nrf_uart_parity_t parity; nrf_uart_parity_t parity;
nrf_uart_baudrate_t baudrate; nrf_uart_baudrate_t baudrate;
#if DEVICE_SERIAL_ASYNCH #if DEVICE_SERIAL_ASYNCH
bool volatile rx_active; bool volatile rx_active;
uint8_t *rx_buffer; uint8_t *rx_buffer;
size_t rx_length; size_t rx_length;
size_t rx_pos; size_t rx_pos;
void (*rx_asynch_handler)(); void (*rx_asynch_handler)();
uint8_t char_match; uint8_t char_match;
bool volatile tx_active; bool volatile tx_active;
const uint8_t *tx_buffer; const uint8_t *tx_buffer;
size_t tx_length; size_t tx_length;
size_t tx_pos; size_t tx_pos;
void (*tx_asynch_handler)(); void (*tx_asynch_handler)();
uint32_t events_wanted; uint32_t events_wanted;
uint32_t events_occured; uint32_t events_occured;
#define UART_IRQ_TX 1 #define UART_IRQ_TX 1
#define UART_IRQ_RX 2 #define UART_IRQ_RX 2
uint8_t irq_enabled; uint8_t irq_enabled;
#endif // DEVICE_SERIAL_ASYNCH #endif // DEVICE_SERIAL_ASYNCH
} uart_ctlblock_t; } uart_ctlblock_t;
@ -130,7 +131,8 @@ static void end_asynch_rx(void)
{ {
// If RX interrupt is activated for synchronous operations, // If RX interrupt is activated for synchronous operations,
// don't disable it, just stop handling it here. // don't disable it, just stop handling it here.
if (!(UART_CB.irq_enabled & UART_IRQ_RX)) { if (!(UART_CB.irq_enabled & UART_IRQ_RX))
{
nrf_uart_int_disable(UART_INSTANCE, NRF_UART_INT_MASK_RXDRDY); nrf_uart_int_disable(UART_INSTANCE, NRF_UART_INT_MASK_RXDRDY);
} }
UART_CB.rx_active = false; UART_CB.rx_active = false;
@ -139,7 +141,8 @@ static void end_asynch_tx(void)
{ {
// If TX interrupt is activated for synchronous operations, // If TX interrupt is activated for synchronous operations,
// don't disable it, just stop handling it here. // don't disable it, just stop handling it here.
if (!(UART_CB.irq_enabled & UART_IRQ_TX)) { if (!(UART_CB.irq_enabled & UART_IRQ_TX))
{
nrf_uart_int_disable(UART_INSTANCE, NRF_UART_INT_MASK_TXDRDY); nrf_uart_int_disable(UART_INSTANCE, NRF_UART_INT_MASK_TXDRDY);
} }
UART_CB.tx_active = false; UART_CB.tx_active = false;
@ -149,10 +152,12 @@ static void end_asynch_tx(void)
void UART_IRQ_HANDLER(void) void UART_IRQ_HANDLER(void)
{ {
if (nrf_uart_int_enable_check(UART_INSTANCE, NRF_UART_INT_MASK_RXDRDY) && if (nrf_uart_int_enable_check(UART_INSTANCE, NRF_UART_INT_MASK_RXDRDY) &&
nrf_uart_event_check(UART_INSTANCE, NRF_UART_EVENT_RXDRDY)) { nrf_uart_event_check(UART_INSTANCE, NRF_UART_EVENT_RXDRDY))
{
#if DEVICE_SERIAL_ASYNCH #if DEVICE_SERIAL_ASYNCH
if (UART_CB.rx_active) { if (UART_CB.rx_active)
{
nrf_uart_event_clear(UART_INSTANCE, NRF_UART_EVENT_RXDRDY); nrf_uart_event_clear(UART_INSTANCE, NRF_UART_EVENT_RXDRDY);
uint8_t rx_data = nrf_uart_rxd_get(UART_INSTANCE); uint8_t rx_data = nrf_uart_rxd_get(UART_INSTANCE);
@ -162,21 +167,26 @@ void UART_IRQ_HANDLER(void)
// If character matching should be performed, check if the current // If character matching should be performed, check if the current
// data matches the given one. // data matches the given one.
if (UART_CB.char_match != SERIAL_RESERVED_CHAR_MATCH && if (UART_CB.char_match != SERIAL_RESERVED_CHAR_MATCH &&
rx_data == UART_CB.char_match) { rx_data == UART_CB.char_match)
{
// If it does, report the match and abort further receiving. // If it does, report the match and abort further receiving.
UART_CB.events_occured |= SERIAL_EVENT_RX_CHARACTER_MATCH; UART_CB.events_occured |= SERIAL_EVENT_RX_CHARACTER_MATCH;
if (UART_CB.events_wanted & SERIAL_EVENT_RX_CHARACTER_MATCH) { if (UART_CB.events_wanted & SERIAL_EVENT_RX_CHARACTER_MATCH)
{
end_rx = true; end_rx = true;
} }
} }
if (++UART_CB.rx_pos >= UART_CB.rx_length) { if (++UART_CB.rx_pos >= UART_CB.rx_length)
{
UART_CB.events_occured |= SERIAL_EVENT_RX_COMPLETE; UART_CB.events_occured |= SERIAL_EVENT_RX_COMPLETE;
end_rx = true; end_rx = true;
} }
if (end_rx) { if (end_rx)
{
end_asynch_rx(); end_asynch_rx();
if (UART_CB.rx_asynch_handler) { if (UART_CB.rx_asynch_handler)
{
// Use local variable to make it possible to start a next // Use local variable to make it possible to start a next
// transfer from callback routine. // transfer from callback routine.
void (*handler)() = UART_CB.rx_asynch_handler; void (*handler)() = UART_CB.rx_asynch_handler;
@ -186,26 +196,31 @@ void UART_IRQ_HANDLER(void)
} }
} }
else else
#endif #endif
if (UART_CB.irq_handler) { if (UART_CB.irq_handler)
{
UART_CB.irq_handler(UART_CB.irq_context, RxIrq); UART_CB.irq_handler(UART_CB.irq_context, RxIrq);
} }
} }
if (nrf_uart_int_enable_check(UART_INSTANCE, NRF_UART_INT_MASK_TXDRDY) && if (nrf_uart_int_enable_check(UART_INSTANCE, NRF_UART_INT_MASK_TXDRDY) &&
nrf_uart_event_check(UART_INSTANCE, NRF_UART_EVENT_TXDRDY)) { nrf_uart_event_check(UART_INSTANCE, NRF_UART_EVENT_TXDRDY))
{
#if DEVICE_SERIAL_ASYNCH #if DEVICE_SERIAL_ASYNCH
if (UART_CB.tx_active) { if (UART_CB.tx_active)
if (++UART_CB.tx_pos <= UART_CB.tx_length) { {
if (++UART_CB.tx_pos <= UART_CB.tx_length)
{
// When there is still something to send, clear the TXDRDY event // When there is still something to send, clear the TXDRDY event
// and put next byte to transmitter. // and put next byte to transmitter.
nrf_uart_event_clear(UART_INSTANCE, NRF_UART_EVENT_TXDRDY); nrf_uart_event_clear(UART_INSTANCE, NRF_UART_EVENT_TXDRDY);
nrf_uart_txd_set(UART_INSTANCE, nrf_uart_txd_set(UART_INSTANCE,
UART_CB.tx_buffer[UART_CB.tx_pos]); UART_CB.tx_buffer[UART_CB.tx_pos]);
} }
else { else
{
// When the TXDRDY event is set after the last byte to be sent // When the TXDRDY event is set after the last byte to be sent
// has been passed to the transmitter, the job is done and TX // has been passed to the transmitter, the job is done and TX
// complete can be indicated. // complete can be indicated.
