Cellular: Deleted unused class CellularConnectionFSM. Application should use CellularContext class instead.

pull/8579/head
Teppo Järvelin 2018-10-29 08:46:56 +02:00
parent 43e08a0adf
commit 8385b19e5e
2 changed files with 0 additions and 951 deletions

View File

@ -1,733 +0,0 @@
/*
* Copyright (c) 2017, Arm Limited and affiliates.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "CellularConnectionFSM.h"
#ifdef CELLULAR_DEVICE
#ifndef MBED_TRACE_MAX_LEVEL
#define MBED_TRACE_MAX_LEVEL TRACE_LEVEL_INFO
#endif
#include "CellularLog.h"
#include "CellularCommon.h"
#include "CellularDevice.h"
#include "CellularUtil.h"
// timeout to wait for AT responses
#define TIMEOUT_POWER_ON (1*1000)
#define TIMEOUT_SIM_PIN (1*1000)
#define TIMEOUT_NETWORK (10*1000)
#define TIMEOUT_CONNECT (60*1000)
#define TIMEOUT_REGISTRATION (180*1000)
// maximum time when retrying network register, attach and connect in seconds ( 20minutes )
#define TIMEOUT_NETWORK_MAX (20*60)
#define RETRY_COUNT_DEFAULT 3
namespace mbed {
CellularConnectionFSM::CellularConnectionFSM() :
_serial(0), _state(STATE_INIT), _next_state(_state), _status_callback(0), _event_status_cb(0), _network(0), _power(0), _sim(0),
_queue(8 * EVENTS_EVENT_SIZE), _queue_thread(0), _cellularDevice(0), _retry_count(0), _event_timeout(-1),
_at_queue(0), _event_id(0), _plmn(0), _command_success(false), _plmn_network_found(false)
{
memset(_sim_pin, 0, sizeof(_sim_pin));
#if MBED_CONF_CELLULAR_RANDOM_MAX_START_DELAY == 0
_start_time = 0;
#else
// so that not every device don't start at the exact same time (for example after power outage)
_start_time = rand() % (MBED_CONF_CELLULAR_RANDOM_MAX_START_DELAY);
#endif // MBED_CONF_CELLULAR_RANDOM_MAX_START_DELAY
// set initial retry values in seconds
_retry_timeout_array[0] = 1; // double time on each retry in order to keep network happy
_retry_timeout_array[1] = 2;
_retry_timeout_array[2] = 4;
_retry_timeout_array[3] = 8;
_retry_timeout_array[4] = 16;
_retry_timeout_array[5] = 32;
_retry_timeout_array[6] = 64;
_retry_timeout_array[7] = 128; // if around two minutes was not enough then let's wait much longer
_retry_timeout_array[8] = 600;
_retry_timeout_array[9] = TIMEOUT_NETWORK_MAX;
_retry_array_length = MAX_RETRY_ARRAY_SIZE;
}
CellularConnectionFSM::~CellularConnectionFSM()
{
stop();
}
void CellularConnectionFSM::stop()
{
_queue.cancel(_event_id);
_queue.break_dispatch();
if (_queue_thread) {
_queue_thread->terminate();
delete _queue_thread;
_queue_thread = NULL;
}
if (_at_queue) {
_at_queue->chain(NULL);
_at_queue = NULL;
}
if (_power) {
_cellularDevice->close_power();
_power = NULL;
}
if (_network) {
_cellularDevice->close_network();
_network = NULL;
}
if (_sim) {
_cellularDevice->close_sim();
_sim = NULL;
}
_state = STATE_INIT;
_next_state = _state;
}
nsapi_error_t CellularConnectionFSM::init()
{
tr_info("CELLULAR_DEVICE: %s", CELLULAR_STRINGIFY(CELLULAR_DEVICE));
_cellularDevice = CellularDevice::get_default_instance();
if (!_cellularDevice) {
stop();
return NSAPI_ERROR_NO_MEMORY;
}
_power = _cellularDevice->open_power(_serial);
if (!_power) {
stop();
return NSAPI_ERROR_NO_MEMORY;
}
_network = _cellularDevice->open_network(_serial);
if (!_network) {
stop();
return NSAPI_ERROR_NO_MEMORY;
}
_sim = _cellularDevice->open_sim(_serial);
if (!_sim) {
stop();
return NSAPI_ERROR_NO_MEMORY;
}
