[NUCLEO_L152RE] Add first files (gpio, pinmap, us_ticker)

pull/150/head
bcostm 2014-01-10 17:46:18 +01:00
parent dace8653e6
commit 7d145c8dc4
90 changed files with 45865 additions and 6 deletions

View File

@ -0,0 +1,329 @@
; STM32L1xx Ultra Low Power High-density Devices vector table for MDK ARM_MICRO toolchain
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; Copyright (c) 2014, STMicroelectronics
; All rights reserved.
;
; Redistribution and use in source and binary forms, with or without
; modification, are permitted provided that the following conditions are met:
;
; 1. Redistributions of source code must retain the above copyright notice,
; this list of conditions and the following disclaimer.
; 2. Redistributions in binary form must reproduce the above copyright notice,
; this list of conditions and the following disclaimer in the documentation
; and/or other materials provided with the distribution.
; 3. Neither the name of STMicroelectronics nor the names of its contributors
; may be used to endorse or promote products derived from this software
; without specific prior written permission.
;
; THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
; AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
; IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
; DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
; FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
; DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
; SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
; CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
; OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
; OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; Amount of memory (in bytes) allocated for Stack
; Tailor this value to your application needs
; <h> Stack Configuration
; <o> Stack Size (in Bytes) <0x0-0xFFFFFFFF:8>
; </h>
Stack_Size EQU 0x00000400
AREA STACK, NOINIT, READWRITE, ALIGN=3
EXPORT __initial_sp
Stack_Mem SPACE Stack_Size
__initial_sp EQU 0x20014000 ; Top of RAM (80 KB for STM32L152RE)
; <h> Heap Configuration
; <o> Heap Size (in Bytes) <0x0-0xFFFFFFFF:8>
; </h>
Heap_Size EQU 0x00000000
AREA HEAP, NOINIT, READWRITE, ALIGN=3
EXPORT __heap_base
EXPORT __heap_limit
__heap_base
Heap_Mem SPACE Heap_Size
__heap_limit
PRESERVE8
THUMB
; Vector Table Mapped to Address 0 at Reset
AREA RESET, DATA, READONLY
EXPORT __Vectors
EXPORT __Vectors_End
EXPORT __Vectors_Size
__Vectors DCD __initial_sp ; Top of Stack
DCD Reset_Handler ; Reset Handler
DCD NMI_Handler ; NMI Handler
DCD HardFault_Handler ; Hard Fault Handler
DCD MemManage_Handler ; MPU Fault Handler
DCD BusFault_Handler ; Bus Fault Handler
DCD UsageFault_Handler ; Usage Fault Handler
DCD 0 ; Reserved
DCD 0 ; Reserved
DCD 0 ; Reserved
DCD 0 ; Reserved
DCD SVC_Handler ; SVCall Handler
DCD DebugMon_Handler ; Debug Monitor Handler
DCD 0 ; Reserved
DCD PendSV_Handler ; PendSV Handler
DCD SysTick_Handler ; SysTick Handler
; External Interrupts
DCD WWDG_IRQHandler ; Window Watchdog
DCD PVD_IRQHandler ; PVD through EXTI Line detect
DCD TAMPER_STAMP_IRQHandler ; Tamper and Time Stamp
DCD RTC_WKUP_IRQHandler ; RTC Wakeup
DCD FLASH_IRQHandler ; FLASH
DCD RCC_IRQHandler ; RCC
DCD EXTI0_IRQHandler ; EXTI Line 0
DCD EXTI1_IRQHandler ; EXTI Line 1
DCD EXTI2_IRQHandler ; EXTI Line 2
DCD EXTI3_IRQHandler ; EXTI Line 3
DCD EXTI4_IRQHandler ; EXTI Line 4
DCD DMA1_Channel1_IRQHandler ; DMA1 Channel 1
DCD DMA1_Channel2_IRQHandler ; DMA1 Channel 2
DCD DMA1_Channel3_IRQHandler ; DMA1 Channel 3
DCD DMA1_Channel4_IRQHandler ; DMA1 Channel 4
DCD DMA1_Channel5_IRQHandler ; DMA1 Channel 5
DCD DMA1_Channel6_IRQHandler ; DMA1 Channel 6
DCD DMA1_Channel7_IRQHandler ; DMA1 Channel 7
DCD ADC1_IRQHandler ; ADC1
DCD USB_HP_IRQHandler ; USB High Priority
DCD USB_LP_IRQHandler ; USB Low Priority
DCD DAC_IRQHandler ; DAC
DCD COMP_IRQHandler ; COMP through EXTI Line
DCD EXTI9_5_IRQHandler ; EXTI Line 9..5
DCD LCD_IRQHandler ; LCD
DCD TIM9_IRQHandler ; TIM9
DCD TIM10_IRQHandler ; TIM10
DCD TIM11_IRQHandler ; TIM11
DCD TIM2_IRQHandler ; TIM2
DCD TIM3_IRQHandler ; TIM3
DCD TIM4_IRQHandler ; TIM4
DCD I2C1_EV_IRQHandler ; I2C1 Event
DCD I2C1_ER_IRQHandler ; I2C1 Error
DCD I2C2_EV_IRQHandler ; I2C2 Event
DCD I2C2_ER_IRQHandler ; I2C2 Error
DCD SPI1_IRQHandler ; SPI1
DCD SPI2_IRQHandler ; SPI2
DCD USART1_IRQHandler ; USART1
DCD USART2_IRQHandler ; USART2
DCD USART3_IRQHandler ; USART3
DCD EXTI15_10_IRQHandler ; EXTI Line 15..10
DCD RTC_Alarm_IRQHandler ; RTC Alarm through EXTI Line
DCD USB_FS_WKUP_IRQHandler ; USB FS Wakeup from suspend
DCD TIM6_IRQHandler ; TIM6
DCD TIM7_IRQHandler ; TIM7
DCD SDIO_IRQHandler ; SDIO
DCD TIM5_IRQHandler ; TIM5
DCD SPI3_IRQHandler ; SPI3
DCD UART4_IRQHandler ; UART4
DCD UART5_IRQHandler ; UART5
DCD DMA2_Channel1_IRQHandler ; DMA2 Channel 1
DCD DMA2_Channel2_IRQHandler ; DMA2 Channel 2
DCD DMA2_Channel3_IRQHandler ; DMA2 Channel 3
DCD DMA2_Channel4_IRQHandler ; DMA2 Channel 4
DCD DMA2_Channel5_IRQHandler ; DMA2 Channel 5
DCD AES_IRQHandler ; AES
DCD COMP_ACQ_IRQHandler ; Comparator Channel Acquisition
__Vectors_End
__Vectors_Size EQU __Vectors_End - __Vectors
AREA |.text|, CODE, READONLY
; Reset handler
Reset_Handler PROC
EXPORT Reset_Handler [WEAK]
IMPORT __main
IMPORT SystemInit
LDR R0, =SystemInit
BLX R0
LDR R0, =__main
BX R0
ENDP
; Dummy Exception Handlers (infinite loops which can be modified)
NMI_Handler PROC
EXPORT NMI_Handler [WEAK]
B .
ENDP
HardFault_Handler\
PROC
EXPORT HardFault_Handler [WEAK]
B .
ENDP
MemManage_Handler\
PROC
EXPORT MemManage_Handler [WEAK]
B .
ENDP
BusFault_Handler\
PROC
EXPORT BusFault_Handler [WEAK]
B .
ENDP
UsageFault_Handler\
PROC
EXPORT UsageFault_Handler [WEAK]
B .
ENDP
SVC_Handler PROC
EXPORT SVC_Handler [WEAK]
B .
ENDP
DebugMon_Handler\
PROC
EXPORT DebugMon_Handler [WEAK]
B .
ENDP
PendSV_Handler PROC
EXPORT PendSV_Handler [WEAK]
B .
ENDP
SysTick_Handler PROC
EXPORT SysTick_Handler [WEAK]
B .
ENDP
Default_Handler PROC
EXPORT WWDG_IRQHandler [WEAK]
EXPORT PVD_IRQHandler [WEAK]
EXPORT TAMPER_STAMP_IRQHandler [WEAK]
EXPORT RTC_WKUP_IRQHandler [WEAK]
EXPORT FLASH_IRQHandler [WEAK]
EXPORT RCC_IRQHandler [WEAK]
EXPORT EXTI0_IRQHandler [WEAK]
EXPORT EXTI1_IRQHandler [WEAK]
EXPORT EXTI2_IRQHandler [WEAK]
EXPORT EXTI3_IRQHandler [WEAK]
EXPORT EXTI4_IRQHandler [WEAK]
EXPORT DMA1_Channel1_IRQHandler [WEAK]
EXPORT DMA1_Channel2_IRQHandler [WEAK]
EXPORT DMA1_Channel3_IRQHandler [WEAK]
EXPORT DMA1_Channel4_IRQHandler [WEAK]
EXPORT DMA1_Channel5_IRQHandler [WEAK]
EXPORT DMA1_Channel6_IRQHandler [WEAK]
EXPORT DMA1_Channel7_IRQHandler [WEAK]
EXPORT ADC1_IRQHandler [WEAK]
EXPORT USB_HP_IRQHandler [WEAK]
EXPORT USB_LP_IRQHandler [WEAK]
EXPORT DAC_IRQHandler [WEAK]
EXPORT COMP_IRQHandler [WEAK]
EXPORT EXTI9_5_IRQHandler [WEAK]
EXPORT LCD_IRQHandler [WEAK]
EXPORT TIM9_IRQHandler [WEAK]
EXPORT TIM10_IRQHandler [WEAK]
EXPORT TIM11_IRQHandler [WEAK]
EXPORT TIM2_IRQHandler [WEAK]
EXPORT TIM3_IRQHandler [WEAK]
EXPORT TIM4_IRQHandler [WEAK]
EXPORT I2C1_EV_IRQHandler [WEAK]
EXPORT I2C1_ER_IRQHandler [WEAK]
EXPORT I2C2_EV_IRQHandler [WEAK]
EXPORT I2C2_ER_IRQHandler [WEAK]
EXPORT SPI1_IRQHandler [WEAK]
EXPORT SPI2_IRQHandler [WEAK]
EXPORT USART1_IRQHandler [WEAK]
EXPORT USART2_IRQHandler [WEAK]
EXPORT USART3_IRQHandler [WEAK]
EXPORT EXTI15_10_IRQHandler [WEAK]
EXPORT RTC_Alarm_IRQHandler [WEAK]
EXPORT USB_FS_WKUP_IRQHandler [WEAK]
EXPORT TIM6_IRQHandler [WEAK]
EXPORT TIM7_IRQHandler [WEAK]
EXPORT SDIO_IRQHandler [WEAK]
EXPORT TIM5_IRQHandler [WEAK]
EXPORT SPI3_IRQHandler [WEAK]
EXPORT UART4_IRQHandler [WEAK]
EXPORT UART5_IRQHandler [WEAK]
EXPORT DMA2_Channel1_IRQHandler [WEAK]
EXPORT DMA2_Channel2_IRQHandler [WEAK]
EXPORT DMA2_Channel3_IRQHandler [WEAK]
EXPORT DMA2_Channel4_IRQHandler [WEAK]
EXPORT DMA2_Channel5_IRQHandler [WEAK]
EXPORT AES_IRQHandler [WEAK]
EXPORT COMP_ACQ_IRQHandler [WEAK]
WWDG_IRQHandler
PVD_IRQHandler
TAMPER_STAMP_IRQHandler
RTC_WKUP_IRQHandler
FLASH_IRQHandler
RCC_IRQHandler
EXTI0_IRQHandler
EXTI1_IRQHandler
EXTI2_IRQHandler
EXTI3_IRQHandler
EXTI4_IRQHandler
DMA1_Channel1_IRQHandler
DMA1_Channel2_IRQHandler
DMA1_Channel3_IRQHandler
DMA1_Channel4_IRQHandler
DMA1_Channel5_IRQHandler
DMA1_Channel6_IRQHandler
DMA1_Channel7_IRQHandler
ADC1_IRQHandler
USB_HP_IRQHandler
USB_LP_IRQHandler
DAC_IRQHandler
COMP_IRQHandler
EXTI9_5_IRQHandler
LCD_IRQHandler
TIM9_IRQHandler
TIM10_IRQHandler
TIM11_IRQHandler
TIM2_IRQHandler
TIM3_IRQHandler
TIM4_IRQHandler
I2C1_EV_IRQHandler
I2C1_ER_IRQHandler
I2C2_EV_IRQHandler
I2C2_ER_IRQHandler
SPI1_IRQHandler
SPI2_IRQHandler
USART1_IRQHandler
USART2_IRQHandler
USART3_IRQHandler
EXTI15_10_IRQHandler
RTC_Alarm_IRQHandler
USB_FS_WKUP_IRQHandler
TIM6_IRQHandler
TIM7_IRQHandler
SDIO_IRQHandler
TIM5_IRQHandler
SPI3_IRQHandler
UART4_IRQHandler
UART5_IRQHandler
DMA2_Channel1_IRQHandler
DMA2_Channel2_IRQHandler
DMA2_Channel3_IRQHandler
DMA2_Channel4_IRQHandler
DMA2_Channel5_IRQHandler
AES_IRQHandler
COMP_ACQ_IRQHandler
B .
ENDP
ALIGN
END

View File

@ -0,0 +1,49 @@
; Scatter-Loading Description File
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; Copyright (c) 2014, STMicroelectronics
; All rights reserved.
;
; Redistribution and use in source and binary forms, with or without
; modification, are permitted provided that the following conditions are met:
;
; 1. Redistributions of source code must retain the above copyright notice,
; this list of conditions and the following disclaimer.
; 2. Redistributions in binary form must reproduce the above copyright notice,
; this list of conditions and the following disclaimer in the documentation
; and/or other materials provided with the distribution.
; 3. Neither the name of STMicroelectronics nor the names of its contributors
; may be used to endorse or promote products derived from this software
; without specific prior written permission.
;
; THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
; AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
; IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
; DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
; FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
; DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
; SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
; CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
; OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
; OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; STM32L152RE: 512KB FLASH (0x80000) + 80KB RAM (0x14000)
; STM32L152RC: 256KB FLASH (0x40000) + 32KB RAM (0x08000)
;LR_IROM1 0x08000000 0x80000 { ; load region size_region
LR_IROM1 0x08000000 0x40000 { ; load region size_region
; ER_IROM1 0x08000000 0x80000 { ; load address = execution address
ER_IROM1 0x08000000 0x40000 { ; load address = execution address
*.o (RESET, +First)
*(InRoot$$Sections)
.ANY (+RO)
}
; 73 vectors = 292 bytes (0x124) to be reserved in RAM
; RW_IRAM1 (0x20000000+0x124) (0x14000-0x124) { ; RW data
RW_IRAM1 (0x20000000+0x124) (0x08000-0x124) { ; RW data
.ANY (+RW +ZI)
}
}

View File

@ -0,0 +1,56 @@
/* mbed Microcontroller Library - stackheap
* Setup a fixed single stack/heap memory model,
* between the top of the RW/ZI region and the stackpointer
*******************************************************************************
* Copyright (c) 2014, STMicroelectronics
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* 3. Neither the name of STMicroelectronics nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*******************************************************************************
*/
#ifdef __cplusplus
extern "C" {
#endif
#include <rt_misc.h>
#include <stdint.h>
extern char Image$$RW_IRAM1$$ZI$$Limit[];
extern __value_in_regs struct __initial_stackheap __user_setup_stackheap(uint32_t R0, uint32_t R1, uint32_t R2, uint32_t R3) {
uint32_t zi_limit = (uint32_t)Image$$RW_IRAM1$$ZI$$Limit;
uint32_t sp_limit = __current_sp();
zi_limit = (zi_limit + 7) & ~0x7; // ensure zi_limit is 8-byte aligned
struct __initial_stackheap r;
r.heap_base = zi_limit;
r.heap_limit = sp_limit;
return r;
}
#ifdef __cplusplus
}
#endif

View File

@ -0,0 +1,302 @@
; STM32L1xx Ultra Low Power High-density Devices vector table for MDK ARM_STD toolchain
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; Copyright (c) 2014, STMicroelectronics
; All rights reserved.
;
; Redistribution and use in source and binary forms, with or without
; modification, are permitted provided that the following conditions are met:
;
; 1. Redistributions of source code must retain the above copyright notice,
; this list of conditions and the following disclaimer.
; 2. Redistributions in binary form must reproduce the above copyright notice,
; this list of conditions and the following disclaimer in the documentation
; and/or other materials provided with the distribution.
; 3. Neither the name of STMicroelectronics nor the names of its contributors
; may be used to endorse or promote products derived from this software
; without specific prior written permission.
;
; THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
; AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
; IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
; DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
; FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
; DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
; SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
; CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
; OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
; OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
__initial_sp EQU 0x20014000 ; Top of RAM (512 KB)
PRESERVE8
THUMB
; Vector Table Mapped to Address 0 at Reset
AREA RESET, DATA, READONLY
EXPORT __Vectors
EXPORT __Vectors_End
EXPORT __Vectors_Size
__Vectors DCD __initial_sp ; Top of Stack
DCD Reset_Handler ; Reset Handler
DCD NMI_Handler ; NMI Handler
DCD HardFault_Handler ; Hard Fault Handler
DCD MemManage_Handler ; MPU Fault Handler
DCD BusFault_Handler ; Bus Fault Handler
DCD UsageFault_Handler ; Usage Fault Handler
DCD 0 ; Reserved
DCD 0 ; Reserved
DCD 0 ; Reserved
DCD 0 ; Reserved
DCD SVC_Handler ; SVCall Handler
DCD DebugMon_Handler ; Debug Monitor Handler
DCD 0 ; Reserved
DCD PendSV_Handler ; PendSV Handler
DCD SysTick_Handler ; SysTick Handler
; External Interrupts
DCD WWDG_IRQHandler ; Window Watchdog
DCD PVD_IRQHandler ; PVD through EXTI Line detect
DCD TAMPER_STAMP_IRQHandler ; Tamper and Time Stamp
DCD RTC_WKUP_IRQHandler ; RTC Wakeup
DCD FLASH_IRQHandler ; FLASH
DCD RCC_IRQHandler ; RCC
DCD EXTI0_IRQHandler ; EXTI Line 0
DCD EXTI1_IRQHandler ; EXTI Line 1
DCD EXTI2_IRQHandler ; EXTI Line 2
DCD EXTI3_IRQHandler ; EXTI Line 3
DCD EXTI4_IRQHandler ; EXTI Line 4
DCD DMA1_Channel1_IRQHandler ; DMA1 Channel 1
DCD DMA1_Channel2_IRQHandler ; DMA1 Channel 2
DCD DMA1_Channel3_IRQHandler ; DMA1 Channel 3
DCD DMA1_Channel4_IRQHandler ; DMA1 Channel 4
DCD DMA1_Channel5_IRQHandler ; DMA1 Channel 5
DCD DMA1_Channel6_IRQHandler ; DMA1 Channel 6
DCD DMA1_Channel7_IRQHandler ; DMA1 Channel 7
DCD ADC1_IRQHandler ; ADC1
DCD USB_HP_IRQHandler ; USB High Priority
DCD USB_LP_IRQHandler ; USB Low Priority
DCD DAC_IRQHandler ; DAC
DCD COMP_IRQHandler ; COMP through EXTI Line
DCD EXTI9_5_IRQHandler ; EXTI Line 9..5
DCD LCD_IRQHandler ; LCD
DCD TIM9_IRQHandler ; TIM9
DCD TIM10_IRQHandler ; TIM10
DCD TIM11_IRQHandler ; TIM11
DCD TIM2_IRQHandler ; TIM2
DCD TIM3_IRQHandler ; TIM3
DCD TIM4_IRQHandler ; TIM4
DCD I2C1_EV_IRQHandler ; I2C1 Event
DCD I2C1_ER_IRQHandler ; I2C1 Error
DCD I2C2_EV_IRQHandler ; I2C2 Event
DCD I2C2_ER_IRQHandler ; I2C2 Error
DCD SPI1_IRQHandler ; SPI1
DCD SPI2_IRQHandler ; SPI2
DCD USART1_IRQHandler ; USART1
DCD USART2_IRQHandler ; USART2
DCD USART3_IRQHandler ; USART3
DCD EXTI15_10_IRQHandler ; EXTI Line 15..10
DCD RTC_Alarm_IRQHandler ; RTC Alarm through EXTI Line
DCD USB_FS_WKUP_IRQHandler ; USB FS Wakeup from suspend
DCD TIM6_IRQHandler ; TIM6
DCD TIM7_IRQHandler ; TIM7
DCD SDIO_IRQHandler ; SDIO
DCD TIM5_IRQHandler ; TIM5
DCD SPI3_IRQHandler ; SPI3
DCD UART4_IRQHandler ; UART4
DCD UART5_IRQHandler ; UART5
DCD DMA2_Channel1_IRQHandler ; DMA2 Channel 1
DCD DMA2_Channel2_IRQHandler ; DMA2 Channel 2
DCD DMA2_Channel3_IRQHandler ; DMA2 Channel 3
DCD DMA2_Channel4_IRQHandler ; DMA2 Channel 4
DCD DMA2_Channel5_IRQHandler ; DMA2 Channel 5
DCD AES_IRQHandler ; AES
DCD COMP_ACQ_IRQHandler ; Comparator Channel Acquisition
__Vectors_End
__Vectors_Size EQU __Vectors_End - __Vectors
AREA |.text|, CODE, READONLY
; Reset handler
Reset_Handler PROC
EXPORT Reset_Handler [WEAK]
IMPORT __main
IMPORT SystemInit
LDR R0, =SystemInit
BLX R0
LDR R0, =__main
BX R0
ENDP
; Dummy Exception Handlers (infinite loops which can be modified)
NMI_Handler PROC
EXPORT NMI_Handler [WEAK]
B .
ENDP
HardFault_Handler\
PROC
EXPORT HardFault_Handler [WEAK]
B .
ENDP
MemManage_Handler\
PROC
EXPORT MemManage_Handler [WEAK]
B .
ENDP
BusFault_Handler\
PROC
EXPORT BusFault_Handler [WEAK]
B .
ENDP
UsageFault_Handler\
PROC
EXPORT UsageFault_Handler [WEAK]
B .
ENDP
SVC_Handler PROC
EXPORT SVC_Handler [WEAK]
B .
ENDP
DebugMon_Handler\
PROC
EXPORT DebugMon_Handler [WEAK]
B .
ENDP
PendSV_Handler PROC
EXPORT PendSV_Handler [WEAK]
B .
ENDP
SysTick_Handler PROC
EXPORT SysTick_Handler [WEAK]
B .
ENDP
Default_Handler PROC
EXPORT WWDG_IRQHandler [WEAK]
EXPORT PVD_IRQHandler [WEAK]
EXPORT TAMPER_STAMP_IRQHandler [WEAK]
EXPORT RTC_WKUP_IRQHandler [WEAK]
EXPORT FLASH_IRQHandler [WEAK]
EXPORT RCC_IRQHandler [WEAK]
EXPORT EXTI0_IRQHandler [WEAK]
EXPORT EXTI1_IRQHandler [WEAK]
EXPORT EXTI2_IRQHandler [WEAK]
EXPORT EXTI3_IRQHandler [WEAK]
EXPORT EXTI4_IRQHandler [WEAK]
EXPORT DMA1_Channel1_IRQHandler [WEAK]
EXPORT DMA1_Channel2_IRQHandler [WEAK]
EXPORT DMA1_Channel3_IRQHandler [WEAK]
EXPORT DMA1_Channel4_IRQHandler [WEAK]
EXPORT DMA1_Channel5_IRQHandler [WEAK]
EXPORT DMA1_Channel6_IRQHandler [WEAK]
EXPORT DMA1_Channel7_IRQHandler [WEAK]
EXPORT ADC1_IRQHandler [WEAK]
EXPORT USB_HP_IRQHandler [WEAK]
EXPORT USB_LP_IRQHandler [WEAK]
EXPORT DAC_IRQHandler [WEAK]
EXPORT COMP_IRQHandler [WEAK]
EXPORT EXTI9_5_IRQHandler [WEAK]
EXPORT LCD_IRQHandler [WEAK]
EXPORT TIM9_IRQHandler [WEAK]
EXPORT TIM10_IRQHandler [WEAK]
EXPORT TIM11_IRQHandler [WEAK]
EXPORT TIM2_IRQHandler [WEAK]
EXPORT TIM3_IRQHandler [WEAK]
EXPORT TIM4_IRQHandler [WEAK]
EXPORT I2C1_EV_IRQHandler [WEAK]
EXPORT I2C1_ER_IRQHandler [WEAK]
EXPORT I2C2_EV_IRQHandler [WEAK]
EXPORT I2C2_ER_IRQHandler [WEAK]
EXPORT SPI1_IRQHandler [WEAK]
EXPORT SPI2_IRQHandler [WEAK]
EXPORT USART1_IRQHandler [WEAK]
EXPORT USART2_IRQHandler [WEAK]
EXPORT USART3_IRQHandler [WEAK]
EXPORT EXTI15_10_IRQHandler [WEAK]
EXPORT RTC_Alarm_IRQHandler [WEAK]
EXPORT USB_FS_WKUP_IRQHandler [WEAK]
EXPORT TIM6_IRQHandler [WEAK]
EXPORT TIM7_IRQHandler [WEAK]
EXPORT SDIO_IRQHandler [WEAK]
EXPORT TIM5_IRQHandler [WEAK]
EXPORT SPI3_IRQHandler [WEAK]
EXPORT UART4_IRQHandler [WEAK]
EXPORT UART5_IRQHandler [WEAK]
EXPORT DMA2_Channel1_IRQHandler [WEAK]
EXPORT DMA2_Channel2_IRQHandler [WEAK]
EXPORT DMA2_Channel3_IRQHandler [WEAK]
EXPORT DMA2_Channel4_IRQHandler [WEAK]
EXPORT DMA2_Channel5_IRQHandler [WEAK]
EXPORT AES_IRQHandler [WEAK]
EXPORT COMP_ACQ_IRQHandler [WEAK]
WWDG_IRQHandler
PVD_IRQHandler
TAMPER_STAMP_IRQHandler
RTC_WKUP_IRQHandler
FLASH_IRQHandler
RCC_IRQHandler
EXTI0_IRQHandler
EXTI1_IRQHandler
EXTI2_IRQHandler
EXTI3_IRQHandler
EXTI4_IRQHandler
DMA1_Channel1_IRQHandler
DMA1_Channel2_IRQHandler
DMA1_Channel3_IRQHandler
DMA1_Channel4_IRQHandler
DMA1_Channel5_IRQHandler
DMA1_Channel6_IRQHandler
DMA1_Channel7_IRQHandler
ADC1_IRQHandler
USB_HP_IRQHandler
USB_LP_IRQHandler
DAC_IRQHandler
COMP_IRQHandler
EXTI9_5_IRQHandler
LCD_IRQHandler
TIM9_IRQHandler
TIM10_IRQHandler
TIM11_IRQHandler
TIM2_IRQHandler
TIM3_IRQHandler
TIM4_IRQHandler
I2C1_EV_IRQHandler
I2C1_ER_IRQHandler
I2C2_EV_IRQHandler
I2C2_ER_IRQHandler
SPI1_IRQHandler
SPI2_IRQHandler
USART1_IRQHandler
USART2_IRQHandler
USART3_IRQHandler
EXTI15_10_IRQHandler
RTC_Alarm_IRQHandler
USB_FS_WKUP_IRQHandler
TIM6_IRQHandler
TIM7_IRQHandler
SDIO_IRQHandler
TIM5_IRQHandler
SPI3_IRQHandler
UART4_IRQHandler
UART5_IRQHandler
DMA2_Channel1_IRQHandler
DMA2_Channel2_IRQHandler
DMA2_Channel3_IRQHandler
DMA2_Channel4_IRQHandler
DMA2_Channel5_IRQHandler
AES_IRQHandler
COMP_ACQ_IRQHandler
B .
ENDP
ALIGN
END

View File

@ -0,0 +1,44 @@
; Scatter-Loading Description File
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; Copyright (c) 2014, STMicroelectronics
; All rights reserved.
;
; Redistribution and use in source and binary forms, with or without
; modification, are permitted provided that the following conditions are met:
;
; 1. Redistributions of source code must retain the above copyright notice,
; this list of conditions and the following disclaimer.
; 2. Redistributions in binary form must reproduce the above copyright notice,
; this list of conditions and the following disclaimer in the documentation
; and/or other materials provided with the distribution.
; 3. Neither the name of STMicroelectronics nor the names of its contributors
; may be used to endorse or promote products derived from this software
; without specific prior written permission.
;
; THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
; AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
; IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
; DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
; FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
; DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
; SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
; CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
; OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
; OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
LR_IROM1 0x08000000 0x80000 { ; load region size_region (512 KB)
ER_IROM1 0x08000000 0x80000 { ; load address = execution address
*.o (RESET, +First)
*(InRoot$$Sections)
.ANY (+RO)
}
; 73 vectors = 292 bytes (0x124) to be reserved in RAM
RW_IRAM1 (0x20000000+0x124) (0x14000-0x124) { ; RW data
.ANY (+RW +ZI)
}
}

View File

@ -0,0 +1,56 @@
/* mbed Microcontroller Library - stackheap
* Setup a fixed single stack/heap memory model,
* between the top of the RW/ZI region and the stackpointer
*******************************************************************************
* Copyright (c) 2014, STMicroelectronics
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* 3. Neither the name of STMicroelectronics nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*******************************************************************************
*/
#ifdef __cplusplus
extern "C" {
#endif
#include <rt_misc.h>
#include <stdint.h>
extern char Image$$RW_IRAM1$$ZI$$Limit[];
extern __value_in_regs struct __initial_stackheap __user_setup_stackheap(uint32_t R0, uint32_t R1, uint32_t R2, uint32_t R3) {
uint32_t zi_limit = (uint32_t)Image$$RW_IRAM1$$ZI$$Limit;
uint32_t sp_limit = __current_sp();
zi_limit = (zi_limit + 7) & ~0x7; // ensure zi_limit is 8-byte aligned
struct __initial_stackheap r;
r.heap_base = zi_limit;
r.heap_limit = sp_limit;
return r;
}
#ifdef __cplusplus
}
#endif

View File

@ -0,0 +1,38 @@
/* mbed Microcontroller Library
* A generic CMSIS include header
*******************************************************************************
* Copyright (c) 2014, STMicroelectronics
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* 3. Neither the name of STMicroelectronics nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*******************************************************************************
*/
#ifndef MBED_CMSIS_H
#define MBED_CMSIS_H
#include "stm32l1xx.h"
#include "cmsis_nvic.h"
#endif

View File

@ -0,0 +1,55 @@
/* mbed Microcontroller Library
* CMSIS-style functionality to support dynamic vectors
*******************************************************************************
* Copyright (c) 2014, STMicroelectronics
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* 3. Neither the name of STMicroelectronics nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*******************************************************************************
*/
#include "cmsis_nvic.h"
#define NVIC_RAM_VECTOR_ADDRESS (0x20000000) // Vectors positioned at start of RAM
#define NVIC_FLASH_VECTOR_ADDRESS (0x08000000) // Initial vector position in flash
void NVIC_SetVector(IRQn_Type IRQn, uint32_t vector) {
uint32_t *vectors = (uint32_t *)SCB->VTOR;
uint32_t i;
// Copy and switch to dynamic vectors if the first time called
if (SCB->VTOR == NVIC_FLASH_VECTOR_ADDRESS) {
uint32_t *old_vectors = vectors;
vectors = (uint32_t*)NVIC_RAM_VECTOR_ADDRESS;
for (i=0; i<NVIC_NUM_VECTORS; i++) {
vectors[i] = old_vectors[i];
}
SCB->VTOR = (uint32_t)NVIC_RAM_VECTOR_ADDRESS;
}
vectors[IRQn + NVIC_USER_IRQ_OFFSET] = vector;
}
uint32_t NVIC_GetVector(IRQn_Type IRQn) {
uint32_t *vectors = (uint32_t*)SCB->VTOR;
return vectors[IRQn + NVIC_USER_IRQ_OFFSET];
}

View File

@ -0,0 +1,55 @@
/* mbed Microcontroller Library
* CMSIS-style functionality to support dynamic vectors
*******************************************************************************
* Copyright (c) 2014, STMicroelectronics
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* 3. Neither the name of STMicroelectronics nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*******************************************************************************
*/
#ifndef MBED_CMSIS_NVIC_H
#define MBED_CMSIS_NVIC_H
// STM32F152RE
// CORE: 16 vectors = 64 bytes from 0x00 to 0x3F
// MCU Peripherals: 57 vectors = 228 bytes from 0x40 to 0x123
// Total: 73 vectors = 292 bytes (0x124) to be reserved in RAM (see scatter file)
#define NVIC_NUM_VECTORS 73
#define NVIC_USER_IRQ_OFFSET 16
#include "cmsis.h"
#ifdef __cplusplus
extern "C" {
#endif
void NVIC_SetVector(IRQn_Type IRQn, uint32_t vector);
uint32_t NVIC_GetVector(IRQn_Type IRQn);
#ifdef __cplusplus
}
#endif
#endif

View File

@ -0,0 +1,251 @@
/**
******************************************************************************
* @file misc.c
* @author MCD Application Team
* @version V1.2.0
* @date 22-February-2013
* @brief This file provides all the miscellaneous firmware functions (add-on
* to CMSIS functions).
******************************************************************************
* @attention
*
* <h2><center>&copy; COPYRIGHT 2013 STMicroelectronics</center></h2>
*
* Licensed under MCD-ST Liberty SW License Agreement V2, (the "License");
* You may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.st.com/software_license_agreement_liberty_v2
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "misc.h"
/** @addtogroup STM32L1xx_StdPeriph_Driver
* @{
*/
/** @defgroup MISC
* @brief MISC driver modules
* @{
*/
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
#define AIRCR_VECTKEY_MASK ((uint32_t)0x05FA0000)
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private function prototypes -----------------------------------------------*/
/* Private functions ---------------------------------------------------------*/
/** @defgroup MISC_Private_Functions
* @{
*/
/**
*
@verbatim
*******************************************************************************
##### Interrupts configuration functions #####
*******************************************************************************
[..] This section provide functions allowing to configure the NVIC interrupts
(IRQ).The Cortex-M3 exceptions are managed by CMSIS functions.
(#) Configure the NVIC Priority Grouping using NVIC_PriorityGroupConfig()
function according to the following table.
The table below gives the allowed values of the preemption priority
and subpriority according to the Priority Grouping configuration
performed by NVIC_PriorityGroupConfig function.
============================================================================================================================
NVIC_PriorityGroup | NVIC_IRQChannelPreemptionPriority | NVIC_IRQChannelSubPriority | Description
============================================================================================================================
NVIC_PriorityGroup_0 | 0 | 0-15 | 0 bits for preemption priority
| | | 4 bits for subpriority
----------------------------------------------------------------------------------------------------------------------------
NVIC_PriorityGroup_1 | 0-1 | 0-7 | 1 bits for preemption priority
| | | 3 bits for subpriority
----------------------------------------------------------------------------------------------------------------------------
NVIC_PriorityGroup_2 | 0-3 | 0-3 | 2 bits for preemption priority
| | | 2 bits for subpriority
----------------------------------------------------------------------------------------------------------------------------
NVIC_PriorityGroup_3 | 0-7 | 0-1 | 3 bits for preemption priority
| | | 1 bits for subpriority
----------------------------------------------------------------------------------------------------------------------------
NVIC_PriorityGroup_4 | 0-15 | 0 | 4 bits for preemption priority
| | | 0 bits for subpriority
============================================================================================================================
(#) Enable and Configure the priority of the selected IRQ Channels.
-@- When the NVIC_PriorityGroup_0 is selected, it will no any nested interrupt,
the IRQ priority will be managed only by subpriority.
The sub-priority is only used to sort pending exception priorities,
and does not affect active exceptions.
-@- Lower priority values gives higher priority.
-@- Priority Order:
(#@) Lowest Preemption priority.
(#@) Lowest Subpriority.
(#@) Lowest hardware priority (IRQn position).
@endverbatim
*/
/**
* @brief Configures the priority grouping: preemption priority and subpriority.
* @param NVIC_PriorityGroup: specifies the priority grouping bits length.
* This parameter can be one of the following values:
* @arg NVIC_PriorityGroup_0: 0 bits for preemption priority
* 4 bits for subpriority.
* @note When NVIC_PriorityGroup_0 is selected, it will no be any nested
* interrupt. This interrupts priority is managed only with subpriority.
* @arg NVIC_PriorityGroup_1: 1 bits for preemption priority.
* 3 bits for subpriority.
* @arg NVIC_PriorityGroup_2: 2 bits for preemption priority.
* 2 bits for subpriority.
* @arg NVIC_PriorityGroup_3: 3 bits for preemption priority.
* 1 bits for subpriority.
* @arg NVIC_PriorityGroup_4: 4 bits for preemption priority.
* 0 bits for subpriority.
* @retval None
*/
void NVIC_PriorityGroupConfig(uint32_t NVIC_PriorityGroup)
{
/* Check the parameters */
assert_param(IS_NVIC_PRIORITY_GROUP(NVIC_PriorityGroup));
/* Set the PRIGROUP[10:8] bits according to NVIC_PriorityGroup value */
SCB->AIRCR = AIRCR_VECTKEY_MASK | NVIC_PriorityGroup;
}
/**
* @brief Initializes the NVIC peripheral according to the specified
* parameters in the NVIC_InitStruct.
* @note To configure interrupts priority correctly, the NVIC_PriorityGroupConfig()
* function should be called before.
* @param NVIC_InitStruct: pointer to a NVIC_InitTypeDef structure that contains
* the configuration information for the specified NVIC peripheral.
* @retval None
*/
void NVIC_Init(NVIC_InitTypeDef* NVIC_InitStruct)
{
uint8_t tmppriority = 0x00, tmppre = 0x00, tmpsub = 0x0F;
/* Check the parameters */
assert_param(IS_FUNCTIONAL_STATE(NVIC_InitStruct->NVIC_IRQChannelCmd));
assert_param(IS_NVIC_PREEMPTION_PRIORITY(NVIC_InitStruct->NVIC_IRQChannelPreemptionPriority));
assert_param(IS_NVIC_SUB_PRIORITY(NVIC_InitStruct->NVIC_IRQChannelSubPriority));
if (NVIC_InitStruct->NVIC_IRQChannelCmd != DISABLE)
{
/* Compute the Corresponding IRQ Priority --------------------------------*/
tmppriority = (0x700 - ((SCB->AIRCR) & (uint32_t)0x700))>> 0x08;
tmppre = (0x4 - tmppriority);
tmpsub = tmpsub >> tmppriority;
tmppriority = (uint32_t)NVIC_InitStruct->NVIC_IRQChannelPreemptionPriority << tmppre;
tmppriority |= (uint8_t)(NVIC_InitStruct->NVIC_IRQChannelSubPriority & tmpsub);
tmppriority = tmppriority << 0x04;
NVIC->IP[NVIC_InitStruct->NVIC_IRQChannel] = tmppriority;
/* Enable the Selected IRQ Channels --------------------------------------*/
NVIC->ISER[NVIC_InitStruct->NVIC_IRQChannel >> 0x05] =
(uint32_t)0x01 << (NVIC_InitStruct->NVIC_IRQChannel & (uint8_t)0x1F);
}
else
{
/* Disable the Selected IRQ Channels -------------------------------------*/
NVIC->ICER[NVIC_InitStruct->NVIC_IRQChannel >> 0x05] =
(uint32_t)0x01 << (NVIC_InitStruct->NVIC_IRQChannel & (uint8_t)0x1F);
}
}
/**
* @brief Sets the vector table location and Offset.
* @param NVIC_VectTab: specifies if the vector table is in RAM or FLASH memory.
* This parameter can be one of the following values:
* @arg NVIC_VectTab_RAM: Vector Table in internal SRAM.
* @arg NVIC_VectTab_FLASH: Vector Table in internal FLASH.
* @param Offset: Vector Table base offset field. This value must be a multiple of 0x200.
* @retval None
*/
void NVIC_SetVectorTable(uint32_t NVIC_VectTab, uint32_t Offset)
{
/* Check the parameters */
assert_param(IS_NVIC_VECTTAB(NVIC_VectTab));
assert_param(IS_NVIC_OFFSET(Offset));
SCB->VTOR = NVIC_VectTab | (Offset & (uint32_t)0x1FFFFF80);
}
/**
* @brief Selects the condition for the system to enter low power mode.
* @param LowPowerMode: Specifies the new mode for the system to enter low power mode.
* This parameter can be one of the following values:
* @arg NVIC_LP_SEVONPEND: Low Power SEV on Pend.
* @arg NVIC_LP_SLEEPDEEP: Low Power DEEPSLEEP request.
* @arg NVIC_LP_SLEEPONEXIT: Low Power Sleep on Exit.
* @param NewState: new state of LP condition.
* This parameter can be: ENABLE or DISABLE.
* @retval None
*/
void NVIC_SystemLPConfig(uint8_t LowPowerMode, FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_NVIC_LP(LowPowerMode));
assert_param(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
SCB->SCR |= LowPowerMode;
}
else
{
SCB->SCR &= (uint32_t)(~(uint32_t)LowPowerMode);
}
}
/**
* @brief Configures the SysTick clock source.
* @param SysTick_CLKSource: specifies the SysTick clock source.
* This parameter can be one of the following values:
* @arg SysTick_CLKSource_HCLK_Div8: AHB clock divided by 8 selected as SysTick clock source.
* @arg SysTick_CLKSource_HCLK: AHB clock selected as SysTick clock source.
* @retval None
*/
void SysTick_CLKSourceConfig(uint32_t SysTick_CLKSource)
{
/* Check the parameters */
assert_param(IS_SYSTICK_CLK_SOURCE(SysTick_CLKSource));
if (SysTick_CLKSource == SysTick_CLKSource_HCLK)
{
SysTick->CTRL |= SysTick_CLKSource_HCLK;
}
else
{
SysTick->CTRL &= SysTick_CLKSource_HCLK_Div8;
}
}
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/