@ -214,7 +229,8 @@ void UART_IRQ_HANDLER(void)
end_asynch_tx(); end_asynch_tx();
UART_CB.events_occured |= SERIAL_EVENT_TX_COMPLETE; UART_CB.events_occured |= SERIAL_EVENT_TX_COMPLETE;
if (UART_CB.tx_asynch_handler) { if (UART_CB.tx_asynch_handler)
{
// Use local variable to make it possible to start a next // Use local variable to make it possible to start a next
// transfer from callback routine. // transfer from callback routine.
void (*handler)() = UART_CB.tx_asynch_handler; void (*handler)() = UART_CB.tx_asynch_handler;
@ -224,27 +240,33 @@ void UART_IRQ_HANDLER(void)
} }
} }
else else
#endif #endif
if (UART_CB.irq_handler) { if (UART_CB.irq_handler)
{
UART_CB.irq_handler(UART_CB.irq_context, TxIrq); UART_CB.irq_handler(UART_CB.irq_context, TxIrq);
} }
} }
#if DEVICE_SERIAL_ASYNCH #if DEVICE_SERIAL_ASYNCH
if (nrf_uart_event_check(UART_INSTANCE, NRF_UART_EVENT_ERROR)) { if (nrf_uart_event_check(UART_INSTANCE, NRF_UART_EVENT_ERROR))
{
nrf_uart_event_clear(UART_INSTANCE, NRF_UART_EVENT_ERROR); nrf_uart_event_clear(UART_INSTANCE, NRF_UART_EVENT_ERROR);
uint8_t errorsrc = nrf_uart_errorsrc_get_and_clear(UART_INSTANCE); uint8_t errorsrc = nrf_uart_errorsrc_get_and_clear(UART_INSTANCE);
if (UART_CB.rx_asynch_handler) { if (UART_CB.rx_asynch_handler)
{
UART_CB.events_occured |= SERIAL_EVENT_ERROR; UART_CB.events_occured |= SERIAL_EVENT_ERROR;
if (errorsrc & NRF_UART_ERROR_PARITY_MASK) { if (errorsrc & NRF_UART_ERROR_PARITY_MASK)
{
UART_CB.events_occured |= SERIAL_EVENT_RX_PARITY_ERROR; UART_CB.events_occured |= SERIAL_EVENT_RX_PARITY_ERROR;
} }
if (errorsrc & NRF_UART_ERROR_FRAMING_MASK) { if (errorsrc & NRF_UART_ERROR_FRAMING_MASK)
{
UART_CB.events_occured |= SERIAL_EVENT_RX_FRAMING_ERROR; UART_CB.events_occured |= SERIAL_EVENT_RX_FRAMING_ERROR;
} }
if (errorsrc & NRF_UART_ERROR_OVERRUN_MASK) { if (errorsrc & NRF_UART_ERROR_OVERRUN_MASK)
{
UART_CB.events_occured |= SERIAL_EVENT_RX_OVERRUN_ERROR; UART_CB.events_occured |= SERIAL_EVENT_RX_OVERRUN_ERROR;
} }
UART_CB.rx_asynch_handler(); UART_CB.rx_asynch_handler();
@ -253,7 +275,9 @@ void UART_IRQ_HANDLER(void)
#endif // DEVICE_SERIAL_ASYNCH #endif // DEVICE_SERIAL_ASYNCH
} }
void serial_init(serial_t *obj, PinName tx, PinName rx) {
void serial_init(serial_t *obj, PinName tx, PinName rx)
{
NVIC_SetVector(UART0_IRQn, (uint32_t) UART0_IRQHandler); NVIC_SetVector(UART0_IRQn, (uint32_t) UART0_IRQHandler);
@ -262,27 +286,32 @@ void serial_init(serial_t *obj, PinName tx, PinName rx) {
(tx == NC) ? NRF_UART_PSEL_DISCONNECTED : (uint32_t)tx; (tx == NC) ? NRF_UART_PSEL_DISCONNECTED : (uint32_t)tx;
UART_CB.pselrxd = UART_CB.pselrxd =
(rx == NC) ? NRF_UART_PSEL_DISCONNECTED : (uint32_t)rx; (rx == NC) ? NRF_UART_PSEL_DISCONNECTED : (uint32_t)rx;
if (UART_CB.pseltxd != NRF_UART_PSEL_DISCONNECTED) { if (UART_CB.pseltxd != NRF_UART_PSEL_DISCONNECTED)
{
nrf_gpio_pin_set(UART_CB.pseltxd); nrf_gpio_pin_set(UART_CB.pseltxd);
nrf_gpio_cfg_output(UART_CB.pseltxd); nrf_gpio_cfg_output(UART_CB.pseltxd);
} }
if (UART_CB.pselrxd != NRF_UART_PSEL_DISCONNECTED) { if (UART_CB.pselrxd != NRF_UART_PSEL_DISCONNECTED)
{
nrf_gpio_cfg_input(UART_CB.pselrxd, NRF_GPIO_PIN_NOPULL); nrf_gpio_cfg_input(UART_CB.pselrxd, NRF_GPIO_PIN_NOPULL);
} }
if (UART_CB.initialized) { if (UART_CB.initialized)
{
// For already initialized peripheral it is sufficient to reconfigure // For already initialized peripheral it is sufficient to reconfigure
// RX/TX pins only. // RX/TX pins only.
// Ensure that there is no unfinished TX transfer. // Ensure that there is no unfinished TX transfer.
while (!serial_writable(obj)) { while (!serial_writable(obj))
{
} }
// UART pins can be configured only when the peripheral is disabled. // UART pins can be configured only when the peripheral is disabled.
nrf_uart_disable(UART_INSTANCE); nrf_uart_disable(UART_INSTANCE);
nrf_uart_txrx_pins_set(UART_INSTANCE, UART_CB.pseltxd, UART_CB.pselrxd); nrf_uart_txrx_pins_set(UART_INSTANCE, UART_CB.pseltxd, UART_CB.pselrxd);
nrf_uart_enable(UART_INSTANCE); nrf_uart_enable(UART_INSTANCE);
} }
else { else
{
UART_CB.baudrate = (nrf_uart_baudrate_t)UART_DEFAULT_BAUDRATE; UART_CB.baudrate = (nrf_uart_baudrate_t)UART_DEFAULT_BAUDRATE;
UART_CB.parity = (nrf_uart_parity_t)UART_DEFAULT_PARITY; UART_CB.parity = (nrf_uart_parity_t)UART_DEFAULT_PARITY;
UART_CB.hwfc = (nrf_uart_hwfc_t)UART_DEFAULT_HWFC; UART_CB.hwfc = (nrf_uart_hwfc_t)UART_DEFAULT_HWFC;
@ -295,10 +324,10 @@ void serial_init(serial_t *obj, PinName tx, PinName rx) {
nrf_uart_task_trigger(UART_INSTANCE, NRF_UART_TASK_STARTTX); nrf_uart_task_trigger(UART_INSTANCE, NRF_UART_TASK_STARTTX);
nrf_uart_int_disable(UART_INSTANCE, NRF_UART_INT_MASK_RXDRDY | nrf_uart_int_disable(UART_INSTANCE, NRF_UART_INT_MASK_RXDRDY |
NRF_UART_INT_MASK_TXDRDY); NRF_UART_INT_MASK_TXDRDY);
#if DEVICE_SERIAL_ASYNCH #if DEVICE_SERIAL_ASYNCH
nrf_uart_int_enable(UART_INSTANCE, NRF_UART_INT_MASK_ERROR); nrf_uart_int_enable(UART_INSTANCE, NRF_UART_INT_MASK_ERROR);
#endif #endif
nrf_drv_common_irq_enable(UART_IRQn, NRFx_MBED_UART_IRQ_PRIORITY); nrf_drv_common_irq_enable(UART_IRQn, NRFx_MBED_UART_IRQ_PRIORITY);
// TX interrupt needs to be signaled when transmitter buffer is empty, // TX interrupt needs to be signaled when transmitter buffer is empty,
@ -315,7 +344,9 @@ void serial_init(serial_t *obj, PinName tx, PinName rx) {
nrf_uart_hwfc_pins_disconnect(UART_INSTANCE); nrf_uart_hwfc_pins_disconnect(UART_INSTANCE);
nrf_uart_enable(UART_INSTANCE); nrf_uart_enable(UART_INSTANCE);
nrf_uart_txd_set(UART_INSTANCE, 0); nrf_uart_txd_set(UART_INSTANCE, 0);
while (!nrf_uart_event_check(UART_INSTANCE, NRF_UART_EVENT_TXDRDY)) {
while (!nrf_uart_event_check(UART_INSTANCE, NRF_UART_EVENT_TXDRDY))
{
} }
nrf_uart_disable(UART_INSTANCE); nrf_uart_disable(UART_INSTANCE);
@ -324,7 +355,8 @@ void serial_init(serial_t *obj, PinName tx, PinName rx) {
nrf_uart_txrx_pins_set(UART_INSTANCE, UART_CB.pseltxd, UART_CB.pselrxd); nrf_uart_txrx_pins_set(UART_INSTANCE, UART_CB.pseltxd, UART_CB.pselrxd);