_at_queue = _cellularDevice->get_queue();
if (!_at_queue) {
stop();
return NSAPI_ERROR_NO_MEMORY;
}
_at_queue->chain(&_queue);
_retry_count = 0;
_state = STATE_INIT;
_next_state = STATE_INIT;
return NSAPI_ERROR_OK;
}
bool CellularConnectionFSM::power_on()
{
nsapi_error_t err = _power->on();
if (err != NSAPI_ERROR_OK && err != NSAPI_ERROR_UNSUPPORTED) {
tr_warn("Cellular start failed. Power off/on.");
err = _power->off();
if (err != NSAPI_ERROR_OK && err != NSAPI_ERROR_UNSUPPORTED) {
tr_error("Cellular power down failing after failed power up attempt!");
}
return false;
}
return true;
}
void CellularConnectionFSM::set_sim_pin(const char *sim_pin)
{
strncpy(_sim_pin, sim_pin, sizeof(_sim_pin));
_sim_pin[sizeof(_sim_pin) - 1] = '\0';
}
void CellularConnectionFSM::set_plmn(const char *plmn)
{
_plmn = plmn;
}
bool CellularConnectionFSM::open_sim()
{
CellularSIM::SimState state = CellularSIM::SimStateUnknown;
// wait until SIM is readable
// here you could add wait(secs) if you know start delay of your SIM
if (_sim->get_sim_state(state) != NSAPI_ERROR_OK) {
tr_info("Waiting for SIM (err while reading)...");
if (_event_status_cb) {
_event_status_cb((nsapi_event_t)CellularSIMStatusChanged, state);
}
return false;
}
// report current state so callback can set sim pin if needed
if (_event_status_cb) {
_event_status_cb((nsapi_event_t)CellularSIMStatusChanged, state);
}
if (state == CellularSIM::SimStatePinNeeded) {
if (strlen(_sim_pin)) {
tr_info("SIM pin required, entering pin");
nsapi_error_t err = _sim->set_pin(_sim_pin);
if (err) {
tr_error("SIM pin set failed with: %d, bailing out...", err);
}
} else {
// No sim pin provided even it's needed, stop state machine
tr_error("PIN required but No SIM pin provided.");
_retry_count = MAX_RETRY_ARRAY_SIZE;
return false;
}
}
return state == CellularSIM::SimStateReady;
}
bool CellularConnectionFSM::is_registered()
{
CellularNetwork::RegistrationStatus status;
bool is_registered = false;
for (int type = 0; type < CellularNetwork::C_MAX; type++) {
if (get_network_registration((CellularNetwork::RegistrationType) type, status, is_registered)) {
tr_debug("get_network_registration: type=%d, status=%d", type, status);
if (is_registered) {
break;
}
}
}
return is_registered;
}
bool CellularConnectionFSM::get_network_registration(CellularNetwork::RegistrationType type,
CellularNetwork::RegistrationStatus &status, bool &is_registered)
{
is_registered = false;
bool is_roaming = false;
CellularNetwork::registration_params_t reg_params;
nsapi_error_t err = _network->get_registration_params(type, reg_params);
if (err != NSAPI_ERROR_OK) {
if (err != NSAPI_ERROR_UNSUPPORTED) {
tr_warn("Get network registration failed (type %d)!", type);
}
return false;
}
status = reg_params._status;
switch (status) {
case CellularNetwork::RegisteredRoaming:
is_roaming = true;
// fall-through
case CellularNetwork::RegisteredHomeNetwork:
is_registered = true;
break;
case CellularNetwork::RegisteredSMSOnlyRoaming:
is_roaming = true;
// fall-through
case CellularNetwork::RegisteredSMSOnlyHome:
tr_warn("SMS only network registration!");
break;
case CellularNetwork::RegisteredCSFBNotPreferredRoaming:
is_roaming = true;
// fall-through
case CellularNetwork::RegisteredCSFBNotPreferredHome:
tr_warn("Not preferred network registration!");
break;
case CellularNetwork::AttachedEmergencyOnly:
tr_warn("Emergency only network registration!");
break;
case CellularNetwork::RegistrationDenied:
case CellularNetwork::NotRegistered:
case CellularNetwork::Unknown:
case CellularNetwork::SearchingNetwork:
default:
break;
}
if (is_roaming) {
tr_warn("Roaming cellular network!");
}
return true;
}
void CellularConnectionFSM::report_failure(const char *msg)
{
tr_error("Cellular network failed: %s", msg);
if (_status_callback) {
_status_callback(_state, _next_state);
}
}
const char *CellularConnectionFSM::get_state_string(CellularState state)
{
#if MBED_CONF_MBED_TRACE_ENABLE
static const char *strings[] = { "Init", "Power", "Device ready", "SIM pin", "Registering network", "Manual registering", "Attaching network", "Activating PDP Context", "Connecting network", "Connected"};
return strings[state];
#else
return NULL;
#endif // #if MBED_CONF_MBED_TRACE_ENABLE
}
bool CellularConnectionFSM::is_registered_to_plmn()
{
int format;
CellularNetwork::operator_t op;
nsapi_error_t err = _network->get_operator_params(format, op);
if (err == NSAPI_ERROR_OK) {
if (format == 2) {
// great, numeric format we can do comparison for that
if (strcmp(op.op_num, _plmn) == 0) {
return true;
}
return false;
}
// format was alpha, get operator names to do the comparing
CellularNetwork::operator_names_list names_list;
nsapi_error_t err = _network->get_operator_names(names_list);
if (err == NSAPI_ERROR_OK) {
CellularNetwork::operator_names_t *op_names = names_list.get_head();
bool found_match = false;
while (op_names) {
if (format == 0) {
if (strcmp(op.op_long, op_names->alpha) == 0) {
found_match = true;
}
} else if (format == 1) {
if (strcmp(op.op_short, op_names->alpha) == 0) {
found_match = true;
}
}
if (found_match) {
if (strcmp(_plmn, op_names->numeric)) {
names_list.delete_all();
return true;
}
names_list.delete_all();
return false;
}
}
}
names_list.delete_all();
}
return false;
}
nsapi_error_t CellularConnectionFSM::continue_from_state(CellularState state)
{
tr_info("Continue state from %s to %s", get_state_string((CellularConnectionFSM::CellularState)_state),
get_state_string((CellularConnectionFSM::CellularState)state));
_state = state;
_next_state = state;
_retry_count = 0;
if (!_queue.call_in(0, callback(this, &CellularConnectionFSM::event))) {
stop();
return NSAPI_ERROR_NO_MEMORY;
}
return NSAPI_ERROR_OK;
}
nsapi_error_t CellularConnectionFSM::continue_to_state(CellularState state)
{
MBED_ASSERT(_cellularDevice);
_retry_count = 0;
if (state < _state) {
_state = state;
} else {
// update next state so that we don't continue from previous state
_state = _next_state;
}
if (!_queue.call_in(0, callback(this, &CellularConnectionFSM::event))) {
stop();
return NSAPI_ERROR_NO_MEMORY;
}
return NSAPI_ERROR_OK;
}
void CellularConnectionFSM::enter_to_state(CellularState state)
{
_next_state = state;
_retry_count = 0;
_command_success = false;
}
void CellularConnectionFSM::retry_state_or_fail()
{
if (++_retry_count < MAX_RETRY_ARRAY_SIZE) {
tr_debug("Retry State %s, retry %d/%d", get_state_string(_state), _retry_count, MAX_RETRY_ARRAY_SIZE);
_event_timeout = _retry_timeout_array[_retry_count];
} else {
report_failure(get_state_string(_state));
return;
}
}
void CellularConnectionFSM::state_init()
{
// we should check that if power is already on then we can jump to device ready state