View File

@ -0,0 +1,202 @@
/**
******************************************************************************
* @file misc.h
* @author MCD Application Team
* @version V1.2.0
* @date 22-February-2013
* @brief This file contains all the functions prototypes for the miscellaneous
* firmware library functions (add-on to CMSIS functions).
******************************************************************************
* @attention
*
* <h2><center>&copy; COPYRIGHT 2013 STMicroelectronics</center></h2>
*
* Licensed under MCD-ST Liberty SW License Agreement V2, (the "License");
* You may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.st.com/software_license_agreement_liberty_v2
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
******************************************************************************
*/
/* Define to prevent recursive inclusion -------------------------------------*/
#ifndef __MISC_H
#define __MISC_H
#ifdef __cplusplus
extern "C" {
#endif
/* Includes ------------------------------------------------------------------*/
#include "stm32l1xx.h"
/** @addtogroup STM32L1xx_StdPeriph_Driver
* @{
*/
/** @addtogroup MISC
* @{
*/
/* Exported types ------------------------------------------------------------*/
/**
* @brief NVIC Init Structure definition
*/
typedef struct
{
uint8_t NVIC_IRQChannel; /*!< Specifies the IRQ channel to be enabled or disabled.
This parameter can be a value of @ref IRQn_Type
(For the complete STM32 Devices IRQ Channels list, please
refer to stm32l1xx.h file) */
uint8_t NVIC_IRQChannelPreemptionPriority; /*!< Specifies the pre-emption priority for the IRQ channel
specified in NVIC_IRQChannel. This parameter can be a value
between 0 and 15 as described in the table @ref NVIC_Priority_Table */
uint8_t NVIC_IRQChannelSubPriority; /*!< Specifies the subpriority level for the IRQ channel specified
in NVIC_IRQChannel. This parameter can be a value
between 0 and 15 as described in the table @ref NVIC_Priority_Table */
FunctionalState NVIC_IRQChannelCmd; /*!< Specifies whether the IRQ channel defined in NVIC_IRQChannel
will be enabled or disabled.
This parameter can be set either to ENABLE or DISABLE */
} NVIC_InitTypeDef;
/**
*
@verbatim
The table below gives the allowed values of the pre-emption priority and subpriority according
to the Priority Grouping configuration performed by NVIC_PriorityGroupConfig function
============================================================================================================================
NVIC_PriorityGroup | NVIC_IRQChannelPreemptionPriority | NVIC_IRQChannelSubPriority | Description
============================================================================================================================
NVIC_PriorityGroup_0 | 0 | 0-15 | 0 bits for pre-emption priority
| | | 4 bits for subpriority
----------------------------------------------------------------------------------------------------------------------------
NVIC_PriorityGroup_1 | 0-1 | 0-7 | 1 bits for pre-emption priority
| | | 3 bits for subpriority
----------------------------------------------------------------------------------------------------------------------------
NVIC_PriorityGroup_2 | 0-3 | 0-3 | 2 bits for pre-emption priority
| | | 2 bits for subpriority
----------------------------------------------------------------------------------------------------------------------------
NVIC_PriorityGroup_3 | 0-7 | 0-1 | 3 bits for pre-emption priority
| | | 1 bits for subpriority
----------------------------------------------------------------------------------------------------------------------------
NVIC_PriorityGroup_4 | 0-15 | 0 | 4 bits for pre-emption priority
| | | 0 bits for subpriority
============================================================================================================================
@endverbatim
*/
/* Exported constants --------------------------------------------------------*/
/** @defgroup MISC_Exported_Constants
* @{
*/
/** @defgroup Vector_Table_Base
* @{
*/
#define NVIC_VectTab_RAM ((uint32_t)0x20000000)
#define NVIC_VectTab_FLASH ((uint32_t)0x08000000)
#define IS_NVIC_VECTTAB(VECTTAB) (((VECTTAB) == NVIC_VectTab_RAM) || \
((VECTTAB) == NVIC_VectTab_FLASH))
/**
* @}
*/
/** @defgroup System_Low_Power
* @{
*/
#define NVIC_LP_SEVONPEND ((uint8_t)0x10)
#define NVIC_LP_SLEEPDEEP ((uint8_t)0x04)
#define NVIC_LP_SLEEPONEXIT ((uint8_t)0x02)
#define IS_NVIC_LP(LP) (((LP) == NVIC_LP_SEVONPEND) || \
((LP) == NVIC_LP_SLEEPDEEP) || \
((LP) == NVIC_LP_SLEEPONEXIT))
/**
* @}
*/
/** @defgroup Preemption_Priority_Group
* @{
*/
#define NVIC_PriorityGroup_0 ((uint32_t)0x700) /*!< 0 bits for pre-emption priority
4 bits for subpriority */
#define NVIC_PriorityGroup_1 ((uint32_t)0x600) /*!< 1 bits for pre-emption priority
3 bits for subpriority */
#define NVIC_PriorityGroup_2 ((uint32_t)0x500) /*!< 2 bits for pre-emption priority
2 bits for subpriority */
#define NVIC_PriorityGroup_3 ((uint32_t)0x400) /*!< 3 bits for pre-emption priority
1 bits for subpriority */
#define NVIC_PriorityGroup_4 ((uint32_t)0x300) /*!< 4 bits for pre-emption priority
0 bits for subpriority */
#define IS_NVIC_PRIORITY_GROUP(GROUP) (((GROUP) == NVIC_PriorityGroup_0) || \
((GROUP) == NVIC_PriorityGroup_1) || \
((GROUP) == NVIC_PriorityGroup_2) || \
((GROUP) == NVIC_PriorityGroup_3) || \
((GROUP) == NVIC_PriorityGroup_4))
#define IS_NVIC_PREEMPTION_PRIORITY(PRIORITY) ((PRIORITY) < 0x10)
#define IS_NVIC_SUB_PRIORITY(PRIORITY) ((PRIORITY) < 0x10)
#define IS_NVIC_OFFSET(OFFSET) ((OFFSET) < 0x0005FFFF)
/**
* @}
*/
/** @defgroup SysTick_clock_source
* @{
*/
#define SysTick_CLKSource_HCLK_Div8 ((uint32_t)0xFFFFFFFB)
#define SysTick_CLKSource_HCLK ((uint32_t)0x00000004)
#define IS_SYSTICK_CLK_SOURCE(SOURCE) (((SOURCE) == SysTick_CLKSource_HCLK) || \
((SOURCE) == SysTick_CLKSource_HCLK_Div8))
/**
* @}
*/
/**
* @}
*/
/* Exported macro ------------------------------------------------------------*/
/* Exported functions ------------------------------------------------------- */
void NVIC_PriorityGroupConfig(uint32_t NVIC_PriorityGroup);
void NVIC_Init(NVIC_InitTypeDef* NVIC_InitStruct);
void NVIC_SetVectorTable(uint32_t NVIC_VectTab, uint32_t Offset);
void NVIC_SystemLPConfig(uint8_t LowPowerMode, FunctionalState NewState);
void SysTick_CLKSourceConfig(uint32_t SysTick_CLKSource);
#ifdef __cplusplus
}
#endif
#endif /* __MISC_H */
/**
* @}
*/
/**
* @}
*/
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,650 @@
/**
******************************************************************************
* @file stm32l1xx_adc.h
* @author MCD Application Team
* @version V1.2.0
* @date 22-February-2013
* @brief This file contains all the functions prototypes for the ADC firmware
* library.
******************************************************************************
* @attention
*
* <h2><center>&copy; COPYRIGHT 2013 STMicroelectronics</center></h2>
*
* Licensed under MCD-ST Liberty SW License Agreement V2, (the "License");
* You may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.st.com/software_license_agreement_liberty_v2
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
******************************************************************************
*/
/* Define to prevent recursive inclusion -------------------------------------*/
#ifndef __STM32L1xx_ADC_H
#define __STM32L1xx_ADC_H
#ifdef __cplusplus
extern "C" {
#endif
/* Includes ------------------------------------------------------------------*/
#include "stm32l1xx.h"
/** @addtogroup STM32L1xx_StdPeriph_Driver
* @{
*/
/** @addtogroup ADC
* @{
*/
/* Exported types ------------------------------------------------------------*/
/**
* @brief ADC Init structure definition
*/
typedef struct
{
uint32_t ADC_Resolution; /*!< Selects the resolution of the conversion.
This parameter can be a value of @ref ADC_Resolution */
FunctionalState ADC_ScanConvMode; /*!< Specifies whether the conversion is performed in
Scan (multichannel) or Single (one channel) mode.
This parameter can be set to ENABLE or DISABLE */
FunctionalState ADC_ContinuousConvMode; /*!< Specifies whether the conversion is performed in
Continuous or Single mode.
This parameter can be set to ENABLE or DISABLE. */
uint32_t ADC_ExternalTrigConvEdge; /*!< Selects the external trigger Edge and enables the
trigger of a regular group. This parameter can be a value
of @ref ADC_external_trigger_edge_for_regular_channels_conversion */
uint32_t ADC_ExternalTrigConv; /*!< Defines the external trigger used to start the analog
to digital conversion of regular channels. This parameter
can be a value of @ref ADC_external_trigger_sources_for_regular_channels_conversion */
uint32_t ADC_DataAlign; /*!< Specifies whether the ADC data alignment is left or right.
This parameter can be a value of @ref ADC_data_align */
uint8_t ADC_NbrOfConversion; /*!< Specifies the number of ADC conversions that will be done
using the sequencer for regular channel group.
This parameter must range from 1 to 27. */
}ADC_InitTypeDef;
typedef struct
{
uint32_t ADC_Prescaler; /*!< Selects the ADC prescaler.
This parameter can be a value
of @ref ADC_Prescaler */
}ADC_CommonInitTypeDef;
/* Exported constants --------------------------------------------------------*/
/** @defgroup ADC_Exported_Constants
* @{
*/
#define IS_ADC_ALL_PERIPH(PERIPH) ((PERIPH) == ADC1)
#define IS_ADC_DMA_PERIPH(PERIPH) ((PERIPH) == ADC1)
/** @defgroup ADC_Power_down_during_Idle_and_or_Delay_phase
* @{
*/
#define ADC_PowerDown_Delay ((uint32_t)0x00010000)
#define ADC_PowerDown_Idle ((uint32_t)0x00020000)
#define ADC_PowerDown_Idle_Delay ((uint32_t)0x00030000)
#define IS_ADC_POWER_DOWN(DWON) (((DWON) == ADC_PowerDown_Delay) || \
((DWON) == ADC_PowerDown_Idle) || \
((DWON) == ADC_PowerDown_Idle_Delay))
/**
* @}
*/
/** @defgroup ADC_Prescaler
* @{
*/
#define ADC_Prescaler_Div1 ((uint32_t)0x00000000)
#define ADC_Prescaler_Div2 ((uint32_t)0x00010000)
#define ADC_Prescaler_Div4 ((uint32_t)0x00020000)
#define IS_ADC_PRESCALER(PRESCALER) (((PRESCALER) == ADC_Prescaler_Div1) || \
((PRESCALER) == ADC_Prescaler_Div2) || \
((PRESCALER) == ADC_Prescaler_Div4))
/**
* @}
*/
/** @defgroup ADC_Resolution
* @{
*/
#define ADC_Resolution_12b ((uint32_t)0x00000000)
#define ADC_Resolution_10b ((uint32_t)0x01000000)
#define ADC_Resolution_8b ((uint32_t)0x02000000)
#define ADC_Resolution_6b ((uint32_t)0x03000000)
#define IS_ADC_RESOLUTION(RESOLUTION) (((RESOLUTION) == ADC_Resolution_12b) || \
((RESOLUTION) == ADC_Resolution_10b) || \
((RESOLUTION) == ADC_Resolution_8b) || \
((RESOLUTION) == ADC_Resolution_6b))
/**
* @}
*/
/** @defgroup ADC_external_trigger_edge_for_regular_channels_conversion
* @{
*/
#define ADC_ExternalTrigConvEdge_None ((uint32_t)0x00000000)
#define ADC_ExternalTrigConvEdge_Rising ((uint32_t)0x10000000)
#define ADC_ExternalTrigConvEdge_Falling ((uint32_t)0x20000000)
#define ADC_ExternalTrigConvEdge_RisingFalling ((uint32_t)0x30000000)
#define IS_ADC_EXT_TRIG_EDGE(EDGE) (((EDGE) == ADC_ExternalTrigConvEdge_None) || \
((EDGE) == ADC_ExternalTrigConvEdge_Rising) || \
((EDGE) == ADC_ExternalTrigConvEdge_Falling) || \
((EDGE) == ADC_ExternalTrigConvEdge_RisingFalling))
/**
* @}
*/
/** @defgroup ADC_external_trigger_sources_for_regular_channels_conversion
* @{
*/
/* TIM2 */
#define ADC_ExternalTrigConv_T2_CC3 ((uint32_t)0x02000000)
#define ADC_ExternalTrigConv_T2_CC2 ((uint32_t)0x03000000)
#define ADC_ExternalTrigConv_T2_TRGO ((uint32_t)0x06000000)
/* TIM3 */
#define ADC_ExternalTrigConv_T3_CC1 ((uint32_t)0x07000000)
#define ADC_ExternalTrigConv_T3_CC3 ((uint32_t)0x08000000)
#define ADC_ExternalTrigConv_T3_TRGO ((uint32_t)0x04000000)
/* TIM4 */
#define ADC_ExternalTrigConv_T4_CC4 ((uint32_t)0x05000000)
#define ADC_ExternalTrigConv_T4_TRGO ((uint32_t)0x09000000)
/* TIM6 */
#define ADC_ExternalTrigConv_T6_TRGO ((uint32_t)0x0A000000)
/* TIM9 */
#define ADC_ExternalTrigConv_T9_CC2 ((uint32_t)0x00000000)
#define ADC_ExternalTrigConv_T9_TRGO ((uint32_t)0x01000000)
/* EXTI */
#define ADC_ExternalTrigConv_Ext_IT11 ((uint32_t)0x0F000000)
#define IS_ADC_EXT_TRIG(REGTRIG) (((REGTRIG) == ADC_ExternalTrigConv_T9_CC2) || \
((REGTRIG) == ADC_ExternalTrigConv_T9_TRGO) || \
((REGTRIG) == ADC_ExternalTrigConv_T2_CC3) || \
((REGTRIG) == ADC_ExternalTrigConv_T2_CC2) || \
((REGTRIG) == ADC_ExternalTrigConv_T3_TRGO) || \
((REGTRIG) == ADC_ExternalTrigConv_T4_CC4) || \
((REGTRIG) == ADC_ExternalTrigConv_T2_TRGO) || \
((REGTRIG) == ADC_ExternalTrigConv_T3_CC1) || \
((REGTRIG) == ADC_ExternalTrigConv_T3_CC3) || \
((REGTRIG) == ADC_ExternalTrigConv_T4_TRGO) || \
((REGTRIG) == ADC_ExternalTrigConv_T6_TRGO) || \
((REGTRIG) == ADC_ExternalTrigConv_Ext_IT11))
/**
* @}
*/
/** @defgroup ADC_data_align
* @{
*/
#define ADC_DataAlign_Right ((uint32_t)0x00000000)
#define ADC_DataAlign_Left ((uint32_t)0x00000800)
#define IS_ADC_DATA_ALIGN(ALIGN) (((ALIGN) == ADC_DataAlign_Right) || \
((ALIGN) == ADC_DataAlign_Left))
/**
* @}
*/
/** @defgroup ADC_channels
* @{
*/
/* ADC Bank A Channels -------------------------------------------------------*/
#define ADC_Channel_0 ((uint8_t)0x00)
#define ADC_Channel_1 ((uint8_t)0x01)
#define ADC_Channel_2 ((uint8_t)0x02)
#define ADC_Channel_3 ((uint8_t)0x03)
#define ADC_Channel_6 ((uint8_t)0x06)
#define ADC_Channel_7 ((uint8_t)0x07)
#define ADC_Channel_8 ((uint8_t)0x08)
#define ADC_Channel_9 ((uint8_t)0x09)
#define ADC_Channel_10 ((uint8_t)0x0A)
#define ADC_Channel_11 ((uint8_t)0x0B)
#define ADC_Channel_12 ((uint8_t)0x0C)
/* ADC Bank B Channels -------------------------------------------------------*/
#define ADC_Channel_0b ADC_Channel_0
#define ADC_Channel_1b ADC_Channel_1
#define ADC_Channel_2b ADC_Channel_2
#define ADC_Channel_3b ADC_Channel_3
#define ADC_Channel_6b ADC_Channel_6
#define ADC_Channel_7b ADC_Channel_7
#define ADC_Channel_8b ADC_Channel_8
#define ADC_Channel_9b ADC_Channel_9
#define ADC_Channel_10b ADC_Channel_10
#define ADC_Channel_11b ADC_Channel_11
#define ADC_Channel_12b ADC_Channel_12
/* ADC Common Channels (ADC Bank A and B) ------------------------------------*/
#define ADC_Channel_4 ((uint8_t)0x04)
#define ADC_Channel_5 ((uint8_t)0x05)
#define ADC_Channel_13 ((uint8_t)0x0D)
#define ADC_Channel_14 ((uint8_t)0x0E)
#define ADC_Channel_15 ((uint8_t)0x0F)
#define ADC_Channel_16 ((uint8_t)0x10)
#define ADC_Channel_17 ((uint8_t)0x11)
#define ADC_Channel_18 ((uint8_t)0x12)
#define ADC_Channel_19 ((uint8_t)0x13)
#define ADC_Channel_20 ((uint8_t)0x14)
#define ADC_Channel_21 ((uint8_t)0x15)
#define ADC_Channel_22 ((uint8_t)0x16)
#define ADC_Channel_23 ((uint8_t)0x17)
#define ADC_Channel_24 ((uint8_t)0x18)
#define ADC_Channel_25 ((uint8_t)0x19)
#define ADC_Channel_27 ((uint8_t)0x1B)
#define ADC_Channel_28 ((uint8_t)0x1C)
#define ADC_Channel_29 ((uint8_t)0x1D)
#define ADC_Channel_30 ((uint8_t)0x1E)
#define ADC_Channel_31 ((uint8_t)0x1F)
#define ADC_Channel_TempSensor ((uint8_t)ADC_Channel_16)
#define ADC_Channel_Vrefint ((uint8_t)ADC_Channel_17)
#define IS_ADC_CHANNEL(CHANNEL) (((CHANNEL) == ADC_Channel_0) || ((CHANNEL) == ADC_Channel_1) || \
((CHANNEL) == ADC_Channel_2) || ((CHANNEL) == ADC_Channel_3) || \
((CHANNEL) == ADC_Channel_4) || ((CHANNEL) == ADC_Channel_5) || \
((CHANNEL) == ADC_Channel_6) || ((CHANNEL) == ADC_Channel_7) || \
((CHANNEL) == ADC_Channel_8) || ((CHANNEL) == ADC_Channel_9) || \
((CHANNEL) == ADC_Channel_10) || ((CHANNEL) == ADC_Channel_11) || \
((CHANNEL) == ADC_Channel_12) || ((CHANNEL) == ADC_Channel_13) || \
((CHANNEL) == ADC_Channel_14) || ((CHANNEL) == ADC_Channel_15) || \
((CHANNEL) == ADC_Channel_16) || ((CHANNEL) == ADC_Channel_17) || \
((CHANNEL) == ADC_Channel_18) || ((CHANNEL) == ADC_Channel_19) || \
((CHANNEL) == ADC_Channel_20) || ((CHANNEL) == ADC_Channel_21) || \
((CHANNEL) == ADC_Channel_22) || ((CHANNEL) == ADC_Channel_23) || \
((CHANNEL) == ADC_Channel_24) || ((CHANNEL) == ADC_Channel_25) || \
((CHANNEL) == ADC_Channel_27) || ((CHANNEL) == ADC_Channel_28) || \
((CHANNEL) == ADC_Channel_29) || ((CHANNEL) == ADC_Channel_30) || \
((CHANNEL) == ADC_Channel_31))
/**
* @}
*/
/** @defgroup ADC_sampling_times
* @{
*/
#define ADC_SampleTime_4Cycles ((uint8_t)0x00)
#define ADC_SampleTime_9Cycles ((uint8_t)0x01)
#define ADC_SampleTime_16Cycles ((uint8_t)0x02)
#define ADC_SampleTime_24Cycles ((uint8_t)0x03)
#define ADC_SampleTime_48Cycles ((uint8_t)0x04)
#define ADC_SampleTime_96Cycles ((uint8_t)0x05)
#define ADC_SampleTime_192Cycles ((uint8_t)0x06)
#define ADC_SampleTime_384Cycles ((uint8_t)0x07)
#define IS_ADC_SAMPLE_TIME(TIME) (((TIME) == ADC_SampleTime_4Cycles) || \
((TIME) == ADC_SampleTime_9Cycles) || \
((TIME) == ADC_SampleTime_16Cycles) || \
((TIME) == ADC_SampleTime_24Cycles) || \
((TIME) == ADC_SampleTime_48Cycles) || \
((TIME) == ADC_SampleTime_96Cycles) || \
((TIME) == ADC_SampleTime_192Cycles) || \
((TIME) == ADC_SampleTime_384Cycles))
/**
* @}
*/
/** @defgroup ADC_Delay_length
* @{
*/
#define ADC_DelayLength_None ((uint8_t)0x00)
#define ADC_DelayLength_Freeze ((uint8_t)0x10)
#define ADC_DelayLength_7Cycles ((uint8_t)0x20)
#define ADC_DelayLength_15Cycles ((uint8_t)0x30)
#define ADC_DelayLength_31Cycles ((uint8_t)0x40)
#define ADC_DelayLength_63Cycles ((uint8_t)0x50)
#define ADC_DelayLength_127Cycles ((uint8_t)0x60)
#define ADC_DelayLength_255Cycles ((uint8_t)0x70)
#define IS_ADC_DELAY_LENGTH(LENGTH) (((LENGTH) == ADC_DelayLength_None) || \
((LENGTH) == ADC_DelayLength_Freeze) || \
((LENGTH) == ADC_DelayLength_7Cycles) || \
((LENGTH) == ADC_DelayLength_15Cycles) || \
((LENGTH) == ADC_DelayLength_31Cycles) || \
((LENGTH) == ADC_DelayLength_63Cycles) || \
((LENGTH) == ADC_DelayLength_127Cycles) || \
((LENGTH) == ADC_DelayLength_255Cycles))
/**
* @}
*/
/** @defgroup ADC_external_trigger_edge_for_injected_channels_conversion
* @{
*/
#define ADC_ExternalTrigInjecConvEdge_None ((uint32_t)0x00000000)
#define ADC_ExternalTrigInjecConvEdge_Rising ((uint32_t)0x00100000)
#define ADC_ExternalTrigInjecConvEdge_Falling ((uint32_t)0x00200000)
#define ADC_ExternalTrigInjecConvEdge_RisingFalling ((uint32_t)0x00300000)
#define IS_ADC_EXT_INJEC_TRIG_EDGE(EDGE) (((EDGE) == ADC_ExternalTrigInjecConvEdge_None) || \
((EDGE) == ADC_ExternalTrigInjecConvEdge_Rising) || \
((EDGE) == ADC_ExternalTrigInjecConvEdge_Falling) || \
((EDGE) == ADC_ExternalTrigInjecConvEdge_RisingFalling))
/**
* @}
*/
/** @defgroup ADC_external_trigger_sources_for_injected_channels_conversion
* @{
*/
/* TIM2 */
#define ADC_ExternalTrigInjecConv_T2_TRGO ((uint32_t)0x00020000)
#define ADC_ExternalTrigInjecConv_T2_CC1 ((uint32_t)0x00030000)
/* TIM3 */
#define ADC_ExternalTrigInjecConv_T3_CC4 ((uint32_t)0x00040000)
/* TIM4 */
#define ADC_ExternalTrigInjecConv_T4_TRGO ((uint32_t)0x00050000)
#define ADC_ExternalTrigInjecConv_T4_CC1 ((uint32_t)0x00060000)
#define ADC_ExternalTrigInjecConv_T4_CC2 ((uint32_t)0x00070000)
#define ADC_ExternalTrigInjecConv_T4_CC3 ((uint32_t)0x00080000)
/* TIM7 */
#define ADC_ExternalTrigInjecConv_T7_TRGO ((uint32_t)0x000A0000)
/* TIM9 */
#define ADC_ExternalTrigInjecConv_T9_CC1 ((uint32_t)0x00000000)
#define ADC_ExternalTrigInjecConv_T9_TRGO ((uint32_t)0x00010000)
/* TIM10 */
#define ADC_ExternalTrigInjecConv_T10_CC1 ((uint32_t)0x00090000)
/* EXTI */
#define ADC_ExternalTrigInjecConv_Ext_IT15 ((uint32_t)0x000F0000)
#define IS_ADC_EXT_INJEC_TRIG(INJTRIG) (((INJTRIG) == ADC_ExternalTrigInjecConv_T9_CC1) || \
((INJTRIG) == ADC_ExternalTrigInjecConv_T9_TRGO) || \
((INJTRIG) == ADC_ExternalTrigInjecConv_T2_TRGO) || \
((INJTRIG) == ADC_ExternalTrigInjecConv_T2_CC1) || \
((INJTRIG) == ADC_ExternalTrigInjecConv_T3_CC4) || \
((INJTRIG) == ADC_ExternalTrigInjecConv_T4_TRGO) || \
((INJTRIG) == ADC_ExternalTrigInjecConv_T4_CC1) || \
((INJTRIG) == ADC_ExternalTrigInjecConv_T4_CC2) || \
((INJTRIG) == ADC_ExternalTrigInjecConv_T4_CC3) || \
((INJTRIG) == ADC_ExternalTrigInjecConv_T10_CC1) || \
((INJTRIG) == ADC_ExternalTrigInjecConv_T7_TRGO) || \
((INJTRIG) == ADC_ExternalTrigInjecConv_Ext_IT15))
/**
* @}
*/
/** @defgroup ADC_injected_channel_selection
* @{
*/
#define ADC_InjectedChannel_1 ((uint8_t)0x18)
#define ADC_InjectedChannel_2 ((uint8_t)0x1C)
#define ADC_InjectedChannel_3 ((uint8_t)0x20)
#define ADC_InjectedChannel_4 ((uint8_t)0x24)
#define IS_ADC_INJECTED_CHANNEL(CHANNEL) (((CHANNEL) == ADC_InjectedChannel_1) || \
((CHANNEL) == ADC_InjectedChannel_2) || \
((CHANNEL) == ADC_InjectedChannel_3) || \
((CHANNEL) == ADC_InjectedChannel_4))
/**
* @}
*/
/** @defgroup ADC_analog_watchdog_selection
* @{
*/
#define ADC_AnalogWatchdog_SingleRegEnable ((uint32_t)0x00800200)
#define ADC_AnalogWatchdog_SingleInjecEnable ((uint32_t)0x00400200)
#define ADC_AnalogWatchdog_SingleRegOrInjecEnable ((uint32_t)0x00C00200)
#define ADC_AnalogWatchdog_AllRegEnable ((uint32_t)0x00800000)
#define ADC_AnalogWatchdog_AllInjecEnable ((uint32_t)0x00400000)
#define ADC_AnalogWatchdog_AllRegAllInjecEnable ((uint32_t)0x00C00000)
#define ADC_AnalogWatchdog_None ((uint32_t)0x00000000)
#define IS_ADC_ANALOG_WATCHDOG(WATCHDOG) (((WATCHDOG) == ADC_AnalogWatchdog_SingleRegEnable) || \
((WATCHDOG) == ADC_AnalogWatchdog_SingleInjecEnable) || \
((WATCHDOG) == ADC_AnalogWatchdog_SingleRegOrInjecEnable) || \
((WATCHDOG) == ADC_AnalogWatchdog_AllRegEnable) || \
((WATCHDOG) == ADC_AnalogWatchdog_AllInjecEnable) || \
((WATCHDOG) == ADC_AnalogWatchdog_AllRegAllInjecEnable) || \
((WATCHDOG) == ADC_AnalogWatchdog_None))
/**
* @}
*/
/** @defgroup ADC_interrupts_definition
* @{
*/
#define ADC_IT_AWD ((uint16_t)0x0106)
#define ADC_IT_EOC ((uint16_t)0x0205)
#define ADC_IT_JEOC ((uint16_t)0x0407)
#define ADC_IT_OVR ((uint16_t)0x201A)
#define IS_ADC_IT(IT) (((IT) == ADC_IT_AWD) || ((IT) == ADC_IT_EOC) || \
((IT) == ADC_IT_JEOC)|| ((IT) == ADC_IT_OVR))
/**
* @}
*/
/** @defgroup ADC_flags_definition
* @{
*/
#define ADC_FLAG_AWD ((uint16_t)0x0001)
#define ADC_FLAG_EOC ((uint16_t)0x0002)
#define ADC_FLAG_JEOC ((uint16_t)0x0004)
#define ADC_FLAG_JSTRT ((uint16_t)0x0008)
#define ADC_FLAG_STRT ((uint16_t)0x0010)
#define ADC_FLAG_OVR ((uint16_t)0x0020)
#define ADC_FLAG_ADONS ((uint16_t)0x0040)
#define ADC_FLAG_RCNR ((uint16_t)0x0100)
#define ADC_FLAG_JCNR ((uint16_t)0x0200)
#define IS_ADC_CLEAR_FLAG(FLAG) ((((FLAG) & (uint16_t)0xFFC0) == 0x00) && ((FLAG) != 0x00))
#define IS_ADC_GET_FLAG(FLAG) (((FLAG) == ADC_FLAG_AWD) || ((FLAG) == ADC_FLAG_EOC) || \
((FLAG) == ADC_FLAG_JEOC) || ((FLAG)== ADC_FLAG_JSTRT) || \
((FLAG) == ADC_FLAG_STRT) || ((FLAG)== ADC_FLAG_OVR) || \
((FLAG) == ADC_FLAG_ADONS) || ((FLAG)== ADC_FLAG_RCNR) || \
((FLAG) == ADC_FLAG_JCNR))
/**
* @}
*/
/** @defgroup ADC_thresholds
* @{
*/
#define IS_ADC_THRESHOLD(THRESHOLD) ((THRESHOLD) <= 0xFFF)
/**
* @}
*/
/** @defgroup ADC_injected_offset
* @{
*/
#define IS_ADC_OFFSET(OFFSET) ((OFFSET) <= 0xFFF)
/**
* @}
*/
/** @defgroup ADC_injected_length
* @{
*/
#define IS_ADC_INJECTED_LENGTH(LENGTH) (((LENGTH) >= 0x1) && ((LENGTH) <= 0x4))
/**
* @}
*/
/** @defgroup ADC_injected_rank
* @{
*/
#define IS_ADC_INJECTED_RANK(RANK) (((RANK) >= 0x1) && ((RANK) <= 0x4))
/**
* @}
*/
/** @defgroup ADC_regular_length
* @{
*/
#define IS_ADC_REGULAR_LENGTH(LENGTH) (((LENGTH) >= 1) && ((LENGTH) <= 28))
/**
* @}
*/
/** @defgroup ADC_regular_rank
* @{
*/
#define IS_ADC_REGULAR_RANK(RANK) (((RANK) >= 1) && ((RANK) <= 28))
/**
* @}
*/
/** @defgroup ADC_regular_discontinuous_mode_number
* @{
*/
#define IS_ADC_REGULAR_DISC_NUMBER(NUMBER) (((NUMBER) >= 0x1) && ((NUMBER) <= 0x8))
/**
* @}
*/
/** @defgroup ADC_Bank_Selection
* @{
*/
#define ADC_Bank_A ((uint8_t)0x00)
#define ADC_Bank_B ((uint8_t)0x01)
#define IS_ADC_BANK(BANK) (((BANK) == ADC_Bank_A) || ((BANK) == ADC_Bank_B))
/**
* @}
*/
/**
* @}
*/
/* Exported macro ------------------------------------------------------------*/
/* Exported functions ------------------------------------------------------- */
/* Function used to set the ADC configuration to the default reset state *****/
void ADC_DeInit(ADC_TypeDef* ADCx);
/* Initialization and Configuration functions *********************************/
void ADC_Init(ADC_TypeDef* ADCx, ADC_InitTypeDef* ADC_InitStruct);
void ADC_StructInit(ADC_InitTypeDef* ADC_InitStruct);
void ADC_CommonInit(ADC_CommonInitTypeDef* ADC_CommonInitStruct);
void ADC_CommonStructInit(ADC_CommonInitTypeDef* ADC_CommonInitStruct);
void ADC_Cmd(ADC_TypeDef* ADCx, FunctionalState NewState);
void ADC_BankSelection(ADC_TypeDef* ADCx, uint8_t ADC_Bank);
/* Power saving functions *****************************************************/
void ADC_PowerDownCmd(ADC_TypeDef* ADCx, uint32_t ADC_PowerDown, FunctionalState NewState);
void ADC_DelaySelectionConfig(ADC_TypeDef* ADCx, uint8_t ADC_DelayLength);
/* Analog Watchdog configuration functions ************************************/
void ADC_AnalogWatchdogCmd(ADC_TypeDef* ADCx, uint32_t ADC_AnalogWatchdog);
void ADC_AnalogWatchdogThresholdsConfig(ADC_TypeDef* ADCx, uint16_t HighThreshold,uint16_t LowThreshold);
void ADC_AnalogWatchdogSingleChannelConfig(ADC_TypeDef* ADCx, uint8_t ADC_Channel);
/* Temperature Sensor & Vrefint (Voltage Reference internal) management function */
void ADC_TempSensorVrefintCmd(FunctionalState NewState);
/* Regular Channels Configuration functions ***********************************/
void ADC_RegularChannelConfig(ADC_TypeDef* ADCx, uint8_t ADC_Channel, uint8_t Rank, uint8_t ADC_SampleTime);
void ADC_SoftwareStartConv(ADC_TypeDef* ADCx);
FlagStatus ADC_GetSoftwareStartConvStatus(ADC_TypeDef* ADCx);
void ADC_EOCOnEachRegularChannelCmd(ADC_TypeDef* ADCx, FunctionalState NewState);
void ADC_ContinuousModeCmd(ADC_TypeDef* ADCx, FunctionalState NewState);
void ADC_DiscModeChannelCountConfig(ADC_TypeDef* ADCx, uint8_t Number);
void ADC_DiscModeCmd(ADC_TypeDef* ADCx, FunctionalState NewState);
uint16_t ADC_GetConversionValue(ADC_TypeDef* ADCx);
/* Regular Channels DMA Configuration functions *******************************/
void ADC_DMACmd(ADC_TypeDef* ADCx, FunctionalState NewState);
void ADC_DMARequestAfterLastTransferCmd(ADC_TypeDef* ADCx, FunctionalState NewState);
/* Injected channels Configuration functions **********************************/
void ADC_InjectedChannelConfig(ADC_TypeDef* ADCx, uint8_t ADC_Channel, uint8_t Rank, uint8_t ADC_SampleTime);
void ADC_InjectedSequencerLengthConfig(ADC_TypeDef* ADCx, uint8_t Length);
void ADC_SetInjectedOffset(ADC_TypeDef* ADCx, uint8_t ADC_InjectedChannel, uint16_t Offset);
void ADC_ExternalTrigInjectedConvConfig(ADC_TypeDef* ADCx, uint32_t ADC_ExternalTrigInjecConv);
void ADC_ExternalTrigInjectedConvEdgeConfig(ADC_TypeDef* ADCx, uint32_t ADC_ExternalTrigInjecConvEdge);
void ADC_SoftwareStartInjectedConv(ADC_TypeDef* ADCx);
FlagStatus ADC_GetSoftwareStartInjectedConvCmdStatus(ADC_TypeDef* ADCx);
void ADC_AutoInjectedConvCmd(ADC_TypeDef* ADCx, FunctionalState NewState);
void ADC_InjectedDiscModeCmd(ADC_TypeDef* ADCx, FunctionalState NewState);
uint16_t ADC_GetInjectedConversionValue(ADC_TypeDef* ADCx, uint8_t ADC_InjectedChannel);
/* Interrupts and flags management functions **********************************/
void ADC_ITConfig(ADC_TypeDef* ADCx, uint16_t ADC_IT, FunctionalState NewState);
FlagStatus ADC_GetFlagStatus(ADC_TypeDef* ADCx, uint16_t ADC_FLAG);
void ADC_ClearFlag(ADC_TypeDef* ADCx, uint16_t ADC_FLAG);
ITStatus ADC_GetITStatus(ADC_TypeDef* ADCx, uint16_t ADC_IT);
void ADC_ClearITPendingBit(ADC_TypeDef* ADCx, uint16_t ADC_IT);
#ifdef __cplusplus
}
#endif
#endif /*__STM32L1xx_ADC_H */
/**
* @}
*/
/**
* @}
*/
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/