nrf_uart_baudrate_set(UART_INSTANCE, UART_CB.baudrate); nrf_uart_baudrate_set(UART_INSTANCE, UART_CB.baudrate);
nrf_uart_configure(UART_INSTANCE, UART_CB.parity, UART_CB.hwfc); nrf_uart_configure(UART_INSTANCE, UART_CB.parity, UART_CB.hwfc);
if (UART_CB.hwfc == NRF_UART_HWFC_ENABLED) { if (UART_CB.hwfc == NRF_UART_HWFC_ENABLED)
{
internal_set_hwfc(FlowControlRTSCTS, internal_set_hwfc(FlowControlRTSCTS,
(PinName) UART_CB.pselrts, (PinName) UART_CB.pselcts); (PinName) UART_CB.pselrts, (PinName) UART_CB.pselcts);
} }
@ -334,11 +366,13 @@ void serial_init(serial_t *obj, PinName tx, PinName rx) {
UART_CB.initialized = true; UART_CB.initialized = true;
} }
if (tx == STDIO_UART_TX && rx == STDIO_UART_RX) { if (tx == STDIO_UART_TX && rx == STDIO_UART_RX)
{
stdio_uart_inited = 1; stdio_uart_inited = 1;
memcpy(&stdio_uart, obj, sizeof(serial_t)); memcpy(&stdio_uart, obj, sizeof(serial_t));
} }
else { else
{
stdio_uart_inited = 0; stdio_uart_inited = 0;
} }
} }
@ -347,7 +381,8 @@ void serial_free(serial_t *obj)
{ {
(void)obj; (void)obj;
if (UART_CB.initialized) { if (UART_CB.initialized)
{
nrf_uart_disable(UART_INSTANCE); nrf_uart_disable(UART_INSTANCE);
nrf_uart_int_disable(UART_INSTANCE, NRF_UART_INT_MASK_RXDRDY | nrf_uart_int_disable(UART_INSTANCE, NRF_UART_INT_MASK_RXDRDY |
NRF_UART_INT_MASK_TXDRDY | NRF_UART_INT_MASK_TXDRDY |
@ -388,14 +423,18 @@ void serial_baud(serial_t *obj, int baudrate)
{ 1000000, UART_BAUDRATE_BAUDRATE_Baud1M } { 1000000, UART_BAUDRATE_BAUDRATE_Baud1M }
}; };
if (baudrate <= 1200) { if (baudrate <= 1200)
{
UART_INSTANCE->BAUDRATE = UART_BAUDRATE_BAUDRATE_Baud1200; UART_INSTANCE->BAUDRATE = UART_BAUDRATE_BAUDRATE_Baud1200;
return; return;
} }
int const item_cnt = sizeof(acceptedSpeeds)/sizeof(acceptedSpeeds[0]); int const item_cnt = sizeof(acceptedSpeeds)/sizeof(acceptedSpeeds[0]);
for (int i = 1; i < item_cnt; i++) {
if ((uint32_t)baudrate < acceptedSpeeds[i][0]) { for (int i = 1; i < item_cnt; i++)
{
if ((uint32_t)baudrate < acceptedSpeeds[i][0])
{
UART_INSTANCE->BAUDRATE = acceptedSpeeds[i - 1][1]; UART_INSTANCE->BAUDRATE = acceptedSpeeds[i - 1][1];
return; return;
} }
@ -409,17 +448,24 @@ void serial_format(serial_t *obj,
{ {
(void)obj; (void)obj;
if (data_bits != 8) { if (data_bits != 8)
{
error("UART supports only 8 data bits.\r\n"); error("UART supports only 8 data bits.\r\n");
} }
if (stop_bits != 1) { if (stop_bits != 1)
{
error("UART supports only 1 stop bits.\r\n"); error("UART supports only 1 stop bits.\r\n");
} }
if (parity == ParityNone) { if (parity == ParityNone)
{
UART_CB.parity = NRF_UART_PARITY_EXCLUDED; UART_CB.parity = NRF_UART_PARITY_EXCLUDED;
} else if (parity == ParityEven) { }
else if (parity == ParityEven)
{
UART_CB.parity = NRF_UART_PARITY_INCLUDED; UART_CB.parity = NRF_UART_PARITY_INCLUDED;
} else { }
else
{
error("UART supports only even parity.\r\n"); error("UART supports only even parity.\r\n");
} }
@ -437,29 +483,34 @@ void serial_irq_handler(serial_t *obj, uart_irq_handler handler, uint32_t id)
void serial_irq_set(serial_t *obj, SerialIrq irq, uint32_t enable) void serial_irq_set(serial_t *obj, SerialIrq irq, uint32_t enable)
{ {
(void)obj; (void)obj;
if (enable) { if (enable)
switch (irq) { {
switch (irq)
{
case RxIrq: case RxIrq:
#if DEVICE_SERIAL_ASYNCH #if DEVICE_SERIAL_ASYNCH
UART_CB.irq_enabled |= UART_IRQ_RX; UART_CB.irq_enabled |= UART_IRQ_RX;
#endif #endif
nrf_uart_int_enable(UART_INSTANCE, NRF_UART_INT_MASK_RXDRDY); nrf_uart_int_enable(UART_INSTANCE, NRF_UART_INT_MASK_RXDRDY);
break; break;
case TxIrq: case TxIrq:
#if DEVICE_SERIAL_ASYNCH #if DEVICE_SERIAL_ASYNCH
UART_CB.irq_enabled |= UART_IRQ_TX; UART_CB.irq_enabled |= UART_IRQ_TX;
#endif #endif
nrf_uart_int_enable(UART_INSTANCE, NRF_UART_INT_MASK_TXDRDY); nrf_uart_int_enable(UART_INSTANCE, NRF_UART_INT_MASK_TXDRDY);
break; break;
} }
} else { }
switch (irq) { else
{
switch (irq)
{
case RxIrq: case RxIrq:
#if DEVICE_SERIAL_ASYNCH #if DEVICE_SERIAL_ASYNCH
UART_CB.irq_enabled &= ~UART_IRQ_RX; UART_CB.irq_enabled &= ~UART_IRQ_RX;
if (!UART_CB.rx_active) if (!UART_CB.rx_active)
#endif #endif
{ {
nrf_uart_int_disable(UART_INSTANCE, nrf_uart_int_disable(UART_INSTANCE,
NRF_UART_INT_MASK_RXDRDY); NRF_UART_INT_MASK_RXDRDY);
@ -467,10 +518,10 @@ void serial_irq_set(serial_t *obj, SerialIrq irq, uint32_t enable)
break; break;
case TxIrq: case TxIrq:
#if DEVICE_SERIAL_ASYNCH #if DEVICE_SERIAL_ASYNCH
UART_CB.irq_enabled &= ~UART_IRQ_TX; UART_CB.irq_enabled &= ~UART_IRQ_TX;
if (!UART_CB.tx_active) if (!UART_CB.tx_active)
#endif #endif
{ {
nrf_uart_int_disable(UART_INSTANCE, nrf_uart_int_disable(UART_INSTANCE,
NRF_UART_INT_MASK_TXDRDY); NRF_UART_INT_MASK_TXDRDY);
@ -482,7 +533,8 @@ void serial_irq_set(serial_t *obj, SerialIrq irq, uint32_t enable)
int serial_getc(serial_t *obj) int serial_getc(serial_t *obj)
{ {
while (!serial_readable(obj)) { while (!serial_readable(obj))
{
} }
nrf_uart_event_clear(UART_INSTANCE, NRF_UART_EVENT_RXDRDY); nrf_uart_event_clear(UART_INSTANCE, NRF_UART_EVENT_RXDRDY);
@ -491,7 +543,8 @@ int serial_getc(serial_t *obj)
void serial_putc(serial_t *obj, int c) void serial_putc(serial_t *obj, int c)
{ {
while (!serial_writable(obj)) { while (!serial_writable(obj))
{
} }
nrf_uart_event_clear(UART_INSTANCE, NRF_UART_EVENT_TXDRDY); nrf_uart_event_clear(UART_INSTANCE, NRF_UART_EVENT_TXDRDY);
@ -502,7 +555,8 @@ int serial_readable(serial_t *obj)
{ {
(void)obj; (void)obj;
#if DEVICE_SERIAL_ASYNCH #if DEVICE_SERIAL_ASYNCH
if (UART_CB.rx_active) { if (UART_CB.rx_active)
{
return 0; return 0;
} }
#endif #endif
@ -513,7 +567,8 @@ int serial_writable(serial_t *obj)
{ {
(void)obj; (void)obj;
#if DEVICE_SERIAL_ASYNCH #if DEVICE_SERIAL_ASYNCH
if (UART_CB.tx_active) { if (UART_CB.tx_active)
{
return 0; return 0;
} }
#endif #endif
@ -546,11 +601,13 @@ static void internal_set_hwfc(FlowControl type,
UART_CB.pselcts = UART_CB.pselcts =