_cellularDevice->set_timeout(TIMEOUT_POWER_ON);
tr_info("Cellular state init (timeout %d ms)", TIMEOUT_POWER_ON);
nsapi_error_t err = _power->is_device_ready();
if (err != NSAPI_ERROR_OK) {
_event_timeout = _start_time;
tr_info("Init state, waiting %d ms before POWER state)", _start_time);
enter_to_state(STATE_POWER_ON);
} else {
tr_info("Device was ready to accept commands, jump to device ready");
enter_to_state(STATE_DEVICE_READY);
}
}
void CellularConnectionFSM::state_power_on()
{
_cellularDevice->set_timeout(TIMEOUT_POWER_ON);
tr_info("Cellular power ON (timeout %d ms)", TIMEOUT_POWER_ON);
if (power_on()) {
enter_to_state(STATE_DEVICE_READY);
} else {
// retry to power on device
retry_state_or_fail();
}
}
bool CellularConnectionFSM::device_ready()
{
if (_cellularDevice->init_module(_serial) != NSAPI_ERROR_OK) {
return false;
}
tr_info("Cellular device ready");
if (_event_status_cb) {
_event_status_cb((nsapi_event_t)CellularDeviceReady, 0);
}
_power->remove_device_ready_urc_cb(mbed::callback(this, &CellularConnectionFSM::ready_urc_cb));
_cellularDevice->close_power();
_power = NULL;
return true;
}
void CellularConnectionFSM::state_device_ready()
{
_cellularDevice->set_timeout(TIMEOUT_POWER_ON);
if (_power->set_at_mode() == NSAPI_ERROR_OK) {
if (device_ready()) {
enter_to_state(STATE_SIM_PIN);
}
} else {
if (_retry_count == 0) {
_power->set_device_ready_urc_cb(mbed::callback(this, &CellularConnectionFSM::ready_urc_cb));
}
retry_state_or_fail();
}
}
void CellularConnectionFSM::state_sim_pin()
{
_cellularDevice->set_timeout(TIMEOUT_SIM_PIN);
tr_info("Sim state (timeout %d ms)", TIMEOUT_SIM_PIN);
if (open_sim()) {
bool success = false;
for (int type = 0; type < CellularNetwork::C_MAX; type++) {
if (!_network->set_registration_urc((CellularNetwork::RegistrationType)type, true)) {
success = true;
}
}
if (!success) {
tr_warn("Failed to set any URC's for registration");
retry_state_or_fail();
return;
}
if (_plmn) {
enter_to_state(STATE_MANUAL_REGISTERING_NETWORK);
} else {
enter_to_state(STATE_REGISTERING_NETWORK);
}
} else {
retry_state_or_fail();
}
}
void CellularConnectionFSM::state_registering()
{
_cellularDevice->set_timeout(TIMEOUT_NETWORK);
if (is_registered()) {
// we are already registered, go to attach
enter_to_state(STATE_ATTACHING_NETWORK);
} else {
_cellularDevice->set_timeout(TIMEOUT_REGISTRATION);
if (!_command_success) {
_command_success = (_network->set_registration() == NSAPI_ERROR_OK);
}
retry_state_or_fail();
}
}
// only used when _plmn is set
void CellularConnectionFSM::state_manual_registering_network()
{
_cellularDevice->set_timeout(TIMEOUT_REGISTRATION);
tr_info("state_manual_registering_network");
if (!_plmn_network_found) {
if (is_registered() && is_registered_to_plmn()) {
_plmn_network_found = true;
enter_to_state(STATE_ATTACHING_NETWORK);
} else {
if (!_command_success) {
_command_success = (_network->set_registration(_plmn) == NSAPI_ERROR_OK);
}
retry_state_or_fail();
}
}
}
void CellularConnectionFSM::state_attaching()
{
_cellularDevice->set_timeout(TIMEOUT_CONNECT);
if (_network->set_attach() == NSAPI_ERROR_OK) {
_cellularDevice->close_sim();
_sim = NULL;
enter_to_state(STATE_ACTIVATING_PDP_CONTEXT);
} else {
retry_state_or_fail();
}
}
void CellularConnectionFSM::state_activating_pdp_context()
{
_cellularDevice->set_timeout(TIMEOUT_CONNECT);