View File

@ -0,0 +1,599 @@
/**
******************************************************************************
* @file stm32l1xx_aes.c
* @author MCD Application Team
* @version V1.2.0
* @date 22-February-2013
* @brief This file provides firmware functions to manage the following
* functionalities of the AES peripheral:
* + Configuration
* + Read/Write operations
* + DMA transfers management
* + Interrupts and flags management
*
* @verbatim
===============================================================================
##### AES Peripheral features #####
===============================================================================
....[..]
(#) The Advanced Encryption Standard hardware accelerator (AES) can be used
to both encipher and decipher data using AES algorithm.
(#) The AES supports 4 operation modes:
(++) Encryption: It consumes 214 clock cycle when processing one 128-bit block
(++) Decryption: It consumes 214 clock cycle when processing one 128-bit block
(++) Key derivation for decryption: It consumes 80 clock cycle when processing one 128-bit block
(++) Key Derivation and decryption: It consumes 288 clock cycle when processing one 128-bit blobk
(#) Moreover 3 chaining modes are supported:
(++) Electronic codebook (ECB): Each plain text is encrypted/decrypted separately
(++) Cipher block chaining (CBC): Each block is XORed with the previous block
(++) Counter mode (CTR): A 128-bit counter is encrypted and then XORed with the
plain text to give the cipher text
(#) The AES peripheral supports data swapping: 1-bit, 8-bit, 16-bit and 32-bit.
(#) The AES peripheral supports write/read error handling with interrupt capability.
(#) Automatic data flow control with support of direct memory access (DMA) using
2 channels, one for incoming data (DMA2 Channel5), and one for outcoming data
(DMA2 Channel3).
##### How to use this driver #####
===============================================================================
[..]
(#) AES AHB clock must be enabled to get write access to AES registers
using RCC_AHBPeriphClockCmd(RCC_AHBPeriph_AES, ENABLE).
(#) Initialize the key using AES_KeyInit().
(#) Configure the AES operation mode using AES_Init().
(#) If required, enable interrupt source using AES_ITConfig() and
enable the AES interrupt vector using NVIC_Init().
(#) If required, when using the DMA mode.
(##) Configure the DMA using DMA_Init().
(##) Enable DMA requests using AES_DMAConfig().
(#) Enable the AES peripheral using AES_Cmd().
@endverbatim
******************************************************************************
* @attention
*
* <h2><center>&copy; COPYRIGHT 2013 STMicroelectronics</center></h2>
*
* Licensed under MCD-ST Liberty SW License Agreement V2, (the "License");
* You may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.st.com/software_license_agreement_liberty_v2
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "stm32l1xx_aes.h"
#include "stm32l1xx_rcc.h"
/** @addtogroup STM32L1xx_StdPeriph_Driver
* @{
*/
/** @defgroup AES
* @brief AES driver modules
* @{
*/
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
#define CR_CLEAR_MASK ((uint32_t)0xFFFFFF81)
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private function prototypes -----------------------------------------------*/
/* Private functions ---------------------------------------------------------*/
/** @defgroup AES_Private_Functions
* @{
*/
/** @defgroup AES_Group1 Initialization and configuration
* @brief Initialization and configuration.
*
@verbatim
===============================================================================
##### Initialization and configuration #####
===============================================================================
@endverbatim
* @{
*/
/**
* @brief Deinitializes AES peripheral registers to their default reset values.
* @param None
* @retval None
*/
void AES_DeInit(void)
{
/* Enable AES reset state */
RCC_AHBPeriphResetCmd(RCC_AHBPeriph_AES, ENABLE);
/* Release AES from reset state */
RCC_AHBPeriphResetCmd(RCC_AHBPeriph_AES, DISABLE);
}
/**
* @brief Initializes the AES peripheral according to the specified parameters
* in the AES_InitStruct:
* - AES_Operation: specifies the operation mode (encryption, decryption...).
* - AES_Chaining: specifies the chaining mode (ECB, CBC or CTR).
* - AES_DataType: specifies the data swapping type: 32-bit, 16-bit, 8-bit or 1-bit.
* @note If AES is already enabled, use AES_Cmd(DISABLE) before setting the new
* configuration (When AES is enabled, setting configuration is forbidden).
* @param AES_InitStruct: pointer to an AES_InitTypeDef structure that contains
* the configuration information for AES peripheral.
* @retval None
*/
void AES_Init(AES_InitTypeDef* AES_InitStruct)
{
uint32_t tmpreg = 0;
/* Check the parameters */
assert_param(IS_AES_MODE(AES_InitStruct->AES_Operation));
assert_param(IS_AES_CHAINING(AES_InitStruct->AES_Chaining));
assert_param(IS_AES_DATATYPE(AES_InitStruct->AES_DataType));
/* Get AES CR register value */
tmpreg = AES->CR;
/* Clear DATATYPE[1:0], MODE[1:0] and CHMOD[1:0] bits */
tmpreg &= (uint32_t)CR_CLEAR_MASK;
tmpreg |= (AES_InitStruct->AES_Operation | AES_InitStruct->AES_Chaining | AES_InitStruct->AES_DataType);
AES->CR = (uint32_t) tmpreg;
}
/**
* @brief Initializes the AES Keys according to the specified parameters in the AES_KeyInitStruct.
* @param AES_KeyInitStruct: pointer to an AES_KeyInitTypeDef structure that
* contains the configuration information for the specified AES Keys.
* @note This function must be called while the AES is disabled.
* @note In encryption, key derivation and key derivation + decryption modes,
* AES_KeyInitStruct must contain the encryption key.
* In decryption mode, AES_KeyInitStruct must contain the decryption key.
* @retval None
*/
void AES_KeyInit(AES_KeyInitTypeDef* AES_KeyInitStruct)
{
AES->KEYR0 = AES_KeyInitStruct->AES_Key0;
AES->KEYR1 = AES_KeyInitStruct->AES_Key1;
AES->KEYR2 = AES_KeyInitStruct->AES_Key2;
AES->KEYR3 = AES_KeyInitStruct->AES_Key3;
}
/**
* @brief Initializes the AES Initialization Vector IV according to
* the specified parameters in the AES_IVInitStruct.
* @param AES_KeyInitStruct: pointer to an AES_IVInitTypeDef structure that
* contains the configuration information for the specified AES IV.
* @note When ECB chaining mode is selected, Initialization Vector IV has no
* meaning.
* When CTR chaining mode is selected, AES_IV0 contains the CTR value.
* AES_IV1, AES_IV2 and AES_IV3 contains nonce value.
* @retval None
*/
void AES_IVInit(AES_IVInitTypeDef* AES_IVInitStruct)
{
AES->IVR0 = AES_IVInitStruct->AES_IV0;
AES->IVR1 = AES_IVInitStruct->AES_IV1;
AES->IVR2 = AES_IVInitStruct->AES_IV2;
AES->IVR3 = AES_IVInitStruct->AES_IV3;
}
/**
* @brief Enable or disable the AES peripheral.
* @param NewState: new state of the AES peripheral.
* This parameter can be: ENABLE or DISABLE.
* @note The key must be written while AES is disabled.
* @retval None
*/
void AES_Cmd(FunctionalState NewState)
{
/* Check the parameter */
assert_param(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
/* Enable the AES peripheral */
AES->CR |= (uint32_t) AES_CR_EN; /**< AES Enable */
}
else
{
/* Disable the AES peripheral */
AES->CR &= (uint32_t)(~AES_CR_EN); /**< AES Disable */
}
}
/**
* @}
*/
/** @defgroup AES_Group2 Structures initialization functions
* @brief Structures initialization.
*
@verbatim
===============================================================================
##### Structures initialization functions #####
===============================================================================
@endverbatim
* @{
*/
/**
* @brief Fills each AES_InitStruct member with its default value.
* @param AES_InitStruct: pointer to an AES_InitTypeDef structure which will
* be initialized.
* @retval None
*/
void AES_StructInit(AES_InitTypeDef* AES_InitStruct)
{
AES_InitStruct->AES_Operation = AES_Operation_Encryp;
AES_InitStruct->AES_Chaining = AES_Chaining_ECB;
AES_InitStruct->AES_DataType = AES_DataType_32b;
}
/**
* @brief Fills each AES_KeyInitStruct member with its default value.
* @param AES_KeyInitStruct: pointer to an AES_KeyInitStruct structure which
* will be initialized.
* @retval None
*/
void AES_KeyStructInit(AES_KeyInitTypeDef* AES_KeyInitStruct)
{
AES_KeyInitStruct->AES_Key0 = 0x00000000;
AES_KeyInitStruct->AES_Key1 = 0x00000000;
AES_KeyInitStruct->AES_Key2 = 0x00000000;
AES_KeyInitStruct->AES_Key3 = 0x00000000;
}
/**
* @brief Fills each AES_IVInitStruct member with its default value.
* @param AES_IVInitStruct: pointer to an AES_IVInitTypeDef structure which
* will be initialized.
* @retval None
*/
void AES_IVStructInit(AES_IVInitTypeDef* AES_IVInitStruct)
{
AES_IVInitStruct->AES_IV0 = 0x00000000;
AES_IVInitStruct->AES_IV1 = 0x00000000;
AES_IVInitStruct->AES_IV2 = 0x00000000;
AES_IVInitStruct->AES_IV3 = 0x00000000;
}
/**
* @}
*/
/** @defgroup AES_Group3 AES Read and Write
* @brief AES Read and Write.
*
@verbatim
===============================================================================
##### AES Read and Write functions #####
===============================================================================
@endverbatim
* @{
*/
/**
* @brief Write data in DINR register to be processed by AES peripheral.
* @note To process 128-bit data (4 * 32-bit), this function must be called
* four times to write the 128-bit data in the 32-bit register DINR.
* @note When an unexpected write to DOUTR register is detected, WRERR flag is
* set.
* @param Data: The data to be processed.
* @retval None
*/
void AES_WriteSubData(uint32_t Data)
{
/* Write Data */
AES->DINR = Data;
}
/**
* @brief Returns the data in DOUTR register processed by AES peripheral.
* @note This function must be called four times to get the 128-bit data.
* @note When an unexpected read of DINR register is detected, RDERR flag is
* set.
* @retval The processed data.
*/
uint32_t AES_ReadSubData(void)
{
/* Read Data */
return AES->DOUTR;
}
/**
* @brief Read the Key value.
* @param AES_KeyInitStruct: pointer to an AES_KeyInitTypeDef structure which
* will contain the key.
* @note When the key derivation mode is selected, AES must be disabled
* (AES_Cmd(DISABLE)) before reading the decryption key.
* Reading the key while the AES is enabled will return unpredictable
* value.
* @retval None
*/
void AES_ReadKey(AES_KeyInitTypeDef* AES_KeyInitStruct)
{
AES_KeyInitStruct->AES_Key0 = AES->KEYR0;
AES_KeyInitStruct->AES_Key1 = AES->KEYR1;
AES_KeyInitStruct->AES_Key2 = AES->KEYR2;
AES_KeyInitStruct->AES_Key3 = AES->KEYR3;
}
/**
* @brief Read the Initialization Vector IV value.
* @param AES_IVInitStruct: pointer to an AES_IVInitTypeDef structure which
* will contain the Initialization Vector IV.
* @note When the AES is enabled Reading the Initialization Vector IV value
* will return 0. The AES must be disabled using AES_Cmd(DISABLE)
* to get the right value.
* @note When ECB chaining mode is selected, Initialization Vector IV has no
* meaning.
* When CTR chaining mode is selected, AES_IV0 contains 32-bit Counter value.
* AES_IV1, AES_IV2 and AES_IV3 contains nonce value.
* @retval None
*/
void AES_ReadIV(AES_IVInitTypeDef* AES_IVInitStruct)
{
AES_IVInitStruct->AES_IV0 = AES->IVR0;
AES_IVInitStruct->AES_IV1 = AES->IVR1;
AES_IVInitStruct->AES_IV2 = AES->IVR2;
AES_IVInitStruct->AES_IV3 = AES->IVR3;
}
/**
* @}
*/
/** @defgroup AES_Group4 DMA transfers management functions
* @brief DMA transfers management function.
*
@verbatim
===============================================================================
##### DMA transfers management functions #####
===============================================================================
@endverbatim
* @{
*/
/**
* @brief Configures the AES DMA interface.
* @param AES_DMATransfer: Specifies the AES DMA transfer.
* This parameter can be one of the following values:
* @arg AES_DMATransfer_In: When selected, DMA manages the data input phase.
* @arg AES_DMATransfer_Out: When selected, DMA manages the data output phase.
* @arg AES_DMATransfer_InOut: When selected, DMA manages both the data input/output phases.
* @param NewState Indicates the new state of the AES DMA interface.
* This parameter can be: ENABLE or DISABLE.
* @note The DMA has no action in key derivation mode.
* @retval None
*/
void AES_DMAConfig(uint32_t AES_DMATransfer, FunctionalState NewState)
{
/* Check the parameter */
assert_param(IS_AES_DMA_TRANSFER(AES_DMATransfer));
if (NewState != DISABLE)
{
/* Enable the DMA transfer */
AES->CR |= (uint32_t) AES_DMATransfer;
}
else
{
/* Disable the DMA transfer */
AES->CR &= (uint32_t)(~AES_DMATransfer);
}
}
/**
* @}
*/
/** @defgroup AES_Group5 Interrupts and flags management functions
* @brief Interrupts and flags management functions.
*
@verbatim
===============================================================================
##### Interrupts and flags management functions #####
===============================================================================
@endverbatim
* @{
*/
/**
* @brief Enables or disables the specified AES interrupt.
* @param AES_IT: Specifies the AES interrupt source to enable/disable.
* This parameter can be any combinations of the following values:
* @arg AES_IT_CC: Computation Complete Interrupt. If enabled, once CCF
* flag is set an interrupt is generated.
* @arg AES_IT_ERR: Error Interrupt. If enabled, once a read error
* flags (RDERR) or write error flag (WRERR) is set,
* an interrupt is generated.
* @param NewState: The new state of the AES interrupt source.
* This parameter can be: ENABLE or DISABLE.
* @retval None
*/
void AES_ITConfig(uint32_t AES_IT, FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_FUNCTIONAL_STATE(NewState));
assert_param(IS_AES_IT(AES_IT));
if (NewState != DISABLE)
{
AES->CR |= (uint32_t) AES_IT; /**< AES_IT Enable */
}
else
{
AES->CR &= (uint32_t)(~AES_IT); /**< AES_IT Disable */
}
}
/**
* @brief Checks whether the specified AES flag is set or not.
* @param AES_FLAG specifies the flag to check.
* This parameter can be one of the following values:
* @arg AES_FLAG_CCF: Computation Complete Flag is set by hardware when
* he computation phase is completed.
* @arg AES_FLAG_RDERR: Read Error Flag is set when an unexpected read
* operation of DOUTR register is detected.
* @arg AES_FLAG_WRERR: Write Error Flag is set when an unexpected write
* operation in DINR is detected.
* @retval FlagStatus (SET or RESET)
*/
FlagStatus AES_GetFlagStatus(uint32_t AES_FLAG)
{
FlagStatus bitstatus = RESET;
/* Check parameters */
assert_param(IS_AES_FLAG(AES_FLAG));
if ((AES->SR & AES_FLAG) != (uint32_t)RESET)
{
bitstatus = SET;
}
else
{
bitstatus = RESET;
}
/* Return the AES_FLAG status */
return bitstatus;
}
/**
* @brief Clears the AES flags.
* @param AES_FLAG: specifies the flag to clear.
* This parameter can be:
* @arg AES_FLAG_CCF: Computation Complete Flag is cleared by setting CCFC
* bit in CR register.
* @arg AES_FLAG_RDERR: Read Error is cleared by setting ERRC bit in
* CR register.
* @arg AES_FLAG_WRERR: Write Error is cleared by setting ERRC bit in
* CR register.
* @retval None
*/
void AES_ClearFlag(uint32_t AES_FLAG)
{
/* Check the parameters */
assert_param(IS_AES_FLAG(AES_FLAG));
/* Check if AES_FLAG is AES_FLAG_CCF */
if (AES_FLAG == AES_FLAG_CCF)
{
/* Clear CCF flag by setting CCFC bit */
AES->CR |= (uint32_t) AES_CR_CCFC;
}
else /* AES_FLAG is AES_FLAG_RDERR or AES_FLAG_WRERR */
{
/* Clear RDERR and WRERR flags by setting ERRC bit */
AES->CR |= (uint32_t) AES_CR_ERRC;
}
}
/**
* @brief Checks whether the specified AES interrupt has occurred or not.
* @param AES_IT: Specifies the AES interrupt pending bit to check.
* This parameter can be:
* @arg AES_IT_CC: Computation Complete Interrupt.
* @arg AES_IT_ERR: Error Interrupt.
* @retval ITStatus The new state of AES_IT (SET or RESET).
*/
ITStatus AES_GetITStatus(uint32_t AES_IT)
{
ITStatus itstatus = RESET;
uint32_t cciebitstatus = RESET, ccfbitstatus = RESET;
/* Check parameters */
assert_param(IS_AES_GET_IT(AES_IT));
cciebitstatus = AES->CR & AES_CR_CCIE;
ccfbitstatus = AES->SR & AES_SR_CCF;
/* Check if AES_IT is AES_IT_CC */
if (AES_IT == AES_IT_CC)
{
/* Check the status of the specified AES interrupt */
if (((cciebitstatus) != (uint32_t)RESET) && ((ccfbitstatus) != (uint32_t)RESET))
{
/* Interrupt occurred */
itstatus = SET;
}
else
{
/* Interrupt didn't occur */
itstatus = RESET;
}
}
else /* AES_IT is AES_IT_ERR */
{
/* Check the status of the specified AES interrupt */
if ((AES->CR & AES_CR_ERRIE) != RESET)
{
/* Check if WRERR or RDERR flags are set */
if ((AES->SR & (uint32_t)(AES_SR_WRERR | AES_SR_RDERR)) != (uint16_t)RESET)
{
/* Interrupt occurred */
itstatus = SET;
}
else
{
/* Interrupt didn't occur */
itstatus = RESET;
}
}
else
{
/* Interrupt didn't occur */
itstatus = (ITStatus) RESET;
}
}
/* Return the AES_IT status */
return itstatus;
}
/**
* @brief Clears the AES's interrupt pending bits.
* @param AES_IT: specifies the interrupt pending bit to clear.
* This parameter can be any combinations of the following values:
* @arg AES_IT_CC: Computation Complete Interrupt.
* @arg AES_IT_ERR: Error Interrupt.
* @retval None
*/
void AES_ClearITPendingBit(uint32_t AES_IT)
{
/* Check the parameters */
assert_param(IS_AES_IT(AES_IT));
/* Clear the interrupt pending bit */
AES->CR |= (uint32_t) (AES_IT >> (uint32_t) 0x00000002);
}
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/

View File

@ -0,0 +1,236 @@
/**
******************************************************************************
* @file stm32l1xx_aes.h
* @author MCD Application Team
* @version V1.2.0
* @date 22-February-2013
* @brief This file contains all the functions prototypes for the AES firmware
* library.
******************************************************************************
* @attention
*
* <h2><center>&copy; COPYRIGHT 2013 STMicroelectronics</center></h2>
*
* Licensed under MCD-ST Liberty SW License Agreement V2, (the "License");
* You may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.st.com/software_license_agreement_liberty_v2
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
******************************************************************************
*/
/* Define to prevent recursive inclusion -------------------------------------*/
#ifndef __STM32L1xx_AES_H
#define __STM32L1xx_AES_H
#ifdef __cplusplus
extern "C" {
#endif
/* Includes ------------------------------------------------------------------*/
#include "stm32l1xx.h"
/** @addtogroup STM32L1xx_StdPeriph_Driver
* @{
*/
/** @addtogroup AES
* @{
*/
/* Exported types ------------------------------------------------------------*/
/**
* @brief AES Init structure definition
*/
typedef struct
{
uint32_t AES_Operation; /*!< Specifies the AES mode of operation.
This parameter can be a value of @ref AES_possible_Operation_modes */
uint32_t AES_Chaining; /*!< Specifies the AES Chaining modes: ECB, CBC or CTR.
This parameter can be a value of @ref AES_possible_chaining_modes */
uint32_t AES_DataType; /*!< Specifies the AES data swapping: 32-bit, 16-bit, 8-bit or 1-bit.
This parameter can be a value of @ref AES_Data_Types */
}AES_InitTypeDef;
/**
* @brief AES Key(s) structure definition
*/
typedef struct
{
uint32_t AES_Key0; /*!< Key[31:0] */
uint32_t AES_Key1; /*!< Key[63:32] */
uint32_t AES_Key2; /*!< Key[95:64] */
uint32_t AES_Key3; /*!< Key[127:96] */
}AES_KeyInitTypeDef;
/**
* @brief AES Initialization Vectors (IV) structure definition
*/
typedef struct
{
uint32_t AES_IV0; /*!< Init Vector IV[31:0] */
uint32_t AES_IV1; /*!< Init Vector IV[63:32] */
uint32_t AES_IV2; /*!< Init Vector IV[95:64] */
uint32_t AES_IV3; /*!< Init Vector IV[127:96] */
}AES_IVInitTypeDef;
/* Exported constants --------------------------------------------------------*/
/** @defgroup AES_Exported_Constants
* @{
*/
/** @defgroup AES_possible_Operation_modes
* @{
*/
#define AES_Operation_Encryp ((uint32_t)0x00000000) /*!< AES in Encryption mode */
#define AES_Operation_KeyDeriv AES_CR_MODE_0 /*!< AES in Key Derivation mode */
#define AES_Operation_Decryp AES_CR_MODE_1 /*!< AES in Decryption mode */
#define AES_Operation_KeyDerivAndDecryp AES_CR_MODE /*!< AES in Key Derivation and Decryption mode */
#define IS_AES_MODE(OPERATION) (((OPERATION) == AES_Operation_Encryp) || \
((OPERATION) == AES_Operation_KeyDeriv) || \
((OPERATION) == AES_Operation_Decryp) || \
((OPERATION) == AES_Operation_KeyDerivAndDecryp))
/**
* @}
*/
/** @defgroup AES_possible_chaining_modes
* @{
*/
#define AES_Chaining_ECB ((uint32_t)0x00000000) /*!< AES in ECB chaining mode */
#define AES_Chaining_CBC AES_CR_CHMOD_0 /*!< AES in CBC chaining mode */
#define AES_Chaining_CTR AES_CR_CHMOD_1 /*!< AES in CTR chaining mode */
#define IS_AES_CHAINING(CHAINING) (((CHAINING) == AES_Chaining_ECB) || \
((CHAINING) == AES_Chaining_CBC) || \
((CHAINING) == AES_Chaining_CTR))
/**
* @}
*/
/** @defgroup AES_Data_Types
* @{
*/
#define AES_DataType_32b ((uint32_t)0x00000000) /*!< 32-bit data. No swapping */
#define AES_DataType_16b AES_CR_DATATYPE_0 /*!< 16-bit data. Each half word is swapped */
#define AES_DataType_8b AES_CR_DATATYPE_1 /*!< 8-bit data. All bytes are swapped */
#define AES_DataType_1b AES_CR_DATATYPE /*!< 1-bit data. In the word all bits are swapped */
#define IS_AES_DATATYPE(DATATYPE) (((DATATYPE) == AES_DataType_32b) || \
((DATATYPE) == AES_DataType_16b)|| \
((DATATYPE) == AES_DataType_8b) || \
((DATATYPE) == AES_DataType_1b))
/**
* @}
*/
/** @defgroup AES_Flags
* @{
*/
#define AES_FLAG_CCF AES_SR_CCF /*!< Computation Complete Flag */
#define AES_FLAG_RDERR AES_SR_RDERR /*!< Read Error Flag */
#define AES_FLAG_WRERR AES_SR_WRERR /*!< Write Error Flag */
#define IS_AES_FLAG(FLAG) (((FLAG) == AES_FLAG_CCF) || \
((FLAG) == AES_FLAG_RDERR) || \
((FLAG) == AES_FLAG_WRERR))
/**
* @}
*/
/** @defgroup AES_Interrupts
* @{
*/
#define AES_IT_CC AES_CR_CCIE /*!< Computation Complete interrupt */
#define AES_IT_ERR AES_CR_ERRIE /*!< Error interrupt */
#define IS_AES_IT(IT) ((((IT) & (uint32_t)0xFFFFF9FF) == 0x00) && ((IT) != 0x00))
#define IS_AES_GET_IT(IT) (((IT) == AES_IT_CC) || ((IT) == AES_IT_ERR))
/**
* @}
*/
/** @defgroup AES_DMA_Transfer_modes
* @{
*/
#define AES_DMATransfer_In AES_CR_DMAINEN /*!< DMA requests enabled for input transfer phase */
#define AES_DMATransfer_Out AES_CR_DMAOUTEN /*!< DMA requests enabled for input transfer phase */
#define AES_DMATransfer_InOut (AES_CR_DMAINEN | AES_CR_DMAOUTEN) /*!< DMA requests enabled for both input and output phases */
#define IS_AES_DMA_TRANSFER(TRANSFER) (((TRANSFER) == AES_DMATransfer_In) || \
((TRANSFER) == AES_DMATransfer_Out) || \
((TRANSFER) == AES_DMATransfer_InOut))
/**
* @}
*/
/**
* @}
*/
/* Exported macro ------------------------------------------------------------*/
/* Exported functions ------------------------------------------------------- */
/* Initialization and configuration functions *********************************/
void AES_DeInit(void);
void AES_Init(AES_InitTypeDef* AES_InitStruct);
void AES_KeyInit(AES_KeyInitTypeDef* AES_KeyInitStruct);
void AES_IVInit(AES_IVInitTypeDef* AES_IVInitStruct);
void AES_Cmd(FunctionalState NewState);
/* Structures initialization functions ****************************************/
void AES_StructInit(AES_InitTypeDef* AES_InitStruct);
void AES_KeyStructInit(AES_KeyInitTypeDef* AES_KeyInitStruct);
void AES_IVStructInit(AES_IVInitTypeDef* AES_IVInitStruct);
/* AES Read and Write functions **********************************************/
void AES_WriteSubData(uint32_t Data);
uint32_t AES_ReadSubData(void);
void AES_ReadKey(AES_KeyInitTypeDef* AES_KeyInitStruct);
void AES_ReadIV(AES_IVInitTypeDef* AES_IVInitStruct);
/* DMA transfers management function ******************************************/
void AES_DMAConfig(uint32_t AES_DMATransfer, FunctionalState NewState);
/* Interrupts and flags management functions **********************************/
void AES_ITConfig(uint32_t AES_IT, FunctionalState NewState);
FlagStatus AES_GetFlagStatus(uint32_t AES_FLAG);
void AES_ClearFlag(uint32_t AES_FLAG);
ITStatus AES_GetITStatus(uint32_t AES_IT);
void AES_ClearITPendingBit(uint32_t AES_IT);
/* High Level AES functions **************************************************/
ErrorStatus AES_ECB_Encrypt(uint8_t* Key, uint8_t* Input, uint32_t Ilength, uint8_t* Output);
ErrorStatus AES_ECB_Decrypt(uint8_t* Key, uint8_t* Input, uint32_t Ilength, uint8_t* Output);
ErrorStatus AES_CBC_Encrypt(uint8_t* Key, uint8_t InitVectors[16], uint8_t* Input, uint32_t Ilength, uint8_t* Output);
ErrorStatus AES_CBC_Decrypt(uint8_t* Key, uint8_t InitVectors[16], uint8_t* Input, uint32_t Ilength, uint8_t* Output);
ErrorStatus AES_CTR_Encrypt(uint8_t* Key, uint8_t InitVectors[16], uint8_t* Input, uint32_t Ilength, uint8_t* Output);
ErrorStatus AES_CTR_Decrypt(uint8_t* Key, uint8_t InitVectors[16], uint8_t* Input, uint32_t Ilength, uint8_t* Output);
#ifdef __cplusplus
}
#endif
#endif /*__STM32L1xx_AES_H */
/**
* @}
*/
/**
* @}
*/
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/

View File

@ -0,0 +1,679 @@
/**
******************************************************************************
* @file stm32l1xx_aes_util.c
* @author MCD Application Team
* @version V1.2.0
* @date 22-February-2013
* @brief This file provides high level functions to encrypt and decrypt an
* input message using AES in ECB/CBC/CTR modes.
*
* @verbatim
================================================================================
##### How to use this driver #####
================================================================================
[..]
(#) Enable The AES controller clock using
RCC_AHBPeriphClockCmd(RCC_AHBPeriph_AES, ENABLE); function.
(#) Use AES_ECB_Encrypt() function to encrypt an input message in ECB mode.
(#) Use AES_ECB_Decrypt() function to decrypt an input message in ECB mode.
(#) Use AES_CBC_Encrypt() function to encrypt an input message in CBC mode.
(#) Use AES_CBC_Decrypt() function to decrypt an input message in CBC mode.
(#) Use AES_CTR_Encrypt() function to encrypt an input message in CTR mode.
(#) Use AES_CTR_Decrypt() function to decrypt an input message in CTR mode.
* @endverbatim
*
******************************************************************************
* @attention
*
* <h2><center>&copy; COPYRIGHT 2013 STMicroelectronics</center></h2>
*
* Licensed under MCD-ST Liberty SW License Agreement V2, (the "License");
* You may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.st.com/software_license_agreement_liberty_v2
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "stm32l1xx_aes.h"
/** @addtogroup STM32L1xx_StdPeriph_Driver
* @{
*/
/** @addtogroup AES
* @brief AES driver modules
* @{
*/
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
#define AES_CC_TIMEOUT ((uint32_t) 0x00010000)
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private function prototypes -----------------------------------------------*/
/* Private functions ---------------------------------------------------------*/
/** @defgroup AES_Private_Functions
* @{
*/
/** @defgroup AES_Group6 High Level AES functions
* @brief High Level AES functions
*
@verbatim
================================================================================
##### High Level AES functions #####
================================================================================
@endverbatim
* @{
*/
/**
* @brief Encrypt using AES in ECB Mode
* @param Key: Key used for AES algorithm.
* @param Input: pointer to the Input buffer.
* @param Ilength: length of the Input buffer, must be a multiple of 16 bytes.
* @param Output: pointer to the returned buffer.
* @retval An ErrorStatus enumeration value:
* - SUCCESS: Operation done
* - ERROR: Operation failed
*/
ErrorStatus AES_ECB_Encrypt(uint8_t* Key, uint8_t* Input, uint32_t Ilength, uint8_t* Output)
{
AES_InitTypeDef AES_InitStructure;
AES_KeyInitTypeDef AES_KeyInitStructure;
ErrorStatus status = SUCCESS;
uint32_t keyaddr = (uint32_t)Key;
uint32_t inputaddr = (uint32_t)Input;
uint32_t outputaddr = (uint32_t)Output;
__IO uint32_t counter = 0;
uint32_t ccstatus = 0;
uint32_t i = 0;
/* AES Key initialisation */
AES_KeyInitStructure.AES_Key3 = __REV(*(uint32_t*)(keyaddr));
keyaddr += 4;
AES_KeyInitStructure.AES_Key2 = __REV(*(uint32_t*)(keyaddr));
keyaddr += 4;
AES_KeyInitStructure.AES_Key1 = __REV(*(uint32_t*)(keyaddr));
keyaddr += 4;
AES_KeyInitStructure.AES_Key0 = __REV(*(uint32_t*)(keyaddr));
AES_KeyInit(&AES_KeyInitStructure);
/* AES configuration */
AES_InitStructure.AES_Operation = AES_Operation_Encryp;
AES_InitStructure.AES_Chaining = AES_Chaining_ECB;
AES_InitStructure.AES_DataType = AES_DataType_8b;
AES_Init(&AES_InitStructure);
/* Enable AES */
AES_Cmd(ENABLE);
for(i = 0; ((i < Ilength) && (status != ERROR)); i += 16)
{
AES_WriteSubData(*(uint32_t*)(inputaddr));
inputaddr += 4;
AES_WriteSubData(*(uint32_t*)(inputaddr));
inputaddr += 4;
AES_WriteSubData(*(uint32_t*)(inputaddr));
inputaddr += 4;
AES_WriteSubData(*(uint32_t*)(inputaddr));
inputaddr += 4;
/* Wait for CCF flag to be set */
counter = 0;
do
{
ccstatus = AES_GetFlagStatus(AES_FLAG_CCF);
counter++;
}while((counter != AES_CC_TIMEOUT) && (ccstatus == RESET));
if (ccstatus == RESET)
{
status = ERROR;
}
else
{
/* Clear CCF flag */
AES_ClearFlag(AES_FLAG_CCF);
/* Read cipher text */
*(uint32_t*)(outputaddr) = AES_ReadSubData();
outputaddr += 4;
*(uint32_t*)(outputaddr) = AES_ReadSubData();
outputaddr += 4;
*(uint32_t*)(outputaddr) = AES_ReadSubData();
outputaddr += 4;
*(uint32_t*)(outputaddr) = AES_ReadSubData();
outputaddr += 4;
}
}
/* Disable AES before starting new processing */
AES_Cmd(DISABLE);
return status;
}
/**
* @brief Decrypt using AES in ECB Mode
* @param Key: Key used for AES algorithm.
* @param Input: pointer to the Input buffer.
* @param Ilength: length of the Input buffer, must be a multiple of 16 bytes.
* @param Output: pointer to the returned buffer.
* @retval An ErrorStatus enumeration value:
* - SUCCESS: Operation done
* - ERROR: Operation failed
*/
ErrorStatus AES_ECB_Decrypt(uint8_t* Key, uint8_t* Input, uint32_t Ilength, uint8_t* Output)
{
AES_InitTypeDef AES_InitStructure;
AES_KeyInitTypeDef AES_KeyInitStructure;
ErrorStatus status = SUCCESS;
uint32_t keyaddr = (uint32_t)Key;
uint32_t inputaddr = (uint32_t)Input;
uint32_t outputaddr = (uint32_t)Output;
__IO uint32_t counter = 0;
uint32_t ccstatus = 0;
uint32_t i = 0;
/* AES Key initialisation */
AES_KeyInitStructure.AES_Key3 = __REV(*(uint32_t*)(keyaddr));
keyaddr += 4;
AES_KeyInitStructure.AES_Key2 = __REV(*(uint32_t*)(keyaddr));
keyaddr += 4;
AES_KeyInitStructure.AES_Key1 = __REV(*(uint32_t*)(keyaddr));
keyaddr += 4;
AES_KeyInitStructure.AES_Key0 = __REV(*(uint32_t*)(keyaddr));
AES_KeyInit(&AES_KeyInitStructure);
/* AES configuration */
AES_InitStructure.AES_Operation = AES_Operation_KeyDerivAndDecryp;
AES_InitStructure.AES_Chaining = AES_Chaining_ECB;
AES_InitStructure.AES_DataType = AES_DataType_8b;
AES_Init(&AES_InitStructure);
/* Enable AES */
AES_Cmd(ENABLE);
for(i = 0; ((i < Ilength) && (status != ERROR)); i += 16)
{
AES_WriteSubData(*(uint32_t*)(inputaddr));
inputaddr += 4;
AES_WriteSubData(*(uint32_t*)(inputaddr));
inputaddr += 4;
AES_WriteSubData(*(uint32_t*)(inputaddr));
inputaddr += 4;
AES_WriteSubData(*(uint32_t*)(inputaddr));
inputaddr += 4;
/* Wait for CCF flag to be set */
counter = 0;
do
{
ccstatus = AES_GetFlagStatus(AES_FLAG_CCF);
counter++;
}while((counter != AES_CC_TIMEOUT) && (ccstatus == RESET));
if (ccstatus == RESET)
{
status = ERROR;
}
else
{
/* Clear CCF flag */
AES_ClearFlag(AES_FLAG_CCF);
/* Read cipher text */
*(uint32_t*)(outputaddr) = AES_ReadSubData();
outputaddr += 4;
*(uint32_t*)(outputaddr) = AES_ReadSubData();
outputaddr += 4;
*(uint32_t*)(outputaddr) = AES_ReadSubData();
outputaddr += 4;
*(uint32_t*)(outputaddr) = AES_ReadSubData();
outputaddr += 4;
}
}
/* Disable AES before starting new processing */
AES_Cmd(DISABLE);
return status;
}
/**
* @brief Encrypt using AES in CBC Mode
* @param InitVectors: Initialisation Vectors used for AES algorithm.
* @param Key: Key used for AES algorithm.
* @param Input: pointer to the Input buffer.
* @param Ilength: length of the Input buffer, must be a multiple of 16 bytes.
* @param Output: pointer to the returned buffer.
* @retval An ErrorStatus enumeration value:
* - SUCCESS: Operation done
* - ERROR: Operation failed
*/
ErrorStatus AES_CBC_Encrypt(uint8_t* Key, uint8_t InitVectors[16], uint8_t* Input, uint32_t Ilength, uint8_t* Output)
{
AES_InitTypeDef AES_InitStructure;
AES_KeyInitTypeDef AES_KeyInitStructure;
AES_IVInitTypeDef AES_IVInitStructure;
ErrorStatus status = SUCCESS;
uint32_t keyaddr = (uint32_t)Key;
uint32_t inputaddr = (uint32_t)Input;
uint32_t outputaddr = (uint32_t)Output;
uint32_t ivaddr = (uint32_t)InitVectors;
__IO uint32_t counter = 0;
uint32_t ccstatus = 0;
uint32_t i = 0;
/* AES Key initialisation*/
AES_KeyInitStructure.AES_Key3 = __REV(*(uint32_t*)(keyaddr));
keyaddr += 4;
AES_KeyInitStructure.AES_Key2 = __REV(*(uint32_t*)(keyaddr));
keyaddr += 4;
AES_KeyInitStructure.AES_Key1 = __REV(*(uint32_t*)(keyaddr));
keyaddr += 4;
AES_KeyInitStructure.AES_Key0 = __REV(*(uint32_t*)(keyaddr));
AES_KeyInit(&AES_KeyInitStructure);
/* AES Initialization Vectors */
AES_IVInitStructure.AES_IV3 = __REV(*(uint32_t*)(ivaddr));
ivaddr += 4;
AES_IVInitStructure.AES_IV2 = __REV(*(uint32_t*)(ivaddr));
ivaddr += 4;
AES_IVInitStructure.AES_IV1 = __REV(*(uint32_t*)(ivaddr));
ivaddr += 4;
AES_IVInitStructure.AES_IV0 = __REV(*(uint32_t*)(ivaddr));
AES_IVInit(&AES_IVInitStructure);
/* AES configuration */
AES_InitStructure.AES_Operation = AES_Operation_Encryp;
AES_InitStructure.AES_Chaining = AES_Chaining_CBC;
AES_InitStructure.AES_DataType = AES_DataType_8b;
AES_Init(&AES_InitStructure);
/* Enable AES */
AES_Cmd(ENABLE);
for(i = 0; ((i < Ilength) && (status != ERROR)); i += 16)
{
AES_WriteSubData(*(uint32_t*)(inputaddr));
inputaddr += 4;
AES_WriteSubData(*(uint32_t*)(inputaddr));
inputaddr += 4;
AES_WriteSubData(*(uint32_t*)(inputaddr));
inputaddr += 4;
AES_WriteSubData(*(uint32_t*)(inputaddr));
inputaddr += 4;
/* Wait for CCF flag to be set */
counter = 0;
do
{
ccstatus = AES_GetFlagStatus(AES_FLAG_CCF);
counter++;
}while((counter != AES_CC_TIMEOUT) && (ccstatus == RESET));
if (ccstatus == RESET)
{
status = ERROR;
}
else
{
/* Clear CCF flag */
AES_ClearFlag(AES_FLAG_CCF);
/* Read cipher text */
*(uint32_t*)(outputaddr) = AES_ReadSubData();
outputaddr += 4;
*(uint32_t*)(outputaddr) = AES_ReadSubData();
outputaddr += 4;
*(uint32_t*)(outputaddr) = AES_ReadSubData();
outputaddr += 4;
*(uint32_t*)(outputaddr) = AES_ReadSubData();
outputaddr += 4;
}
}
/* Disable AES before starting new processing */
AES_Cmd(DISABLE);
return status;
}
/**
* @brief Decrypt using AES in CBC Mode
* @param InitVectors: Initialisation Vectors used for AES algorithm.
* @param Key: Key used for AES algorithm.
* @param Input: pointer to the Input buffer.
* @param Ilength: length of the Input buffer, must be a multiple of 16 bytes.
* @param Output: pointer to the returned buffer.
* @retval An ErrorStatus enumeration value:
* - SUCCESS: Operation done
* - ERROR: Operation failed
*/
ErrorStatus AES_CBC_Decrypt(uint8_t* Key, uint8_t InitVectors[16], uint8_t* Input, uint32_t Ilength, uint8_t* Output)
{
AES_InitTypeDef AES_InitStructure;
AES_KeyInitTypeDef AES_KeyInitStructure;
AES_IVInitTypeDef AES_IVInitStructure;
ErrorStatus status = SUCCESS;
uint32_t keyaddr = (uint32_t)Key;
uint32_t inputaddr = (uint32_t)Input;
uint32_t outputaddr = (uint32_t)Output;
uint32_t ivaddr = (uint32_t)InitVectors;
__IO uint32_t counter = 0;
uint32_t ccstatus = 0;
uint32_t i = 0;
/* AES Key initialisation*/
AES_KeyInitStructure.AES_Key3 = __REV(*(uint32_t*)(keyaddr));
keyaddr += 4;
AES_KeyInitStructure.AES_Key2 = __REV(*(uint32_t*)(keyaddr));
keyaddr += 4;
AES_KeyInitStructure.AES_Key1 = __REV(*(uint32_t*)(keyaddr));
keyaddr += 4;
AES_KeyInitStructure.AES_Key0 = __REV(*(uint32_t*)(keyaddr));
AES_KeyInit(&AES_KeyInitStructure);
/* AES Initialization Vectors */
AES_IVInitStructure.AES_IV3 = __REV(*(uint32_t*)(ivaddr));
ivaddr += 4;
AES_IVInitStructure.AES_IV2 = __REV(*(uint32_t*)(ivaddr));
ivaddr += 4;
AES_IVInitStructure.AES_IV1 = __REV(*(uint32_t*)(ivaddr));
ivaddr += 4;
AES_IVInitStructure.AES_IV0 = __REV(*(uint32_t*)(ivaddr));
AES_IVInit(&AES_IVInitStructure);
/* AES configuration */
AES_InitStructure.AES_Operation = AES_Operation_KeyDerivAndDecryp;
AES_InitStructure.AES_Chaining = AES_Chaining_CBC;
AES_InitStructure.AES_DataType = AES_DataType_8b;
AES_Init(&AES_InitStructure);
/* Enable AES */
AES_Cmd(ENABLE);
for(i = 0; ((i < Ilength) && (status != ERROR)); i += 16)
{
AES_WriteSubData(*(uint32_t*)(inputaddr));
inputaddr += 4;
AES_WriteSubData(*(uint32_t*)(inputaddr));
inputaddr += 4;
AES_WriteSubData(*(uint32_t*)(inputaddr));
inputaddr += 4;
AES_WriteSubData(*(uint32_t*)(inputaddr));
inputaddr += 4;
/* Wait for CCF flag to be set */
counter = 0;
do
{
ccstatus = AES_GetFlagStatus(AES_FLAG_CCF);
counter++;
}while((counter != AES_CC_TIMEOUT) && (ccstatus == RESET));
if (ccstatus == RESET)
{
status = ERROR;
}
else
{
/* Clear CCF flag */
AES_ClearFlag(AES_FLAG_CCF);
/* Read cipher text */
*(uint32_t*)(outputaddr) = AES_ReadSubData();
outputaddr += 4;
*(uint32_t*)(outputaddr) = AES_ReadSubData();
outputaddr += 4;
*(uint32_t*)(outputaddr) = AES_ReadSubData();
outputaddr += 4;
*(uint32_t*)(outputaddr) = AES_ReadSubData();
outputaddr += 4;
}
}
/* Disable AES before starting new processing */
AES_Cmd(DISABLE);
return status;
}
/**
* @brief Encrypt using AES in CTR Mode
* @param InitVectors: Initialisation Vectors used for AES algorithm.
* @param Key: Key used for AES algorithm.
* @param Input: pointer to the Input buffer.
* @param Ilength: length of the Input buffer, must be a multiple of 16 bytes.
* @param Output: pointer to the returned buffer.
* @retval An ErrorStatus enumeration value:
* - SUCCESS: Operation done
* - ERROR: Operation failed
*/
ErrorStatus AES_CTR_Encrypt(uint8_t* Key, uint8_t InitVectors[16], uint8_t* Input, uint32_t Ilength, uint8_t* Output)
{
AES_InitTypeDef AES_InitStructure;
AES_KeyInitTypeDef AES_KeyInitStructure;
AES_IVInitTypeDef AES_IVInitStructure;
ErrorStatus status = SUCCESS;
uint32_t keyaddr = (uint32_t)Key;
uint32_t inputaddr = (uint32_t)Input;
uint32_t outputaddr = (uint32_t)Output;
uint32_t ivaddr = (uint32_t)InitVectors;
__IO uint32_t counter = 0;
uint32_t ccstatus = 0;
uint32_t i = 0;
/* AES key initialisation*/
AES_KeyInitStructure.AES_Key3 = __REV(*(uint32_t*)(keyaddr));
keyaddr += 4;
AES_KeyInitStructure.AES_Key2 = __REV(*(uint32_t*)(keyaddr));
keyaddr += 4;
AES_KeyInitStructure.AES_Key1 = __REV(*(uint32_t*)(keyaddr));
keyaddr += 4;
AES_KeyInitStructure.AES_Key0 = __REV(*(uint32_t*)(keyaddr));
AES_KeyInit(&AES_KeyInitStructure);
/* AES Initialization Vectors */
AES_IVInitStructure.AES_IV3 = __REV(*(uint32_t*)(ivaddr));
ivaddr += 4;
AES_IVInitStructure.AES_IV2= __REV(*(uint32_t*)(ivaddr));
ivaddr += 4;
AES_IVInitStructure.AES_IV1 = __REV(*(uint32_t*)(ivaddr));
ivaddr += 4;
AES_IVInitStructure.AES_IV0= __REV(*(uint32_t*)(ivaddr));
AES_IVInit(&AES_IVInitStructure);
/* AES configuration */
AES_InitStructure.AES_Operation = AES_Operation_Encryp;
AES_InitStructure.AES_Chaining = AES_Chaining_CTR;
AES_InitStructure.AES_DataType = AES_DataType_8b;
AES_Init(&AES_InitStructure);
/* Enable AES */
AES_Cmd(ENABLE);
for(i = 0; ((i < Ilength) && (status != ERROR)); i += 16)
{
AES_WriteSubData(*(uint32_t*)(inputaddr));
inputaddr += 4;
AES_WriteSubData(*(uint32_t*)(inputaddr));
inputaddr += 4;
AES_WriteSubData(*(uint32_t*)(inputaddr));
inputaddr += 4;
AES_WriteSubData(*(uint32_t*)(inputaddr));
inputaddr += 4;
/* Wait for CCF flag to be set */
counter = 0;
do
{
ccstatus = AES_GetFlagStatus(AES_FLAG_CCF);
counter++;
}while((counter != AES_CC_TIMEOUT) && (ccstatus == RESET));
if (ccstatus == RESET)
{
status = ERROR;
}
else
{
/* Clear CCF flag */
AES_ClearFlag(AES_FLAG_CCF);
/* Read cipher text */
*(uint32_t*)(outputaddr) = AES_ReadSubData();
outputaddr += 4;
*(uint32_t*)(outputaddr) = AES_ReadSubData();
outputaddr += 4;
*(uint32_t*)(outputaddr) = AES_ReadSubData();
outputaddr += 4;
*(uint32_t*)(outputaddr) = AES_ReadSubData();
outputaddr += 4;
}
}
/* Disable AES before starting new processing */
AES_Cmd(DISABLE);
return status;
}
/**
* @brief Decrypt using AES in CTR Mode
* @param InitVectors: Initialisation Vectors used for AES algorithm.
* @param Key: Key used for AES algorithm.
* @param Input: pointer to the Input buffer.
* @param Ilength: length of the Input buffer, must be a multiple of 16 bytes.
* @param Output: pointer to the returned buffer.
* @retval An ErrorStatus enumeration value:
* - SUCCESS: Operation done
* - ERROR: Operation failed
*/
ErrorStatus AES_CTR_Decrypt(uint8_t* Key, uint8_t InitVectors[16], uint8_t* Input, uint32_t Ilength, uint8_t* Output)
{
AES_InitTypeDef AES_InitStructure;
AES_KeyInitTypeDef AES_KeyInitStructure;
AES_IVInitTypeDef AES_IVInitStructure;
ErrorStatus status = SUCCESS;
uint32_t keyaddr = (uint32_t)Key;
uint32_t inputaddr = (uint32_t)Input;
uint32_t outputaddr = (uint32_t)Output;
uint32_t ivaddr = (uint32_t)InitVectors;
__IO uint32_t counter = 0;
uint32_t ccstatus = 0;
uint32_t i = 0;
/* AES Key initialisation*/
AES_KeyInitStructure.AES_Key3 = __REV(*(uint32_t*)(keyaddr));
keyaddr += 4;
AES_KeyInitStructure.AES_Key2 = __REV(*(uint32_t*)(keyaddr));
keyaddr += 4;
AES_KeyInitStructure.AES_Key1 = __REV(*(uint32_t*)(keyaddr));
keyaddr += 4;
AES_KeyInitStructure.AES_Key0 = __REV(*(uint32_t*)(keyaddr));
AES_KeyInit(&AES_KeyInitStructure);
/* AES Initialization Vectors */
AES_IVInitStructure.AES_IV3 = __REV(*(uint32_t*)(ivaddr));
ivaddr += 4;
AES_IVInitStructure.AES_IV2 = __REV(*(uint32_t*)(ivaddr));
ivaddr += 4;
AES_IVInitStructure.AES_IV1 = __REV(*(uint32_t*)(ivaddr));
ivaddr += 4;
AES_IVInitStructure.AES_IV0 = __REV(*(uint32_t*)(ivaddr));
AES_IVInit(&AES_IVInitStructure);
/* AES configuration */
AES_InitStructure.AES_Operation = AES_Operation_KeyDerivAndDecryp;
AES_InitStructure.AES_Chaining = AES_Chaining_CTR;
AES_InitStructure.AES_DataType = AES_DataType_8b;
AES_Init(&AES_InitStructure);
/* Enable AES */
AES_Cmd(ENABLE);
for(i = 0; ((i < Ilength) && (status != ERROR)); i += 16)
{
AES_WriteSubData(*(uint32_t*)(inputaddr));
inputaddr += 4;
AES_WriteSubData(*(uint32_t*)(inputaddr));
inputaddr += 4;
AES_WriteSubData(*(uint32_t*)(inputaddr));
inputaddr += 4;
AES_WriteSubData(*(uint32_t*)(inputaddr));
inputaddr += 4;
/* Wait for CCF flag to be set */
counter = 0;
do
{
ccstatus = AES_GetFlagStatus(AES_FLAG_CCF);
counter++;
}while((counter != AES_CC_TIMEOUT) && (ccstatus == RESET));
if (ccstatus == RESET)
{
status = ERROR;
}
else
{
/* Clear CCF flag */
AES_ClearFlag(AES_FLAG_CCF);
/* Read cipher text */
*(uint32_t*)(outputaddr) = AES_ReadSubData();
outputaddr += 4;
*(uint32_t*)(outputaddr) = AES_ReadSubData();
outputaddr += 4;
*(uint32_t*)(outputaddr) = AES_ReadSubData();
outputaddr += 4;
*(uint32_t*)(outputaddr) = AES_ReadSubData();
outputaddr += 4;
}
}
/* Disable AES before starting new processing */
AES_Cmd(DISABLE);
return status;
}
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/