((txflow == NC) || (type == FlowControlRTS)) ? NRF_UART_PSEL_DISCONNECTED : (uint32_t)txflow; ((txflow == NC) || (type == FlowControlRTS)) ? NRF_UART_PSEL_DISCONNECTED : (uint32_t)txflow;
if (UART_CB.pselrts != NRF_UART_PSEL_DISCONNECTED) { if (UART_CB.pselrts != NRF_UART_PSEL_DISCONNECTED)
{
nrf_gpio_pin_set(UART_CB.pselrts); nrf_gpio_pin_set(UART_CB.pselrts);
nrf_gpio_cfg_output(UART_CB.pselrts); nrf_gpio_cfg_output(UART_CB.pselrts);
} }
if (UART_CB.pselcts != NRF_UART_PSEL_DISCONNECTED) { if (UART_CB.pselcts != NRF_UART_PSEL_DISCONNECTED)
{
nrf_gpio_cfg_input(UART_CB.pselcts, NRF_GPIO_PIN_NOPULL); nrf_gpio_cfg_input(UART_CB.pselcts, NRF_GPIO_PIN_NOPULL);
} }
@ -571,7 +628,8 @@ void serial_set_flow_control(serial_t *obj, FlowControl type,
} }
void serial_clear(serial_t *obj) { void serial_clear(serial_t *obj)
{
(void)obj; (void)obj;
} }
@ -584,7 +642,8 @@ int serial_tx_asynch(serial_t *obj, const void *tx, size_t tx_length,
(void)obj; (void)obj;
(void)tx_width; (void)tx_width;
(void)hint; (void)hint;
if (UART_CB.tx_active || !tx_length) { if (UART_CB.tx_active || !tx_length)
{
return 0; return 0;
} }
@ -608,7 +667,8 @@ void serial_rx_asynch(serial_t *obj, void *rx, size_t rx_length,
(void)obj; (void)obj;
(void)rx_width; (void)rx_width;
(void)hint; (void)hint;
if (UART_CB.rx_active || !rx_length) { if (UART_CB.rx_active || !rx_length)
{
return; return;
} }

View File

@ -25,7 +25,7 @@
#define FPU_EXCEPTION_MASK 0x0000009F #define FPU_EXCEPTION_MASK 0x0000009F
void sleep(void) void hal_sleep(void)
{ {
// ensure debug is disconnected if semihost is enabled.... // ensure debug is disconnected if semihost is enabled....
@ -41,10 +41,13 @@ void sleep(void)
#endif #endif
// If the SoftDevice is enabled, its API must be used to go to sleep. // If the SoftDevice is enabled, its API must be used to go to sleep.
if (softdevice_handler_is_enabled()) { if (softdevice_handler_is_enabled())
{
sd_power_mode_set(NRF_POWER_MODE_LOWPWR); sd_power_mode_set(NRF_POWER_MODE_LOWPWR);
sd_app_evt_wait(); sd_app_evt_wait();
} else { }
else
{
NRF_POWER->TASKS_LOWPWR = 1; NRF_POWER->TASKS_LOWPWR = 1;
// Note: it is not sufficient to just use WFE here, since the internal // Note: it is not sufficient to just use WFE here, since the internal
@ -61,10 +64,13 @@ void sleep(void)
__WFE(); __WFE();
// Test if there is an interrupt pending (mask reserved regions) // Test if there is an interrupt pending (mask reserved regions)
if (SCB->ICSR & (SCB_ICSR_RESERVED_BITS_MASK)) { if (SCB->ICSR & (SCB_ICSR_RESERVED_BITS_MASK))
{
// Ok, there is an interrut pending, no need to go to sleep // Ok, there is an interrut pending, no need to go to sleep
return; return;
} else { }
else
{
// next event will wakeup the CPU // next event will wakeup the CPU
// If an interrupt occured between the test of SCB->ICSR and this // If an interrupt occured between the test of SCB->ICSR and this
// instruction, WFE will just not put the CPU to sleep // instruction, WFE will just not put the CPU to sleep
@ -73,8 +79,7 @@ void sleep(void)
} }
} }
void deepsleep(void) void hal_deepsleep(void)
{ {
sleep(); hal_sleep();
// NRF_POWER->SYSTEMOFF=1;
} }

View File

@ -58,16 +58,18 @@
#define MASTER_INST(obj) (&m_instances[SPI_IDX(obj)].master) #define MASTER_INST(obj) (&m_instances[SPI_IDX(obj)].master)
#define SLAVE_INST(obj) (&m_instances[SPI_IDX(obj)].slave) #define SLAVE_INST(obj) (&m_instances[SPI_IDX(obj)].slave)
typedef struct { typedef struct
bool initialized; {
bool master; bool initialized;
bool master;
uint8_t sck_pin; uint8_t sck_pin;
uint8_t mosi_pin; uint8_t mosi_pin;
uint8_t miso_pin; uint8_t miso_pin;
uint8_t ss_pin; uint8_t ss_pin;
uint8_t spi_mode; uint8_t spi_mode;
nrf_drv_spi_frequency_t frequency; nrf_drv_spi_frequency_t frequency;
volatile union { volatile union
{
bool busy; // master bool busy; // master
bool readable; // slave bool readable; // slave
} flag; } flag;
@ -81,8 +83,9 @@ typedef struct {
} spi_info_t; } spi_info_t;
static spi_info_t m_spi_info[SPI_COUNT]; static spi_info_t m_spi_info[SPI_COUNT];
typedef struct { typedef struct
nrf_drv_spi_t master; {
nrf_drv_spi_t master;
nrf_drv_spis_t slave; nrf_drv_spis_t slave;
} sdk_driver_instances_t; } sdk_driver_instances_t;
@ -90,25 +93,25 @@ void SPI0_TWI0_IRQHandler(void);
void SPI1_TWI1_IRQHandler(void); void SPI1_TWI1_IRQHandler(void);
void SPIM2_SPIS2_SPI2_IRQHandler(void); void SPIM2_SPIS2_SPI2_IRQHandler(void);
static const peripheral_handler_desc_t spi_hanlder_desc[SPI_COUNT] = { static const peripheral_handler_desc_t spi_handler_desc[SPI_COUNT] = {
#if SPI0_ENABLED #if SPI0_ENABLED
{ {
SPIS0_IRQ, SPI0_IRQ,
(uint32_t) SPI0_TWI0_IRQHandler (uint32_t) SPI0_TWI0_IRQHandler
}, },
#endif #endif
#if SPI1_ENABLED #if SPI1_ENABLED
{ {
SPIS1_IRQ, SPI1_IRQ,
(uint32_t) SPI1_TWI1_IRQHandler (uint32_t) SPI1_TWI1_IRQHandler
}, },
#endif #endif
#if SPI2_ENABLED #if SPI2_ENABLED
{ {
SPIS2_IRQ, SPI2_IRQ,
(uint32_t) SPIM2_SPIS2_SPI2_IRQHandler (uint32_t) SPIM2_SPIS2_SPI2_IRQHandler
}, },
#endif #endif
}; };
@ -138,9 +141,11 @@ static void master_event_handler(uint8_t spi_idx,
{ {
spi_info_t *p_spi_info = &m_spi_info[spi_idx]; spi_info_t *p_spi_info = &m_spi_info[spi_idx];
if (p_event->type == NRF_DRV_SPI_EVENT_DONE) { if (p_event->type == NRF_DRV_SPI_EVENT_DONE)
{
p_spi_info->flag.busy = false; p_spi_info->flag.busy = false;
if (p_spi_info->handler) { if (p_spi_info->handler)
{
void (*handler)(void) = (void (*)(void))p_spi_info->handler; void (*handler)(void) = (void (*)(void))p_spi_info->handler;
p_spi_info->handler = 0; p_spi_info->handler = 0;
handler(); handler();
@ -179,7 +184,8 @@ static void slave_event_handler(uint8_t spi_idx,
{ {
spi_info_t *p_spi_info = &m_spi_info[spi_idx]; spi_info_t *p_spi_info = &m_spi_info[spi_idx];
if (event.evt_type == NRF_DRV_SPIS_XFER_DONE) { if (event.evt_type == NRF_DRV_SPIS_XFER_DONE)
{
// Signal that there is some data received that could be read. // Signal that there is some data received that could be read.