tr_info("Activate PDP Context (timeout %d ms)", TIMEOUT_CONNECT);
/* if (_network->activate_context() == NSAPI_ERROR_OK) {
// when using modems stack connect is synchronous
_next_state = STATE_CONNECTING_NETWORK;
} else {
retry_state_or_fail();
}*/
}
void CellularConnectionFSM::state_connect_to_network()
{
_cellularDevice->set_timeout(TIMEOUT_CONNECT);
tr_info("Connect to cellular network (timeout %d ms)", TIMEOUT_CONNECT);
/*if (_network->connect() == NSAPI_ERROR_OK) {
_cellularDevice->set_timeout(TIMEOUT_NETWORK);
tr_debug("Connected to cellular network, set at timeout (timeout %d ms)", TIMEOUT_NETWORK);
// when using modems stack connect is synchronous
_next_state = STATE_CONNECTED;
} else {
retry_state_or_fail();
}*/
}
void CellularConnectionFSM::state_connected()
{
_cellularDevice->set_timeout(TIMEOUT_NETWORK);
tr_debug("Cellular ready! (timeout %d ms)", TIMEOUT_NETWORK);
if (_status_callback) {
_status_callback(_state, _next_state);
}
}
void CellularConnectionFSM::event()
{
_event_timeout = -1;
switch (_state) {
case STATE_INIT:
state_init();
break;
case STATE_POWER_ON:
state_power_on();
break;
case STATE_DEVICE_READY:
state_device_ready();
break;
case STATE_SIM_PIN:
state_sim_pin();
break;
case STATE_REGISTERING_NETWORK:
state_registering();
break;
case STATE_MANUAL_REGISTERING_NETWORK:
state_manual_registering_network();
break;
case STATE_ATTACHING_NETWORK:
state_attaching();
break;
case STATE_ACTIVATING_PDP_CONTEXT:
state_activating_pdp_context();
break;
case STATE_CONNECTING_NETWORK:
state_connect_to_network();
break;
case STATE_CONNECTED:
state_connected();
break;
default:
MBED_ASSERT(0);
break;
}
if (_next_state != _state || _event_timeout >= 0) {
if (_next_state != _state) { // state exit condition
tr_info("Cellular state from %s to %s", get_state_string((CellularConnectionFSM::CellularState)_state),
get_state_string((CellularConnectionFSM::CellularState)_next_state));
if (_status_callback) {
if (!_status_callback(_state, _next_state)) {
return;
}
}
} else {
tr_info("Cellular event in %d seconds", _event_timeout);
}
_state = _next_state;
if (_event_timeout == -1) {
_event_timeout = 0;
}
_event_id = _queue.call_in(_event_timeout * 1000, callback(this, &CellularConnectionFSM::event));
if (!_event_id) {
report_failure("Cellular event failure!");
return;
}
}
}
nsapi_error_t CellularConnectionFSM::start_dispatch()
{
MBED_ASSERT(!_queue_thread);
_queue_thread = new rtos::Thread(osPriorityNormal, 2048, NULL, "cellular_fsm");
if (!_queue_thread) {
stop();
return NSAPI_ERROR_NO_MEMORY;
}
if (_queue_thread->start(callback(&_queue, &events::EventQueue::dispatch_forever)) != osOK) {
stop();
return NSAPI_ERROR_NO_MEMORY;
}
return NSAPI_ERROR_OK;
}
void CellularConnectionFSM::set_serial(UARTSerial *serial)
{
_serial = serial;
}
void CellularConnectionFSM::set_callback(mbed::Callback<bool(int, int)> status_callback)
{
_status_callback = status_callback;
}
void CellularConnectionFSM::attach(mbed::Callback<void(nsapi_event_t, intptr_t)> status_cb)
{
MBED_ASSERT(_network);
_event_status_cb = status_cb;
if (status_cb) {
_network->attach(callback(this, &CellularConnectionFSM::network_callback));
} else {
_network->attach(NULL);
}
}
void CellularConnectionFSM::network_callback(nsapi_event_t ev, intptr_t ptr)
{
tr_info("FSM: network_callback called with event: %d, intptr: %d, _state: %s", ev, ptr, get_state_string(_state));