View File

@ -0,0 +1,378 @@
/**
******************************************************************************
* @file stm32l1xx_comp.c
* @author MCD Application Team
* @version V1.2.0
* @date 22-February-2013
* @brief This file provides firmware functions to manage the following
* functionalities of the comparators (COMP1 and COMP2) peripheral:
* + Comparators configuration
* + Window mode control
* + Internal Reference Voltage (VREFINT) output
*
* @verbatim
===============================================================================
##### How to use this driver #####
===============================================================================
[..] The device integrates two analog comparators COMP1 and COMP2:
(+) COMP1 is a fixed threshold (VREFINT) that shares the non inverting
input with the ADC channels.
(+) COMP2 is a rail-to-rail comparator whose the inverting input can be
selected among: DAC_OUT1, DAC_OUT2, 1/4 VREFINT, 1/2 VERFINT, 3/4
VREFINT, VREFINT, PB3 and whose the output can be redirected to
embedded timers: TIM2, TIM3, TIM4, TIM10.
(+) The two comparators COMP1 and COMP2 can be combined in window mode.
-@-
(#@) Comparator APB clock must be enabled to get write access
to comparator register using
RCC_APB1PeriphClockCmd(RCC_APB1Periph_COMP, ENABLE).
(#@) COMP1 comparator and ADC can't be used at the same time since
they share the same ADC switch matrix (analog switches).
(#@) When an I/O is used as comparator input, the corresponding GPIO
registers should be configured in analog mode.
(#@) Comparators outputs (CMP1OUT and CMP2OUT) are not mapped on
GPIO pin. They are only internal.
To get the comparator output level, use COMP_GetOutputLevel().
(#@) COMP1 and COMP2 outputs are internally connected to EXTI Line 21
and EXTI Line 22 respectively.
Interrupts can be used by configuring the EXTI Line using the
EXTI peripheral driver.
(#@) After enabling the comparator (COMP1 or COMP2), user should wait
for start-up time (tSTART) to get right output levels.
Please refer to product datasheet for more information on tSTART.
(#@) Comparators cannot be used to exit the device from Sleep or Stop
mode when the internal reference voltage is switched off using
the PWR_UltraLowPowerCmd() function (ULP bit in the PWR_CR register).
@endverbatim
******************************************************************************
* @attention
*
* <h2><center>&copy; COPYRIGHT 2013 STMicroelectronics</center></h2>
*
* Licensed under MCD-ST Liberty SW License Agreement V2, (the "License");
* You may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.st.com/software_license_agreement_liberty_v2
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "stm32l1xx_comp.h"
/** @addtogroup STM32L1xx_StdPeriph_Driver
* @{
*/
/** @defgroup COMP
* @brief COMP driver modules.
* @{
*/
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private function prototypes -----------------------------------------------*/
/* Private functions ---------------------------------------------------------*/
/** @defgroup COMP_Private_Functions
* @{
*/
/** @defgroup COMP_Group1 Initialization and Configuration functions
* @brief Initialization and Configuration functions.
*
@verbatim
===============================================================================
##### Initialization and Configuration functions #####
===============================================================================
@endverbatim
* @{
*/
/**
* @brief Deinitializes COMP peripheral registers to their default reset values.
* @param None
* @retval None
*/
void COMP_DeInit(void)
{
COMP->CSR = ((uint32_t)0x00000000); /*!< Set COMP->CSR to reset value */
}
/**
* @brief Initializes the COMP2 peripheral according to the specified parameters
* in the COMP_InitStruct.
* @note This function configures only COMP2.
* @note COMP2 comparator is enabled as soon as the INSEL[2:0] bits are
* different from "000".
* @param COMP_InitStruct: pointer to an COMP_InitTypeDef structure that contains
* the configuration information for the specified COMP peripheral.
* @retval None
*/
void COMP_Init(COMP_InitTypeDef* COMP_InitStruct)
{
uint32_t tmpreg = 0;
/* Check the parameters */
assert_param(IS_COMP_INVERTING_INPUT(COMP_InitStruct->COMP_InvertingInput));
assert_param(IS_COMP_OUTPUT(COMP_InitStruct->COMP_OutputSelect));
assert_param(IS_COMP_SPEED(COMP_InitStruct->COMP_Speed));
/*!< Get the COMP CSR value */
tmpreg = COMP->CSR;
/*!< Clear the INSEL[2:0], OUTSEL[1:0] and SPEED bits */
tmpreg &= (uint32_t) (~(uint32_t) (COMP_CSR_OUTSEL | COMP_CSR_INSEL | COMP_CSR_SPEED));
/*!< Configure COMP: speed, inversion input selection and output redirection */
/*!< Set SPEED bit according to COMP_InitStruct->COMP_Speed value */
/*!< Set INSEL bits according to COMP_InitStruct->COMP_InvertingInput value */
/*!< Set OUTSEL bits according to COMP_InitStruct->COMP_OutputSelect value */
tmpreg |= (uint32_t)((COMP_InitStruct->COMP_Speed | COMP_InitStruct->COMP_InvertingInput
| COMP_InitStruct->COMP_OutputSelect));
/*!< The COMP2 comparator is enabled as soon as the INSEL[2:0] bits value are
different from "000" */
/*!< Write to COMP_CSR register */
COMP->CSR = tmpreg;
}
/**
* @brief Enable or disable the COMP1 peripheral.
* @note After enabling COMP1, the following functions should be called to
* connect the selected GPIO input to COMP1 non inverting input:
* @note Enable switch control mode using SYSCFG_RISwitchControlModeCmd()
* @note Close VCOMP switch using SYSCFG_RIIOSwitchConfig()
* @note Close the I/O switch number n corresponding to the I/O
* using SYSCFG_RIIOSwitchConfig()
* @param NewState: new state of the COMP1 peripheral.
* This parameter can be: ENABLE or DISABLE.
* @note This function enables/disables only the COMP1.
* @retval None
*/
void COMP_Cmd(FunctionalState NewState)
{
/* Check the parameter */
assert_param(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
/* Enable the COMP1 */
COMP->CSR |= (uint32_t) COMP_CSR_CMP1EN;
}
else
{
/* Disable the COMP1 */
COMP->CSR &= (uint32_t)(~COMP_CSR_CMP1EN);
}
}
/**
* @brief Return the output level (high or low) of the selected comparator.
* @note Comparator output is low when the noninverting input is at a lower
* voltage than the inverting input.
* @note Comparator output is high when the noninverting input is at a higher
* voltage than the inverting input.
* @note Comparators outputs aren't available on GPIO (outputs levels are
* only internal). The COMP1 and COMP2 outputs are connected internally
* to the EXTI Line 21 and Line 22 respectively.
* @param COMP_Selection: the selected comparator.
* This parameter can be one of the following values:
* @arg COMP_Selection_COMP1: COMP1 selected
* @arg COMP_Selection_COMP2: COMP2 selected
* @retval Returns the selected comparator output level.
*/
uint8_t COMP_GetOutputLevel(uint32_t COMP_Selection)
{
uint8_t compout = 0x0;
/* Check the parameters */
assert_param(IS_COMP_ALL_PERIPH(COMP_Selection));
/* Check if Comparator 1 is selected */
if(COMP_Selection == COMP_Selection_COMP1)
{
/* Check if comparator 1 output level is high */
if((COMP->CSR & COMP_CSR_CMP1OUT) != (uint8_t) RESET)
{
/* Get Comparator 1 output level */
compout = (uint8_t) COMP_OutputLevel_High;
}
/* comparator 1 output level is low */
else
{
/* Get Comparator 1 output level */
compout = (uint8_t) COMP_OutputLevel_Low;
}
}
/* Comparator 2 is selected */
else
{
/* Check if comparator 2 output level is high */
if((COMP->CSR & COMP_CSR_CMP2OUT) != (uint8_t) RESET)
{
/* Get Comparator output level */
compout = (uint8_t) COMP_OutputLevel_High;
}
/* comparator 2 output level is low */
else
{
/* Get Comparator 2 output level */
compout = (uint8_t) COMP_OutputLevel_Low;
}
}
/* Return the comparator output level */
return (uint8_t)(compout);
}
/**
* @brief Close or Open the SW1 switch.
* @param NewState: new state of the SW1 switch.
* This parameter can be: ENABLE or DISABLE.
* @note ENABLE to close the SW1 switch
* @note DISABLE to open the SW1 switch
* @retval None.
*/
void COMP_SW1SwitchConfig(FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
/* Close SW1 switch */
COMP->CSR |= (uint32_t) COMP_CSR_SW1;
}
else
{
/* Open SW1 switch */
COMP->CSR &= (uint32_t)(~COMP_CSR_SW1);
}
}
/**
* @}
*/
/** @defgroup COMP_Group2 Window mode control function
* @brief Window mode control function.
*
@verbatim
===============================================================================
##### Window mode control function #####
===============================================================================
@endverbatim
* @{
*/
/**
* @brief Enables or disables the window mode.
* In window mode:
* @note COMP1 inverting input is fixed to VREFINT defining the first
* threshold.
* @note COMP2 inverting input is configurable (DAC_OUT1, DAC_OUT2, VREFINT
* sub-multiples, PB3) defining the second threshold.
* @note COMP1 and COMP2 non inverting inputs are connected together.
* @note In window mode, only the Group 6 (PB4 or PB5) can be used as
* noninverting inputs.
* @param NewState: new state of the window mode.
* This parameter can be ENABLE or DISABLE.
* @retval None
*/
void COMP_WindowCmd(FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
/* Enable the window mode */
COMP->CSR |= (uint32_t) COMP_CSR_WNDWE;
}
else
{
/* Disable the window mode */
COMP->CSR &= (uint32_t)(~COMP_CSR_WNDWE);
}
}
/**
* @}
*/
/** @defgroup COMP_Group3 Internal Reference Voltage output function
* @brief Internal Reference Voltage (VREFINT) output function.
*
@verbatim
===============================================================================
##### Internal Reference Voltage (VREFINT) output function #####
===============================================================================
@endverbatim
* @{
*/
/**
* @brief Enables or disables the output of internal reference voltage (VREFINT).
* The VREFINT output can be routed to any I/O in group 3: CH8 (PB0) or
* CH9 (PB1).
* To correctly use this function, the SYSCFG_RIIOSwitchConfig() function
* should be called after.
* @param NewState: new state of the Vrefint output.
* This parameter can be: ENABLE or DISABLE.
* @retval None
*/
void COMP_VrefintOutputCmd(FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
/* Enable the output of internal reference voltage */
COMP->CSR |= (uint32_t) COMP_CSR_VREFOUTEN;
}
else
{
/* Disable the output of internal reference voltage */
COMP->CSR &= (uint32_t) (~COMP_CSR_VREFOUTEN);
}
}
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/

View File

@ -0,0 +1,187 @@
/**
******************************************************************************
* @file stm32l1xx_comp.h
* @author MCD Application Team
* @version V1.2.0
* @date 22-February-2013
* @brief This file contains all the functions prototypes for the COMP firmware
* library.
******************************************************************************
* @attention
*
* <h2><center>&copy; COPYRIGHT 2013 STMicroelectronics</center></h2>
*
* Licensed under MCD-ST Liberty SW License Agreement V2, (the "License");
* You may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.st.com/software_license_agreement_liberty_v2
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
******************************************************************************
*/
/* Define to prevent recursive inclusion -------------------------------------*/
#ifndef __STM32L1xx_COMP_H
#define __STM32L1xx_COMP_H
#ifdef __cplusplus
extern "C" {
#endif
/* Includes ------------------------------------------------------------------*/
#include "stm32l1xx.h"
/** @addtogroup STM32L1xx_StdPeriph_Driver
* @{
*/
/** @addtogroup COMP
* @{
*/
/* Exported types ------------------------------------------------------------*/
/**
* @brief COMP Init structure definition
*/
typedef struct
{
uint32_t COMP_Speed; /*!< Defines the speed of comparator 2.
This parameter can be a value of @ref COMP_Speed */
uint32_t COMP_InvertingInput; /*!< Selects the inverting input of the comparator 2.
This parameter can be a value of @ref COMP_InvertingInput */
uint32_t COMP_OutputSelect; /*!< Selects the output redirection of the comparator 2.
This parameter can be a value of @ref COMP_OutputSelect */
}COMP_InitTypeDef;
/* Exported constants --------------------------------------------------------*/
/** @defgroup COMP_Exported_Constants
* @{
*/
#define COMP_OutputLevel_High ((uint32_t)0x00000001)
#define COMP_OutputLevel_Low ((uint32_t)0x00000000)
/** @defgroup COMP_Selection
* @{
*/
#define COMP_Selection_COMP1 ((uint32_t)0x00000001)
#define COMP_Selection_COMP2 ((uint32_t)0x00000002)
#define IS_COMP_ALL_PERIPH(PERIPH) (((PERIPH) == COMP_Selection_COMP1) || \
((PERIPH) == COMP_Selection_COMP2))
/**
* @}
*/
/** @defgroup COMP_InvertingInput
* @{
*/
#define COMP_InvertingInput_None ((uint32_t)0x00000000) /* COMP2 is disabled when this parameter is selected */
#define COMP_InvertingInput_IO ((uint32_t)0x00040000)
#define COMP_InvertingInput_VREFINT ((uint32_t)0x00080000)
#define COMP_InvertingInput_3_4VREFINT ((uint32_t)0x000C0000)
#define COMP_InvertingInput_1_2VREFINT ((uint32_t)0x00100000)
#define COMP_InvertingInput_1_4VREFINT ((uint32_t)0x00140000)
#define COMP_InvertingInput_DAC1 ((uint32_t)0x00180000)
#define COMP_InvertingInput_DAC2 ((uint32_t)0x001C0000)
#define IS_COMP_INVERTING_INPUT(INPUT) (((INPUT) == COMP_InvertingInput_None) || \
((INPUT) == COMP_InvertingInput_IO) || \
((INPUT) == COMP_InvertingInput_VREFINT) || \
((INPUT) == COMP_InvertingInput_3_4VREFINT) || \
((INPUT) == COMP_InvertingInput_1_2VREFINT) || \
((INPUT) == COMP_InvertingInput_1_4VREFINT) || \
((INPUT) == COMP_InvertingInput_DAC1) || \
((INPUT) == COMP_InvertingInput_DAC2))
/**
* @}
*/
/** @defgroup COMP_OutputSelect
* @{
*/
#define COMP_OutputSelect_TIM2IC4 ((uint32_t)0x00000000)
#define COMP_OutputSelect_TIM2OCREFCLR ((uint32_t)0x00200000)
#define COMP_OutputSelect_TIM3IC4 ((uint32_t)0x00400000)
#define COMP_OutputSelect_TIM3OCREFCLR ((uint32_t)0x00600000)
#define COMP_OutputSelect_TIM4IC4 ((uint32_t)0x00800000)
#define COMP_OutputSelect_TIM4OCREFCLR ((uint32_t)0x00A00000)
#define COMP_OutputSelect_TIM10IC1 ((uint32_t)0x00C00000)
#define COMP_OutputSelect_None ((uint32_t)0x00E00000)
#define IS_COMP_OUTPUT(OUTPUT) (((OUTPUT) == COMP_OutputSelect_TIM2IC4) || \
((OUTPUT) == COMP_OutputSelect_TIM2OCREFCLR) || \
((OUTPUT) == COMP_OutputSelect_TIM3IC4) || \
((OUTPUT) == COMP_OutputSelect_TIM3OCREFCLR) || \
((OUTPUT) == COMP_OutputSelect_TIM4IC4) || \
((OUTPUT) == COMP_OutputSelect_TIM4OCREFCLR) || \
((OUTPUT) == COMP_OutputSelect_TIM10IC1) || \
((OUTPUT) == COMP_OutputSelect_None))
/**
* @}
*/
/** @defgroup COMP_Speed
* @{
*/
#define COMP_Speed_Slow ((uint32_t)0x00000000)
#define COMP_Speed_Fast ((uint32_t)0x00001000)
#define IS_COMP_SPEED(SPEED) (((SPEED) == COMP_Speed_Slow) || \
((SPEED) == COMP_Speed_Fast))
/**
* @}
*/
/**
* @}
*/
/* Exported macro ------------------------------------------------------------*/
/* Exported functions ------------------------------------------------------- */
/* Function used to set the COMP configuration to the default reset state ****/
void COMP_DeInit(void);
/* Initialization and Configuration functions *********************************/
void COMP_Init(COMP_InitTypeDef* COMP_InitStruct);
void COMP_Cmd(FunctionalState NewState);
uint8_t COMP_GetOutputLevel(uint32_t COMP_Selection);
void COMP_SW1SwitchConfig(FunctionalState NewState);
/* Window mode control function ***********************************************/
void COMP_WindowCmd(FunctionalState NewState);
/* Internal Reference Voltage (VREFINT) output function ***********************/
void COMP_VrefintOutputCmd(FunctionalState NewState);
#ifdef __cplusplus
}
#endif
#endif /*__STM32L1xx_COMP_H */
/**
* @}
*/
/**
* @}
*/
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/

View File

@ -0,0 +1,85 @@
/**
******************************************************************************
* @file Project/STM32L1xx_StdPeriph_Templates/stm32l1xx_conf.h
* @author MCD Application Team
* @version V1.1.1
* @date 13-April-2012
* @brief Library configuration file.
******************************************************************************
* @attention
*
* <h2><center>&copy; COPYRIGHT 2012 STMicroelectronics</center></h2>
*
* Licensed under MCD-ST Liberty SW License Agreement V2, (the "License");
* You may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.st.com/software_license_agreement_liberty_v2
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
******************************************************************************
*/
/* Define to prevent recursive inclusion -------------------------------------*/
#ifndef __STM32L1xx_CONF_H
#define __STM32L1xx_CONF_H
/* Includes ------------------------------------------------------------------*/
/* Uncomment/Comment the line below to enable/disable peripheral header file inclusion */
#include "stm32l1xx_adc.h"
//#include "stm32l1xx_aes.h"
//#include "stm32l1xx_comp.h"
//#include "stm32l1xx_crc.h"
#include "stm32l1xx_dac.h"
#include "stm32l1xx_dbgmcu.h"
//#include "stm32l1xx_dma.h"
#include "stm32l1xx_exti.h"
//#include "stm32l1xx_flash.h"
//#include "stm32l1xx_fsmc.h"
#include "stm32l1xx_gpio.h"
#include "stm32l1xx_i2c.h"
//#include "stm32l1xx_iwdg.h"
//#include "stm32l1xx_lcd.h"
//#include "stm32l1xx_opamp.h"
#include "stm32l1xx_pwr.h"
#include "stm32l1xx_rcc.h"
#include "stm32l1xx_rtc.h"
#include "stm32l1xx_sdio.h"
#include "stm32l1xx_spi.h"
#include "stm32l1xx_syscfg.h"
#include "stm32l1xx_tim.h"
#include "stm32l1xx_usart.h"
//#include "stm32l1xx_wwdg.h"
#include "misc.h" /* High level functions for NVIC and SysTick (add-on to CMSIS functions) */
/* Exported types ------------------------------------------------------------*/
/* Exported constants --------------------------------------------------------*/
/* Uncomment the line below to expanse the "assert_param" macro in the
Standard Peripheral Library drivers code */
/* #define USE_FULL_ASSERT 1 */
/* Exported macro ------------------------------------------------------------*/
#ifdef USE_FULL_ASSERT
/**
* @brief The assert_param macro is used for function's parameters check.
* @param expr: If expr is false, it calls assert_failed function which reports
* the name of the source file and the source line number of the call
* that failed. If expr is true, it returns no value.
* @retval None
*/
#define assert_param(expr) ((expr) ? (void)0 : assert_failed((uint8_t *)__FILE__, __LINE__))
/* Exported functions ------------------------------------------------------- */
void assert_failed(uint8_t* file, uint32_t line);
#else
#define assert_param(expr) ((void)0)
#endif /* USE_FULL_ASSERT */
#endif /* __STM32L1xx_CONF_H */
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/

View File

@ -0,0 +1,133 @@
/**
******************************************************************************
* @file stm32l1xx_crc.c
* @author MCD Application Team
* @version V1.2.0
* @date 22-February-2013
* @brief This file provides all the CRC firmware functions.
******************************************************************************
* @attention
*
* <h2><center>&copy; COPYRIGHT 2013 STMicroelectronics</center></h2>
*
* Licensed under MCD-ST Liberty SW License Agreement V2, (the "License");
* You may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.st.com/software_license_agreement_liberty_v2
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "stm32l1xx_crc.h"
/** @addtogroup STM32L1xx_StdPeriph_Driver
* @{
*/
/** @defgroup CRC
* @brief CRC driver modules
* @{
*/
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private function prototypes -----------------------------------------------*/
/* Private functions ---------------------------------------------------------*/
/** @defgroup CRC_Private_Functions
* @{
*/
/**
* @brief Resets the CRC Data register (DR).
* @param None
* @retval None
*/
void CRC_ResetDR(void)
{
/* Reset CRC generator */
CRC->CR = CRC_CR_RESET;
}
/**
* @brief Computes the 32-bit CRC of a given data word(32-bit).
* @param Data: data word(32-bit) to compute its CRC.
* @retval 32-bit CRC
*/
uint32_t CRC_CalcCRC(uint32_t Data)
{
CRC->DR = Data;
return (CRC->DR);
}
/**
* @brief Computes the 32-bit CRC of a given buffer of data word(32-bit).
* @param pBuffer: pointer to the buffer containing the data to be computed.
* @param BufferLength: length of the buffer to be computed
* @retval 32-bit CRC
*/
uint32_t CRC_CalcBlockCRC(uint32_t pBuffer[], uint32_t BufferLength)
{
uint32_t index = 0;
for(index = 0; index < BufferLength; index++)
{
CRC->DR = pBuffer[index];
}
return (CRC->DR);
}
/**
* @brief Returns the current CRC value.
* @param None
* @retval 32-bit CRC
*/
uint32_t CRC_GetCRC(void)
{
return (CRC->DR);
}
/**
* @brief Stores a 8-bit data in the Independent Data(ID) register.
* @param IDValue: 8-bit value to be stored in the ID register
* @retval None
*/
void CRC_SetIDRegister(uint8_t IDValue)
{
CRC->IDR = IDValue;
}
/**
* @brief Returns the 8-bit data stored in the Independent Data(ID) register.
* @param None
* @retval 8-bit value of the ID register
*/
uint8_t CRC_GetIDRegister(void)
{
return (CRC->IDR);
}
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/

View File

@ -0,0 +1,83 @@
/**
******************************************************************************
* @file stm32l1xx_crc.h
* @author MCD Application Team
* @version V1.2.0
* @date 22-February-2013
* @brief This file contains all the functions prototypes for the CRC firmware
* library.
******************************************************************************
* @attention
*
* <h2><center>&copy; COPYRIGHT 2013 STMicroelectronics</center></h2>
*
* Licensed under MCD-ST Liberty SW License Agreement V2, (the "License");
* You may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.st.com/software_license_agreement_liberty_v2
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
******************************************************************************
*/
/* Define to prevent recursive inclusion -------------------------------------*/
#ifndef __STM32L1xx_CRC_H
#define __STM32L1xx_CRC_H
#ifdef __cplusplus
extern "C" {
#endif
/* Includes ------------------------------------------------------------------*/
#include "stm32l1xx.h"
/** @addtogroup STM32L1xx_StdPeriph_Driver
* @{
*/
/** @addtogroup CRC
* @{
*/
/* Exported types ------------------------------------------------------------*/
/* Exported constants --------------------------------------------------------*/
/** @defgroup CRC_Exported_Constants
* @{
*/
/**
* @}
*/
/* Exported macro ------------------------------------------------------------*/
/* Exported functions ------------------------------------------------------- */
void CRC_ResetDR(void);
uint32_t CRC_CalcCRC(uint32_t Data);
uint32_t CRC_CalcBlockCRC(uint32_t pBuffer[], uint32_t BufferLength);
uint32_t CRC_GetCRC(void);
void CRC_SetIDRegister(uint8_t IDValue);
uint8_t CRC_GetIDRegister(void);
#ifdef __cplusplus
}
#endif
#endif /* __STM32L1xx_CRC_H */
/**
* @}
*/
/**
* @}
*/
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/

View File

@ -0,0 +1,687 @@
/**
******************************************************************************
* @file stm32l1xx_dac.c
* @author MCD Application Team
* @version V1.2.0
* @date 22-February-2013
* @brief This file provides firmware functions to manage the following
* functionalities of the Digital-to-Analog Converter (DAC) peripheral:
* + DAC channels configuration: trigger, output buffer, data format
* + DMA management
* + Interrupts and flags management
* @verbatim
*
===============================================================================
##### DAC Peripheral features #####
===============================================================================
[..] The device integrates two 12-bit Digital Analog Converters that can
be used independently or simultaneously (dual mode):
(#) DAC channel1 with DAC_OUT1 (PA4) as output.
(#) DAC channel2 with DAC_OUT2 (PA5) as output.
[..] Digital to Analog conversion can be non-triggered using DAC_Trigger_None
and DAC_OUT1/DAC_OUT2 is available once writing to DHRx register using
DAC_SetChannel1Data()/DAC_SetChannel2Data.
[..] Digital to Analog conversion can be triggered by:
(#) External event: EXTI Line 9 (any GPIOx_Pin9) using DAC_Trigger_Ext_IT9.
The used pin (GPIOx_Pin9) must be configured in input mode.
(#) Timers TRGO: TIM2, TIM4, TIM6, TIM7 and TIM9
(DAC_Trigger_T2_TRGO, DAC_Trigger_T4_TRGO...).
The timer TRGO event should be selected using TIM_SelectOutputTrigger()
(#) Software using DAC_Trigger_Software.
[..] Each DAC channel integrates an output buffer that can be used to
reduce the output impedance, and to drive external loads directly
without having to add an external operational amplifier.
To enable, the output buffer use
DAC_InitStructure.DAC_OutputBuffer = DAC_OutputBuffer_Enable;
[..] Refer to the device datasheet for more details about output impedance
value with and without output buffer.
[..] Both DAC channels can be used to generate:
(#) Noise wave using DAC_WaveGeneration_Noise
(#) Triangle wave using DAC_WaveGeneration_Triangle
[..] Wave generation can be disabled using DAC_WaveGeneration_None.
[..] The DAC data format can be:
(#) 8-bit right alignment using DAC_Align_8b_R
(#) 12-bit left alignment using DAC_Align_12b_L
(#) 12-bit right alignment using DAC_Align_12b_R
[..] The analog output voltage on each DAC channel pin is determined
by the following equation: DAC_OUTx = VREF+ * DOR / 4095
with DOR is the Data Output Register.
VEF+ is the input voltage reference (refer to the device datasheet)
e.g. To set DAC_OUT1 to 0.7V, use
DAC_SetChannel1Data(DAC_Align_12b_R, 868);
Assuming that VREF+ = 3.3, DAC_OUT1 = (3.3 * 868) / 4095 = 0.7V.
[..] A DMA1 request can be generated when an external trigger (but not
a software trigger) occurs if DMA1 requests are enabled using
DAC_DMACmd()
[..] DMA1 requests are mapped as following:
(#) DAC channel1 is mapped on DMA1 channel3 which must be already
configured.
(#) DAC channel2 is mapped on DMA1 channel4 which must be already
configured.
##### How to use this driver #####
===============================================================================
[..]
(+) DAC APB clock must be enabled to get write access to DAC registers using
RCC_APB1PeriphClockCmd(RCC_APB1Periph_DAC, ENABLE)
(+) Configure DAC_OUTx (DAC_OUT1: PA4, DAC_OUT2: PA5) in analog mode.
(+) Configure the DAC channel using DAC_Init()
(+) Enable the DAC channel using DAC_Cmd()
@endverbatim
*
******************************************************************************
* @attention
*
* <h2><center>&copy; COPYRIGHT 2013 STMicroelectronics</center></h2>
*
* Licensed under MCD-ST Liberty SW License Agreement V2, (the "License");
* You may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.st.com/software_license_agreement_liberty_v2
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "stm32l1xx_dac.h"
#include "stm32l1xx_rcc.h"
/** @addtogroup STM32L1xx_StdPeriph_Driver
* @{
*/
/** @defgroup DAC
* @brief DAC driver modules
* @{
*/
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/* CR register Mask */
#define CR_CLEAR_MASK ((uint32_t)0x00000FFE)
/* DAC Dual Channels SWTRIG masks */
#define DUAL_SWTRIG_SET ((uint32_t)0x00000003)
#define DUAL_SWTRIG_RESET ((uint32_t)0xFFFFFFFC)
/* DHR registers offsets */
#define DHR12R1_OFFSET ((uint32_t)0x00000008)
#define DHR12R2_OFFSET ((uint32_t)0x00000014)
#define DHR12RD_OFFSET ((uint32_t)0x00000020)
/* DOR register offset */
#define DOR_OFFSET ((uint32_t)0x0000002C)
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private function prototypes -----------------------------------------------*/
/* Private functions ---------------------------------------------------------*/
/** @defgroup DAC_Private_Functions
* @{
*/
/** @defgroup DAC_Group1 DAC channels configuration
* @brief DAC channels configuration: trigger, output buffer, data format.
*
@verbatim
===============================================================================
##### DAC channels configuration: trigger, output buffer, data format #####
===============================================================================
@endverbatim
* @{
*/
/**
* @brief Deinitializes the DAC peripheral registers to their default reset values.
* @param None
* @retval None
*/
void DAC_DeInit(void)
{
/* Enable DAC reset state */
RCC_APB1PeriphResetCmd(RCC_APB1Periph_DAC, ENABLE);
/* Release DAC from reset state */
RCC_APB1PeriphResetCmd(RCC_APB1Periph_DAC, DISABLE);
}
/**
* @brief Initializes the DAC peripheral according to the specified
* parameters in the DAC_InitStruct.
* @param DAC_Channel: the selected DAC channel.
* This parameter can be one of the following values:
* @arg DAC_Channel_1: DAC Channel1 selected.
* @arg DAC_Channel_2: DAC Channel2 selected.
* @param DAC_InitStruct: pointer to a DAC_InitTypeDef structure that
* contains the configuration information for the specified DAC channel.
* @retval None
*/
void DAC_Init(uint32_t DAC_Channel, DAC_InitTypeDef* DAC_InitStruct)
{
uint32_t tmpreg1 = 0, tmpreg2 = 0;
/* Check the DAC parameters */
assert_param(IS_DAC_CHANNEL(DAC_Channel));
assert_param(IS_DAC_TRIGGER(DAC_InitStruct->DAC_Trigger));
assert_param(IS_DAC_GENERATE_WAVE(DAC_InitStruct->DAC_WaveGeneration));
assert_param(IS_DAC_LFSR_UNMASK_TRIANGLE_AMPLITUDE(DAC_InitStruct->DAC_LFSRUnmask_TriangleAmplitude));
assert_param(IS_DAC_OUTPUT_BUFFER_STATE(DAC_InitStruct->DAC_OutputBuffer));
/*---------------------------- DAC CR Configuration --------------------------*/
/* Get the DAC CR value */
tmpreg1 = DAC->CR;
/* Clear BOFFx, TENx, TSELx, WAVEx and MAMPx bits */
tmpreg1 &= ~(CR_CLEAR_MASK << DAC_Channel);
/* Configure for the selected DAC channel: buffer output, trigger, wave generation,
mask/amplitude for wave generation */
/* Set TSELx and TENx bits according to DAC_Trigger value */
/* Set WAVEx bits according to DAC_WaveGeneration value */
/* Set MAMPx bits according to DAC_LFSRUnmask_TriangleAmplitude value */
/* Set BOFFx bit according to DAC_OutputBuffer value */
tmpreg2 = (DAC_InitStruct->DAC_Trigger | DAC_InitStruct->DAC_WaveGeneration |
DAC_InitStruct->DAC_LFSRUnmask_TriangleAmplitude | DAC_InitStruct->DAC_OutputBuffer);
/* Calculate CR register value depending on DAC_Channel */
tmpreg1 |= tmpreg2 << DAC_Channel;
/* Write to DAC CR */
DAC->CR = tmpreg1;
}
/**
* @brief Fills each DAC_InitStruct member with its default value.
* @param DAC_InitStruct: pointer to a DAC_InitTypeDef structure which will
* be initialized.
* @retval None
*/
void DAC_StructInit(DAC_InitTypeDef* DAC_InitStruct)
{
/*--------------- Reset DAC init structure parameters values -----------------*/
/* Initialize the DAC_Trigger member */
DAC_InitStruct->DAC_Trigger = DAC_Trigger_None;
/* Initialize the DAC_WaveGeneration member */
DAC_InitStruct->DAC_WaveGeneration = DAC_WaveGeneration_None;
/* Initialize the DAC_LFSRUnmask_TriangleAmplitude member */
DAC_InitStruct->DAC_LFSRUnmask_TriangleAmplitude = DAC_LFSRUnmask_Bit0;
/* Initialize the DAC_OutputBuffer member */
DAC_InitStruct->DAC_OutputBuffer = DAC_OutputBuffer_Enable;
}
/**
* @brief Enables or disables the specified DAC channel.
* @param DAC_Channel: The selected DAC channel.
* This parameter can be one of the following values:
* @arg DAC_Channel_1: DAC Channel1 selected
* @arg DAC_Channel_2: DAC Channel2 selected
* @param NewState: new state of the DAC channel.
* This parameter can be: ENABLE or DISABLE.
* @note When the DAC channel is enabled the trigger source can no more
* be modified.
* @retval None
*/
void DAC_Cmd(uint32_t DAC_Channel, FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_DAC_CHANNEL(DAC_Channel));
assert_param(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
/* Enable the selected DAC channel */
DAC->CR |= (DAC_CR_EN1 << DAC_Channel);
}
else
{
/* Disable the selected DAC channel */
DAC->CR &= (~(DAC_CR_EN1 << DAC_Channel));
}
}
/**
* @brief Enables or disables the selected DAC channel software trigger.
* @param DAC_Channel: the selected DAC channel.
* This parameter can be one of the following values:
* @arg DAC_Channel_1: DAC Channel1 selected
* @arg DAC_Channel_2: DAC Channel2 selected
* @param NewState: new state of the selected DAC channel software trigger.
* This parameter can be: ENABLE or DISABLE.
* @retval None
*/
void DAC_SoftwareTriggerCmd(uint32_t DAC_Channel, FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_DAC_CHANNEL(DAC_Channel));
assert_param(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
/* Enable software trigger for the selected DAC channel */
DAC->SWTRIGR |= (uint32_t)DAC_SWTRIGR_SWTRIG1 << (DAC_Channel >> 4);
}
else
{
/* Disable software trigger for the selected DAC channel */
DAC->SWTRIGR &= ~((uint32_t)DAC_SWTRIGR_SWTRIG1 << (DAC_Channel >> 4));
}
}
/**
* @brief Enables or disables simultaneously the two DAC channels software
* triggers.
* @param NewState: new state of the DAC channels software triggers.
* This parameter can be: ENABLE or DISABLE.
* @retval None
*/
void DAC_DualSoftwareTriggerCmd(FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
/* Enable software trigger for both DAC channels */
DAC->SWTRIGR |= DUAL_SWTRIG_SET;
}
else
{
/* Disable software trigger for both DAC channels */
DAC->SWTRIGR &= DUAL_SWTRIG_RESET;
}
}
/**
* @brief Enables or disables the selected DAC channel wave generation.
* @param DAC_Channel: the selected DAC channel.
* This parameter can be one of the following values:
* @arg DAC_Channel_1: DAC Channel1 selected
* @arg DAC_Channel_2: DAC Channel2 selected
* @param DAC_Wave: Specifies the wave type to enable or disable.
* This parameter can be one of the following values:
* @arg DAC_Wave_Noise: noise wave generation
* @arg DAC_Wave_Triangle: triangle wave generation
* @param NewState: new state of the selected DAC channel wave generation.
* This parameter can be: ENABLE or DISABLE.
* @note
* @retval None
*/
void DAC_WaveGenerationCmd(uint32_t DAC_Channel, uint32_t DAC_Wave, FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_DAC_CHANNEL(DAC_Channel));
assert_param(IS_DAC_WAVE(DAC_Wave));
assert_param(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
/* Enable the selected wave generation for the selected DAC channel */
DAC->CR |= DAC_Wave << DAC_Channel;
}
else
{
/* Disable the selected wave generation for the selected DAC channel */
DAC->CR &= ~(DAC_Wave << DAC_Channel);
}
}
/**
* @brief Set the specified data holding register value for DAC channel1.
* @param DAC_Align: Specifies the data alignment for DAC channel1.
* This parameter can be one of the following values:
* @arg DAC_Align_8b_R: 8bit right data alignment selected
* @arg DAC_Align_12b_L: 12bit left data alignment selected
* @arg DAC_Align_12b_R: 12bit right data alignment selected
* @param Data : Data to be loaded in the selected data holding register.
* @retval None
*/
void DAC_SetChannel1Data(uint32_t DAC_Align, uint16_t Data)
{
__IO uint32_t tmp = 0;
/* Check the parameters */
assert_param(IS_DAC_ALIGN(DAC_Align));
assert_param(IS_DAC_DATA(Data));
tmp = (uint32_t)DAC_BASE;
tmp += DHR12R1_OFFSET + DAC_Align;
/* Set the DAC channel1 selected data holding register */
*(__IO uint32_t *) tmp = Data;
}
/**
* @brief Set the specified data holding register value for DAC channel2.
* @param DAC_Align: Specifies the data alignment for DAC channel2.
* This parameter can be one of the following values:
* @arg DAC_Align_8b_R: 8bit right data alignment selected
* @arg DAC_Align_12b_L: 12bit left data alignment selected
* @arg DAC_Align_12b_R: 12bit right data alignment selected
* @param Data : Data to be loaded in the selected data holding register.
* @retval None
*/
void DAC_SetChannel2Data(uint32_t DAC_Align, uint16_t Data)
{
__IO uint32_t tmp = 0;
/* Check the parameters */
assert_param(IS_DAC_ALIGN(DAC_Align));
assert_param(IS_DAC_DATA(Data));
tmp = (uint32_t)DAC_BASE;
tmp += DHR12R2_OFFSET + DAC_Align;
/* Set the DAC channel2 selected data holding register */
*(__IO uint32_t *)tmp = Data;
}
/**
* @brief Set the specified data holding register value for dual channel DAC.
* @param DAC_Align: Specifies the data alignment for dual channel DAC.
* This parameter can be one of the following values:
* @arg DAC_Align_8b_R: 8bit right data alignment selected
* @arg DAC_Align_12b_L: 12bit left data alignment selected
* @arg DAC_Align_12b_R: 12bit right data alignment selected
* @param Data2: Data for DAC Channel2 to be loaded in the selected data
* holding register.
* @param Data1: Data for DAC Channel1 to be loaded in the selected data
* holding register.
* @note In dual mode, a unique register access is required to write in both
* DAC channels at the same time.
* @retval None
*/
void DAC_SetDualChannelData(uint32_t DAC_Align, uint16_t Data2, uint16_t Data1)
{
uint32_t data = 0, tmp = 0;
/* Check the parameters */
assert_param(IS_DAC_ALIGN(DAC_Align));
assert_param(IS_DAC_DATA(Data1));
assert_param(IS_DAC_DATA(Data2));
/* Calculate and set dual DAC data holding register value */
if (DAC_Align == DAC_Align_8b_R)
{
data = ((uint32_t)Data2 << 8) | Data1;
}
else
{
data = ((uint32_t)Data2 << 16) | Data1;
}
tmp = (uint32_t)DAC_BASE;
tmp += DHR12RD_OFFSET + DAC_Align;
/* Set the dual DAC selected data holding register */
*(__IO uint32_t *)tmp = data;
}
/**
* @brief Returns the last data output value of the selected DAC channel.
* @param DAC_Channel: the selected DAC channel.
* This parameter can be one of the following values:
* @arg DAC_Channel_1: DAC Channel1 selected
* @arg DAC_Channel_2: DAC Channel2 selected
* @retval The selected DAC channel data output value.
*/
uint16_t DAC_GetDataOutputValue(uint32_t DAC_Channel)
{
__IO uint32_t tmp = 0;
/* Check the parameters */
assert_param(IS_DAC_CHANNEL(DAC_Channel));
tmp = (uint32_t) DAC_BASE ;
tmp += DOR_OFFSET + ((uint32_t)DAC_Channel >> 2);
/* Returns the DAC channel data output register value */
return (uint16_t) (*(__IO uint32_t*) tmp);
}
/**
* @}
*/
/** @defgroup DAC_Group2 DMA management functions
* @brief DMA management functions
*
@verbatim
===============================================================================
##### DMA management functions #####
===============================================================================
@endverbatim
* @{
*/
/**
* @brief Enables or disables the specified DAC channel DMA request.
* When enabled DMA1 is generated when an external trigger (EXTI Line9,
* TIM2, TIM4, TIM6, TIM7 or TIM9 but not a software trigger) occurs.
* @param DAC_Channel: the selected DAC channel.
* This parameter can be one of the following values:
* @arg DAC_Channel_1: DAC Channel1 selected
* @arg DAC_Channel_2: DAC Channel2 selected
* @param NewState: new state of the selected DAC channel DMA request.
* This parameter can be: ENABLE or DISABLE.
* @note The DAC channel1 (channel2) is mapped on DMA1 channel3 (channel4) which
* must be already configured.
* @retval None
*/
void DAC_DMACmd(uint32_t DAC_Channel, FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_DAC_CHANNEL(DAC_Channel));
assert_param(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
/* Enable the selected DAC channel DMA request */
DAC->CR |= (DAC_CR_DMAEN1 << DAC_Channel);
}
else
{
/* Disable the selected DAC channel DMA request */
DAC->CR &= (~(DAC_CR_DMAEN1 << DAC_Channel));
}
}
/**
* @}
*/
/** @defgroup DAC_Group3 Interrupts and flags management functions
* @brief Interrupts and flags management functions
*
@verbatim
===============================================================================
##### Interrupts and flags management functions #####
===============================================================================
@endverbatim
* @{
*/
/**
* @brief Enables or disables the specified DAC interrupts.
* @param DAC_Channel: the selected DAC channel.
* This parameter can be one of the following values:
* @arg DAC_Channel_1: DAC Channel1 selected
* @arg DAC_Channel_2: DAC Channel2 selected
* @param DAC_IT: specifies the DAC interrupt sources to be enabled or disabled.
* This parameter can be the following value:
* @arg DAC_IT_DMAUDR: DMA underrun interrupt mask
* @note The DMA underrun occurs when a second external trigger arrives before
* the acknowledgement for the first external trigger is received (first request).
* @param NewState: new state of the specified DAC interrupts.
* This parameter can be: ENABLE or DISABLE.
* @retval None
*/
void DAC_ITConfig(uint32_t DAC_Channel, uint32_t DAC_IT, FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_DAC_CHANNEL(DAC_Channel));
assert_param(IS_FUNCTIONAL_STATE(NewState));
assert_param(IS_DAC_IT(DAC_IT));
if (NewState != DISABLE)
{
/* Enable the selected DAC interrupts */
DAC->CR |= (DAC_IT << DAC_Channel);
}
else
{
/* Disable the selected DAC interrupts */
DAC->CR &= (~(uint32_t)(DAC_IT << DAC_Channel));
}
}
/**
* @brief Checks whether the specified DAC flag is set or not.
* @param DAC_Channel: thee selected DAC channel.
* This parameter can be one of the following values:
* @arg DAC_Channel_1: DAC Channel1 selected
* @arg DAC_Channel_2: DAC Channel2 selected
* @param DAC_FLAG: specifies the flag to check.
* This parameter can be only of the following value:
* @arg DAC_FLAG_DMAUDR: DMA underrun flag
* @note The DMA underrun occurs when a second external trigger arrives before
* the acknowledgement for the first external trigger is received (first request).
* @retval The new state of DAC_FLAG (SET or RESET).
*/
FlagStatus DAC_GetFlagStatus(uint32_t DAC_Channel, uint32_t DAC_FLAG)
{
FlagStatus bitstatus = RESET;
/* Check the parameters */
assert_param(IS_DAC_CHANNEL(DAC_Channel));
assert_param(IS_DAC_FLAG(DAC_FLAG));
/* Check the status of the specified DAC flag */
if ((DAC->SR & (DAC_FLAG << DAC_Channel)) != (uint8_t)RESET)
{
/* DAC_FLAG is set */
bitstatus = SET;
}
else
{
/* DAC_FLAG is reset */
bitstatus = RESET;
}
/* Return the DAC_FLAG status */
return bitstatus;
}
/**
* @brief Clears the DAC channel's pending flags.
* @param DAC_Channel: the selected DAC channel.
* This parameter can be one of the following values:
* @arg DAC_Channel_1: DAC Channel1 selected
* @arg DAC_Channel_2: DAC Channel2 selected
* @param DAC_FLAG: specifies the flag to clear.
* This parameter can be the following value:
* @arg DAC_FLAG_DMAUDR: DMA underrun flag
* @retval None
*/
void DAC_ClearFlag(uint32_t DAC_Channel, uint32_t DAC_FLAG)
{
/* Check the parameters */
assert_param(IS_DAC_CHANNEL(DAC_Channel));
assert_param(IS_DAC_FLAG(DAC_FLAG));
/* Clear the selected DAC flags */
DAC->SR = (DAC_FLAG << DAC_Channel);
}
/**
* @brief Checks whether the specified DAC interrupt has occurred or not.
* @param DAC_Channel: the selected DAC channel.
* This parameter can be one of the following values:
* @arg DAC_Channel_1: DAC Channel1 selected
* @arg DAC_Channel_2: DAC Channel2 selected
* @param DAC_IT: specifies the DAC interrupt source to check.
* This parameter can be the following values:
* @arg DAC_IT_DMAUDR: DMA underrun interrupt mask
* @note The DMA underrun occurs when a second external trigger arrives before
* the acknowledgement for the first external trigger is received (first request).
* @retval The new state of DAC_IT (SET or RESET).
*/
ITStatus DAC_GetITStatus(uint32_t DAC_Channel, uint32_t DAC_IT)
{
ITStatus bitstatus = RESET;
uint32_t enablestatus = 0;
/* Check the parameters */
assert_param(IS_DAC_CHANNEL(DAC_Channel));
assert_param(IS_DAC_IT(DAC_IT));
/* Get the DAC_IT enable bit status */
enablestatus = (DAC->CR & (DAC_IT << DAC_Channel)) ;
/* Check the status of the specified DAC interrupt */
if (((DAC->SR & (DAC_IT << DAC_Channel)) != (uint32_t)RESET) && enablestatus)
{
/* DAC_IT is set */
bitstatus = SET;
}
else
{
/* DAC_IT is reset */
bitstatus = RESET;
}
/* Return the DAC_IT status */
return bitstatus;
}
/**
* @brief Clears the DAC channel's interrupt pending bits.
* @param DAC_Channel: the selected DAC channel.
* This parameter can be one of the following values:
* @arg DAC_Channel_1: DAC Channel1 selected
* @arg DAC_Channel_2: DAC Channel2 selected
* @param DAC_IT: specifies the DAC interrupt pending bit to clear.
* This parameter can be the following values:
* @arg DAC_IT_DMAUDR: DMA underrun interrupt mask
* @retval None
*/
void DAC_ClearITPendingBit(uint32_t DAC_Channel, uint32_t DAC_IT)
{
/* Check the parameters */
assert_param(IS_DAC_CHANNEL(DAC_Channel));
assert_param(IS_DAC_IT(DAC_IT));
/* Clear the selected DAC interrupt pending bits */
DAC->SR = (DAC_IT << DAC_Channel);
}
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/