p_spi_info->flag.readable = true; p_spi_info->flag.readable = true;
@ -254,12 +260,35 @@ void spi_init(spi_t *obj,
PinName mosi, PinName miso, PinName sclk, PinName ssel) PinName mosi, PinName miso, PinName sclk, PinName ssel)
{ {
int i; int i;
for (i = 0; i < SPI_COUNT; ++i) {
// This block is only a workaround that allows to create SPI object several
// times, what would be otherwise impossible in the current implementation
// of mbed driver that does not call spi_free() from SPI destructor.
// Once this mbed's imperfection is corrected, this block should be removed.
for (i = 0; i < SPI_COUNT; ++i)
{
spi_info_t *p_spi_info = &m_spi_info[i]; spi_info_t *p_spi_info = &m_spi_info[i];
if (!p_spi_info->initialized) {
if (p_spi_info->initialized &&
NVIC_SetVector(spi_hanlder_desc[i].IRQn, spi_hanlder_desc[i].vector); p_spi_info->mosi_pin == (uint8_t)mosi &&
p_spi_info->miso_pin == (uint8_t)miso &&
p_spi_info->sck_pin == (uint8_t)sclk &&
p_spi_info->ss_pin == (uint8_t)ssel)
{
// Reuse the already allocated SPI instance (instead of allocating
// a new one), if it appears to be initialized with exactly the same
// pin assignments.
SPI_IDX(obj) = i;
return;
}
}
for (i = 0; i < SPI_COUNT; ++i)
{
spi_info_t *p_spi_info = &m_spi_info[i];
if (!p_spi_info->initialized)
{
p_spi_info->sck_pin = (uint8_t)sclk; p_spi_info->sck_pin = (uint8_t)sclk;
p_spi_info->mosi_pin = (mosi != NC) ? p_spi_info->mosi_pin = (mosi != NC) ?
(uint8_t)mosi : NRF_DRV_SPI_PIN_NOT_USED; (uint8_t)mosi : NRF_DRV_SPI_PIN_NOT_USED;
@ -270,22 +299,25 @@ void spi_init(spi_t *obj,
p_spi_info->spi_mode = (uint8_t)NRF_DRV_SPI_MODE_0; p_spi_info->spi_mode = (uint8_t)NRF_DRV_SPI_MODE_0;
p_spi_info->frequency = NRF_DRV_SPI_FREQ_1M; p_spi_info->frequency = NRF_DRV_SPI_FREQ_1M;
NVIC_SetVector(spi_handler_desc[i].IRQn, spi_handler_desc[i].vector);
// By default each SPI instance is initialized to work as a master. // By default each SPI instance is initialized to work as a master.
// Should the slave mode be used, the instance will be reconfigured // Should the slave mode be used, the instance will be reconfigured
// appropriately in 'spi_format'. // appropriately in 'spi_format'.
nrf_drv_spi_config_t config; nrf_drv_spi_config_t config;
prepare_master_config(&config, p_spi_info); prepare_master_config(&config, p_spi_info);
nrf_drv_spi_t const *p_spi = &m_instances[i].master; nrf_drv_spi_t const *p_spi = &m_instances[i].master;
ret_code_t ret_code = nrf_drv_spi_init(p_spi, ret_code_t ret_code = nrf_drv_spi_init(p_spi,
&config, m_master_event_handlers[i]); &config, m_master_event_handlers[i]);
if (ret_code == NRF_SUCCESS) { if (ret_code == NRF_SUCCESS)
{
p_spi_info->initialized = true; p_spi_info->initialized = true;
p_spi_info->master = true; p_spi_info->master = true;
p_spi_info->flag.busy = false; p_spi_info->flag.busy = false;
#if DEVICE_SPI_ASYNCH #if DEVICE_SPI_ASYNCH
p_spi_info->handler = 0; p_spi_info->handler = 0;
#endif #endif
SPI_IDX(obj) = i; SPI_IDX(obj) = i;
return; return;
@ -300,10 +332,13 @@ void spi_init(spi_t *obj,
void spi_free(spi_t *obj) void spi_free(spi_t *obj)
{ {
spi_info_t *p_spi_info = SPI_INFO(obj); spi_info_t *p_spi_info = SPI_INFO(obj);
if (p_spi_info->master) {
if (p_spi_info->master)
{
nrf_drv_spi_uninit(MASTER_INST(obj)); nrf_drv_spi_uninit(MASTER_INST(obj));
} }
else { else
{
nrf_drv_spis_uninit(SLAVE_INST(obj)); nrf_drv_spis_uninit(SLAVE_INST(obj));
} }
p_spi_info->initialized = false; p_spi_info->initialized = false;
@ -316,10 +351,12 @@ int spi_busy(spi_t *obj)
void spi_format(spi_t *obj, int bits, int mode, int slave) void spi_format(spi_t *obj, int bits, int mode, int slave)
{ {
if (bits != 8) { if (bits != 8)
{
error("Only 8-bits SPI is supported\r\n"); error("Only 8-bits SPI is supported\r\n");
} }
if (mode > 3) { if (mode > 3)
{
error("SPI format error\r\n"); error("SPI format error\r\n");
} }
@ -337,15 +374,18 @@ void spi_format(spi_t *obj, int bits, int mode, int slave)
// If the peripheral is currently working as a master, the SDK driver // If the peripheral is currently working as a master, the SDK driver
// it uses needs to be switched from SPI to SPIS. // it uses needs to be switched from SPI to SPIS.
if (p_spi_info->master) { if (p_spi_info->master)
{
nrf_drv_spi_uninit(MASTER_INST(obj)); nrf_drv_spi_uninit(MASTER_INST(obj));
} }
// I the SPI mode has to be changed, the SDK's SPIS driver needs to be // I the SPI mode has to be changed, the SDK's SPIS driver needs to be
// re-initialized (there is no other way to change its configuration). // re-initialized (there is no other way to change its configuration).
else if (p_spi_info->spi_mode != (uint8_t)new_mode) { else if (p_spi_info->spi_mode != (uint8_t)new_mode)
{
nrf_drv_spis_uninit(SLAVE_INST(obj)); nrf_drv_spis_uninit(SLAVE_INST(obj));
} }
else { else
{
return; return;
} }
@ -377,15 +417,18 @@ void spi_format(spi_t *obj, int bits, int mode, int slave)
// If the peripheral is currently working as a slave, the SDK driver // If the peripheral is currently working as a slave, the SDK driver
// it uses needs to be switched from SPIS to SPI. // it uses needs to be switched from SPIS to SPI.