if ((cellular_connection_status_t)ev == CellularRegistrationStatusChanged &&
(_state == STATE_REGISTERING_NETWORK || _state == STATE_MANUAL_REGISTERING_NETWORK)) {
// expect packet data so only these states are valid
if (ptr == CellularNetwork::RegisteredHomeNetwork || ptr == CellularNetwork::RegisteredRoaming) {
if (_plmn) {
if (is_registered_to_plmn()) {
if (!_plmn_network_found) {
_plmn_network_found = true;
_queue.cancel(_event_id);
continue_from_state(STATE_ATTACHING_NETWORK);
}
}
} else {
_queue.cancel(_event_id);
continue_from_state(STATE_ATTACHING_NETWORK);
}
}
}
if (_event_status_cb) {
_event_status_cb(ev, ptr);
}
}
void CellularConnectionFSM::ready_urc_cb()
{
tr_debug("Device ready URC func called");
if (_state == STATE_DEVICE_READY && _power->set_at_mode() == NSAPI_ERROR_OK) {
tr_debug("State was STATE_DEVICE_READY and at mode ready, cancel state and move to next");
if (device_ready()) {
_queue.cancel(_event_id);
continue_from_state(STATE_SIM_PIN);
}
}
}
events::EventQueue *CellularConnectionFSM::get_queue()
{
return &_queue;
}
CellularNetwork *CellularConnectionFSM::get_network()
{
return _network;
}
CellularDevice *CellularConnectionFSM::get_device()
{
return _cellularDevice;
}
CellularSIM *CellularConnectionFSM::get_sim()
{
return _sim;
}
void CellularConnectionFSM::set_retry_timeout_array(uint16_t timeout[], int array_len)
{
_retry_array_length = array_len > MAX_RETRY_ARRAY_SIZE ? MAX_RETRY_ARRAY_SIZE : array_len;
for (int i = 0; i < _retry_array_length; i++) {
_retry_timeout_array[i] = timeout[i];
}
}
} // namespace
#endif // CELLULAR_DEVICE

View File

@ -1,218 +0,0 @@
/*
* Copyright (c) 2017, Arm Limited and affiliates.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef _CELLULAR_CONNECTION_FSM_H
#define _CELLULAR_CONNECTION_FSM_H
#include "CellularTargets.h"
#if defined(CELLULAR_DEVICE) || defined(DOXYGEN_ONLY)
#include "UARTSerial.h"
#include "NetworkInterface.h"
#include "EventQueue.h"
#include "Thread.h"
#include "CellularNetwork.h"
#include "CellularPower.h"
#include "CellularSIM.h"
namespace mbed {
class CellularDevice;
const int PIN_SIZE = 8;
const int MAX_RETRY_ARRAY_SIZE = 10;
/** CellularConnectionFSM class
*
* Finite State Machine for connecting to cellular network
*/
class CellularConnectionFSM {
public:
CellularConnectionFSM();
virtual ~CellularConnectionFSM();
public:
/** Cellular connection states
*/
enum CellularState {
STATE_INIT = 0,
STATE_POWER_ON,
STATE_DEVICE_READY,
STATE_SIM_PIN,
STATE_REGISTERING_NETWORK,
STATE_MANUAL_REGISTERING_NETWORK,
STATE_ATTACHING_NETWORK,
STATE_ACTIVATING_PDP_CONTEXT,
STATE_CONNECTING_NETWORK,
STATE_CONNECTED
};
public:
/** Initialize cellular device
* @remark Must be called before any other methods
* @return see nsapi_error_t, 0 on success
*/
nsapi_error_t init();
/** Set serial connection for cellular device
* @param serial UART driver
*/
void set_serial(UARTSerial *serial);
/** Set callback for state update
* @param status_callback function to call on state changes
*/
void set_callback(mbed::Callback<bool(int, int)> status_callback);
/** Register callback for status reporting
*
* The specified status callback function will be called on status changes
* on the network. The parameters on the callback are the event type and
* event-type dependent reason parameter.