View File

@ -0,0 +1,305 @@
/**
******************************************************************************
* @file stm32l1xx_dac.h
* @author MCD Application Team
* @version V1.2.0
* @date 22-February-2013
* @brief This file contains all the functions prototypes for the DAC firmware
* library.
******************************************************************************
* @attention
*
* <h2><center>&copy; COPYRIGHT 2013 STMicroelectronics</center></h2>
*
* Licensed under MCD-ST Liberty SW License Agreement V2, (the "License");
* You may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.st.com/software_license_agreement_liberty_v2
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
******************************************************************************
*/
/* Define to prevent recursive inclusion -------------------------------------*/
#ifndef __STM32L1xx_DAC_H
#define __STM32L1xx_DAC_H
#ifdef __cplusplus
extern "C" {
#endif
/* Includes ------------------------------------------------------------------*/
#include "stm32l1xx.h"
/** @addtogroup STM32L1xx_StdPeriph_Driver
* @{
*/
/** @addtogroup DAC
* @{
*/
/* Exported types ------------------------------------------------------------*/
/**
* @brief DAC Init structure definition
*/
typedef struct
{
uint32_t DAC_Trigger; /*!< Specifies the external trigger for the selected DAC channel.
This parameter can be a value of @ref DAC_trigger_selection */
uint32_t DAC_WaveGeneration; /*!< Specifies whether DAC channel noise waves or triangle waves
are generated, or whether no wave is generated.
This parameter can be a value of @ref DAC_wave_generation */
uint32_t DAC_LFSRUnmask_TriangleAmplitude; /*!< Specifies the LFSR mask for noise wave generation or
the maximum amplitude triangle generation for the DAC channel.
This parameter can be a value of @ref DAC_lfsrunmask_triangleamplitude */
uint32_t DAC_OutputBuffer; /*!< Specifies whether the DAC channel output buffer is enabled or disabled.
This parameter can be a value of @ref DAC_output_buffer */
}DAC_InitTypeDef;
/* Exported constants --------------------------------------------------------*/
/** @defgroup DAC_Exported_Constants
* @{
*/
/** @defgroup DAC_trigger_selection
* @{
*/
#define DAC_Trigger_None ((uint32_t)0x00000000) /*!< Conversion is automatic once the DAC1_DHRxxxx register
has been loaded, and not by external trigger */
#define DAC_Trigger_T6_TRGO ((uint32_t)0x00000004) /*!< TIM6 TRGO selected as external conversion trigger for DAC channel */
#define DAC_Trigger_T7_TRGO ((uint32_t)0x00000014) /*!< TIM7 TRGO selected as external conversion trigger for DAC channel */
#define DAC_Trigger_T9_TRGO ((uint32_t)0x0000001C) /*!< TIM9 TRGO selected as external conversion trigger for DAC channel */
#define DAC_Trigger_T2_TRGO ((uint32_t)0x00000024) /*!< TIM2 TRGO selected as external conversion trigger for DAC channel */
#define DAC_Trigger_T4_TRGO ((uint32_t)0x0000002C) /*!< TIM4 TRGO selected as external conversion trigger for DAC channel */
#define DAC_Trigger_Ext_IT9 ((uint32_t)0x00000034) /*!< EXTI Line9 event selected as external conversion trigger for DAC channel */
#define DAC_Trigger_Software ((uint32_t)0x0000003C) /*!< Conversion started by software trigger for DAC channel */
#define IS_DAC_TRIGGER(TRIGGER) (((TRIGGER) == DAC_Trigger_None) || \
((TRIGGER) == DAC_Trigger_T6_TRGO) || \
((TRIGGER) == DAC_Trigger_T7_TRGO) || \
((TRIGGER) == DAC_Trigger_T9_TRGO) || \
((TRIGGER) == DAC_Trigger_T2_TRGO) || \
((TRIGGER) == DAC_Trigger_T4_TRGO) || \
((TRIGGER) == DAC_Trigger_Ext_IT9) || \
((TRIGGER) == DAC_Trigger_Software))
/**
* @}
*/
/** @defgroup DAC_wave_generation
* @{
*/
#define DAC_WaveGeneration_None ((uint32_t)0x00000000)
#define DAC_WaveGeneration_Noise ((uint32_t)0x00000040)
#define DAC_WaveGeneration_Triangle ((uint32_t)0x00000080)
#define IS_DAC_GENERATE_WAVE(WAVE) (((WAVE) == DAC_WaveGeneration_None) || \
((WAVE) == DAC_WaveGeneration_Noise) || \
((WAVE) == DAC_WaveGeneration_Triangle))
/**
* @}
*/
/** @defgroup DAC_lfsrunmask_triangleamplitude
* @{
*/
#define DAC_LFSRUnmask_Bit0 ((uint32_t)0x00000000) /*!< Unmask DAC channel LFSR bit0 for noise wave generation */
#define DAC_LFSRUnmask_Bits1_0 ((uint32_t)0x00000100) /*!< Unmask DAC channel LFSR bit[1:0] for noise wave generation */
#define DAC_LFSRUnmask_Bits2_0 ((uint32_t)0x00000200) /*!< Unmask DAC channel LFSR bit[2:0] for noise wave generation */
#define DAC_LFSRUnmask_Bits3_0 ((uint32_t)0x00000300) /*!< Unmask DAC channel LFSR bit[3:0] for noise wave generation */
#define DAC_LFSRUnmask_Bits4_0 ((uint32_t)0x00000400) /*!< Unmask DAC channel LFSR bit[4:0] for noise wave generation */
#define DAC_LFSRUnmask_Bits5_0 ((uint32_t)0x00000500) /*!< Unmask DAC channel LFSR bit[5:0] for noise wave generation */
#define DAC_LFSRUnmask_Bits6_0 ((uint32_t)0x00000600) /*!< Unmask DAC channel LFSR bit[6:0] for noise wave generation */
#define DAC_LFSRUnmask_Bits7_0 ((uint32_t)0x00000700) /*!< Unmask DAC channel LFSR bit[7:0] for noise wave generation */
#define DAC_LFSRUnmask_Bits8_0 ((uint32_t)0x00000800) /*!< Unmask DAC channel LFSR bit[8:0] for noise wave generation */
#define DAC_LFSRUnmask_Bits9_0 ((uint32_t)0x00000900) /*!< Unmask DAC channel LFSR bit[9:0] for noise wave generation */
#define DAC_LFSRUnmask_Bits10_0 ((uint32_t)0x00000A00) /*!< Unmask DAC channel LFSR bit[10:0] for noise wave generation */
#define DAC_LFSRUnmask_Bits11_0 ((uint32_t)0x00000B00) /*!< Unmask DAC channel LFSR bit[11:0] for noise wave generation */
#define DAC_TriangleAmplitude_1 ((uint32_t)0x00000000) /*!< Select max triangle amplitude of 1 */
#define DAC_TriangleAmplitude_3 ((uint32_t)0x00000100) /*!< Select max triangle amplitude of 3 */
#define DAC_TriangleAmplitude_7 ((uint32_t)0x00000200) /*!< Select max triangle amplitude of 7 */
#define DAC_TriangleAmplitude_15 ((uint32_t)0x00000300) /*!< Select max triangle amplitude of 15 */
#define DAC_TriangleAmplitude_31 ((uint32_t)0x00000400) /*!< Select max triangle amplitude of 31 */
#define DAC_TriangleAmplitude_63 ((uint32_t)0x00000500) /*!< Select max triangle amplitude of 63 */
#define DAC_TriangleAmplitude_127 ((uint32_t)0x00000600) /*!< Select max triangle amplitude of 127 */
#define DAC_TriangleAmplitude_255 ((uint32_t)0x00000700) /*!< Select max triangle amplitude of 255 */
#define DAC_TriangleAmplitude_511 ((uint32_t)0x00000800) /*!< Select max triangle amplitude of 511 */
#define DAC_TriangleAmplitude_1023 ((uint32_t)0x00000900) /*!< Select max triangle amplitude of 1023 */
#define DAC_TriangleAmplitude_2047 ((uint32_t)0x00000A00) /*!< Select max triangle amplitude of 2047 */
#define DAC_TriangleAmplitude_4095 ((uint32_t)0x00000B00) /*!< Select max triangle amplitude of 4095 */
#define IS_DAC_LFSR_UNMASK_TRIANGLE_AMPLITUDE(VALUE) (((VALUE) == DAC_LFSRUnmask_Bit0) || \
((VALUE) == DAC_LFSRUnmask_Bits1_0) || \
((VALUE) == DAC_LFSRUnmask_Bits2_0) || \
((VALUE) == DAC_LFSRUnmask_Bits3_0) || \
((VALUE) == DAC_LFSRUnmask_Bits4_0) || \
((VALUE) == DAC_LFSRUnmask_Bits5_0) || \
((VALUE) == DAC_LFSRUnmask_Bits6_0) || \
((VALUE) == DAC_LFSRUnmask_Bits7_0) || \
((VALUE) == DAC_LFSRUnmask_Bits8_0) || \
((VALUE) == DAC_LFSRUnmask_Bits9_0) || \
((VALUE) == DAC_LFSRUnmask_Bits10_0) || \
((VALUE) == DAC_LFSRUnmask_Bits11_0) || \
((VALUE) == DAC_TriangleAmplitude_1) || \
((VALUE) == DAC_TriangleAmplitude_3) || \
((VALUE) == DAC_TriangleAmplitude_7) || \
((VALUE) == DAC_TriangleAmplitude_15) || \
((VALUE) == DAC_TriangleAmplitude_31) || \
((VALUE) == DAC_TriangleAmplitude_63) || \
((VALUE) == DAC_TriangleAmplitude_127) || \
((VALUE) == DAC_TriangleAmplitude_255) || \
((VALUE) == DAC_TriangleAmplitude_511) || \
((VALUE) == DAC_TriangleAmplitude_1023) || \
((VALUE) == DAC_TriangleAmplitude_2047) || \
((VALUE) == DAC_TriangleAmplitude_4095))
/**
* @}
*/
/** @defgroup DAC_output_buffer
* @{
*/
#define DAC_OutputBuffer_Enable ((uint32_t)0x00000000)
#define DAC_OutputBuffer_Disable ((uint32_t)0x00000002)
#define IS_DAC_OUTPUT_BUFFER_STATE(STATE) (((STATE) == DAC_OutputBuffer_Enable) || \
((STATE) == DAC_OutputBuffer_Disable))
/**
* @}
*/
/** @defgroup DAC_Channel_selection
* @{
*/
#define DAC_Channel_1 ((uint32_t)0x00000000)
#define DAC_Channel_2 ((uint32_t)0x00000010)
#define IS_DAC_CHANNEL(CHANNEL) (((CHANNEL) == DAC_Channel_1) || \
((CHANNEL) == DAC_Channel_2))
/**
* @}
*/
/** @defgroup DAC_data_alignment
* @{
*/
#define DAC_Align_12b_R ((uint32_t)0x00000000)
#define DAC_Align_12b_L ((uint32_t)0x00000004)
#define DAC_Align_8b_R ((uint32_t)0x00000008)
#define IS_DAC_ALIGN(ALIGN) (((ALIGN) == DAC_Align_12b_R) || \
((ALIGN) == DAC_Align_12b_L) || \
((ALIGN) == DAC_Align_8b_R))
/**
* @}
*/
/** @defgroup DAC_wave_generation
* @{
*/
#define DAC_Wave_Noise ((uint32_t)0x00000040)
#define DAC_Wave_Triangle ((uint32_t)0x00000080)
#define IS_DAC_WAVE(WAVE) (((WAVE) == DAC_Wave_Noise) || \
((WAVE) == DAC_Wave_Triangle))
/**
* @}
*/
/** @defgroup DAC_data
* @{
*/
#define IS_DAC_DATA(DATA) ((DATA) <= 0xFFF0)
/**
* @}
*/
/** @defgroup DAC_interrupts_definition
* @{
*/
#define DAC_IT_DMAUDR ((uint32_t)0x00002000)
#define IS_DAC_IT(IT) (((IT) == DAC_IT_DMAUDR))
/**
* @}
*/
/** @defgroup DAC_flags_definition
* @{
*/
#define DAC_FLAG_DMAUDR ((uint32_t)0x00002000)
#define IS_DAC_FLAG(FLAG) (((FLAG) == DAC_FLAG_DMAUDR))
/**
* @}
*/
/**
* @}
*/
/* Exported macro ------------------------------------------------------------*/
/* Exported functions ------------------------------------------------------- */
/* Function used to set the DAC configuration to the default reset state *****/
void DAC_DeInit(void);
/* DAC channels configuration: trigger, output buffer, data format functions */
void DAC_Init(uint32_t DAC_Channel, DAC_InitTypeDef* DAC_InitStruct);
void DAC_StructInit(DAC_InitTypeDef* DAC_InitStruct);
void DAC_Cmd(uint32_t DAC_Channel, FunctionalState NewState);
void DAC_SoftwareTriggerCmd(uint32_t DAC_Channel, FunctionalState NewState);
void DAC_DualSoftwareTriggerCmd(FunctionalState NewState);
void DAC_WaveGenerationCmd(uint32_t DAC_Channel, uint32_t DAC_Wave, FunctionalState NewState);
void DAC_SetChannel1Data(uint32_t DAC_Align, uint16_t Data);
void DAC_SetChannel2Data(uint32_t DAC_Align, uint16_t Data);
void DAC_SetDualChannelData(uint32_t DAC_Align, uint16_t Data2, uint16_t Data1);
uint16_t DAC_GetDataOutputValue(uint32_t DAC_Channel);
/* DMA management functions ***************************************************/
void DAC_DMACmd(uint32_t DAC_Channel, FunctionalState NewState);
/* Interrupts and flags management functions **********************************/
void DAC_ITConfig(uint32_t DAC_Channel, uint32_t DAC_IT, FunctionalState NewState);
FlagStatus DAC_GetFlagStatus(uint32_t DAC_Channel, uint32_t DAC_FLAG);
void DAC_ClearFlag(uint32_t DAC_Channel, uint32_t DAC_FLAG);
ITStatus DAC_GetITStatus(uint32_t DAC_Channel, uint32_t DAC_IT);
void DAC_ClearITPendingBit(uint32_t DAC_Channel, uint32_t DAC_IT);
#ifdef __cplusplus
}
#endif
#endif /*__STM32L1xx_DAC_H */
/**
* @}
*/
/**
* @}
*/
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/

View File

@ -0,0 +1,181 @@
/**
******************************************************************************
* @file stm32l1xx_dbgmcu.c
* @author MCD Application Team
* @version V1.2.0
* @date 22-February-2013
* @brief This file provides all the DBGMCU firmware functions.
******************************************************************************
* @attention
*
* <h2><center>&copy; COPYRIGHT 2013 STMicroelectronics</center></h2>
*
* Licensed under MCD-ST Liberty SW License Agreement V2, (the "License");
* You may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.st.com/software_license_agreement_liberty_v2
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "stm32l1xx_dbgmcu.h"
/** @addtogroup STM32L1xx_StdPeriph_Driver
* @{
*/
/** @defgroup DBGMCU
* @brief DBGMCU driver modules
* @{
*/
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
#define IDCODE_DEVID_MASK ((uint32_t)0x00000FFF)
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private function prototypes -----------------------------------------------*/
/* Private functions ---------------------------------------------------------*/
/** @defgroup DBGMCU_Private_Functions
* @{
*/
/**
* @brief Returns the device revision identifier.
* @param None
* @retval Device revision identifier
*/
uint32_t DBGMCU_GetREVID(void)
{
return(DBGMCU->IDCODE >> 16);
}
/**
* @brief Returns the device identifier.
* @param None
* @retval Device identifier
*/
uint32_t DBGMCU_GetDEVID(void)
{
return(DBGMCU->IDCODE & IDCODE_DEVID_MASK);
}
/**
* @brief Configures low power mode behavior when the MCU is in Debug mode.
* @param DBGMCU_Periph: specifies the low power mode.
* This parameter can be any combination of the following values:
* @arg DBGMCU_SLEEP: Keep debugger connection during SLEEP mode
* @arg DBGMCU_STOP: Keep debugger connection during STOP mode
* @arg DBGMCU_STANDBY: Keep debugger connection during STANDBY mode
* @param NewState: new state of the specified low power mode in Debug mode.
* This parameter can be: ENABLE or DISABLE.
* @retval None
*/
void DBGMCU_Config(uint32_t DBGMCU_Periph, FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_DBGMCU_PERIPH(DBGMCU_Periph));
assert_param(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
DBGMCU->CR |= DBGMCU_Periph;
}
else
{
DBGMCU->CR &= ~DBGMCU_Periph;
}
}
/**
* @brief Configures APB1 peripheral behavior when the MCU is in Debug mode.
* @param DBGMCU_Periph: specifies the APB1 peripheral.
* This parameter can be any combination of the following values:
* @arg DBGMCU_TIM2_STOP: TIM2 counter stopped when Core is halted
* @arg DBGMCU_TIM3_STOP: TIM3 counter stopped when Core is halted
* @arg DBGMCU_TIM4_STOP: TIM4 counter stopped when Core is halted
* @arg DBGMCU_TIM5_STOP: TIM5 counter stopped when Core is halted
* @arg DBGMCU_TIM6_STOP: TIM6 counter stopped when Core is halted
* @arg DBGMCU_TIM7_STOP: TIM7 counter stopped when Core is halted
* @arg DBGMCU_RTC_STOP:
* + On STM32L1xx Medium-density devices: RTC Wakeup counter stopped when
* Core is halted.
* + On STM32L1xx High-density and Medium-density Plus devices: RTC Calendar
* and Wakeup counter stopped when Core is halted.
* @arg DBGMCU_WWDG_STOP: Debug WWDG stopped when Core is halted
* @arg DBGMCU_IWDG_STOP: Debug IWDG stopped when Core is halted
* @arg DBGMCU_I2C1_SMBUS_TIMEOUT: I2C1 SMBUS timeout mode stopped when Core is
* halted
* @arg DBGMCU_I2C2_SMBUS_TIMEOUT: I2C2 SMBUS timeout mode stopped when Core is
* halted
* @param NewState: new state of the specified APB1 peripheral in Debug mode.
* This parameter can be: ENABLE or DISABLE.
* @retval None
*/
void DBGMCU_APB1PeriphConfig(uint32_t DBGMCU_Periph, FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_DBGMCU_APB1PERIPH(DBGMCU_Periph));
assert_param(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
DBGMCU->APB1FZ |= DBGMCU_Periph;
}
else
{
DBGMCU->APB1FZ &= ~DBGMCU_Periph;
}
}
/**
* @brief Configures APB2 peripheral behavior when the MCU is in Debug mode.
* @param DBGMCU_Periph: specifies the APB2 peripheral.
* This parameter can be any combination of the following values:
* @arg DBGMCU_TIM9_STOP: TIM9 counter stopped when Core is halted
* @arg DBGMCU_TIM10_STOP: TIM10 counter stopped when Core is halted
* @arg DBGMCU_TIM11_STOP: TIM11 counter stopped when Core is halted
* @param NewState: new state of the specified APB2 peripheral in Debug mode.
* This parameter can be: ENABLE or DISABLE.
* @retval None
*/
void DBGMCU_APB2PeriphConfig(uint32_t DBGMCU_Periph, FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_DBGMCU_APB2PERIPH(DBGMCU_Periph));
assert_param(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
DBGMCU->APB2FZ |= DBGMCU_Periph;
}
else
{
DBGMCU->APB2FZ &= ~DBGMCU_Periph;
}
}
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/

View File

@ -0,0 +1,105 @@
/**
******************************************************************************
* @file stm32l1xx_dbgmcu.h
* @author MCD Application Team
* @version V1.2.0
* @date 22-February-2013
* @brief This file contains all the functions prototypes for the DBGMCU
* firmware library.
******************************************************************************
* @attention
*
* <h2><center>&copy; COPYRIGHT 2013 STMicroelectronics</center></h2>
*
* Licensed under MCD-ST Liberty SW License Agreement V2, (the "License");
* You may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.st.com/software_license_agreement_liberty_v2
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
******************************************************************************
*/
/* Define to prevent recursive inclusion -------------------------------------*/
#ifndef __STM32L1xx_DBGMCU_H
#define __STM32L1xx_DBGMCU_H
#ifdef __cplusplus
extern "C" {
#endif
/* Includes ------------------------------------------------------------------*/
#include "stm32l1xx.h"
/** @addtogroup STM32L1xx_StdPeriph_Driver
* @{
*/
/** @addtogroup DBGMCU
* @{
*/
/* Exported types ------------------------------------------------------------*/
/* Exported constants --------------------------------------------------------*/
/** @defgroup DBGMCU_Exported_Constants
* @{
*/
#define DBGMCU_SLEEP ((uint32_t)0x00000001)
#define DBGMCU_STOP ((uint32_t)0x00000002)
#define DBGMCU_STANDBY ((uint32_t)0x00000004)
#define IS_DBGMCU_PERIPH(PERIPH) ((((PERIPH) & 0xFFFFFFF8) == 0x00) && ((PERIPH) != 0x00))
#define DBGMCU_TIM2_STOP ((uint32_t)0x00000001)
#define DBGMCU_TIM3_STOP ((uint32_t)0x00000002)
#define DBGMCU_TIM4_STOP ((uint32_t)0x00000004)
#define DBGMCU_TIM5_STOP ((uint32_t)0x00000008)
#define DBGMCU_TIM6_STOP ((uint32_t)0x00000010)
#define DBGMCU_TIM7_STOP ((uint32_t)0x00000020)
#define DBGMCU_RTC_STOP ((uint32_t)0x00000400)
#define DBGMCU_WWDG_STOP ((uint32_t)0x00000800)
#define DBGMCU_IWDG_STOP ((uint32_t)0x00001000)
#define DBGMCU_I2C1_SMBUS_TIMEOUT ((uint32_t)0x00200000)
#define DBGMCU_I2C2_SMBUS_TIMEOUT ((uint32_t)0x00400000)
#define IS_DBGMCU_APB1PERIPH(PERIPH) ((((PERIPH) & 0xFF9FE3C0) == 0x00) && ((PERIPH) != 0x00))
#define DBGMCU_TIM9_STOP ((uint32_t)0x00000004)
#define DBGMCU_TIM10_STOP ((uint32_t)0x00000008)
#define DBGMCU_TIM11_STOP ((uint32_t)0x00000010)
#define IS_DBGMCU_APB2PERIPH(PERIPH) ((((PERIPH) & 0xFFFFFFE3) == 0x00) && ((PERIPH) != 0x00))
/**
* @}
*/
/* Exported macro ------------------------------------------------------------*/
/* Exported functions ------------------------------------------------------- */
uint32_t DBGMCU_GetREVID(void);
uint32_t DBGMCU_GetDEVID(void);
void DBGMCU_Config(uint32_t DBGMCU_Periph, FunctionalState NewState);
void DBGMCU_APB1PeriphConfig(uint32_t DBGMCU_Periph, FunctionalState NewState);
void DBGMCU_APB2PeriphConfig(uint32_t DBGMCU_Periph, FunctionalState NewState);
#ifdef __cplusplus
}
#endif
#endif /* __STM32L1xx_DBGMCU_H */
/**
* @}
*/
/**
* @}
*/
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/