if (!p_spi_info->master) { if (!p_spi_info->master)
{
nrf_drv_spis_uninit(SLAVE_INST(obj)); nrf_drv_spis_uninit(SLAVE_INST(obj));
} }
// I the SPI mode has to be changed, the SDK's SPI driver needs to be // I the SPI mode has to be changed, the SDK's SPI driver needs to be
// re-initialized (there is no other way to change its configuration). // re-initialized (there is no other way to change its configuration).
else if (p_spi_info->spi_mode != (uint8_t)new_mode) { else if (p_spi_info->spi_mode != (uint8_t)new_mode)
{
nrf_drv_spi_uninit(MASTER_INST(obj)); nrf_drv_spi_uninit(MASTER_INST(obj));
} }
else { else
{
return; return;
} }
@ -404,19 +447,33 @@ void spi_format(spi_t *obj, int bits, int mode, int slave)
static nrf_drv_spi_frequency_t freq_translate(int hz) static nrf_drv_spi_frequency_t freq_translate(int hz)
{ {
nrf_drv_spi_frequency_t frequency; nrf_drv_spi_frequency_t frequency;
if (hz<250000) { //125Kbps
if (hz<250000) //125Kbps
{
frequency = NRF_DRV_SPI_FREQ_125K; frequency = NRF_DRV_SPI_FREQ_125K;
} else if (hz<500000) { //250Kbps }
else if (hz<500000) //250Kbps
{
frequency = NRF_DRV_SPI_FREQ_250K; frequency = NRF_DRV_SPI_FREQ_250K;
} else if (hz<1000000) { //500Kbps }
else if (hz<1000000) //500Kbps
{
frequency = NRF_DRV_SPI_FREQ_500K; frequency = NRF_DRV_SPI_FREQ_500K;
} else if (hz<2000000) { //1Mbps }
else if (hz<2000000) //1Mbps
{
frequency = NRF_DRV_SPI_FREQ_1M; frequency = NRF_DRV_SPI_FREQ_1M;
} else if (hz<4000000) { //2Mbps }
else if (hz<4000000) //2Mbps
{
frequency = NRF_DRV_SPI_FREQ_2M; frequency = NRF_DRV_SPI_FREQ_2M;
} else if (hz<8000000) { //4Mbps }
else if (hz<8000000) //4Mbps
{
frequency = NRF_DRV_SPI_FREQ_4M; frequency = NRF_DRV_SPI_FREQ_4M;
} else { //8Mbps }
else //8Mbps
{
frequency = NRF_DRV_SPI_FREQ_8M; frequency = NRF_DRV_SPI_FREQ_8M;
} }
return frequency; return frequency;
@ -429,7 +486,8 @@ void spi_frequency(spi_t *obj, int hz)
if (p_spi_info->master) if (p_spi_info->master)
{ {
if (p_spi_info->frequency != new_frequency) { if (p_spi_info->frequency != new_frequency)
{
p_spi_info->frequency = new_frequency; p_spi_info->frequency = new_frequency;
nrf_drv_spi_config_t config; nrf_drv_spi_config_t config;
@ -450,7 +508,9 @@ int spi_master_write(spi_t *obj, int value)
spi_info_t *p_spi_info = SPI_INFO(obj); spi_info_t *p_spi_info = SPI_INFO(obj);
#if DEVICE_SPI_ASYNCH #if DEVICE_SPI_ASYNCH
while (p_spi_info->flag.busy) {
while (p_spi_info->flag.busy)
{
} }
#endif #endif
@ -459,7 +519,9 @@ int spi_master_write(spi_t *obj, int value)
(void)nrf_drv_spi_transfer(MASTER_INST(obj), (void)nrf_drv_spi_transfer(MASTER_INST(obj),
(uint8_t const *)&p_spi_info->tx_buf, 1, (uint8_t const *)&p_spi_info->tx_buf, 1,
(uint8_t *)&p_spi_info->rx_buf, 1); (uint8_t *)&p_spi_info->rx_buf, 1);
while (p_spi_info->flag.busy) {
while (p_spi_info->flag.busy)
{
} }
return p_spi_info->rx_buf; return p_spi_info->rx_buf;
@ -470,14 +532,15 @@ int spi_slave_receive(spi_t *obj)
spi_info_t *p_spi_info = SPI_INFO(obj); spi_info_t *p_spi_info = SPI_INFO(obj);
MBED_ASSERT(!p_spi_info->master); MBED_ASSERT(!p_spi_info->master);
return p_spi_info->flag.readable; return p_spi_info->flag.readable;
;
} }
int spi_slave_read(spi_t *obj) int spi_slave_read(spi_t *obj)
{ {
spi_info_t *p_spi_info = SPI_INFO(obj); spi_info_t *p_spi_info = SPI_INFO(obj);
MBED_ASSERT(!p_spi_info->master); MBED_ASSERT(!p_spi_info->master);
while (!p_spi_info->flag.readable) {
while (!p_spi_info->flag.readable)
{
} }
p_spi_info->flag.readable = false; p_spi_info->flag.readable = false;
return p_spi_info->rx_buf; return p_spi_info->rx_buf;

View File

@ -51,7 +51,7 @@
// //
#include "app_util_platform.h" #include "app_util_platform.h"
bool m_common_rtc_enabled = false; bool m_common_rtc_enabled = false;
uint32_t volatile m_common_rtc_overflows = 0; uint32_t volatile m_common_rtc_overflows = 0;
#if defined(TARGET_MCU_NRF51822) #if defined(TARGET_MCU_NRF51822)
@ -60,18 +60,21 @@ void common_rtc_irq_handler(void)
void COMMON_RTC_IRQ_HANDLER(void) void COMMON_RTC_IRQ_HANDLER(void)
#endif #endif
{ {
if (nrf_rtc_event_pending(COMMON_RTC_INSTANCE, US_TICKER_EVENT)) { if (nrf_rtc_event_pending(COMMON_RTC_INSTANCE, US_TICKER_EVENT))
{
us_ticker_irq_handler(); us_ticker_irq_handler();
} }
#if DEVICE_LOWPOWERTIMER #if DEVICE_LOWPOWERTIMER
if (nrf_rtc_event_pending(COMMON_RTC_INSTANCE, LP_TICKER_EVENT)) { if (nrf_rtc_event_pending(COMMON_RTC_INSTANCE, LP_TICKER_EVENT))
{
lp_ticker_irq_handler(); lp_ticker_irq_handler();
} }
#endif #endif
if (nrf_rtc_event_pending(COMMON_RTC_INSTANCE, NRF_RTC_EVENT_OVERFLOW)) { if (nrf_rtc_event_pending(COMMON_RTC_INSTANCE, NRF_RTC_EVENT_OVERFLOW))
{
nrf_rtc_event_clear(COMMON_RTC_INSTANCE, NRF_RTC_EVENT_OVERFLOW); nrf_rtc_event_clear(COMMON_RTC_INSTANCE, NRF_RTC_EVENT_OVERFLOW);
// Don't disable this event. It shall occur periodically. // Don't disable this event. It shall occur periodically.