*
* @param status_cb The callback for status changes
*/
virtual void attach(mbed::Callback<void(nsapi_event_t, intptr_t)> status_cb);
/** Get event queue that can be chained to main event queue (or use start_dispatch)
* @return event queue
*/
events::EventQueue *get_queue();
/** Start event queue dispatching
* @return see nsapi_error_t, 0 on success
*/
nsapi_error_t start_dispatch();
/** Stop event queue dispatching and close cellular interfaces. After calling stop(), init() must be called
* before any other methods.
*/
void stop();
/** Get cellular network interface
* @return network interface, NULL on failure
*/
CellularNetwork *get_network();
/** Get cellular device interface
* @return device interface, NULL on failure
*/
CellularDevice *get_device();
/** Get cellular sim interface. SIM interface is released when moving from STATE_ATTACHING_NETWORK to STATE_ACTIVATING_PDP_CONTEXT.
* After SIM interface is closed, this method returns NULL, and any instances fetched using this method are invalid.
* SIM interface can be created again using CellularDevice, which you can get with the method get_device().
* @return sim interface, NULL on failure
*/
CellularSIM *get_sim();
/** Change cellular connection to the target state
* @param state to continue. Default is to connect.
* @return see nsapi_error_t, 0 on success
*/
nsapi_error_t continue_to_state(CellularState state = STATE_CONNECTED);
/** Set cellular device SIM PIN code
* @param sim_pin PIN code
*/
void set_sim_pin(const char *sim_pin);
/** Sets the timeout array for network rejects. After reject next item is tried and after all items are waited and
* still fails then current network event will fail.
*
* @param timeout timeout array using seconds
* @param array_len length of the array
*/
void set_retry_timeout_array(uint16_t timeout[], int array_len);
/** Sets the operator plmn which is used when registering to a network specified by plmn. If plmn is not set then automatic
* registering is used when registering to a cellular network. Does not start any operations.
*
* @param plmn operator in numeric format. See more from 3GPP TS 27.007 chapter 7.3.
*/
void set_plmn(const char *plmn);
/** returns readable format of the given state. Used for printing states while debugging.
*
* @param state state which is returned in string format
* @return string format of the given state
*/
const char *get_state_string(CellularState state);
private:
bool power_on();
bool open_sim();
bool get_network_registration(CellularNetwork::RegistrationType type, CellularNetwork::RegistrationStatus &status, bool &is_registered);
bool is_registered();
bool device_ready();
// state functions to keep state machine simple
void state_init();
void state_power_on();
void state_device_ready();
void state_sim_pin();
void state_registering();
void state_manual_registering_network();
void state_attaching();
void state_activating_pdp_context();
void state_connect_to_network();
void state_connected();
void enter_to_state(CellularState state);
void retry_state_or_fail();
void network_callback(nsapi_event_t ev, intptr_t ptr);
nsapi_error_t continue_from_state(CellularState state);
bool is_registered_to_plmn();
private:
void report_failure(const char *msg);
void event();
void ready_urc_cb();
UARTSerial *_serial;
CellularState _state;
CellularState _next_state;
Callback<bool(int, int)> _status_callback;
Callback<void(nsapi_event_t, intptr_t)> _event_status_cb;
CellularNetwork *_network;
CellularPower *_power;
CellularSIM *_sim;
events::EventQueue _queue;
rtos::Thread *_queue_thread;
CellularDevice *_cellularDevice;
char _sim_pin[PIN_SIZE + 1];
int _retry_count;
int _start_time;
int _event_timeout;
uint16_t _retry_timeout_array[MAX_RETRY_ARRAY_SIZE];
int _retry_array_length;
events::EventQueue *_at_queue;
char _st_string[20];
int _event_id;
const char *_plmn;
bool _command_success;
bool _plmn_network_found;
};
} // namespace
#endif // CELLULAR_DEVICE || DOXYGEN
#endif // _CELLULAR_CONNECTION_FSM_H