View File

@ -0,0 +1,866 @@
/**
******************************************************************************
* @file stm32l1xx_dma.c
* @author MCD Application Team
* @version V1.2.0
* @date 22-February-2013
* @brief This file provides firmware functions to manage the following
* functionalities of the Direct Memory Access controller (DMA):
* + Initialization and Configuration
* + Data Counter
* + Interrupts and flags management
*
* @verbatim
==============================================================================
##### How to use this driver #####
==============================================================================
[..]
(#) Enable The DMA controller clock using
RCC_AHBPeriphClockCmd(RCC_AHBPeriph_DMA1, ENABLE) function for DMA1 or
using RCC_AHBPeriphClockCmd(RCC_AHBPeriph_DMA2, ENABLE) function for DMA2.
(#) Enable and configure the peripheral to be connected to the DMA channel
(except for internal SRAM / FLASH memories: no initialization is
necessary).
(#) For a given Channel, program the Source and Destination addresses,
the transfer Direction, the Buffer Size, the Peripheral and Memory
Incrementation mode and Data Size, the Circular or Normal mode,
the channel transfer Priority and the Memory-to-Memory transfer
mode (if needed) using the DMA_Init() function.
(#) Enable the NVIC and the corresponding interrupt(s) using the function
DMA_ITConfig() if you need to use DMA interrupts.
(#) Enable the DMA channel using the DMA_Cmd() function.
(#) Activate the needed channel Request using PPP_DMACmd() function for
any PPP peripheral except internal SRAM and FLASH (ie. SPI, USART ...)
The function allowing this operation is provided in each PPP peripheral
driver (ie. SPI_DMACmd for SPI peripheral).
(#) Optionally, you can configure the number of data to be transferred
when the channel is disabled (ie. after each Transfer Complete event
or when a Transfer Error occurs) using the function DMA_SetCurrDataCounter().
And you can get the number of remaining data to be transferred using
the function DMA_GetCurrDataCounter() at run time (when the DMA channel is
enabled and running).
(#) To control DMA events you can use one of the following two methods:
(##) Check on DMA channel flags using the function DMA_GetFlagStatus().
(##) Use DMA interrupts through the function DMA_ITConfig() at initialization
phase and DMA_GetITStatus() function into interrupt routines in
communication phase.
After checking on a flag you should clear it using DMA_ClearFlag()
function. And after checking on an interrupt event you should
clear it using DMA_ClearITPendingBit() function.
@endverbatim
******************************************************************************
* @attention
*
* <h2><center>&copy; COPYRIGHT 2013 STMicroelectronics</center></h2>
*
* Licensed under MCD-ST Liberty SW License Agreement V2, (the "License");
* You may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.st.com/software_license_agreement_liberty_v2
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "stm32l1xx_dma.h"
#include "stm32l1xx_rcc.h"
/** @addtogroup STM32L1xx_StdPeriph_Driver
* @{
*/
/** @defgroup DMA
* @brief DMA driver modules
* @{
*/
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/* DMA1 Channelx interrupt pending bit masks */
#define DMA1_CHANNEL1_IT_MASK ((uint32_t)(DMA_ISR_GIF1 | DMA_ISR_TCIF1 | DMA_ISR_HTIF1 | DMA_ISR_TEIF1))
#define DMA1_CHANNEL2_IT_MASK ((uint32_t)(DMA_ISR_GIF2 | DMA_ISR_TCIF2 | DMA_ISR_HTIF2 | DMA_ISR_TEIF2))
#define DMA1_CHANNEL3_IT_MASK ((uint32_t)(DMA_ISR_GIF3 | DMA_ISR_TCIF3 | DMA_ISR_HTIF3 | DMA_ISR_TEIF3))
#define DMA1_CHANNEL4_IT_MASK ((uint32_t)(DMA_ISR_GIF4 | DMA_ISR_TCIF4 | DMA_ISR_HTIF4 | DMA_ISR_TEIF4))
#define DMA1_CHANNEL5_IT_MASK ((uint32_t)(DMA_ISR_GIF5 | DMA_ISR_TCIF5 | DMA_ISR_HTIF5 | DMA_ISR_TEIF5))
#define DMA1_CHANNEL6_IT_MASK ((uint32_t)(DMA_ISR_GIF6 | DMA_ISR_TCIF6 | DMA_ISR_HTIF6 | DMA_ISR_TEIF6))
#define DMA1_CHANNEL7_IT_MASK ((uint32_t)(DMA_ISR_GIF7 | DMA_ISR_TCIF7 | DMA_ISR_HTIF7 | DMA_ISR_TEIF7))
/* DMA2 Channelx interrupt pending bit masks */
#define DMA2_CHANNEL1_IT_MASK ((uint32_t)(DMA_ISR_GIF1 | DMA_ISR_TCIF1 | DMA_ISR_HTIF1 | DMA_ISR_TEIF1))
#define DMA2_CHANNEL2_IT_MASK ((uint32_t)(DMA_ISR_GIF2 | DMA_ISR_TCIF2 | DMA_ISR_HTIF2 | DMA_ISR_TEIF2))
#define DMA2_CHANNEL3_IT_MASK ((uint32_t)(DMA_ISR_GIF3 | DMA_ISR_TCIF3 | DMA_ISR_HTIF3 | DMA_ISR_TEIF3))
#define DMA2_CHANNEL4_IT_MASK ((uint32_t)(DMA_ISR_GIF4 | DMA_ISR_TCIF4 | DMA_ISR_HTIF4 | DMA_ISR_TEIF4))
#define DMA2_CHANNEL5_IT_MASK ((uint32_t)(DMA_ISR_GIF5 | DMA_ISR_TCIF5 | DMA_ISR_HTIF5 | DMA_ISR_TEIF5))
/* DMA FLAG mask */
#define FLAG_MASK ((uint32_t)0x10000000)
/* DMA registers Masks */
#define CCR_CLEAR_MASK ((uint32_t)0xFFFF800F)
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private function prototypes -----------------------------------------------*/
/* Private functions ---------------------------------------------------------*/
/** @defgroup DMA_Private_Functions
* @{
*/
/** @defgroup DMA_Group1 Initialization and Configuration functions
* @brief Initialization and Configuration functions
*
@verbatim
===============================================================================
##### Initialization and Configuration functions #####
===============================================================================
[..] This subsection provides functions allowing to initialize the DMA channel
source and destination addresses, incrementation and data sizes, transfer
direction, buffer size, circular/normal mode selection, memory-to-memory
mode selection and channel priority value.
[..] The DMA_Init() function follows the DMA configuration procedures as described
in reference manual (RM0038).
@endverbatim
* @{
*/
/**
* @brief Deinitializes the DMAy Channelx registers to their default reset
* values.
* @param DMAy_Channelx: where y can be 1 or 2 to select the DMA and x can be
* 1 to 7 for DMA1 and 1 to 5 for DMA2 to select the DMA Channel.
* @retval None
*/
void DMA_DeInit(DMA_Channel_TypeDef* DMAy_Channelx)
{
/* Check the parameters */
assert_param(IS_DMA_ALL_PERIPH(DMAy_Channelx));
/* Disable the selected DMAy Channelx */
DMAy_Channelx->CCR &= (uint16_t)(~DMA_CCR1_EN);
/* Reset DMAy Channelx control register */
DMAy_Channelx->CCR = 0;
/* Reset DMAy Channelx remaining bytes register */
DMAy_Channelx->CNDTR = 0;
/* Reset DMAy Channelx peripheral address register */
DMAy_Channelx->CPAR = 0;
/* Reset DMAy Channelx memory address register */
DMAy_Channelx->CMAR = 0;
if (DMAy_Channelx == DMA1_Channel1)
{
/* Reset interrupt pending bits for DMA1 Channel1 */
DMA1->IFCR |= DMA1_CHANNEL1_IT_MASK;
}
else if (DMAy_Channelx == DMA1_Channel2)
{
/* Reset interrupt pending bits for DMA1 Channel2 */
DMA1->IFCR |= DMA1_CHANNEL2_IT_MASK;
}
else if (DMAy_Channelx == DMA1_Channel3)
{
/* Reset interrupt pending bits for DMA1 Channel3 */
DMA1->IFCR |= DMA1_CHANNEL3_IT_MASK;
}
else if (DMAy_Channelx == DMA1_Channel4)
{
/* Reset interrupt pending bits for DMA1 Channel4 */
DMA1->IFCR |= DMA1_CHANNEL4_IT_MASK;
}
else if (DMAy_Channelx == DMA1_Channel5)
{
/* Reset interrupt pending bits for DMA1 Channel5 */
DMA1->IFCR |= DMA1_CHANNEL5_IT_MASK;
}
else if (DMAy_Channelx == DMA1_Channel6)
{
/* Reset interrupt pending bits for DMA1 Channel6 */
DMA1->IFCR |= DMA1_CHANNEL6_IT_MASK;
}
else if (DMAy_Channelx == DMA1_Channel7)
{
/* Reset interrupt pending bits for DMA1 Channel7 */
DMA1->IFCR |= DMA1_CHANNEL7_IT_MASK;
}
else if (DMAy_Channelx == DMA2_Channel1)
{
/* Reset interrupt pending bits for DMA2 Channel1 */
DMA2->IFCR |= DMA2_CHANNEL1_IT_MASK;
}
else if (DMAy_Channelx == DMA2_Channel2)
{
/* Reset interrupt pending bits for DMA2 Channel2 */
DMA2->IFCR |= DMA2_CHANNEL2_IT_MASK;
}
else if (DMAy_Channelx == DMA2_Channel3)
{
/* Reset interrupt pending bits for DMA2 Channel3 */
DMA2->IFCR |= DMA2_CHANNEL3_IT_MASK;
}
else if (DMAy_Channelx == DMA2_Channel4)
{
/* Reset interrupt pending bits for DMA2 Channel4 */
DMA2->IFCR |= DMA2_CHANNEL4_IT_MASK;
}
else
{
if (DMAy_Channelx == DMA2_Channel5)
{
/* Reset interrupt pending bits for DMA2 Channel5 */
DMA2->IFCR |= DMA2_CHANNEL5_IT_MASK;
}
}
}
/**
* @brief Initializes the DMAy Channelx according to the specified
* parameters in the DMA_InitStruct.
* @param DMAy_Channelx: where y can be 1 or 2 to select the DMA and x can be
* 1 to 7 for DMA1 and 1 to 5 for DMA2 to select the DMA Channel.
* @param DMA_InitStruct: pointer to a DMA_InitTypeDef structure that
* contains the configuration information for the specified DMA Channel.
* @retval None
*/
void DMA_Init(DMA_Channel_TypeDef* DMAy_Channelx, DMA_InitTypeDef* DMA_InitStruct)
{
uint32_t tmpreg = 0;
/* Check the parameters */
assert_param(IS_DMA_ALL_PERIPH(DMAy_Channelx));
assert_param(IS_DMA_DIR(DMA_InitStruct->DMA_DIR));
assert_param(IS_DMA_BUFFER_SIZE(DMA_InitStruct->DMA_BufferSize));
assert_param(IS_DMA_PERIPHERAL_INC_STATE(DMA_InitStruct->DMA_PeripheralInc));
assert_param(IS_DMA_MEMORY_INC_STATE(DMA_InitStruct->DMA_MemoryInc));
assert_param(IS_DMA_PERIPHERAL_DATA_SIZE(DMA_InitStruct->DMA_PeripheralDataSize));
assert_param(IS_DMA_MEMORY_DATA_SIZE(DMA_InitStruct->DMA_MemoryDataSize));
assert_param(IS_DMA_MODE(DMA_InitStruct->DMA_Mode));
assert_param(IS_DMA_PRIORITY(DMA_InitStruct->DMA_Priority));
assert_param(IS_DMA_M2M_STATE(DMA_InitStruct->DMA_M2M));
/*--------------------------- DMAy Channelx CCR Configuration -----------------*/
/* Get the DMAy_Channelx CCR value */
tmpreg = DMAy_Channelx->CCR;
/* Clear MEM2MEM, PL, MSIZE, PSIZE, MINC, PINC, CIRC and DIR bits */
tmpreg &= CCR_CLEAR_MASK;
/* Configure DMAy Channelx: data transfer, data size, priority level and mode */
/* Set DIR bit according to DMA_DIR value */
/* Set CIRC bit according to DMA_Mode value */
/* Set PINC bit according to DMA_PeripheralInc value */
/* Set MINC bit according to DMA_MemoryInc value */
/* Set PSIZE bits according to DMA_PeripheralDataSize value */
/* Set MSIZE bits according to DMA_MemoryDataSize value */
/* Set PL bits according to DMA_Priority value */
/* Set the MEM2MEM bit according to DMA_M2M value */
tmpreg |= DMA_InitStruct->DMA_DIR | DMA_InitStruct->DMA_Mode |
DMA_InitStruct->DMA_PeripheralInc | DMA_InitStruct->DMA_MemoryInc |
DMA_InitStruct->DMA_PeripheralDataSize | DMA_InitStruct->DMA_MemoryDataSize |
DMA_InitStruct->DMA_Priority | DMA_InitStruct->DMA_M2M;
/* Write to DMAy Channelx CCR */
DMAy_Channelx->CCR = tmpreg;
/*--------------------------- DMAy Channelx CNDTR Configuration ---------------*/
/* Write to DMAy Channelx CNDTR */
DMAy_Channelx->CNDTR = DMA_InitStruct->DMA_BufferSize;
/*--------------------------- DMAy Channelx CPAR Configuration ----------------*/
/* Write to DMAy Channelx CPAR */
DMAy_Channelx->CPAR = DMA_InitStruct->DMA_PeripheralBaseAddr;
/*--------------------------- DMAy Channelx CMAR Configuration ----------------*/
/* Write to DMAy Channelx CMAR */
DMAy_Channelx->CMAR = DMA_InitStruct->DMA_MemoryBaseAddr;
}
/**
* @brief Fills each DMA_InitStruct member with its default value.
* @param DMA_InitStruct: pointer to a DMA_InitTypeDef structure which will
* be initialized.
* @retval None
*/
void DMA_StructInit(DMA_InitTypeDef* DMA_InitStruct)
{
/*-------------- Reset DMA init structure parameters values ------------------*/
/* Initialize the DMA_PeripheralBaseAddr member */
DMA_InitStruct->DMA_PeripheralBaseAddr = 0;
/* Initialize the DMA_MemoryBaseAddr member */
DMA_InitStruct->DMA_MemoryBaseAddr = 0;
/* Initialize the DMA_DIR member */
DMA_InitStruct->DMA_DIR = DMA_DIR_PeripheralSRC;
/* Initialize the DMA_BufferSize member */
DMA_InitStruct->DMA_BufferSize = 0;
/* Initialize the DMA_PeripheralInc member */
DMA_InitStruct->DMA_PeripheralInc = DMA_PeripheralInc_Disable;
/* Initialize the DMA_MemoryInc member */
DMA_InitStruct->DMA_MemoryInc = DMA_MemoryInc_Disable;
/* Initialize the DMA_PeripheralDataSize member */
DMA_InitStruct->DMA_PeripheralDataSize = DMA_PeripheralDataSize_Byte;
/* Initialize the DMA_MemoryDataSize member */
DMA_InitStruct->DMA_MemoryDataSize = DMA_MemoryDataSize_Byte;
/* Initialize the DMA_Mode member */
DMA_InitStruct->DMA_Mode = DMA_Mode_Normal;
/* Initialize the DMA_Priority member */
DMA_InitStruct->DMA_Priority = DMA_Priority_Low;
/* Initialize the DMA_M2M member */
DMA_InitStruct->DMA_M2M = DMA_M2M_Disable;
}
/**
* @brief Enables or disables the specified DMAy Channelx.
* @param DMAy_Channelx: where y can be 1 or 2 to select the DMA and x can be
* 1 to 7 for DMA1 and 1 to 5 for DMA2 to select the DMA Channel.
* @param NewState: new state of the DMAy Channelx.
* This parameter can be: ENABLE or DISABLE.
* @retval None
*/
void DMA_Cmd(DMA_Channel_TypeDef* DMAy_Channelx, FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_DMA_ALL_PERIPH(DMAy_Channelx));
assert_param(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
/* Enable the selected DMAy Channelx */
DMAy_Channelx->CCR |= DMA_CCR1_EN;
}
else
{
/* Disable the selected DMAy Channelx */
DMAy_Channelx->CCR &= (uint16_t)(~DMA_CCR1_EN);
}
}
/**
* @}
*/
/** @defgroup DMA_Group2 Data Counter functions
* @brief Data Counter functions
*
@verbatim
===============================================================================
##### Data Counter functions #####
===============================================================================
[..] This subsection provides function allowing to configure and read the buffer
size (number of data to be transferred).The DMA data counter can be written
only when the DMA channel is disabled (ie. after transfer complete event).
[..] The following function can be used to write the Channel data counter value:
(+) void DMA_SetCurrDataCounter(DMA_Channel_TypeDef* DMAy_Channelx, uint16_t
DataNumber).
-@- It is advised to use this function rather than DMA_Init() in situations
where only the Data buffer needs to be reloaded.
[..] The DMA data counter can be read to indicate the number of remaining transfers
for the relative DMA channel. This counter is decremented at the end of each
data transfer and when the transfer is complete:
(+) If Normal mode is selected: the counter is set to 0.
(+) If Circular mode is selected: the counter is reloaded with the initial
value(configured before enabling the DMA channel).
[..] The following function can be used to read the Channel data counter value:
(+) uint16_t DMA_GetCurrDataCounter(DMA_Channel_TypeDef* DMAy_Channelx).
@endverbatim
* @{
*/
/**
* @brief Sets the number of data units in the current DMAy Channelx transfer.
* @param DMAy_Channelx: where y can be 1 or 2 to select the DMA and x can be
* 1 to 7 for DMA1 and 1 to 5 for DMA2 to select the DMA Channel.
* @param DataNumber: The number of data units in the current DMAy Channelx
* transfer.
* @note This function can only be used when the DMAy_Channelx is disabled.
* @retval None.
*/
void DMA_SetCurrDataCounter(DMA_Channel_TypeDef* DMAy_Channelx, uint16_t DataNumber)
{
/* Check the parameters */
assert_param(IS_DMA_ALL_PERIPH(DMAy_Channelx));
/*--------------------------- DMAy Channelx CNDTR Configuration ---------------*/
/* Write to DMAy Channelx CNDTR */
DMAy_Channelx->CNDTR = DataNumber;
}
/**
* @brief Returns the number of remaining data units in the current
* DMAy Channelx transfer.
* @param DMAy_Channelx: where y can be 1 or 2 to select the DMA and x can be
* 1 to 7 for DMA1 and 1 to 5 for DMA2 to select the DMA Channel.
* @retval The number of remaining data units in the current DMAy Channelx
* transfer.
*/
uint16_t DMA_GetCurrDataCounter(DMA_Channel_TypeDef* DMAy_Channelx)
{
/* Check the parameters */
assert_param(IS_DMA_ALL_PERIPH(DMAy_Channelx));
/* Return the number of remaining data units for DMAy Channelx */
return ((uint16_t)(DMAy_Channelx->CNDTR));
}
/**
* @}
*/
/** @defgroup DMA_Group3 Interrupts and flags management functions
* @brief Interrupts and flags management functions
*
@verbatim
===============================================================================
##### Interrupts and flags management functions #####
===============================================================================
[..] This subsection provides functions allowing to configure the DMA Interrupts
sources and check or clear the flags or pending bits status.
The user should identify which mode will be used in his application to manage
the DMA controller events: Polling mode or Interrupt mode.
*** Polling Mode ***
====================
[..] Each DMA channel can be managed through 4 event Flags:(y : DMA Controller
number x : DMA channel number ).
(#) DMAy_FLAG_TCx : to indicate that a Transfer Complete event occurred.
(#) DMAy_FLAG_HTx : to indicate that a Half-Transfer Complete event occurred.
(#) DMAy_FLAG_TEx : to indicate that a Transfer Error occurred.
(#) DMAy_FLAG_GLx : to indicate that at least one of the events described
above occurred.
-@- Clearing DMAy_FLAG_GLx results in clearing all other pending flags of the
same channel (DMAy_FLAG_TCx, DMAy_FLAG_HTx and DMAy_FLAG_TEx).
[..]In this Mode it is advised to use the following functions:
(+) FlagStatus DMA_GetFlagStatus(uint32_t DMA_FLAG);
(+) void DMA_ClearFlag(uint32_t DMA_FLAG);
*** Interrupt Mode ***
======================
[..] Each DMA channel can be managed through 4 Interrupts:
(+) Interrupt Source
(##) DMA_IT_TC: specifies the interrupt source for the Transfer Complete
event.
(##) DMA_IT_HT : specifies the interrupt source for the Half-transfer Complete
event.
(##) DMA_IT_TE : specifies the interrupt source for the transfer errors event.
(##) DMA_IT_GL : to indicate that at least one of the interrupts described
above occurred.
-@@- Clearing DMA_IT_GL interrupt results in clearing all other interrupts of
the same channel (DMA_IT_TCx, DMA_IT_HT and DMA_IT_TE).
[..]In this Mode it is advised to use the following functions:
(+) void DMA_ITConfig(DMA_Channel_TypeDef* DMAy_Channelx, uint32_t DMA_IT,
FunctionalState NewState);
(+) ITStatus DMA_GetITStatus(uint32_t DMA_IT);
(+) void DMA_ClearITPendingBit(uint32_t DMA_IT);
@endverbatim
* @{
*/
/**
* @brief Enables or disables the specified DMAy Channelx interrupts.
* @param DMAy_Channelx: where y can be 1 or 2 to select the DMA and x can be
* 1 to 7 for DMA1 and 1 to 5 for DMA2 to select the DMA Channel.
* @param DMA_IT: specifies the DMA interrupts sources to be enabled
* or disabled.
* This parameter can be any combination of the following values:
* @arg DMA_IT_TC: Transfer complete interrupt mask
* @arg DMA_IT_HT: Half transfer interrupt mask
* @arg DMA_IT_TE: Transfer error interrupt mask
* @param NewState: new state of the specified DMA interrupts.
* This parameter can be: ENABLE or DISABLE.
* @retval None
*/
void DMA_ITConfig(DMA_Channel_TypeDef* DMAy_Channelx, uint32_t DMA_IT, FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_DMA_ALL_PERIPH(DMAy_Channelx));
assert_param(IS_DMA_CONFIG_IT(DMA_IT));
assert_param(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
/* Enable the selected DMA interrupts */
DMAy_Channelx->CCR |= DMA_IT;
}
else
{
/* Disable the selected DMA interrupts */
DMAy_Channelx->CCR &= ~DMA_IT;
}
}
/**
* @brief Checks whether the specified DMAy Channelx flag is set or not.
* @param DMAy_FLAG: specifies the flag to check.
* This parameter can be one of the following values:
* @arg DMA1_FLAG_GL1: DMA1 Channel1 global flag.
* @arg DMA1_FLAG_TC1: DMA1 Channel1 transfer complete flag.
* @arg DMA1_FLAG_HT1: DMA1 Channel1 half transfer flag.
* @arg DMA1_FLAG_TE1: DMA1 Channel1 transfer error flag.
* @arg DMA1_FLAG_GL2: DMA1 Channel2 global flag.
* @arg DMA1_FLAG_TC2: DMA1 Channel2 transfer complete flag.
* @arg DMA1_FLAG_HT2: DMA1 Channel2 half transfer flag.
* @arg DMA1_FLAG_TE2: DMA1 Channel2 transfer error flag.
* @arg DMA1_FLAG_GL3: DMA1 Channel3 global flag.
* @arg DMA1_FLAG_TC3: DMA1 Channel3 transfer complete flag.
* @arg DMA1_FLAG_HT3: DMA1 Channel3 half transfer flag.
* @arg DMA1_FLAG_TE3: DMA1 Channel3 transfer error flag.
* @arg DMA1_FLAG_GL4: DMA1 Channel4 global flag.
* @arg DMA1_FLAG_TC4: DMA1 Channel4 transfer complete flag.
* @arg DMA1_FLAG_HT4: DMA1 Channel4 half transfer flag.
* @arg DMA1_FLAG_TE4: DMA1 Channel4 transfer error flag.
* @arg DMA1_FLAG_GL5: DMA1 Channel5 global flag.
* @arg DMA1_FLAG_TC5: DMA1 Channel5 transfer complete flag.
* @arg DMA1_FLAG_HT5: DMA1 Channel5 half transfer flag.
* @arg DMA1_FLAG_TE5: DMA1 Channel5 transfer error flag.
* @arg DMA1_FLAG_GL6: DMA1 Channel6 global flag.
* @arg DMA1_FLAG_TC6: DMA1 Channel6 transfer complete flag.
* @arg DMA1_FLAG_HT6: DMA1 Channel6 half transfer flag.
* @arg DMA1_FLAG_TE6: DMA1 Channel6 transfer error flag.
* @arg DMA1_FLAG_GL7: DMA1 Channel7 global flag.
* @arg DMA1_FLAG_TC7: DMA1 Channel7 transfer complete flag.
* @arg DMA1_FLAG_HT7: DMA1 Channel7 half transfer flag.
* @arg DMA1_FLAG_TE7: DMA1 Channel7 transfer error flag.
* @arg DMA2_FLAG_GL1: DMA2 Channel1 global flag.
* @arg DMA2_FLAG_TC1: DMA2 Channel1 transfer complete flag.
* @arg DMA2_FLAG_HT1: DMA2 Channel1 half transfer flag.
* @arg DMA2_FLAG_TE1: DMA2 Channel1 transfer error flag.
* @arg DMA2_FLAG_GL2: DMA2 Channel2 global flag.
* @arg DMA2_FLAG_TC2: DMA2 Channel2 transfer complete flag.
* @arg DMA2_FLAG_HT2: DMA2 Channel2 half transfer flag.
* @arg DMA2_FLAG_TE2: DMA2 Channel2 transfer error flag.
* @arg DMA2_FLAG_GL3: DMA2 Channel3 global flag.
* @arg DMA2_FLAG_TC3: DMA2 Channel3 transfer complete flag.
* @arg DMA2_FLAG_HT3: DMA2 Channel3 half transfer flag.
* @arg DMA2_FLAG_TE3: DMA2 Channel3 transfer error flag.
* @arg DMA2_FLAG_GL4: DMA2 Channel4 global flag.
* @arg DMA2_FLAG_TC4: DMA2 Channel4 transfer complete flag.
* @arg DMA2_FLAG_HT4: DMA2 Channel4 half transfer flag.
* @arg DMA2_FLAG_TE4: DMA2 Channel4 transfer error flag.
* @arg DMA2_FLAG_GL5: DMA2 Channel5 global flag.
* @arg DMA2_FLAG_TC5: DMA2 Channel5 transfer complete flag.
* @arg DMA2_FLAG_HT5: DMA2 Channel5 half transfer flag.
* @arg DMA2_FLAG_TE5: DMA2 Channel5 transfer error flag.
*
* @note
* The Global flag (DMAy_FLAG_GLx) is set whenever any of the other flags
* relative to the same channel is set (Transfer Complete, Half-transfer
* Complete or Transfer Error flags: DMAy_FLAG_TCx, DMAy_FLAG_HTx or
* DMAy_FLAG_TEx).
*
* @retval The new state of DMAy_FLAG (SET or RESET).
*/
FlagStatus DMA_GetFlagStatus(uint32_t DMAy_FLAG)
{
FlagStatus bitstatus = RESET;
uint32_t tmpreg = 0;
/* Check the parameters */
assert_param(IS_DMA_GET_FLAG(DMAy_FLAG));
/* Calculate the used DMAy */
if ((DMAy_FLAG & FLAG_MASK) == (uint32_t)RESET)
{
/* Get DMA1 ISR register value */
tmpreg = DMA1->ISR;
}
else
{
/* Get DMA2 ISR register value */
tmpreg = DMA2->ISR;
}
/* Check the status of the specified DMAy flag */
if ((tmpreg & DMAy_FLAG) != (uint32_t)RESET)
{
/* DMAy_FLAG is set */
bitstatus = SET;
}
else
{
/* DMAy_FLAG is reset */
bitstatus = RESET;
}
/* Return the DMAy_FLAG status */
return bitstatus;
}
/**
* @brief Clears the DMAy Channelx's pending flags.
* @param DMAy_FLAG: specifies the flag to clear.
* This parameter can be any combination (for the same DMA) of the following values:
* @arg DMA1_FLAG_GL1: DMA1 Channel1 global flag.
* @arg DMA1_FLAG_TC1: DMA1 Channel1 transfer complete flag.
* @arg DMA1_FLAG_HT1: DMA1 Channel1 half transfer flag.
* @arg DMA1_FLAG_TE1: DMA1 Channel1 transfer error flag.
* @arg DMA1_FLAG_GL2: DMA1 Channel2 global flag.
* @arg DMA1_FLAG_TC2: DMA1 Channel2 transfer complete flag.
* @arg DMA1_FLAG_HT2: DMA1 Channel2 half transfer flag.
* @arg DMA1_FLAG_TE2: DMA1 Channel2 transfer error flag.
* @arg DMA1_FLAG_GL3: DMA1 Channel3 global flag.
* @arg DMA1_FLAG_TC3: DMA1 Channel3 transfer complete flag.
* @arg DMA1_FLAG_HT3: DMA1 Channel3 half transfer flag.
* @arg DMA1_FLAG_TE3: DMA1 Channel3 transfer error flag.
* @arg DMA1_FLAG_GL4: DMA1 Channel4 global flag.
* @arg DMA1_FLAG_TC4: DMA1 Channel4 transfer complete flag.
* @arg DMA1_FLAG_HT4: DMA1 Channel4 half transfer flag.
* @arg DMA1_FLAG_TE4: DMA1 Channel4 transfer error flag.
* @arg DMA1_FLAG_GL5: DMA1 Channel5 global flag.
* @arg DMA1_FLAG_TC5: DMA1 Channel5 transfer complete flag.
* @arg DMA1_FLAG_HT5: DMA1 Channel5 half transfer flag.
* @arg DMA1_FLAG_TE5: DMA1 Channel5 transfer error flag.
* @arg DMA1_FLAG_GL6: DMA1 Channel6 global flag.
* @arg DMA1_FLAG_TC6: DMA1 Channel6 transfer complete flag.
* @arg DMA1_FLAG_HT6: DMA1 Channel6 half transfer flag.
* @arg DMA1_FLAG_TE6: DMA1 Channel6 transfer error flag.
* @arg DMA1_FLAG_GL7: DMA1 Channel7 global flag.
* @arg DMA1_FLAG_TC7: DMA1 Channel7 transfer complete flag.
* @arg DMA1_FLAG_HT7: DMA1 Channel7 half transfer flag.
* @arg DMA1_FLAG_TE7: DMA1 Channel7 transfer error flag.
* @arg DMA2_FLAG_GL1: DMA2 Channel1 global flag.
* @arg DMA2_FLAG_TC1: DMA2 Channel1 transfer complete flag.
* @arg DMA2_FLAG_HT1: DMA2 Channel1 half transfer flag.
* @arg DMA2_FLAG_TE1: DMA2 Channel1 transfer error flag.
* @arg DMA2_FLAG_GL2: DMA2 Channel2 global flag.
* @arg DMA2_FLAG_TC2: DMA2 Channel2 transfer complete flag.
* @arg DMA2_FLAG_HT2: DMA2 Channel2 half transfer flag.
* @arg DMA2_FLAG_TE2: DMA2 Channel2 transfer error flag.
* @arg DMA2_FLAG_GL3: DMA2 Channel3 global flag.
* @arg DMA2_FLAG_TC3: DMA2 Channel3 transfer complete flag.
* @arg DMA2_FLAG_HT3: DMA2 Channel3 half transfer flag.
* @arg DMA2_FLAG_TE3: DMA2 Channel3 transfer error flag.
* @arg DMA2_FLAG_GL4: DMA2 Channel4 global flag.
* @arg DMA2_FLAG_TC4: DMA2 Channel4 transfer complete flag.
* @arg DMA2_FLAG_HT4: DMA2 Channel4 half transfer flag.
* @arg DMA2_FLAG_TE4: DMA2 Channel4 transfer error flag.
* @arg DMA2_FLAG_GL5: DMA2 Channel5 global flag.
* @arg DMA2_FLAG_TC5: DMA2 Channel5 transfer complete flag.
* @arg DMA2_FLAG_HT5: DMA2 Channel5 half transfer flag.
* @arg DMA2_FLAG_TE5: DMA2 Channel5 transfer error flag.
*
* @note
* Clearing the Global flag (DMAy_FLAG_GLx) results in clearing all other flags
* relative to the same channel (Transfer Complete, Half-transfer Complete and
* Transfer Error flags: DMAy_FLAG_TCx, DMAy_FLAG_HTx and DMAy_FLAG_TEx).
*
* @retval None
*/
void DMA_ClearFlag(uint32_t DMAy_FLAG)
{
/* Check the parameters */
assert_param(IS_DMA_CLEAR_FLAG(DMAy_FLAG));
if ((DMAy_FLAG & FLAG_MASK) == (uint32_t)RESET)
{
/* Clear the selected DMAy flags */
DMA1->IFCR = DMAy_FLAG;
}
else
{
/* Clear the selected DMAy flags */
DMA2->IFCR = DMAy_FLAG;
}
}
/**
* @brief Checks whether the specified DMAy Channelx interrupt has occurred or not.
* @param DMAy_IT: specifies the DMAy interrupt source to check.
* This parameter can be one of the following values:
* @arg DMA1_IT_GL1: DMA1 Channel1 global interrupt.
* @arg DMA1_IT_TC1: DMA1 Channel1 transfer complete interrupt.
* @arg DMA1_IT_HT1: DMA1 Channel1 half transfer interrupt.
* @arg DMA1_IT_TE1: DMA1 Channel1 transfer error interrupt.
* @arg DMA1_IT_GL2: DMA1 Channel2 global interrupt.
* @arg DMA1_IT_TC2: DMA1 Channel2 transfer complete interrupt.
* @arg DMA1_IT_HT2: DMA1 Channel2 half transfer interrupt.
* @arg DMA1_IT_TE2: DMA1 Channel2 transfer error interrupt.
* @arg DMA1_IT_GL3: DMA1 Channel3 global interrupt.
* @arg DMA1_IT_TC3: DMA1 Channel3 transfer complete interrupt.
* @arg DMA1_IT_HT3: DMA1 Channel3 half transfer interrupt.
* @arg DMA1_IT_TE3: DMA1 Channel3 transfer error interrupt.
* @arg DMA1_IT_GL4: DMA1 Channel4 global interrupt.
* @arg DMA1_IT_TC4: DMA1 Channel4 transfer complete interrupt.
* @arg DMA1_IT_HT4: DMA1 Channel4 half transfer interrupt.
* @arg DMA1_IT_TE4: DMA1 Channel4 transfer error interrupt.
* @arg DMA1_IT_GL5: DMA1 Channel5 global interrupt.
* @arg DMA1_IT_TC5: DMA1 Channel5 transfer complete interrupt.
* @arg DMA1_IT_HT5: DMA1 Channel5 half transfer interrupt.
* @arg DMA1_IT_TE5: DMA1 Channel5 transfer error interrupt.
* @arg DMA1_IT_GL6: DMA1 Channel6 global interrupt.
* @arg DMA1_IT_TC6: DMA1 Channel6 transfer complete interrupt.
* @arg DMA1_IT_HT6: DMA1 Channel6 half transfer interrupt.
* @arg DMA1_IT_TE6: DMA1 Channel6 transfer error interrupt.
* @arg DMA1_IT_GL7: DMA1 Channel7 global interrupt.
* @arg DMA1_IT_TC7: DMA1 Channel7 transfer complete interrupt.
* @arg DMA1_IT_HT7: DMA1 Channel7 half transfer interrupt.
* @arg DMA1_IT_TE7: DMA1 Channel7 transfer error interrupt.
* @arg DMA2_IT_GL1: DMA2 Channel1 global interrupt.
* @arg DMA2_IT_TC1: DMA2 Channel1 transfer complete interrupt.
* @arg DMA2_IT_HT1: DMA2 Channel1 half transfer interrupt.
* @arg DMA2_IT_TE1: DMA2 Channel1 transfer error interrupt.
* @arg DMA2_IT_GL2: DMA2 Channel2 global interrupt.
* @arg DMA2_IT_TC2: DMA2 Channel2 transfer complete interrupt.
* @arg DMA2_IT_HT2: DMA2 Channel2 half transfer interrupt.
* @arg DMA2_IT_TE2: DMA2 Channel2 transfer error interrupt.
* @arg DMA2_IT_GL3: DMA2 Channel3 global interrupt.
* @arg DMA2_IT_TC3: DMA2 Channel3 transfer complete interrupt.
* @arg DMA2_IT_HT3: DMA2 Channel3 half transfer interrupt.
* @arg DMA2_IT_TE3: DMA2 Channel3 transfer error interrupt.
* @arg DMA2_IT_GL4: DMA2 Channel4 global interrupt.
* @arg DMA2_IT_TC4: DMA2 Channel4 transfer complete interrupt.
* @arg DMA2_IT_HT4: DMA2 Channel4 half transfer interrupt.
* @arg DMA2_IT_TE4: DMA2 Channel4 transfer error interrupt.
* @arg DMA2_IT_GL5: DMA2 Channel5 global interrupt.
* @arg DMA2_IT_TC5: DMA2 Channel5 transfer complete interrupt.
* @arg DMA2_IT_HT5: DMA2 Channel5 half transfer interrupt.
* @arg DMA2_IT_TE5: DMA2 Channel5 transfer error interrupt.
*
* @note
* The Global interrupt (DMAy_FLAG_GLx) is set whenever any of the other
* interrupts relative to the same channel is set (Transfer Complete,
* Half-transfer Complete or Transfer Error interrupts: DMAy_IT_TCx,
* DMAy_IT_HTx or DMAy_IT_TEx).
*
* @retval The new state of DMAy_IT (SET or RESET).
*/
ITStatus DMA_GetITStatus(uint32_t DMAy_IT)
{
ITStatus bitstatus = RESET;
uint32_t tmpreg = 0;
/* Check the parameters */
assert_param(IS_DMA_GET_IT(DMAy_IT));
/* Calculate the used DMAy */
if ((DMAy_IT & FLAG_MASK) == (uint32_t)RESET)
{
/* Get DMA1 ISR register value */
tmpreg = DMA1->ISR;
}
else
{
/* Get DMA2 ISR register value */
tmpreg = DMA2->ISR;
}
/* Check the status of the specified DMAy interrupt */
if ((tmpreg & DMAy_IT) != (uint32_t)RESET)
{
/* DMAy_IT is set */
bitstatus = SET;
}
else
{
/* DMAy_IT is reset */
bitstatus = RESET;
}
/* Return the DMAy_IT status */
return bitstatus;
}
/**
* @brief Clears the DMAy Channelx's interrupt pending bits.
* @param DMAy_IT: specifies the DMAy interrupt pending bit to clear.
* This parameter can be any combination (for the same DMA) of the following values:
* @arg DMA1_IT_GL1: DMA1 Channel1 global interrupt.
* @arg DMA1_IT_TC1: DMA1 Channel1 transfer complete interrupt.
* @arg DMA1_IT_HT1: DMA1 Channel1 half transfer interrupt.
* @arg DMA1_IT_TE1: DMA1 Channel1 transfer error interrupt.
* @arg DMA1_IT_GL2: DMA1 Channel2 global interrupt.
* @arg DMA1_IT_TC2: DMA1 Channel2 transfer complete interrupt.
* @arg DMA1_IT_HT2: DMA1 Channel2 half transfer interrupt.
* @arg DMA1_IT_TE2: DMA1 Channel2 transfer error interrupt.
* @arg DMA1_IT_GL3: DMA1 Channel3 global interrupt.
* @arg DMA1_IT_TC3: DMA1 Channel3 transfer complete interrupt.
* @arg DMA1_IT_HT3: DMA1 Channel3 half transfer interrupt.
* @arg DMA1_IT_TE3: DMA1 Channel3 transfer error interrupt.
* @arg DMA1_IT_GL4: DMA1 Channel4 global interrupt.
* @arg DMA1_IT_TC4: DMA1 Channel4 transfer complete interrupt.
* @arg DMA1_IT_HT4: DMA1 Channel4 half transfer interrupt.
* @arg DMA1_IT_TE4: DMA1 Channel4 transfer error interrupt.
* @arg DMA1_IT_GL5: DMA1 Channel5 global interrupt.
* @arg DMA1_IT_TC5: DMA1 Channel5 transfer complete interrupt.
* @arg DMA1_IT_HT5: DMA1 Channel5 half transfer interrupt.
* @arg DMA1_IT_TE5: DMA1 Channel5 transfer error interrupt.
* @arg DMA1_IT_GL6: DMA1 Channel6 global interrupt.
* @arg DMA1_IT_TC6: DMA1 Channel6 transfer complete interrupt.
* @arg DMA1_IT_HT6: DMA1 Channel6 half transfer interrupt.
* @arg DMA1_IT_TE6: DMA1 Channel6 transfer error interrupt.
* @arg DMA1_IT_GL7: DMA1 Channel7 global interrupt.
* @arg DMA1_IT_TC7: DMA1 Channel7 transfer complete interrupt.
* @arg DMA1_IT_HT7: DMA1 Channel7 half transfer interrupt.
* @arg DMA1_IT_TE7: DMA1 Channel7 transfer error interrupt.
* @arg DMA2_IT_GL1: DMA2 Channel1 global interrupt.
* @arg DMA2_IT_TC1: DMA2 Channel1 transfer complete interrupt.
* @arg DMA2_IT_HT1: DMA2 Channel1 half transfer interrupt.
* @arg DMA2_IT_TE1: DMA2 Channel1 transfer error interrupt.
* @arg DMA2_IT_GL2: DMA2 Channel2 global interrupt.
* @arg DMA2_IT_TC2: DMA2 Channel2 transfer complete interrupt.
* @arg DMA2_IT_HT2: DMA2 Channel2 half transfer interrupt.
* @arg DMA2_IT_TE2: DMA2 Channel2 transfer error interrupt.
* @arg DMA2_IT_GL3: DMA2 Channel3 global interrupt.
* @arg DMA2_IT_TC3: DMA2 Channel3 transfer complete interrupt.
* @arg DMA2_IT_HT3: DMA2 Channel3 half transfer interrupt.
* @arg DMA2_IT_TE3: DMA2 Channel3 transfer error interrupt.
* @arg DMA2_IT_GL4: DMA2 Channel4 global interrupt.
* @arg DMA2_IT_TC4: DMA2 Channel4 transfer complete interrupt.
* @arg DMA2_IT_HT4: DMA2 Channel4 half transfer interrupt.
* @arg DMA2_IT_TE4: DMA2 Channel4 transfer error interrupt.
* @arg DMA2_IT_GL5: DMA2 Channel5 global interrupt.
* @arg DMA2_IT_TC5: DMA2 Channel5 transfer complete interrupt.
* @arg DMA2_IT_HT5: DMA2 Channel5 half transfer interrupt.
* @arg DMA2_IT_TE5: DMA2 Channel5 transfer error interrupt.
*
* @note
* Clearing the Global interrupt (DMAy_IT_GLx) results in clearing all other
* interrupts relative to the same channel (Transfer Complete, Half-transfer
* Complete and Transfer Error interrupts: DMAy_IT_TCx, DMAy_IT_HTx and
* DMAy_IT_TEx).
*
* @retval None
*/
void DMA_ClearITPendingBit(uint32_t DMAy_IT)
{
/* Check the parameters */
assert_param(IS_DMA_CLEAR_IT(DMAy_IT));
/* Calculate the used DMAy */
if ((DMAy_IT & FLAG_MASK) == (uint32_t)RESET)
{
/* Clear the selected DMAy interrupt pending bits */
DMA1->IFCR = DMAy_IT;
}
else
{
/* Clear the selected DMAy interrupt pending bits */
DMA2->IFCR = DMAy_IT;
}
}
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/