@ -85,29 +88,33 @@ __STATIC_INLINE void errata_20(void)
#if defined(NRF52_ERRATA_20) #if defined(NRF52_ERRATA_20)
if (!softdevice_handler_is_enabled()) if (!softdevice_handler_is_enabled())
{ {
NRF_CLOCK->EVENTS_LFCLKSTARTED = 0; NRF_CLOCK->EVENTS_LFCLKSTARTED = 0;
NRF_CLOCK->TASKS_LFCLKSTART = 1; NRF_CLOCK->TASKS_LFCLKSTART = 1;
while (NRF_CLOCK->EVENTS_LFCLKSTARTED == 0) {}
while (NRF_CLOCK->EVENTS_LFCLKSTARTED == 0)
{
}
} }
NRF_RTC1->TASKS_STOP = 0; NRF_RTC1->TASKS_STOP = 0;
#endif #endif
} }
#if (defined (__ICCARM__)) && defined(TARGET_MCU_NRF51822)//IAR #if (defined (__ICCARM__)) && defined(TARGET_MCU_NRF51822)//IAR
__stackless __task __stackless __task
#endif #endif
void RTC1_IRQHandler(void); void RTC1_IRQHandler(void);
void common_rtc_init(void) void common_rtc_init(void)
{ {
if (m_common_rtc_enabled) { if (m_common_rtc_enabled)
{
return; return;
} }
errata_20(); errata_20();
NVIC_SetVector(RTC1_IRQn, (uint32_t)RTC1_IRQHandler); NVIC_SetVector(RTC1_IRQn, (uint32_t)RTC1_IRQHandler);
// RTC is driven by the low frequency (32.768 kHz) clock, a proper request // RTC is driven by the low frequency (32.768 kHz) clock, a proper request
// must be made to have it running. // must be made to have it running.
// Currently this clock is started in 'SystemInit' (see "system_nrf51.c" // Currently this clock is started in 'SystemInit' (see "system_nrf51.c"
@ -128,32 +135,32 @@ void common_rtc_init(void)
// events will be enabled or disabled as needed (such approach is more // events will be enabled or disabled as needed (such approach is more
// energy efficient). // energy efficient).
nrf_rtc_int_enable(COMMON_RTC_INSTANCE, nrf_rtc_int_enable(COMMON_RTC_INSTANCE,
#if DEVICE_LOWPOWERTIMER #if DEVICE_LOWPOWERTIMER
LP_TICKER_INT_MASK | LP_TICKER_INT_MASK |
#endif #endif
US_TICKER_INT_MASK | US_TICKER_INT_MASK |
NRF_RTC_INT_OVERFLOW_MASK); NRF_RTC_INT_OVERFLOW_MASK);
// This event is enabled permanently, since overflow indications are needed // This event is enabled permanently, since overflow indications are needed
// continuously. // continuously.
nrf_rtc_event_enable(COMMON_RTC_INSTANCE, NRF_RTC_INT_OVERFLOW_MASK); nrf_rtc_event_enable(COMMON_RTC_INSTANCE, NRF_RTC_INT_OVERFLOW_MASK);
// All other relevant events are initially disabled. // All other relevant events are initially disabled.
nrf_rtc_event_disable(COMMON_RTC_INSTANCE, nrf_rtc_event_disable(COMMON_RTC_INSTANCE,
#if defined(TARGET_MCU_NRF51822) #if defined(TARGET_MCU_NRF51822)
OS_TICK_INT_MASK | OS_TICK_INT_MASK |
#endif #endif
#if DEVICE_LOWPOWERTIMER #if DEVICE_LOWPOWERTIMER
LP_TICKER_INT_MASK | LP_TICKER_INT_MASK |
#endif #endif
US_TICKER_INT_MASK); US_TICKER_INT_MASK);
nrf_drv_common_irq_enable(nrf_drv_get_IRQn(COMMON_RTC_INSTANCE), nrf_drv_common_irq_enable(nrf_drv_get_IRQn(COMMON_RTC_INSTANCE),
#ifdef NRF51 #ifdef NRF51
APP_IRQ_PRIORITY_LOW APP_IRQ_PRIORITY_LOW
#elif defined(NRF52) || defined(NRF52840_XXAA) #elif defined(NRF52) || defined(NRF52840_XXAA)
APP_IRQ_PRIORITY_LOWEST APP_IRQ_PRIORITY_LOWEST
#endif #endif
); );
nrf_rtc_task_trigger(COMMON_RTC_INSTANCE, NRF_RTC_TASK_START); nrf_rtc_task_trigger(COMMON_RTC_INSTANCE, NRF_RTC_TASK_START);
@ -192,10 +199,12 @@ void common_rtc_set_interrupt(uint32_t us_timestamp, uint32_t cc_channel,
uint64_t current_time64 = common_rtc_64bit_us_get(); uint64_t current_time64 = common_rtc_64bit_us_get();
// [add upper 32 bits from the current time to the timestamp value] // [add upper 32 bits from the current time to the timestamp value]
uint64_t timestamp64 = us_timestamp + uint64_t timestamp64 = us_timestamp +
(current_time64 & ~(uint64_t)0xFFFFFFFF); (current_time64 & ~(uint64_t)0xFFFFFFFF);
// [if the original timestamp value happens to be after the 32 bit counter // [if the original timestamp value happens to be after the 32 bit counter
// of microsends overflows, correct the upper 32 bits accordingly] // of microsends overflows, correct the upper 32 bits accordingly]
if (us_timestamp < (uint32_t)(current_time64 & 0xFFFFFFFF)) { if (us_timestamp < (uint32_t)(current_time64 & 0xFFFFFFFF))
{
timestamp64 += ((uint64_t)1 << 32); timestamp64 += ((uint64_t)1 << 32);
} }
// [microseconds -> ticks, always round the result up to avoid too early // [microseconds -> ticks, always round the result up to avoid too early
@ -209,7 +218,8 @@ void common_rtc_set_interrupt(uint32_t us_timestamp, uint32_t cc_channel,
// value is 2 ticks. This guarantees that the compare trigger is properly // value is 2 ticks. This guarantees that the compare trigger is properly
// setup before the compare condition occurs. // setup before the compare condition occurs.
uint32_t closest_safe_compare = common_rtc_32bit_ticks_get() + 2; uint32_t closest_safe_compare = common_rtc_32bit_ticks_get() + 2;
if ((int)(compare_value - closest_safe_compare) <= 0) { if ((int)(compare_value - closest_safe_compare) <= 0)
{
compare_value = closest_safe_compare; compare_value = closest_safe_compare;
} }
@ -251,7 +261,7 @@ void us_ticker_clear_interrupt(void)
// alternative source of RTOS ticks. // alternative source of RTOS ticks.
#if defined(TARGET_MCU_NRF51822) #if defined(TARGET_MCU_NRF51822)
#include "toolchain.h" #include "mbed_toolchain.h"
#define MAX_RTC_COUNTER_VAL ((1uL << RTC_COUNTER_BITS) - 1) #define MAX_RTC_COUNTER_VAL ((1uL << RTC_COUNTER_BITS) - 1)
@ -273,7 +283,9 @@ static uint32_t previous_tick_cc_value = 0;
*/ */
MBED_WEAK uint32_t const os_trv; MBED_WEAK uint32_t const os_trv;
MBED_WEAK uint32_t const os_clockrate; MBED_WEAK uint32_t const os_clockrate;
MBED_WEAK void OS_Tick_Handler() { } MBED_WEAK void OS_Tick_Handler()
{
}
#if defined (__CC_ARM) /* ARMCC Compiler */ #if defined (__CC_ARM) /* ARMCC Compiler */
@ -414,14 +426,18 @@ __stackless __task void COMMON_RTC_IRQ_HANDLER(void)
* Return the next number of clock cycle needed for the next tick. * Return the next number of clock cycle needed for the next tick.
* @note This function has been carrefuly optimized for a systick occuring every 1000us. * @note This function has been carrefuly optimized for a systick occuring every 1000us.
*/ */
static uint32_t get_next_tick_cc_delta() { static uint32_t get_next_tick_cc_delta()
{
uint32_t delta = 0; uint32_t delta = 0;
if (os_clockrate != 1000) { if (os_clockrate != 1000)
{
// In RTX, by default SYSTICK is is used. // In RTX, by default SYSTICK is is used.
// A tick event is generated every os_trv + 1 clock cycles of the system timer. // A tick event is generated every os_trv + 1 clock cycles of the system timer.
delta = os_trv + 1; delta = os_trv + 1;
} else { }
else
{
// If the clockrate is set to 1000us then 1000 tick should happen every second. // If the clockrate is set to 1000us then 1000 tick should happen every second.