View File

@ -0,0 +1,435 @@
/**
******************************************************************************
* @file stm32l1xx_dma.h
* @author MCD Application Team
* @version V1.2.0
* @date 22-February-2013
* @brief This file contains all the functions prototypes for the DMA firmware
* library.
******************************************************************************
* @attention
*
* <h2><center>&copy; COPYRIGHT 2013 STMicroelectronics</center></h2>
*
* Licensed under MCD-ST Liberty SW License Agreement V2, (the "License");
* You may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.st.com/software_license_agreement_liberty_v2
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
******************************************************************************
*/
/* Define to prevent recursive inclusion -------------------------------------*/
#ifndef __STM32L1xx_DMA_H
#define __STM32L1xx_DMA_H
#ifdef __cplusplus
extern "C" {
#endif
/* Includes ------------------------------------------------------------------*/
#include "stm32l1xx.h"
/** @addtogroup STM32L1xx_StdPeriph_Driver
* @{
*/
/** @addtogroup DMA
* @{
*/
/* Exported types ------------------------------------------------------------*/
/**
* @brief DMA Init structure definition
*/
typedef struct
{
uint32_t DMA_PeripheralBaseAddr; /*!< Specifies the peripheral base address for DMAy Channelx. */
uint32_t DMA_MemoryBaseAddr; /*!< Specifies the memory base address for DMAy Channelx. */
uint32_t DMA_DIR; /*!< Specifies if the peripheral is the source or destination.
This parameter can be a value of @ref DMA_data_transfer_direction */
uint32_t DMA_BufferSize; /*!< Specifies the buffer size, in data unit, of the specified Channel.
The data unit is equal to the configuration set in DMA_PeripheralDataSize
or DMA_MemoryDataSize members depending in the transfer direction. */
uint32_t DMA_PeripheralInc; /*!< Specifies whether the Peripheral address register is incremented or not.
This parameter can be a value of @ref DMA_peripheral_incremented_mode */
uint32_t DMA_MemoryInc; /*!< Specifies whether the memory address register is incremented or not.
This parameter can be a value of @ref DMA_memory_incremented_mode */
uint32_t DMA_PeripheralDataSize; /*!< Specifies the Peripheral data width.
This parameter can be a value of @ref DMA_peripheral_data_size */
uint32_t DMA_MemoryDataSize; /*!< Specifies the Memory data width.
This parameter can be a value of @ref DMA_memory_data_size */
uint32_t DMA_Mode; /*!< Specifies the operation mode of the DMAy Channelx.
This parameter can be a value of @ref DMA_circular_normal_mode
@note: The circular buffer mode cannot be used if the memory-to-memory
data transfer is configured on the selected Channel */
uint32_t DMA_Priority; /*!< Specifies the software priority for the DMAy Channelx.
This parameter can be a value of @ref DMA_priority_level */
uint32_t DMA_M2M; /*!< Specifies if the DMAy Channelx will be used in memory-to-memory transfer.
This parameter can be a value of @ref DMA_memory_to_memory */
}DMA_InitTypeDef;
/* Exported constants --------------------------------------------------------*/
/** @defgroup DMA_Exported_Constants
* @{
*/
#define IS_DMA_ALL_PERIPH(PERIPH) (((PERIPH) == DMA1_Channel1) || \
((PERIPH) == DMA1_Channel2) || \
((PERIPH) == DMA1_Channel3) || \
((PERIPH) == DMA1_Channel4) || \
((PERIPH) == DMA1_Channel5) || \
((PERIPH) == DMA1_Channel6) || \
((PERIPH) == DMA1_Channel7) || \
((PERIPH) == DMA2_Channel1) || \
((PERIPH) == DMA2_Channel2) || \
((PERIPH) == DMA2_Channel3) || \
((PERIPH) == DMA2_Channel4) || \
((PERIPH) == DMA2_Channel5))
/** @defgroup DMA_data_transfer_direction
* @{
*/
#define DMA_DIR_PeripheralDST ((uint32_t)0x00000010)
#define DMA_DIR_PeripheralSRC ((uint32_t)0x00000000)
#define IS_DMA_DIR(DIR) (((DIR) == DMA_DIR_PeripheralDST) || \
((DIR) == DMA_DIR_PeripheralSRC))
/**
* @}
*/
/** @defgroup DMA_peripheral_incremented_mode
* @{
*/
#define DMA_PeripheralInc_Enable ((uint32_t)0x00000040)
#define DMA_PeripheralInc_Disable ((uint32_t)0x00000000)
#define IS_DMA_PERIPHERAL_INC_STATE(STATE) (((STATE) == DMA_PeripheralInc_Enable) || \
((STATE) == DMA_PeripheralInc_Disable))
/**
* @}
*/
/** @defgroup DMA_memory_incremented_mode
* @{
*/
#define DMA_MemoryInc_Enable ((uint32_t)0x00000080)
#define DMA_MemoryInc_Disable ((uint32_t)0x00000000)
#define IS_DMA_MEMORY_INC_STATE(STATE) (((STATE) == DMA_MemoryInc_Enable) || \
((STATE) == DMA_MemoryInc_Disable))
/**
* @}
*/
/** @defgroup DMA_peripheral_data_size
* @{
*/
#define DMA_PeripheralDataSize_Byte ((uint32_t)0x00000000)
#define DMA_PeripheralDataSize_HalfWord ((uint32_t)0x00000100)
#define DMA_PeripheralDataSize_Word ((uint32_t)0x00000200)
#define IS_DMA_PERIPHERAL_DATA_SIZE(SIZE) (((SIZE) == DMA_PeripheralDataSize_Byte) || \
((SIZE) == DMA_PeripheralDataSize_HalfWord) || \
((SIZE) == DMA_PeripheralDataSize_Word))
/**
* @}
*/
/** @defgroup DMA_memory_data_size
* @{
*/
#define DMA_MemoryDataSize_Byte ((uint32_t)0x00000000)
#define DMA_MemoryDataSize_HalfWord ((uint32_t)0x00000400)
#define DMA_MemoryDataSize_Word ((uint32_t)0x00000800)
#define IS_DMA_MEMORY_DATA_SIZE(SIZE) (((SIZE) == DMA_MemoryDataSize_Byte) || \
((SIZE) == DMA_MemoryDataSize_HalfWord) || \
((SIZE) == DMA_MemoryDataSize_Word))
/**
* @}
*/
/** @defgroup DMA_circular_normal_mode
* @{
*/
#define DMA_Mode_Circular ((uint32_t)0x00000020)
#define DMA_Mode_Normal ((uint32_t)0x00000000)
#define IS_DMA_MODE(MODE) (((MODE) == DMA_Mode_Circular) || ((MODE) == DMA_Mode_Normal))
/**
* @}
*/
/** @defgroup DMA_priority_level
* @{
*/
#define DMA_Priority_VeryHigh ((uint32_t)0x00003000)
#define DMA_Priority_High ((uint32_t)0x00002000)
#define DMA_Priority_Medium ((uint32_t)0x00001000)
#define DMA_Priority_Low ((uint32_t)0x00000000)
#define IS_DMA_PRIORITY(PRIORITY) (((PRIORITY) == DMA_Priority_VeryHigh) || \
((PRIORITY) == DMA_Priority_High) || \
((PRIORITY) == DMA_Priority_Medium) || \
((PRIORITY) == DMA_Priority_Low))
/**
* @}
*/
/** @defgroup DMA_memory_to_memory
* @{
*/
#define DMA_M2M_Enable ((uint32_t)0x00004000)
#define DMA_M2M_Disable ((uint32_t)0x00000000)
#define IS_DMA_M2M_STATE(STATE) (((STATE) == DMA_M2M_Enable) || ((STATE) == DMA_M2M_Disable))
/**
* @}
*/
/** @defgroup DMA_interrupts_definition
* @{
*/
#define DMA_IT_TC ((uint32_t)0x00000002)
#define DMA_IT_HT ((uint32_t)0x00000004)
#define DMA_IT_TE ((uint32_t)0x00000008)
#define IS_DMA_CONFIG_IT(IT) ((((IT) & 0xFFFFFFF1) == 0x00) && ((IT) != 0x00))
#define DMA1_IT_GL1 ((uint32_t)0x00000001)
#define DMA1_IT_TC1 ((uint32_t)0x00000002)
#define DMA1_IT_HT1 ((uint32_t)0x00000004)
#define DMA1_IT_TE1 ((uint32_t)0x00000008)
#define DMA1_IT_GL2 ((uint32_t)0x00000010)
#define DMA1_IT_TC2 ((uint32_t)0x00000020)
#define DMA1_IT_HT2 ((uint32_t)0x00000040)
#define DMA1_IT_TE2 ((uint32_t)0x00000080)
#define DMA1_IT_GL3 ((uint32_t)0x00000100)
#define DMA1_IT_TC3 ((uint32_t)0x00000200)
#define DMA1_IT_HT3 ((uint32_t)0x00000400)
#define DMA1_IT_TE3 ((uint32_t)0x00000800)
#define DMA1_IT_GL4 ((uint32_t)0x00001000)
#define DMA1_IT_TC4 ((uint32_t)0x00002000)
#define DMA1_IT_HT4 ((uint32_t)0x00004000)
#define DMA1_IT_TE4 ((uint32_t)0x00008000)
#define DMA1_IT_GL5 ((uint32_t)0x00010000)
#define DMA1_IT_TC5 ((uint32_t)0x00020000)
#define DMA1_IT_HT5 ((uint32_t)0x00040000)
#define DMA1_IT_TE5 ((uint32_t)0x00080000)
#define DMA1_IT_GL6 ((uint32_t)0x00100000)
#define DMA1_IT_TC6 ((uint32_t)0x00200000)
#define DMA1_IT_HT6 ((uint32_t)0x00400000)
#define DMA1_IT_TE6 ((uint32_t)0x00800000)
#define DMA1_IT_GL7 ((uint32_t)0x01000000)
#define DMA1_IT_TC7 ((uint32_t)0x02000000)
#define DMA1_IT_HT7 ((uint32_t)0x04000000)
#define DMA1_IT_TE7 ((uint32_t)0x08000000)
#define DMA2_IT_GL1 ((uint32_t)0x10000001)
#define DMA2_IT_TC1 ((uint32_t)0x10000002)
#define DMA2_IT_HT1 ((uint32_t)0x10000004)
#define DMA2_IT_TE1 ((uint32_t)0x10000008)
#define DMA2_IT_GL2 ((uint32_t)0x10000010)
#define DMA2_IT_TC2 ((uint32_t)0x10000020)
#define DMA2_IT_HT2 ((uint32_t)0x10000040)
#define DMA2_IT_TE2 ((uint32_t)0x10000080)
#define DMA2_IT_GL3 ((uint32_t)0x10000100)
#define DMA2_IT_TC3 ((uint32_t)0x10000200)
#define DMA2_IT_HT3 ((uint32_t)0x10000400)
#define DMA2_IT_TE3 ((uint32_t)0x10000800)
#define DMA2_IT_GL4 ((uint32_t)0x10001000)
#define DMA2_IT_TC4 ((uint32_t)0x10002000)
#define DMA2_IT_HT4 ((uint32_t)0x10004000)
#define DMA2_IT_TE4 ((uint32_t)0x10008000)
#define DMA2_IT_GL5 ((uint32_t)0x10010000)
#define DMA2_IT_TC5 ((uint32_t)0x10020000)
#define DMA2_IT_HT5 ((uint32_t)0x10040000)
#define DMA2_IT_TE5 ((uint32_t)0x10080000)
#define IS_DMA_CLEAR_IT(IT) (((((IT) & 0xF0000000) == 0x00) || (((IT) & 0xEFF00000) == 0x00)) && ((IT) != 0x00))
#define IS_DMA_GET_IT(IT) (((IT) == DMA1_IT_GL1) || ((IT) == DMA1_IT_TC1) || \
((IT) == DMA1_IT_HT1) || ((IT) == DMA1_IT_TE1) || \
((IT) == DMA1_IT_GL2) || ((IT) == DMA1_IT_TC2) || \
((IT) == DMA1_IT_HT2) || ((IT) == DMA1_IT_TE2) || \
((IT) == DMA1_IT_GL3) || ((IT) == DMA1_IT_TC3) || \
((IT) == DMA1_IT_HT3) || ((IT) == DMA1_IT_TE3) || \
((IT) == DMA1_IT_GL4) || ((IT) == DMA1_IT_TC4) || \
((IT) == DMA1_IT_HT4) || ((IT) == DMA1_IT_TE4) || \
((IT) == DMA1_IT_GL5) || ((IT) == DMA1_IT_TC5) || \
((IT) == DMA1_IT_HT5) || ((IT) == DMA1_IT_TE5) || \
((IT) == DMA1_IT_GL6) || ((IT) == DMA1_IT_TC6) || \
((IT) == DMA1_IT_HT6) || ((IT) == DMA1_IT_TE6) || \
((IT) == DMA1_IT_GL7) || ((IT) == DMA1_IT_TC7) || \
((IT) == DMA1_IT_HT7) || ((IT) == DMA1_IT_TE7) || \
((IT) == DMA2_IT_GL1) || ((IT) == DMA2_IT_TC1) || \
((IT) == DMA2_IT_HT1) || ((IT) == DMA2_IT_TE1) || \
((IT) == DMA2_IT_GL2) || ((IT) == DMA2_IT_TC2) || \
((IT) == DMA2_IT_HT2) || ((IT) == DMA2_IT_TE2) || \
((IT) == DMA2_IT_GL3) || ((IT) == DMA2_IT_TC3) || \
((IT) == DMA2_IT_HT3) || ((IT) == DMA2_IT_TE3) || \
((IT) == DMA2_IT_GL4) || ((IT) == DMA2_IT_TC4) || \
((IT) == DMA2_IT_HT4) || ((IT) == DMA2_IT_TE4) || \
((IT) == DMA2_IT_GL5) || ((IT) == DMA2_IT_TC5) || \
((IT) == DMA2_IT_HT5) || ((IT) == DMA2_IT_TE5))
/**
* @}
*/
/** @defgroup DMA_flags_definition
* @{
*/
#define DMA1_FLAG_GL1 ((uint32_t)0x00000001)
#define DMA1_FLAG_TC1 ((uint32_t)0x00000002)
#define DMA1_FLAG_HT1 ((uint32_t)0x00000004)
#define DMA1_FLAG_TE1 ((uint32_t)0x00000008)
#define DMA1_FLAG_GL2 ((uint32_t)0x00000010)
#define DMA1_FLAG_TC2 ((uint32_t)0x00000020)
#define DMA1_FLAG_HT2 ((uint32_t)0x00000040)
#define DMA1_FLAG_TE2 ((uint32_t)0x00000080)
#define DMA1_FLAG_GL3 ((uint32_t)0x00000100)
#define DMA1_FLAG_TC3 ((uint32_t)0x00000200)
#define DMA1_FLAG_HT3 ((uint32_t)0x00000400)
#define DMA1_FLAG_TE3 ((uint32_t)0x00000800)
#define DMA1_FLAG_GL4 ((uint32_t)0x00001000)
#define DMA1_FLAG_TC4 ((uint32_t)0x00002000)
#define DMA1_FLAG_HT4 ((uint32_t)0x00004000)
#define DMA1_FLAG_TE4 ((uint32_t)0x00008000)
#define DMA1_FLAG_GL5 ((uint32_t)0x00010000)
#define DMA1_FLAG_TC5 ((uint32_t)0x00020000)
#define DMA1_FLAG_HT5 ((uint32_t)0x00040000)
#define DMA1_FLAG_TE5 ((uint32_t)0x00080000)
#define DMA1_FLAG_GL6 ((uint32_t)0x00100000)
#define DMA1_FLAG_TC6 ((uint32_t)0x00200000)
#define DMA1_FLAG_HT6 ((uint32_t)0x00400000)
#define DMA1_FLAG_TE6 ((uint32_t)0x00800000)
#define DMA1_FLAG_GL7 ((uint32_t)0x01000000)
#define DMA1_FLAG_TC7 ((uint32_t)0x02000000)
#define DMA1_FLAG_HT7 ((uint32_t)0x04000000)
#define DMA1_FLAG_TE7 ((uint32_t)0x08000000)
#define DMA2_FLAG_GL1 ((uint32_t)0x10000001)
#define DMA2_FLAG_TC1 ((uint32_t)0x10000002)
#define DMA2_FLAG_HT1 ((uint32_t)0x10000004)
#define DMA2_FLAG_TE1 ((uint32_t)0x10000008)
#define DMA2_FLAG_GL2 ((uint32_t)0x10000010)
#define DMA2_FLAG_TC2 ((uint32_t)0x10000020)
#define DMA2_FLAG_HT2 ((uint32_t)0x10000040)
#define DMA2_FLAG_TE2 ((uint32_t)0x10000080)
#define DMA2_FLAG_GL3 ((uint32_t)0x10000100)
#define DMA2_FLAG_TC3 ((uint32_t)0x10000200)
#define DMA2_FLAG_HT3 ((uint32_t)0x10000400)
#define DMA2_FLAG_TE3 ((uint32_t)0x10000800)
#define DMA2_FLAG_GL4 ((uint32_t)0x10001000)
#define DMA2_FLAG_TC4 ((uint32_t)0x10002000)
#define DMA2_FLAG_HT4 ((uint32_t)0x10004000)
#define DMA2_FLAG_TE4 ((uint32_t)0x10008000)
#define DMA2_FLAG_GL5 ((uint32_t)0x10010000)
#define DMA2_FLAG_TC5 ((uint32_t)0x10020000)
#define DMA2_FLAG_HT5 ((uint32_t)0x10040000)
#define DMA2_FLAG_TE5 ((uint32_t)0x10080000)
#define IS_DMA_CLEAR_FLAG(FLAG) (((((FLAG) & 0xF0000000) == 0x00) || (((FLAG) & 0xEFF00000) == 0x00)) && ((FLAG) != 0x00))
#define IS_DMA_GET_FLAG(FLAG) (((FLAG) == DMA1_FLAG_GL1) || ((FLAG) == DMA1_FLAG_TC1) || \
((FLAG) == DMA1_FLAG_HT1) || ((FLAG) == DMA1_FLAG_TE1) || \
((FLAG) == DMA1_FLAG_GL2) || ((FLAG) == DMA1_FLAG_TC2) || \
((FLAG) == DMA1_FLAG_HT2) || ((FLAG) == DMA1_FLAG_TE2) || \
((FLAG) == DMA1_FLAG_GL3) || ((FLAG) == DMA1_FLAG_TC3) || \
((FLAG) == DMA1_FLAG_HT3) || ((FLAG) == DMA1_FLAG_TE3) || \
((FLAG) == DMA1_FLAG_GL4) || ((FLAG) == DMA1_FLAG_TC4) || \
((FLAG) == DMA1_FLAG_HT4) || ((FLAG) == DMA1_FLAG_TE4) || \
((FLAG) == DMA1_FLAG_GL5) || ((FLAG) == DMA1_FLAG_TC5) || \
((FLAG) == DMA1_FLAG_HT5) || ((FLAG) == DMA1_FLAG_TE5) || \
((FLAG) == DMA1_FLAG_GL6) || ((FLAG) == DMA1_FLAG_TC6) || \
((FLAG) == DMA1_FLAG_HT6) || ((FLAG) == DMA1_FLAG_TE6) || \
((FLAG) == DMA1_FLAG_GL7) || ((FLAG) == DMA1_FLAG_TC7) || \
((FLAG) == DMA1_FLAG_HT7) || ((FLAG) == DMA1_FLAG_TE7) || \
((FLAG) == DMA2_FLAG_GL1) || ((FLAG) == DMA2_FLAG_TC1) || \
((FLAG) == DMA2_FLAG_HT1) || ((FLAG) == DMA2_FLAG_TE1) || \
((FLAG) == DMA2_FLAG_GL2) || ((FLAG) == DMA2_FLAG_TC2) || \
((FLAG) == DMA2_FLAG_HT2) || ((FLAG) == DMA2_FLAG_TE2) || \
((FLAG) == DMA2_FLAG_GL3) || ((FLAG) == DMA2_FLAG_TC3) || \
((FLAG) == DMA2_FLAG_HT3) || ((FLAG) == DMA2_FLAG_TE3) || \
((FLAG) == DMA2_FLAG_GL4) || ((FLAG) == DMA2_FLAG_TC4) || \
((FLAG) == DMA2_FLAG_HT4) || ((FLAG) == DMA2_FLAG_TE4) || \
((FLAG) == DMA2_FLAG_GL5) || ((FLAG) == DMA2_FLAG_TC5) || \
((FLAG) == DMA2_FLAG_HT5) || ((FLAG) == DMA2_FLAG_TE5))
/**
* @}
*/
/** @defgroup DMA_Buffer_Size
* @{
*/
#define IS_DMA_BUFFER_SIZE(SIZE) (((SIZE) >= 0x1) && ((SIZE) < 0x10000))
/**
* @}
*/
/**
* @}
*/
/* Exported macro ------------------------------------------------------------*/
/* Exported functions ------------------------------------------------------- */
/* Function used to set the DMA configuration to the default reset state *****/
void DMA_DeInit(DMA_Channel_TypeDef* DMAy_Channelx);
/* Initialization and Configuration functions *********************************/
void DMA_Init(DMA_Channel_TypeDef* DMAy_Channelx, DMA_InitTypeDef* DMA_InitStruct);
void DMA_StructInit(DMA_InitTypeDef* DMA_InitStruct);
void DMA_Cmd(DMA_Channel_TypeDef* DMAy_Channelx, FunctionalState NewState);
/* Data Counter functions *****************************************************/
void DMA_SetCurrDataCounter(DMA_Channel_TypeDef* DMAy_Channelx, uint16_t DataNumber);
uint16_t DMA_GetCurrDataCounter(DMA_Channel_TypeDef* DMAy_Channelx);
/* Interrupts and flags management functions **********************************/
void DMA_ITConfig(DMA_Channel_TypeDef* DMAy_Channelx, uint32_t DMA_IT, FunctionalState NewState);
FlagStatus DMA_GetFlagStatus(uint32_t DMAy_FLAG);
void DMA_ClearFlag(uint32_t DMAy_FLAG);
ITStatus DMA_GetITStatus(uint32_t DMAy_IT);
void DMA_ClearITPendingBit(uint32_t DMAy_IT);
#ifdef __cplusplus
}
#endif
#endif /*__STM32L1xx_DMA_H */
/**
* @}
*/
/**
* @}
*/
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/

View File

@ -0,0 +1,315 @@
/**
******************************************************************************
* @file stm32l1xx_exti.c
* @author MCD Application Team
* @version V1.2.0
* @date 22-February-2013
* @brief This file provides firmware functions to manage the following
* functionalities of the EXTI peripheral:
* + Initialization and Configuration
* + Interrupts and flags management
*
* @verbatim
==============================================================================
##### EXTI features #####
==============================================================================
[..] External interrupt/event lines are mapped as following:
(#) All available GPIO pins are connected to the 16 external
interrupt/event lines from EXTI0 to EXTI15.
(#) EXTI line 16 is connected to the PVD output.
(#) EXTI line 17 is connected to the RTC Alarm event.
(#) EXTI line 18 is connected to the USB Device FS wakeup event.
(#) EXTI line 19 is connected to the RTC Tamper and TimeStamp events.
(#) EXTI line 20 is connected to the RTC Wakeup event.
(#) EXTI line 21 is connected to the Comparator 1 wakeup event.
(#) EXTI line 22 is connected to the Comparator 2 wakeup event.
(#) EXTI line 23 is connected to the Comparator channel acquisition wakeup event.
##### How to use this driver #####
==============================================================================
[..] In order to use an I/O pin as an external interrupt source, follow
steps below:
(#) Configure the I/O in input mode using GPIO_Init()
(#) Select the input source pin for the EXTI line using
SYSCFG_EXTILineConfig()
(#) Select the mode(interrupt, event) and configure the trigger
selection (Rising, falling or both) using EXTI_Init()
(#) Configure NVIC IRQ channel mapped to the EXTI line using NVIC_Init()
[..]
(@) SYSCFG APB clock must be enabled to get write access to SYSCFG_EXTICRx
registers using RCC_APB2PeriphClockCmd(RCC_APB2Periph_SYSCFG, ENABLE);
* @endverbatim
*
******************************************************************************
* @attention
*
* <h2><center>&copy; COPYRIGHT 2013 STMicroelectronics</center></h2>
*
* Licensed under MCD-ST Liberty SW License Agreement V2, (the "License");
* You may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.st.com/software_license_agreement_liberty_v2
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "stm32l1xx_exti.h"
/** @addtogroup STM32L1xx_StdPeriph_Driver
* @{
*/
/** @defgroup EXTI
* @brief EXTI driver modules
* @{
*/
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
#define EXTI_LINENONE ((uint32_t)0x00000) /* No interrupt selected */
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private function prototypes -----------------------------------------------*/
/* Private functions ---------------------------------------------------------*/
/** @defgroup EXTI_Private_Functions
* @{
*/
/** @defgroup EXTI_Group1 Initialization and Configuration functions
* @brief Initialization and Configuration functions
*
@verbatim
==============================================================================
##### Initialization and Configuration functions #####
==============================================================================
@endverbatim
* @{
*/
/**
* @brief Deinitializes the EXTI peripheral registers to their default reset values.
* @param None
* @retval None
*/
void EXTI_DeInit(void)
{
EXTI->IMR = 0x00000000;
EXTI->EMR = 0x00000000;
EXTI->RTSR = 0x00000000;
EXTI->FTSR = 0x00000000;
EXTI->PR = 0x00FFFFFF;
}
/**
* @brief Initializes the EXTI peripheral according to the specified
* parameters in the EXTI_InitStruct.
* EXTI_Line specifies the EXTI line (EXTI0....EXTI23).
* EXTI_Mode specifies which EXTI line is used as interrupt or an event.
* EXTI_Trigger selects the trigger. When the trigger occurs, interrupt
* pending bit will be set.
* EXTI_LineCmd controls (Enable/Disable) the EXTI line.
* @param EXTI_InitStruct: pointer to a EXTI_InitTypeDef structure
* that contains the configuration information for the EXTI peripheral.
* @retval None
*/
void EXTI_Init(EXTI_InitTypeDef* EXTI_InitStruct)
{
uint32_t tmp = 0;
/* Check the parameters */
assert_param(IS_EXTI_MODE(EXTI_InitStruct->EXTI_Mode));
assert_param(IS_EXTI_TRIGGER(EXTI_InitStruct->EXTI_Trigger));
assert_param(IS_EXTI_LINE(EXTI_InitStruct->EXTI_Line));
assert_param(IS_FUNCTIONAL_STATE(EXTI_InitStruct->EXTI_LineCmd));
tmp = (uint32_t)EXTI_BASE;
if (EXTI_InitStruct->EXTI_LineCmd != DISABLE)
{
/* Clear EXTI line configuration */
EXTI->IMR &= ~EXTI_InitStruct->EXTI_Line;
EXTI->EMR &= ~EXTI_InitStruct->EXTI_Line;
tmp += EXTI_InitStruct->EXTI_Mode;
*(__IO uint32_t *) tmp |= EXTI_InitStruct->EXTI_Line;
/* Clear Rising Falling edge configuration */
EXTI->RTSR &= ~EXTI_InitStruct->EXTI_Line;
EXTI->FTSR &= ~EXTI_InitStruct->EXTI_Line;
/* Select the trigger for the selected external interrupts */
if (EXTI_InitStruct->EXTI_Trigger == EXTI_Trigger_Rising_Falling)
{
/* Rising Falling edge */
EXTI->RTSR |= EXTI_InitStruct->EXTI_Line;
EXTI->FTSR |= EXTI_InitStruct->EXTI_Line;
}
else
{
tmp = (uint32_t)EXTI_BASE;
tmp += EXTI_InitStruct->EXTI_Trigger;
*(__IO uint32_t *) tmp |= EXTI_InitStruct->EXTI_Line;
}
}
else
{
tmp += EXTI_InitStruct->EXTI_Mode;
/* Disable the selected external lines */
*(__IO uint32_t *) tmp &= ~EXTI_InitStruct->EXTI_Line;
}
}
/**
* @brief Fills each EXTI_InitStruct member with its reset value.
* @param EXTI_InitStruct: pointer to a EXTI_InitTypeDef structure which will
* be initialized.
* @retval None
*/
void EXTI_StructInit(EXTI_InitTypeDef* EXTI_InitStruct)
{
EXTI_InitStruct->EXTI_Line = EXTI_LINENONE;
EXTI_InitStruct->EXTI_Mode = EXTI_Mode_Interrupt;
EXTI_InitStruct->EXTI_Trigger = EXTI_Trigger_Falling;
EXTI_InitStruct->EXTI_LineCmd = DISABLE;
}
/**
* @brief Generates a Software interrupt on selected EXTI line.
* @param EXTI_Line: specifies the EXTI line on which the software interrupt
* will be generated.
* This parameter can be any combination of EXTI_Linex where x can be (0..23).
* @retval None
*/
void EXTI_GenerateSWInterrupt(uint32_t EXTI_Line)
{
/* Check the parameters */
assert_param(IS_EXTI_LINE(EXTI_Line));
EXTI->SWIER |= EXTI_Line;
}
/**
* @}
*/
/** @defgroup EXTI_Group2 Interrupts and flags management functions
* @brief Interrupts and flags management functions
*
@verbatim
==============================================================================
##### Interrupts and flags management functions #####
==============================================================================
@endverbatim
* @{
*/
/**
* @brief Checks whether the specified EXTI line flag is set or not.
* @param EXTI_Line: specifies the EXTI line flag to check.
* This parameter can be:
* EXTI_Linex: External interrupt line x where x(0..23).
* @retval The new state of EXTI_Line (SET or RESET).
*/
FlagStatus EXTI_GetFlagStatus(uint32_t EXTI_Line)
{
FlagStatus bitstatus = RESET;
/* Check the parameters */
assert_param(IS_GET_EXTI_LINE(EXTI_Line));
if ((EXTI->PR & EXTI_Line) != (uint32_t)RESET)
{
bitstatus = SET;
}
else
{
bitstatus = RESET;
}
return bitstatus;
}
/**
* @brief Clears the EXTI's line pending flags.
* @param EXTI_Line: specifies the EXTI lines flags to clear.
* This parameter can be any combination of EXTI_Linex where x can be (0..23).
* @retval None
*/
void EXTI_ClearFlag(uint32_t EXTI_Line)
{
/* Check the parameters */
assert_param(IS_EXTI_LINE(EXTI_Line));
EXTI->PR = EXTI_Line;
}
/**
* @brief Checks whether the specified EXTI line is asserted or not.
* @param EXTI_Line: specifies the EXTI line to check.
* This parameter can be:
* EXTI_Linex: External interrupt line x where x(0..23).
* @retval The new state of EXTI_Line (SET or RESET).
*/
ITStatus EXTI_GetITStatus(uint32_t EXTI_Line)
{
FlagStatus bitstatus = RESET;
/* Check the parameters */
assert_param(IS_GET_EXTI_LINE(EXTI_Line));
if ((EXTI->PR & EXTI_Line) != (uint32_t)RESET)
{
bitstatus = SET;
}
else
{
bitstatus = RESET;
}
return bitstatus;
}
/**
* @brief Clears the EXTI's line pending bits.
* @param EXTI_Line: specifies the EXTI lines to clear.
* This parameter can be any combination of EXTI_Linex where x can be (0..23).
* @retval None
*/
void EXTI_ClearITPendingBit(uint32_t EXTI_Line)
{
/* Check the parameters */
assert_param(IS_EXTI_LINE(EXTI_Line));
EXTI->PR = EXTI_Line;
}
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/