// Unfortunatelly, when clockrate is set to 1000, os_trv is equal to 31. // Unfortunatelly, when clockrate is set to 1000, os_trv is equal to 31.
// If (os_trv + 1) is used as the delta value between two ticks, 1000 ticks will be // If (os_trv + 1) is used as the delta value between two ticks, 1000 ticks will be
@ -437,20 +453,26 @@ static uint32_t get_next_tick_cc_delta() {
// Every five ticks (20%, 200 delta in one second), the delta is equal to 32 // Every five ticks (20%, 200 delta in one second), the delta is equal to 32
// The remaining (32) deltas equal to 32 are distributed using primes numbers. // The remaining (32) deltas equal to 32 are distributed using primes numbers.
static uint32_t counter = 0; static uint32_t counter = 0;
if ((counter % 5) == 0 || (counter % 31) == 0 || (counter % 139) == 0 || (counter == 503)) { if ((counter % 5) == 0 || (counter % 31) == 0 || (counter % 139) == 0 || (counter == 503))
{
delta = 32; delta = 32;
} else { }
else
{
delta = 33; delta = 33;
} }
++counter; ++counter;
if (counter == 1000) { if (counter == 1000)
{
counter = 0; counter = 0;
} }
} }
return delta; return delta;
} }
static inline void clear_tick_interrupt() {
static inline void clear_tick_interrupt()
{
nrf_rtc_event_clear(COMMON_RTC_INSTANCE, OS_TICK_EVENT); nrf_rtc_event_clear(COMMON_RTC_INSTANCE, OS_TICK_EVENT);
nrf_rtc_event_disable(COMMON_RTC_INSTANCE, OS_TICK_INT_MASK); nrf_rtc_event_disable(COMMON_RTC_INSTANCE, OS_TICK_INT_MASK);
} }
@ -462,21 +484,31 @@ static inline void clear_tick_interrupt() {
* @param val value to check * @param val value to check
* @return true if the value is included in the range and false otherwise. * @return true if the value is included in the range and false otherwise.
*/ */
static inline bool is_in_wrapped_range(uint32_t begin, uint32_t end, uint32_t val) { static inline bool is_in_wrapped_range(uint32_t begin, uint32_t end, uint32_t val)
{
// regular case, begin < end // regular case, begin < end
// return true if begin <= val < end // return true if begin <= val < end
if (begin < end) { if (begin < end)
if (begin <= val && val < end) { {
if (begin <= val && val < end)
{
return true; return true;
} else { }
else
{
return false; return false;
} }
} else { }
else
{
// In this case end < begin because it has wrap around the limits // In this case end < begin because it has wrap around the limits
// return false if end < val < begin // return false if end < val < begin
if (end < val && val < begin) { if (end < val && val < begin)
{
return false; return false;
} else { }
else
{
return true; return true;
} }
} }
@ -486,7 +518,8 @@ static inline bool is_in_wrapped_range(uint32_t begin, uint32_t end, uint32_t va
/** /**
* Register the next tick. * Register the next tick.
*/ */
static void register_next_tick() { static void register_next_tick()
{
previous_tick_cc_value = nrf_rtc_cc_get(COMMON_RTC_INSTANCE, OS_TICK_CC_CHANNEL); previous_tick_cc_value = nrf_rtc_cc_get(COMMON_RTC_INSTANCE, OS_TICK_CC_CHANNEL);
uint32_t delta = get_next_tick_cc_delta(); uint32_t delta = get_next_tick_cc_delta();
uint32_t new_compare_value = (previous_tick_cc_value + delta) & MAX_RTC_COUNTER_VAL; uint32_t new_compare_value = (previous_tick_cc_value + delta) & MAX_RTC_COUNTER_VAL;
@ -502,7 +535,8 @@ static void register_next_tick() {
uint32_t current_counter = nrf_rtc_counter_get(COMMON_RTC_INSTANCE); uint32_t current_counter = nrf_rtc_counter_get(COMMON_RTC_INSTANCE);
// If an overflow occur, set the next tick in COUNTER + delta clock cycles // If an overflow occur, set the next tick in COUNTER + delta clock cycles
if (is_in_wrapped_range(previous_tick_cc_value, new_compare_value, current_counter + 1) == false) { if (is_in_wrapped_range(previous_tick_cc_value, new_compare_value, current_counter + 1) == false)
{
new_compare_value = current_counter + delta; new_compare_value = current_counter + delta;
} }
nrf_rtc_cc_set(COMMON_RTC_INSTANCE, OS_TICK_CC_CHANNEL, new_compare_value); nrf_rtc_cc_set(COMMON_RTC_INSTANCE, OS_TICK_CC_CHANNEL, new_compare_value);
@ -545,8 +579,9 @@ void os_tick_irqack(void)
* @note This function is exposed by RTX kernel. * @note This function is exposed by RTX kernel.
* @return 1 if the timer has overflowed and 0 otherwise. * @return 1 if the timer has overflowed and 0 otherwise.
*/ */
uint32_t os_tick_ovf(void) { uint32_t os_tick_ovf(void)
uint32_t current_counter = nrf_rtc_counter_get(COMMON_RTC_INSTANCE); {
uint32_t current_counter = nrf_rtc_counter_get(COMMON_RTC_INSTANCE);
uint32_t next_tick_cc_value = nrf_rtc_cc_get(COMMON_RTC_INSTANCE, OS_TICK_CC_CHANNEL); uint32_t next_tick_cc_value = nrf_rtc_cc_get(COMMON_RTC_INSTANCE, OS_TICK_CC_CHANNEL);
return is_in_wrapped_range(previous_tick_cc_value, next_tick_cc_value, current_counter) ? 0 : 1; return is_in_wrapped_range(previous_tick_cc_value, next_tick_cc_value, current_counter) ? 0 : 1;
@ -561,25 +596,35 @@ uint32_t os_tick_ovf(void) {
* descending order, even if the internal counter used is an ascending one. * descending order, even if the internal counter used is an ascending one.
* @return the value of the alternative hardware timer. * @return the value of the alternative hardware timer.
*/ */
uint32_t os_tick_val(void) { uint32_t os_tick_val(void)
uint32_t current_counter = nrf_rtc_counter_get(COMMON_RTC_INSTANCE); {
uint32_t current_counter = nrf_rtc_counter_get(COMMON_RTC_INSTANCE);
uint32_t next_tick_cc_value = nrf_rtc_cc_get(COMMON_RTC_INSTANCE, OS_TICK_CC_CHANNEL); uint32_t next_tick_cc_value = nrf_rtc_cc_get(COMMON_RTC_INSTANCE, OS_TICK_CC_CHANNEL);
// do not use os_tick_ovf because its counter value can be different // do not use os_tick_ovf because its counter value can be different
if(is_in_wrapped_range(previous_tick_cc_value, next_tick_cc_value, current_counter)) { if (is_in_wrapped_range(previous_tick_cc_value, next_tick_cc_value, current_counter))
if (next_tick_cc_value > previous_tick_cc_value) { {
if (next_tick_cc_value > previous_tick_cc_value)
{
return next_tick_cc_value - current_counter; return next_tick_cc_value - current_counter;
} else if(current_counter <= next_tick_cc_value) { }
else if (current_counter <= next_tick_cc_value)
{
return next_tick_cc_value - current_counter; return next_tick_cc_value - current_counter;
} else { }
else
{
return next_tick_cc_value + (MAX_RTC_COUNTER_VAL - current_counter); return next_tick_cc_value + (MAX_RTC_COUNTER_VAL - current_counter);
} }
} else { }
else
{
// use (os_trv + 1) has the base step, can be totally inacurate ... // use (os_trv + 1) has the base step, can be totally inacurate ...
uint32_t clock_cycles_by_tick = os_trv + 1; uint32_t clock_cycles_by_tick = os_trv + 1;
// if current counter has wrap arround, add the limit to it. // if current counter has wrap arround, add the limit to it.
if (current_counter < next_tick_cc_value) { if (current_counter < next_tick_cc_value)
{
current_counter = current_counter + MAX_RTC_COUNTER_VAL; current_counter = current_counter + MAX_RTC_COUNTER_VAL;
} }