View File

@ -0,0 +1,199 @@
/**
******************************************************************************
* @file stm32l1xx_exti.h
* @author MCD Application Team
* @version V1.2.0
* @date 22-February-2013
* @brief This file contains all the functions prototypes for the EXTI firmware
* library.
******************************************************************************
* @attention
*
* <h2><center>&copy; COPYRIGHT 2013 STMicroelectronics</center></h2>
*
* Licensed under MCD-ST Liberty SW License Agreement V2, (the "License");
* You may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.st.com/software_license_agreement_liberty_v2
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
******************************************************************************
*/
/* Define to prevent recursive inclusion -------------------------------------*/
#ifndef __STM32L1xx_EXTI_H
#define __STM32L1xx_EXTI_H
#ifdef __cplusplus
extern "C" {
#endif
/* Includes ------------------------------------------------------------------*/
#include "stm32l1xx.h"
/** @addtogroup STM32L1xx_StdPeriph_Driver
* @{
*/
/** @addtogroup EXTI
* @{
*/
/* Exported types ------------------------------------------------------------*/
/**
* @brief EXTI mode enumeration
*/
typedef enum
{
EXTI_Mode_Interrupt = 0x00,
EXTI_Mode_Event = 0x04
}EXTIMode_TypeDef;
#define IS_EXTI_MODE(MODE) (((MODE) == EXTI_Mode_Interrupt) || ((MODE) == EXTI_Mode_Event))
/**
* @brief EXTI Trigger enumeration
*/
typedef enum
{
EXTI_Trigger_Rising = 0x08,
EXTI_Trigger_Falling = 0x0C,
EXTI_Trigger_Rising_Falling = 0x10
}EXTITrigger_TypeDef;
#define IS_EXTI_TRIGGER(TRIGGER) (((TRIGGER) == EXTI_Trigger_Rising) || \
((TRIGGER) == EXTI_Trigger_Falling) || \
((TRIGGER) == EXTI_Trigger_Rising_Falling))
/**
* @brief EXTI Init Structure definition
*/
typedef struct
{
uint32_t EXTI_Line; /*!< Specifies the EXTI lines to be enabled or disabled.
This parameter can be any combination of @ref EXTI_Lines */
EXTIMode_TypeDef EXTI_Mode; /*!< Specifies the mode for the EXTI lines.
This parameter can be a value of @ref EXTIMode_TypeDef */
EXTITrigger_TypeDef EXTI_Trigger; /*!< Specifies the trigger signal active edge for the EXTI lines.
This parameter can be a value of @ref EXTITrigger_TypeDef */
FunctionalState EXTI_LineCmd; /*!< Specifies the new state of the selected EXTI lines.
This parameter can be set either to ENABLE or DISABLE */
}EXTI_InitTypeDef;
/* Exported constants --------------------------------------------------------*/
/** @defgroup EXTI_Exported_Constants
* @{
*/
/** @defgroup EXTI_Lines
* @{
*/
#define EXTI_Line0 ((uint32_t)0x00000001) /*!< External interrupt line 0 */
#define EXTI_Line1 ((uint32_t)0x00000002) /*!< External interrupt line 1 */
#define EXTI_Line2 ((uint32_t)0x00000004) /*!< External interrupt line 2 */
#define EXTI_Line3 ((uint32_t)0x00000008) /*!< External interrupt line 3 */
#define EXTI_Line4 ((uint32_t)0x00000010) /*!< External interrupt line 4 */
#define EXTI_Line5 ((uint32_t)0x00000020) /*!< External interrupt line 5 */
#define EXTI_Line6 ((uint32_t)0x00000040) /*!< External interrupt line 6 */
#define EXTI_Line7 ((uint32_t)0x00000080) /*!< External interrupt line 7 */
#define EXTI_Line8 ((uint32_t)0x00000100) /*!< External interrupt line 8 */
#define EXTI_Line9 ((uint32_t)0x00000200) /*!< External interrupt line 9 */
#define EXTI_Line10 ((uint32_t)0x00000400) /*!< External interrupt line 10 */
#define EXTI_Line11 ((uint32_t)0x00000800) /*!< External interrupt line 11 */
#define EXTI_Line12 ((uint32_t)0x00001000) /*!< External interrupt line 12 */
#define EXTI_Line13 ((uint32_t)0x00002000) /*!< External interrupt line 13 */
#define EXTI_Line14 ((uint32_t)0x00004000) /*!< External interrupt line 14 */
#define EXTI_Line15 ((uint32_t)0x00008000) /*!< External interrupt line 15 */
#define EXTI_Line16 ((uint32_t)0x00010000) /*!< External interrupt line 16
Connected to the PVD Output */
#define EXTI_Line17 ((uint32_t)0x00020000) /*!< External interrupt line 17
Connected to the RTC Alarm
event */
#define EXTI_Line18 ((uint32_t)0x00040000) /*!< External interrupt line 18
Connected to the USB Device
FS Wakeup from suspend event */
#define EXTI_Line19 ((uint32_t)0x00080000) /*!< External interrupt line 19
Connected to the RTC Tamper
and Time Stamp events */
#define EXTI_Line20 ((uint32_t)0x00100000) /*!< External interrupt line 20
Connected to the RTC Wakeup
event */
#define EXTI_Line21 ((uint32_t)0x00200000) /*!< External interrupt line 21
Connected to the Comparator 1
event */
#define EXTI_Line22 ((uint32_t)0x00400000) /*!< External interrupt line 22
Connected to the Comparator 2
event */
#define EXTI_Line23 ((uint32_t)0x00800000) /*!< External interrupt line 23
Comparator channel acquisition event */
#define IS_EXTI_LINE(LINE) ((((LINE) & (uint32_t)0xFF000000) == 0x00) && ((LINE) != (uint16_t)0x00))
#define IS_GET_EXTI_LINE(LINE) (((LINE) == EXTI_Line0) || ((LINE) == EXTI_Line1) || \
((LINE) == EXTI_Line2) || ((LINE) == EXTI_Line3) || \
((LINE) == EXTI_Line4) || ((LINE) == EXTI_Line5) || \
((LINE) == EXTI_Line6) || ((LINE) == EXTI_Line7) || \
((LINE) == EXTI_Line8) || ((LINE) == EXTI_Line9) || \
((LINE) == EXTI_Line10) || ((LINE) == EXTI_Line11) || \
((LINE) == EXTI_Line12) || ((LINE) == EXTI_Line13) || \
((LINE) == EXTI_Line14) || ((LINE) == EXTI_Line15) || \
((LINE) == EXTI_Line16) || ((LINE) == EXTI_Line17) || \
((LINE) == EXTI_Line18) || ((LINE) == EXTI_Line19) || \
((LINE) == EXTI_Line20) || ((LINE) == EXTI_Line21) || \
((LINE) == EXTI_Line22) || ((LINE) == EXTI_Line23))
/**
* @}
*/
/**
* @}
*/
/* Exported macro ------------------------------------------------------------*/
/* Exported functions ------------------------------------------------------- */
/* Function used to set the EXTI configuration to the default reset state *****/
void EXTI_DeInit(void);
/* Initialization and Configuration functions *********************************/
void EXTI_Init(EXTI_InitTypeDef* EXTI_InitStruct);
void EXTI_StructInit(EXTI_InitTypeDef* EXTI_InitStruct);
void EXTI_GenerateSWInterrupt(uint32_t EXTI_Line);
/* Interrupts and flags management functions **********************************/
FlagStatus EXTI_GetFlagStatus(uint32_t EXTI_Line);
void EXTI_ClearFlag(uint32_t EXTI_Line);
ITStatus EXTI_GetITStatus(uint32_t EXTI_Line);
void EXTI_ClearITPendingBit(uint32_t EXTI_Line);
#ifdef __cplusplus
}
#endif
#endif /* __STM32L1xx_EXTI_H */
/**
* @}
*/
/**
* @}
*/
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,482 @@
/**
******************************************************************************
* @file stm32l1xx_flash.h
* @author MCD Application Team
* @version V1.2.0
* @date 22-February-2013
* @brief This file contains all the functions prototypes for the FLASH
* firmware library.
******************************************************************************
* @attention
*
* <h2><center>&copy; COPYRIGHT 2013 STMicroelectronics</center></h2>
*
* Licensed under MCD-ST Liberty SW License Agreement V2, (the "License");
* You may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.st.com/software_license_agreement_liberty_v2
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
******************************************************************************
*/
/* Define to prevent recursive inclusion -------------------------------------*/
#ifndef __STM32L1xx_FLASH_H
#define __STM32L1xx_FLASH_H
#ifdef __cplusplus
extern "C" {
#endif
/* Includes ------------------------------------------------------------------*/
#include "stm32l1xx.h"
/** @addtogroup STM32L1xx_StdPeriph_Driver
* @{
*/
/** @addtogroup FLASH
* @{
*/
/* Exported types ------------------------------------------------------------*/
/**
* @brief FLASH Status
*/
typedef enum
{
FLASH_BUSY = 1,
FLASH_ERROR_WRP,
FLASH_ERROR_PROGRAM,
FLASH_COMPLETE,
FLASH_TIMEOUT
}FLASH_Status;
/* Exported constants --------------------------------------------------------*/
/** @defgroup FLASH_Exported_Constants
* @{
*/
/** @defgroup FLASH_Latency
* @{
*/
#define FLASH_Latency_0 ((uint8_t)0x00) /*!< FLASH Zero Latency cycle */
#define FLASH_Latency_1 ((uint8_t)0x01) /*!< FLASH One Latency cycle */
#define IS_FLASH_LATENCY(LATENCY) (((LATENCY) == FLASH_Latency_0) || \
((LATENCY) == FLASH_Latency_1))
/**
* @}
*/
/** @defgroup FLASH_Interrupts
* @{
*/
#define FLASH_IT_EOP FLASH_PECR_EOPIE /*!< End of programming interrupt source */
#define FLASH_IT_ERR FLASH_PECR_ERRIE /*!< Error interrupt source */
#define IS_FLASH_IT(IT) ((((IT) & (uint32_t)0xFFFCFFFF) == 0x00000000) && (((IT) != 0x00000000)))
/**
* @}
*/
/** @defgroup FLASH_Address
* @{
*/
#define IS_FLASH_DATA_ADDRESS(ADDRESS) (((ADDRESS) >= 0x08080000) && ((ADDRESS) <= 0x08082FFF))
#define IS_FLASH_PROGRAM_ADDRESS(ADDRESS) (((ADDRESS) >= 0x08000000) && ((ADDRESS) <= 0x0805FFFF))
/**
* @}
*/
/** @defgroup Option_Bytes_Write_Protection
* @{
*/
#define OB_WRP_Pages0to15 ((uint32_t)0x00000001) /* Write protection of Sector0 */
#define OB_WRP_Pages16to31 ((uint32_t)0x00000002) /* Write protection of Sector1 */
#define OB_WRP_Pages32to47 ((uint32_t)0x00000004) /* Write protection of Sector2 */
#define OB_WRP_Pages48to63 ((uint32_t)0x00000008) /* Write protection of Sector3 */
#define OB_WRP_Pages64to79 ((uint32_t)0x00000010) /* Write protection of Sector4 */
#define OB_WRP_Pages80to95 ((uint32_t)0x00000020) /* Write protection of Sector5 */
#define OB_WRP_Pages96to111 ((uint32_t)0x00000040) /* Write protection of Sector6 */
#define OB_WRP_Pages112to127 ((uint32_t)0x00000080) /* Write protection of Sector7 */
#define OB_WRP_Pages128to143 ((uint32_t)0x00000100) /* Write protection of Sector8 */
#define OB_WRP_Pages144to159 ((uint32_t)0x00000200) /* Write protection of Sector9 */
#define OB_WRP_Pages160to175 ((uint32_t)0x00000400) /* Write protection of Sector10 */
#define OB_WRP_Pages176to191 ((uint32_t)0x00000800) /* Write protection of Sector11 */
#define OB_WRP_Pages192to207 ((uint32_t)0x00001000) /* Write protection of Sector12 */
#define OB_WRP_Pages208to223 ((uint32_t)0x00002000) /* Write protection of Sector13 */
#define OB_WRP_Pages224to239 ((uint32_t)0x00004000) /* Write protection of Sector14 */
#define OB_WRP_Pages240to255 ((uint32_t)0x00008000) /* Write protection of Sector15 */
#define OB_WRP_Pages256to271 ((uint32_t)0x00010000) /* Write protection of Sector16 */
#define OB_WRP_Pages272to287 ((uint32_t)0x00020000) /* Write protection of Sector17 */
#define OB_WRP_Pages288to303 ((uint32_t)0x00040000) /* Write protection of Sector18 */
#define OB_WRP_Pages304to319 ((uint32_t)0x00080000) /* Write protection of Sector19 */
#define OB_WRP_Pages320to335 ((uint32_t)0x00100000) /* Write protection of Sector20 */
#define OB_WRP_Pages336to351 ((uint32_t)0x00200000) /* Write protection of Sector21 */
#define OB_WRP_Pages352to367 ((uint32_t)0x00400000) /* Write protection of Sector22 */
#define OB_WRP_Pages368to383 ((uint32_t)0x00800000) /* Write protection of Sector23 */
#define OB_WRP_Pages384to399 ((uint32_t)0x01000000) /* Write protection of Sector24 */
#define OB_WRP_Pages400to415 ((uint32_t)0x02000000) /* Write protection of Sector25 */
#define OB_WRP_Pages416to431 ((uint32_t)0x04000000) /* Write protection of Sector26 */
#define OB_WRP_Pages432to447 ((uint32_t)0x08000000) /* Write protection of Sector27 */
#define OB_WRP_Pages448to463 ((uint32_t)0x10000000) /* Write protection of Sector28 */
#define OB_WRP_Pages464to479 ((uint32_t)0x20000000) /* Write protection of Sector29 */
#define OB_WRP_Pages480to495 ((uint32_t)0x40000000) /* Write protection of Sector30 */
#define OB_WRP_Pages496to511 ((uint32_t)0x80000000) /* Write protection of Sector31 */
#define OB_WRP_AllPages ((uint32_t)0xFFFFFFFF) /*!< Write protection of all Sectors */
#define OB_WRP1_Pages512to527 ((uint32_t)0x00000001) /* Write protection of Sector32 */
#define OB_WRP1_Pages528to543 ((uint32_t)0x00000002) /* Write protection of Sector33 */
#define OB_WRP1_Pages544to559 ((uint32_t)0x00000004) /* Write protection of Sector34 */
#define OB_WRP1_Pages560to575 ((uint32_t)0x00000008) /* Write protection of Sector35 */
#define OB_WRP1_Pages576to591 ((uint32_t)0x00000010) /* Write protection of Sector36 */
#define OB_WRP1_Pages592to607 ((uint32_t)0x00000020) /* Write protection of Sector37 */
#define OB_WRP1_Pages608to623 ((uint32_t)0x00000040) /* Write protection of Sector38 */
#define OB_WRP1_Pages624to639 ((uint32_t)0x00000080) /* Write protection of Sector39 */
#define OB_WRP1_Pages640to655 ((uint32_t)0x00000100) /* Write protection of Sector40 */
#define OB_WRP1_Pages656to671 ((uint32_t)0x00000200) /* Write protection of Sector41 */
#define OB_WRP1_Pages672to687 ((uint32_t)0x00000400) /* Write protection of Sector42 */
#define OB_WRP1_Pages688to703 ((uint32_t)0x00000800) /* Write protection of Sector43 */
#define OB_WRP1_Pages704to719 ((uint32_t)0x00001000) /* Write protection of Sector44 */
#define OB_WRP1_Pages720to735 ((uint32_t)0x00002000) /* Write protection of Sector45 */
#define OB_WRP1_Pages736to751 ((uint32_t)0x00004000) /* Write protection of Sector46 */
#define OB_WRP1_Pages752to767 ((uint32_t)0x00008000) /* Write protection of Sector47 */
#define OB_WRP1_Pages768to783 ((uint32_t)0x00010000) /* Write protection of Sector48 */
#define OB_WRP1_Pages784to799 ((uint32_t)0x00020000) /* Write protection of Sector49 */
#define OB_WRP1_Pages800to815 ((uint32_t)0x00040000) /* Write protection of Sector50 */
#define OB_WRP1_Pages816to831 ((uint32_t)0x00080000) /* Write protection of Sector51 */
#define OB_WRP1_Pages832to847 ((uint32_t)0x00100000) /* Write protection of Sector52 */
#define OB_WRP1_Pages848to863 ((uint32_t)0x00200000) /* Write protection of Sector53 */
#define OB_WRP1_Pages864to879 ((uint32_t)0x00400000) /* Write protection of Sector54 */
#define OB_WRP1_Pages880to895 ((uint32_t)0x00800000) /* Write protection of Sector55 */
#define OB_WRP1_Pages896to911 ((uint32_t)0x01000000) /* Write protection of Sector56 */
#define OB_WRP1_Pages912to927 ((uint32_t)0x02000000) /* Write protection of Sector57 */
#define OB_WRP1_Pages928to943 ((uint32_t)0x04000000) /* Write protection of Sector58 */
#define OB_WRP1_Pages944to959 ((uint32_t)0x08000000) /* Write protection of Sector59 */
#define OB_WRP1_Pages960to975 ((uint32_t)0x10000000) /* Write protection of Sector60 */
#define OB_WRP1_Pages976to991 ((uint32_t)0x20000000) /* Write protection of Sector61 */
#define OB_WRP1_Pages992to1007 ((uint32_t)0x40000000) /* Write protection of Sector62 */
#define OB_WRP1_Pages1008to1023 ((uint32_t)0x80000000) /* Write protection of Sector63 */
#define OB_WRP1_AllPages ((uint32_t)0xFFFFFFFF) /*!< Write protection of all Sectors */
#define OB_WRP2_Pages1024to1039 ((uint32_t)0x00000001) /* Write protection of Sector64 */
#define OB_WRP2_Pages1040to1055 ((uint32_t)0x00000002) /* Write protection of Sector65 */
#define OB_WRP2_Pages1056to1071 ((uint32_t)0x00000004) /* Write protection of Sector66 */
#define OB_WRP2_Pages1072to1087 ((uint32_t)0x00000008) /* Write protection of Sector67 */
#define OB_WRP2_Pages1088to1103 ((uint32_t)0x00000010) /* Write protection of Sector68 */
#define OB_WRP2_Pages1104to1119 ((uint32_t)0x00000020) /* Write protection of Sector69 */
#define OB_WRP2_Pages1120to1135 ((uint32_t)0x00000040) /* Write protection of Sector70 */
#define OB_WRP2_Pages1136to1151 ((uint32_t)0x00000080) /* Write protection of Sector71 */
#define OB_WRP2_Pages1152to1167 ((uint32_t)0x00000100) /* Write protection of Sector72 */
#define OB_WRP2_Pages1168to1183 ((uint32_t)0x00000200) /* Write protection of Sector73 */
#define OB_WRP2_Pages1184to1199 ((uint32_t)0x00000400) /* Write protection of Sector74 */
#define OB_WRP2_Pages1200to1215 ((uint32_t)0x00000800) /* Write protection of Sector75 */
#define OB_WRP2_Pages1216to1231 ((uint32_t)0x00001000) /* Write protection of Sector76 */
#define OB_WRP2_Pages1232to1247 ((uint32_t)0x00002000) /* Write protection of Sector77 */
#define OB_WRP2_Pages1248to1263 ((uint32_t)0x00004000) /* Write protection of Sector78 */
#define OB_WRP2_Pages1264to1279 ((uint32_t)0x00008000) /* Write protection of Sector79 */
#define OB_WRP2_Pages1280to1295 ((uint32_t)0x00010000) /* Write protection of Sector80 */
#define OB_WRP2_Pages1296to1311 ((uint32_t)0x00020000) /* Write protection of Sector81 */
#define OB_WRP2_Pages1312to1327 ((uint32_t)0x00040000) /* Write protection of Sector82 */
#define OB_WRP2_Pages1328to1343 ((uint32_t)0x00080000) /* Write protection of Sector83 */
#define OB_WRP2_Pages1344to1359 ((uint32_t)0x00100000) /* Write protection of Sector84 */
#define OB_WRP2_Pages1360to1375 ((uint32_t)0x00200000) /* Write protection of Sector85 */
#define OB_WRP2_Pages1376to1391 ((uint32_t)0x00400000) /* Write protection of Sector86 */
#define OB_WRP2_Pages1392to1407 ((uint32_t)0x00800000) /* Write protection of Sector87 */
#define OB_WRP2_Pages1408to1423 ((uint32_t)0x01000000) /* Write protection of Sector88 */
#define OB_WRP2_Pages1424to1439 ((uint32_t)0x02000000) /* Write protection of Sector89 */
#define OB_WRP2_Pages1440to1455 ((uint32_t)0x04000000) /* Write protection of Sector90 */
#define OB_WRP2_Pages1456to1471 ((uint32_t)0x08000000) /* Write protection of Sector91 */
#define OB_WRP2_Pages1472to1487 ((uint32_t)0x10000000) /* Write protection of Sector92 */
#define OB_WRP2_Pages1488to1503 ((uint32_t)0x20000000) /* Write protection of Sector93 */
#define OB_WRP2_Pages1504to1519 ((uint32_t)0x40000000) /* Write protection of Sector94 */
#define OB_WRP2_Pages1520to1535 ((uint32_t)0x80000000) /* Write protection of Sector95 */
#define OB_WRP2_AllPages ((uint32_t)0xFFFFFFFF) /*!< Write protection of all Sectors */
#define IS_OB_WRP(PAGE) (((PAGE) != 0x0000000))
/**
* @}
*/
/** @defgroup Selection_Protection_Mode
* @{
*/
#define OB_PcROP_Enable ((uint16_t)0x0100) /*!< Disabled PcROP, nWPRi bits used for Write Protection on sector i */
#define OB_PcROP_Disable ((uint16_t)0x0000) /*!< Enable PcROP, nWPRi bits used for PCRoP Protection on sector i */
#define IS_OB_PCROP_SELECT(OB_PcROP) (((OB_PcROP) == OB_PcROP_Enable) || ((OB_PcROP) == OB_PcROP_Disable))
/**
* @}
*/
/** @defgroup Option_Bytes_Read_Protection
* @{
*/
/**
* @brief Read Protection Level
*/
#define OB_RDP_Level_0 ((uint8_t)0xAA)
#define OB_RDP_Level_1 ((uint8_t)0xBB)
/*#define OB_RDP_Level_2 ((uint8_t)0xCC)*/ /* Warning: When enabling read protection level 2
it's no more possible to go back to level 1 or 0 */
#define IS_OB_RDP(LEVEL) (((LEVEL) == OB_RDP_Level_0)||\
((LEVEL) == OB_RDP_Level_1))/*||\
((LEVEL) == OB_RDP_Level_2))*/
/**
* @}
*/
/** @defgroup Option_Bytes_IWatchdog
* @{
*/
#define OB_IWDG_SW ((uint8_t)0x10) /*!< Software WDG selected */
#define OB_IWDG_HW ((uint8_t)0x00) /*!< Hardware WDG selected */
#define IS_OB_IWDG_SOURCE(SOURCE) (((SOURCE) == OB_IWDG_SW) || ((SOURCE) == OB_IWDG_HW))
/**
* @}
*/
/** @defgroup Option_Bytes_nRST_STOP
* @{
*/
#define OB_STOP_NoRST ((uint8_t)0x20) /*!< No reset generated when entering in STOP */
#define OB_STOP_RST ((uint8_t)0x00) /*!< Reset generated when entering in STOP */
#define IS_OB_STOP_SOURCE(SOURCE) (((SOURCE) == OB_STOP_NoRST) || ((SOURCE) == OB_STOP_RST))
/**
* @}
*/
/** @defgroup Option_Bytes_nRST_STDBY
* @{
*/
#define OB_STDBY_NoRST ((uint8_t)0x40) /*!< No reset generated when entering in STANDBY */
#define OB_STDBY_RST ((uint8_t)0x00) /*!< Reset generated when entering in STANDBY */
#define IS_OB_STDBY_SOURCE(SOURCE) (((SOURCE) == OB_STDBY_NoRST) || ((SOURCE) == OB_STDBY_RST))
/**
* @}
*/
/** @defgroup Option_Bytes_BOOT
* @{
*/
#define OB_BOOT_BANK2 ((uint8_t)0x00) /*!< At startup, if boot pins are set in boot from user Flash position
and this parameter is selected the device will boot from Bank 2
or Bank 1, depending on the activation of the bank */
#define OB_BOOT_BANK1 ((uint8_t)0x80) /*!< At startup, if boot pins are set in boot from user Flash position
and this parameter is selected the device will boot from Bank1(Default) */
#define IS_OB_BOOT_BANK(BANK) (((BANK) == OB_BOOT_BANK2) || ((BANK) == OB_BOOT_BANK1))
/**
* @}
*/
/** @defgroup Option_Bytes_BOR_Level
* @{
*/
#define OB_BOR_OFF ((uint8_t)0x00) /*!< BOR is disabled at power down, the reset is asserted when the VDD
power supply reaches the PDR(Power Down Reset) threshold (1.5V) */
#define OB_BOR_LEVEL1 ((uint8_t)0x08) /*!< BOR Reset threshold levels for 1.7V - 1.8V VDD power supply */
#define OB_BOR_LEVEL2 ((uint8_t)0x09) /*!< BOR Reset threshold levels for 1.9V - 2.0V VDD power supply */
#define OB_BOR_LEVEL3 ((uint8_t)0x0A) /*!< BOR Reset threshold levels for 2.3V - 2.4V VDD power supply */
#define OB_BOR_LEVEL4 ((uint8_t)0x0B) /*!< BOR Reset threshold levels for 2.55V - 2.65V VDD power supply */
#define OB_BOR_LEVEL5 ((uint8_t)0x0C) /*!< BOR Reset threshold levels for 2.8V - 2.9V VDD power supply */
#define IS_OB_BOR_LEVEL(LEVEL) (((LEVEL) == OB_BOR_OFF) || \
((LEVEL) == OB_BOR_LEVEL1) || \
((LEVEL) == OB_BOR_LEVEL2) || \
((LEVEL) == OB_BOR_LEVEL3) || \
((LEVEL) == OB_BOR_LEVEL4) || \
((LEVEL) == OB_BOR_LEVEL5))
/**
* @}
*/
/** @defgroup FLASH_Flags
* @{
*/
#define FLASH_FLAG_BSY FLASH_SR_BSY /*!< FLASH Busy flag */
#define FLASH_FLAG_EOP FLASH_SR_EOP /*!< FLASH End of Programming flag */
#define FLASH_FLAG_ENDHV FLASH_SR_ENHV /*!< FLASH End of High Voltage flag */
#define FLASH_FLAG_READY FLASH_SR_READY /*!< FLASH Ready flag after low power mode */
#define FLASH_FLAG_WRPERR FLASH_SR_WRPERR /*!< FLASH Write protected error flag */
#define FLASH_FLAG_PGAERR FLASH_SR_PGAERR /*!< FLASH Programming Alignment error flag */
#define FLASH_FLAG_SIZERR FLASH_SR_SIZERR /*!< FLASH Size error flag */
#define FLASH_FLAG_OPTVERR FLASH_SR_OPTVERR /*!< FLASH Option Validity error flag */
#define FLASH_FLAG_OPTVERRUSR FLASH_SR_OPTVERRUSR /*!< FLASH Option User Validity error flag */
#define FLASH_FLAG_RDERR FLASH_SR_RDERR /*!< FLASH Read protected error flag
(available only in STM32L1XX_MDP devices) */
#define IS_FLASH_CLEAR_FLAG(FLAG) ((((FLAG) & (uint32_t)0xFFFFC0FD) == 0x00000000) && ((FLAG) != 0x00000000))
#define IS_FLASH_GET_FLAG(FLAG) (((FLAG) == FLASH_FLAG_BSY) || ((FLAG) == FLASH_FLAG_EOP) || \
((FLAG) == FLASH_FLAG_ENDHV) || ((FLAG) == FLASH_FLAG_READY ) || \
((FLAG) == FLASH_FLAG_WRPERR) || ((FLAG) == FLASH_FLAG_PGAERR ) || \
((FLAG) == FLASH_FLAG_SIZERR) || ((FLAG) == FLASH_FLAG_OPTVERR) || \
((FLAG) == FLASH_FLAG_OPTVERRUSR) || ((FLAG) == FLASH_FLAG_RDERR))
/**
* @}
*/
/** @defgroup FLASH_Keys
* @{
*/
#define FLASH_PDKEY1 ((uint32_t)0x04152637) /*!< Flash power down key1 */
#define FLASH_PDKEY2 ((uint32_t)0xFAFBFCFD) /*!< Flash power down key2: used with FLASH_PDKEY1
to unlock the RUN_PD bit in FLASH_ACR */
#define FLASH_PEKEY1 ((uint32_t)0x89ABCDEF) /*!< Flash program erase key1 */
#define FLASH_PEKEY2 ((uint32_t)0x02030405) /*!< Flash program erase key: used with FLASH_PEKEY2
to unlock the write access to the FLASH_PECR register and
data EEPROM */
#define FLASH_PRGKEY1 ((uint32_t)0x8C9DAEBF) /*!< Flash program memory key1 */
#define FLASH_PRGKEY2 ((uint32_t)0x13141516) /*!< Flash program memory key2: used with FLASH_PRGKEY2
to unlock the program memory */
#define FLASH_OPTKEY1 ((uint32_t)0xFBEAD9C8) /*!< Flash option key1 */
#define FLASH_OPTKEY2 ((uint32_t)0x24252627) /*!< Flash option key2: used with FLASH_OPTKEY1 to
unlock the write access to the option byte block */
/**
* @}
*/
/** @defgroup Timeout_definition
* @{
*/
#define FLASH_ER_PRG_TIMEOUT ((uint32_t)0x8000)
/**
* @}
*/
/** @defgroup CMSIS_Legacy
* @{
*/
#if defined ( __ICCARM__ )
#define InterruptType_ACTLR_DISMCYCINT_Msk IntType_ACTLR_DISMCYCINT_Msk
#endif
/**
* @}
*/
/**
* @}
*/
/* Exported macro ------------------------------------------------------------*/
/* Exported functions ------------------------------------------------------- */
/**
* @brief FLASH memory functions that can be executed from FLASH.
*/
/* FLASH Interface configuration functions ************************************/
void FLASH_SetLatency(uint32_t FLASH_Latency);
void FLASH_PrefetchBufferCmd(FunctionalState NewState);
void FLASH_ReadAccess64Cmd(FunctionalState NewState);
void FLASH_SLEEPPowerDownCmd(FunctionalState NewState);
/* FLASH Memory Programming functions *****************************************/
void FLASH_Unlock(void);
void FLASH_Lock(void);
FLASH_Status FLASH_ErasePage(uint32_t Page_Address);
FLASH_Status FLASH_FastProgramWord(uint32_t Address, uint32_t Data);
/* DATA EEPROM Programming functions ******************************************/
void DATA_EEPROM_Unlock(void);
void DATA_EEPROM_Lock(void);
void DATA_EEPROM_FixedTimeProgramCmd(FunctionalState NewState);
FLASH_Status DATA_EEPROM_EraseByte(uint32_t Address);
FLASH_Status DATA_EEPROM_EraseHalfWord(uint32_t Address);
FLASH_Status DATA_EEPROM_EraseWord(uint32_t Address);
FLASH_Status DATA_EEPROM_FastProgramByte(uint32_t Address, uint8_t Data);
FLASH_Status DATA_EEPROM_FastProgramHalfWord(uint32_t Address, uint16_t Data);
FLASH_Status DATA_EEPROM_FastProgramWord(uint32_t Address, uint32_t Data);
FLASH_Status DATA_EEPROM_ProgramByte(uint32_t Address, uint8_t Data);
FLASH_Status DATA_EEPROM_ProgramHalfWord(uint32_t Address, uint16_t Data);
FLASH_Status DATA_EEPROM_ProgramWord(uint32_t Address, uint32_t Data);
/* Option Bytes Programming functions *****************************************/
void FLASH_OB_Unlock(void);
void FLASH_OB_Lock(void);
void FLASH_OB_Launch(void);
FLASH_Status FLASH_OB_WRPConfig(uint32_t OB_WRP, FunctionalState NewState);
FLASH_Status FLASH_OB_WRP1Config(uint32_t OB_WRP1, FunctionalState NewState);
FLASH_Status FLASH_OB_WRP2Config(uint32_t OB_WRP2, FunctionalState NewState);
FLASH_Status FLASH_OB_RDPConfig(uint8_t OB_RDP);
FLASH_Status FLASH_OB_PCROPConfig(uint32_t OB_WRP, FunctionalState NewState);
FLASH_Status FLASH_OB_PCROP1Config(uint32_t OB_WRP1, FunctionalState NewState);
FLASH_Status FLASH_OB_PCROPSelectionConfig(uint16_t OB_PcROP);
FLASH_Status FLASH_OB_UserConfig(uint8_t OB_IWDG, uint8_t OB_STOP, uint8_t OB_STDBY);
FLASH_Status FLASH_OB_BORConfig(uint8_t OB_BOR);
FLASH_Status FLASH_OB_BootConfig(uint8_t OB_BOOT);
uint8_t FLASH_OB_GetUser(void);
uint32_t FLASH_OB_GetWRP(void);
uint32_t FLASH_OB_GetWRP1(void);
uint32_t FLASH_OB_GetWRP2(void);
FlagStatus FLASH_OB_GetRDP(void);
FlagStatus FLASH_OB_GetSPRMOD(void);
uint8_t FLASH_OB_GetBOR(void);
/* Interrupts and flags management functions **********************************/
void FLASH_ITConfig(uint32_t FLASH_IT, FunctionalState NewState);
FlagStatus FLASH_GetFlagStatus(uint32_t FLASH_FLAG);
void FLASH_ClearFlag(uint32_t FLASH_FLAG);
FLASH_Status FLASH_GetStatus(void);
FLASH_Status FLASH_WaitForLastOperation(uint32_t Timeout);
/**
* @brief FLASH memory functions that should be executed from internal SRAM.
* These functions are defined inside the "stm32l1xx_flash_ramfunc.c"
* file.
*/
__RAM_FUNC FLASH_RUNPowerDownCmd(FunctionalState NewState);
__RAM_FUNC FLASH_EraseParallelPage(uint32_t Page_Address1, uint32_t Page_Address2);
__RAM_FUNC FLASH_ProgramHalfPage(uint32_t Address, uint32_t* pBuffer);
__RAM_FUNC FLASH_ProgramParallelHalfPage(uint32_t Address1, uint32_t* pBuffer1, uint32_t Address2, uint32_t* pBuffer2);
__RAM_FUNC DATA_EEPROM_EraseDoubleWord(uint32_t Address);
__RAM_FUNC DATA_EEPROM_ProgramDoubleWord(uint32_t Address, uint64_t Data);
#ifdef __cplusplus
}
#endif
#endif /* __STM32L1xx_FLASH_H */
/**
* @}
*/
/**
* @}
*/
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/

View File

@ -0,0 +1,553 @@
/**
******************************************************************************
* @file stm32l1xx_flash_ramfunc.c
* @author MCD Application Team
* @version V1.2.0
* @date 22-February-2013
* @brief This file provides all the Flash firmware functions which should be
* executed from the internal SRAM. This file should be placed in
* internal SRAM.
* Other FLASH memory functions that can be used from the FLASH are
* defined in the "stm32l1xx_flash.c" file.
@verbatim
*** ARM Compiler ***
--------------------
[..] RAM functions are defined using the toolchain options.
Functions that are be executed in RAM should reside in a separate
source module. Using the 'Options for File' dialog you can simply change
the 'Code / Const' area of a module to a memory space in physical RAM.
Available memory areas are declared in the 'Target' tab of the
Options for Target' dialog.
*** ICCARM Compiler ***
-----------------------
[..] RAM functions are defined using a specific toolchain keyword "__ramfunc".
*** GNU Compiler ***
--------------------
[..] RAM functions are defined using a specific toolchain attribute
"__attribute__((section(".data")))".
*** TASKING Compiler ***
------------------------
[..] RAM functions are defined using a specific toolchain pragma. This
pragma is defined inside this file.
@endverbatim
*
******************************************************************************
* @attention
*
* <h2><center>&copy; COPYRIGHT 2013 STMicroelectronics</center></h2>
*
* Licensed under MCD-ST Liberty SW License Agreement V2, (the "License");
* You may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.st.com/software_license_agreement_liberty_v2
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "stm32l1xx_flash.h"
/** @addtogroup STM32L1xx_StdPeriph_Driver
* @{
*/
/** @defgroup FLASH
* @brief FLASH driver modules
* @{
*/
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private function prototypes -----------------------------------------------*/
static __RAM_FUNC GetStatus(void);
static __RAM_FUNC WaitForLastOperation(uint32_t Timeout);
/* Private functions ---------------------------------------------------------*/
/** @defgroup FLASH_Private_Functions
* @{
*/
/** @addtogroup FLASH_Group1
*
@verbatim
@endverbatim
* @{
*/
#if defined ( __TASKING__ )
#pragma section_code_init on
#endif
/**
* @brief Enable or disable the power down mode during RUN mode.
* @note This function can be used only when the user code is running from Internal SRAM.
* @param NewState: new state of the power down mode during RUN mode.
* This parameter can be: ENABLE or DISABLE.
* @retval None
*/
__RAM_FUNC FLASH_RUNPowerDownCmd(FunctionalState NewState)
{
FLASH_Status status = FLASH_COMPLETE;
if (NewState != DISABLE)
{
/* Unlock the RUN_PD bit */
FLASH->PDKEYR = FLASH_PDKEY1;
FLASH->PDKEYR = FLASH_PDKEY2;
/* Set the RUN_PD bit in FLASH_ACR register to put Flash in power down mode */
FLASH->ACR |= (uint32_t)FLASH_ACR_RUN_PD;
if((FLASH->ACR & FLASH_ACR_RUN_PD) != FLASH_ACR_RUN_PD)
{
status = FLASH_ERROR_PROGRAM;
}
}
else
{
/* Clear the RUN_PD bit in FLASH_ACR register to put Flash in idle mode */
FLASH->ACR &= (uint32_t)(~(uint32_t)FLASH_ACR_RUN_PD);
}
/* Return the Write Status */
return status;
}
/**
* @}
*/
/** @addtogroup FLASH_Group2
*
@verbatim
@endverbatim
* @{
*/
/**
* @brief Erases a specified 2 page in program memory in parallel.
* @note This function can be used only for STM32L1XX_HD density devices.
* To correctly run this function, the FLASH_Unlock() function
* must be called before.
* Call the FLASH_Lock() to disable the flash memory access
* (recommended to protect the FLASH memory against possible unwanted operation).
* @param Page_Address1: The page address in program memory to be erased in
* the first Bank (BANK1). This parameter should be between 0x08000000
* and 0x0802FF00.
* @param Page_Address2: The page address in program memory to be erased in
* the second Bank (BANK2). This parameter should be between 0x08030000
* and 0x0805FF00.
* @note A Page is erased in the Program memory only if the address to load
* is the start address of a page (multiple of 256 bytes).
* @retval FLASH Status: The returned value can be:
* FLASH_ERROR_PROGRAM, FLASH_ERROR_WRP, FLASH_COMPLETE or FLASH_TIMEOUT.
*/
FLASH_Status FLASH_EraseParallelPage(uint32_t Page_Address1, uint32_t Page_Address2)
{
FLASH_Status status = FLASH_COMPLETE;
/* Wait for last operation to be completed */
status = WaitForLastOperation(FLASH_ER_PRG_TIMEOUT);
if(status == FLASH_COMPLETE)
{
/* If the previous operation is completed, proceed to erase the page */
/* Set the PARALLBANK bit */
FLASH->PECR |= FLASH_PECR_PARALLBANK;
/* Set the ERASE bit */
FLASH->PECR |= FLASH_PECR_ERASE;
/* Set PROG bit */
FLASH->PECR |= FLASH_PECR_PROG;
/* Write 00000000h to the first word of the first program page to erase */
*(__IO uint32_t *)Page_Address1 = 0x00000000;
/* Write 00000000h to the first word of the second program page to erase */
*(__IO uint32_t *)Page_Address2 = 0x00000000;
/* Wait for last operation to be completed */
status = WaitForLastOperation(FLASH_ER_PRG_TIMEOUT);
/* If the erase operation is completed, disable the ERASE, PROG and PARALLBANK bits */
FLASH->PECR &= (uint32_t)(~FLASH_PECR_PROG);
FLASH->PECR &= (uint32_t)(~FLASH_PECR_ERASE);
FLASH->PECR &= (uint32_t)(~FLASH_PECR_PARALLBANK);
}
/* Return the Erase Status */
return status;
}
/**
* @brief Programs a half page in program memory.
* @param Address: specifies the address to be written.
* @param pBuffer: pointer to the buffer containing the data to be written to
* the half page.
* @note To correctly run this function, the FLASH_Unlock() function
* must be called before.
* Call the FLASH_Lock() to disable the flash memory access
* (recommended to protect the FLASH memory against possible unwanted operation)
* @note Half page write is possible only from SRAM.
* @note If there are more than 32 words to write, after 32 words another
* Half Page programming operation starts and has to be finished.
* @note A half page is written to the program memory only if the first
* address to load is the start address of a half page (multiple of 128
* bytes) and the 31 remaining words to load are in the same half page.
* @note During the Program memory half page write all read operations are
* forbidden (this includes DMA read operations and debugger read
* operations such as breakpoints, periodic updates, etc.).
* @note If a PGAERR is set during a Program memory half page write, the
* complete write operation is aborted. Software should then reset the
* FPRG and PROG/DATA bits and restart the write operation from the
* beginning.
* @retval FLASH Status: The returned value can be:
* FLASH_ERROR_PROGRAM, FLASH_ERROR_WRP, FLASH_COMPLETE or FLASH_TIMEOUT.
*/
__RAM_FUNC FLASH_ProgramHalfPage(uint32_t Address, uint32_t* pBuffer)
{
uint32_t count = 0;
FLASH_Status status = FLASH_COMPLETE;
/* Set the DISMCYCINT[0] bit in the Auxillary Control Register (0xE000E008)
This bit prevents the interruption of multicycle instructions and therefore
will increase the interrupt latency. of Cortex-M3. */
SCnSCB->ACTLR |= SCnSCB_ACTLR_DISMCYCINT_Msk;
/* Wait for last operation to be completed */
status = WaitForLastOperation(FLASH_ER_PRG_TIMEOUT);
if(status == FLASH_COMPLETE)
{
/* if the previous operation is completed, proceed to program the new
half page */
FLASH->PECR |= FLASH_PECR_FPRG;
FLASH->PECR |= FLASH_PECR_PROG;
/* Write one half page directly with 32 different words */
while(count < 32)
{
*(__IO uint32_t*) (Address + (4 * count)) = *(pBuffer++);
count ++;
}
/* Wait for last operation to be completed */
status = WaitForLastOperation(FLASH_ER_PRG_TIMEOUT);
/* if the write operation is completed, disable the PROG and FPRG bits */
FLASH->PECR &= (uint32_t)(~FLASH_PECR_PROG);
FLASH->PECR &= (uint32_t)(~FLASH_PECR_FPRG);
}
SCnSCB->ACTLR &= ~SCnSCB_ACTLR_DISMCYCINT_Msk;
/* Return the Write Status */
return status;
}
/**
* @brief Programs 2 half page in program memory in parallel.
* @param Address1: specifies the first address to be written in the first bank
* (BANK1). This parameter should be between 0x08000000 and 0x0802FF80.
* @param pBuffer1: pointer to the buffer containing the data to be written
* to the first half page in the first bank.
* @param Address2: specifies the second address to be written in the second bank
* (BANK2). This parameter should be between 0x08030000 and 0x0805FF80.
* @param pBuffer2: pointer to the buffer containing the data to be written
* to the second half page in the second bank.
* @note This function can be used only for STM32L1XX_HD density devices.
* @note To correctly run this function, the FLASH_Unlock() function
* must be called before.
* Call the FLASH_Lock() to disable the flash memory access
* (recommended to protect the FLASH memory against possible unwanted operation).
* @note Half page write is possible only from SRAM.
* @note If there are more than 32 words to write, after 32 words another
* Half Page programming operation starts and has to be finished.
* @note A half page is written to the program memory only if the first
* address to load is the start address of a half page (multiple of 128
* bytes) and the 31 remaining words to load are in the same half page.
* @note During the Program memory half page write all read operations are
* forbidden (this includes DMA read operations and debugger read
* operations such as breakpoints, periodic updates, etc.).
* @note If a PGAERR is set during a Program memory half page write, the
* complete write operation is aborted. Software should then reset the
* FPRG and PROG/DATA bits and restart the write operation from the
* beginning.
* @retval FLASH Status: The returned value can be:
* FLASH_ERROR_PROGRAM, FLASH_ERROR_WRP, FLASH_COMPLETE or FLASH_TIMEOUT.
*/
__RAM_FUNC FLASH_ProgramParallelHalfPage(uint32_t Address1, uint32_t* pBuffer1, uint32_t Address2, uint32_t* pBuffer2)
{
uint32_t count = 0;
FLASH_Status status = FLASH_COMPLETE;
/* Set the DISMCYCINT[0] bit in the Auxillary Control Register (0xE000E008)
This bit prevents the interruption of multicycle instructions and therefore
will increase the interrupt latency. of Cortex-M3. */
SCnSCB->ACTLR |= SCnSCB_ACTLR_DISMCYCINT_Msk;
/* Wait for last operation to be completed */
status = WaitForLastOperation(FLASH_ER_PRG_TIMEOUT);
if(status == FLASH_COMPLETE)
{
/* If the previous operation is completed, proceed to program the new
half page */
FLASH->PECR |= FLASH_PECR_PARALLBANK;
FLASH->PECR |= FLASH_PECR_FPRG;
FLASH->PECR |= FLASH_PECR_PROG;
/* Write the first half page directly with 32 different words */
while(count < 32)
{
*(__IO uint32_t*) (Address1 + (4 * count)) = *(pBuffer1++);
count ++;
}
count = 0;
/* Write the second half page directly with 32 different words */
while(count < 32)
{
*(__IO uint32_t*) (Address2 + (4 * count)) = *(pBuffer2++);
count ++;
}
/* Wait for last operation to be completed */
status = WaitForLastOperation(FLASH_ER_PRG_TIMEOUT);
/* if the write operation is completed, disable the PROG, FPRG and PARALLBANK bits */
FLASH->PECR &= (uint32_t)(~FLASH_PECR_PROG);
FLASH->PECR &= (uint32_t)(~FLASH_PECR_FPRG);
FLASH->PECR &= (uint32_t)(~FLASH_PECR_PARALLBANK);
}
SCnSCB->ACTLR &= ~SCnSCB_ACTLR_DISMCYCINT_Msk;
/* Return the Write Status */
return status;
}
/**
* @}
*/
/** @addtogroup FLASH_Group3
*
@verbatim
@endverbatim
* @{
*/
/**
* @brief Erase a double word in data memory.
* @param Address: specifies the address to be erased.
* @note To correctly run this function, the DATA_EEPROM_Unlock() function
* must be called before.
* Call the DATA_EEPROM_Lock() to he data EEPROM access
* and Flash program erase control register access(recommended to protect
* the DATA_EEPROM against possible unwanted operation).
* @note Data memory double word erase is possible only from SRAM.
* @note A double word is erased to the data memory only if the first address
* to load is the start address of a double word (multiple of 8 bytes).
* @note During the Data memory double word erase, all read operations are
* forbidden (this includes DMA read operations and debugger read
* operations such as breakpoints, periodic updates, etc.).
* @retval FLASH Status: The returned value can be:
* FLASH_ERROR_PROGRAM, FLASH_ERROR_WRP, FLASH_COMPLETE or FLASH_TIMEOUT.
*/
__RAM_FUNC DATA_EEPROM_EraseDoubleWord(uint32_t Address)
{
FLASH_Status status = FLASH_COMPLETE;
/* Set the DISMCYCINT[0] bit in the Auxillary Control Register (0xE000E008)
This bit prevents the interruption of multicycle instructions and therefore
will increase the interrupt latency. of Cortex-M3. */
SCnSCB->ACTLR |= SCnSCB_ACTLR_DISMCYCINT_Msk;
/* Wait for last operation to be completed */
status = WaitForLastOperation(FLASH_ER_PRG_TIMEOUT);
if(status == FLASH_COMPLETE)
{
/* If the previous operation is completed, proceed to erase the next double word */
/* Set the ERASE bit */
FLASH->PECR |= FLASH_PECR_ERASE;
/* Set DATA bit */
FLASH->PECR |= FLASH_PECR_DATA;
/* Write 00000000h to the 2 words to erase */
*(__IO uint32_t *)Address = 0x00000000;
Address += 4;
*(__IO uint32_t *)Address = 0x00000000;
/* Wait for last operation to be completed */
status = WaitForLastOperation(FLASH_ER_PRG_TIMEOUT);
/* If the erase operation is completed, disable the ERASE and DATA bits */
FLASH->PECR &= (uint32_t)(~FLASH_PECR_ERASE);
FLASH->PECR &= (uint32_t)(~FLASH_PECR_DATA);
}
SCnSCB->ACTLR &= ~SCnSCB_ACTLR_DISMCYCINT_Msk;
/* Return the erase status */
return status;
}
/**
* @brief Write a double word in data memory without erase.
* @param Address: specifies the address to be written.
* @param Data: specifies the data to be written.
* @note To correctly run this function, the DATA_EEPROM_Unlock() function
* must be called before.
* Call the DATA_EEPROM_Lock() to he data EEPROM access
* and Flash program erase control register access(recommended to protect
* the DATA_EEPROM against possible unwanted operation).
* @note Data memory double word write is possible only from SRAM.
* @note A data memory double word is written to the data memory only if the
* first address to load is the start address of a double word (multiple
* of double word).
* @note During the Data memory double word write, all read operations are
* forbidden (this includes DMA read operations and debugger read
* operations such as breakpoints, periodic updates, etc.).
* @retval FLASH Status: The returned value can be:
* FLASH_ERROR_PROGRAM, FLASH_ERROR_WRP, FLASH_COMPLETE or FLASH_TIMEOUT.
*/
__RAM_FUNC DATA_EEPROM_ProgramDoubleWord(uint32_t Address, uint64_t Data)
{
FLASH_Status status = FLASH_COMPLETE;
/* Set the DISMCYCINT[0] bit in the Auxillary Control Register (0xE000E008)
This bit prevents the interruption of multicycle instructions and therefore
will increase the interrupt latency. of Cortex-M3. */
SCnSCB->ACTLR |= SCnSCB_ACTLR_DISMCYCINT_Msk;
/* Wait for last operation to be completed */
status = WaitForLastOperation(FLASH_ER_PRG_TIMEOUT);
if(status == FLASH_COMPLETE)
{
/* If the previous operation is completed, proceed to program the new data*/
FLASH->PECR |= FLASH_PECR_FPRG;
FLASH->PECR |= FLASH_PECR_DATA;
/* Write the 2 words */
*(__IO uint32_t *)Address = (uint32_t) Data;
Address += 4;
*(__IO uint32_t *)Address = (uint32_t) (Data >> 32);
/* Wait for last operation to be completed */
status = WaitForLastOperation(FLASH_ER_PRG_TIMEOUT);
/* If the write operation is completed, disable the FPRG and DATA bits */
FLASH->PECR &= (uint32_t)(~FLASH_PECR_FPRG);
FLASH->PECR &= (uint32_t)(~FLASH_PECR_DATA);
}
SCnSCB->ACTLR &= ~SCnSCB_ACTLR_DISMCYCINT_Msk;
/* Return the Write Status */
return status;
}
/**
* @}
*/
/**
* @brief Returns the FLASH Status.
* @param None
* @retval FLASH Status: The returned value can be: FLASH_BUSY,
* FLASH_ERROR_PROGRAM, FLASH_ERROR_WRP or FLASH_COMPLETE
*/
static __RAM_FUNC GetStatus(void)
{
FLASH_Status FLASHstatus = FLASH_COMPLETE;
if((FLASH->SR & FLASH_FLAG_BSY) == FLASH_FLAG_BSY)
{
FLASHstatus = FLASH_BUSY;
}
else
{
if((FLASH->SR & (uint32_t)FLASH_FLAG_WRPERR)!= (uint32_t)0x00)
{
FLASHstatus = FLASH_ERROR_WRP;
}
else
{
if((FLASH->SR & (uint32_t)0x1E00) != (uint32_t)0x00)
{
FLASHstatus = FLASH_ERROR_PROGRAM;
}
else
{
FLASHstatus = FLASH_COMPLETE;
}
}
}
/* Return the FLASH Status */
return FLASHstatus;
}
/**
* @brief Waits for a FLASH operation to complete or a TIMEOUT to occur.
* @param Timeout: FLASH programming Timeout
* @retval FLASH Status: The returned value can be: FLASH_BUSY,
* FLASH_ERROR_PROGRAM, FLASH_ERROR_WRP, FLASH_COMPLETE or
* FLASH_TIMEOUT.
*/
static __RAM_FUNC WaitForLastOperation(uint32_t Timeout)
{
__IO FLASH_Status status = FLASH_COMPLETE;
/* Check for the FLASH Status */
status = GetStatus();
/* Wait for a FLASH operation to complete or a TIMEOUT to occur */
while((status == FLASH_BUSY) && (Timeout != 0x00))
{
status = GetStatus();
Timeout--;
}
if(Timeout == 0x00 )
{
status = FLASH_TIMEOUT;
}
/* Return the operation status */
return status;
}
#if defined ( __TASKING__ )
#pragma section_code_init restore
#endif
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/

View File

@ -0,0 +1,285 @@
/**
******************************************************************************
* @file stm32l1xx_fsmc.c
* @author MCD Application Team
* @version V1.2.0
* @date 22-February-2013
* @brief This file provides firmware functions to manage the following
* functionalities of the FSMC peripheral:
* + Initialization
* + Interrupts and flags management
*
******************************************************************************
* @attention
*
* <h2><center>&copy; COPYRIGHT 2013 STMicroelectronics</center></h2>
*
* Licensed under MCD-ST Liberty SW License Agreement V2, (the "License");
* You may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.st.com/software_license_agreement_liberty_v2
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "stm32l1xx_fsmc.h"
#include "stm32l1xx_rcc.h"
/** @addtogroup STM32L1xx_StdPeriph_Driver
* @{
*/
/** @defgroup FSMC
* @brief FSMC driver modules
* @{
*/
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private function prototypes -----------------------------------------------*/
/* Private functions ---------------------------------------------------------*/
/** @defgroup FSMC_Private_Functions
* @{
*/
/** @defgroup FSMC_Group1 NOR/SRAM Controller functions
* @brief NOR/SRAM Controller functions
*
@verbatim
==============================================================================
##### NOR-SRAM Controller functions #####
==============================================================================
[..] The following sequence should be followed to configure the FSMC to
interface with SRAM, PSRAM, NOR or OneNAND memory connected to the
NOR/SRAM Bank:
(#) Enable the clock for the FSMC and associated GPIOs using the following
functions:
(++)RCC_AHBPeriphClockCmd(RCC_AHBPeriph_FSMC, ENABLE);
(++)RCC_AHBPeriphClockCmd(RCC_AHBPeriph_GPIOx, ENABLE);
(#) FSMC pins configuration
(++) Connect the involved FSMC pins to AF12 using the following function
GPIO_PinAFConfig(GPIOx, GPIO_PinSourcex, GPIO_AF_FSMC);
(++) Configure these FSMC pins in alternate function mode by calling the
function GPIO_Init();
(#) Declare a FSMC_NORSRAMInitTypeDef structure, for example:
FSMC_NORSRAMInitTypeDef FSMC_NORSRAMInitStructure; and fill the
FSMC_NORSRAMInitStructure variable with the allowed values of the
structure member.
(#) Initialize the NOR/SRAM Controller by calling the function
FSMC_NORSRAMInit(&FSMC_NORSRAMInitStructure);
(#) Then enable the NOR/SRAM Bank, for example:
FSMC_NORSRAMCmd(FSMC_Bank1_NORSRAM2, ENABLE);
(#) At this stage you can read/write from/to the memory connected to the
NOR/SRAM Bank.
@endverbatim
* @{
*/
/**
* @brief Deinitializes the FSMC NOR/SRAM Banks registers to their default
* reset values.
* @param FSMC_Bank: specifies the FSMC Bank to be used
* This parameter can be one of the following values:
* @arg FSMC_Bank1_NORSRAM1: FSMC Bank1 NOR/SRAM1
* @arg FSMC_Bank1_NORSRAM2: FSMC Bank1 NOR/SRAM2
* @arg FSMC_Bank1_NORSRAM3: FSMC Bank1 NOR/SRAM3
* @arg FSMC_Bank1_NORSRAM4: FSMC Bank1 NOR/SRAM4
* @retval None
*/
void FSMC_NORSRAMDeInit(uint32_t FSMC_Bank)
{
/* Check the parameter */
assert_param(IS_FSMC_NORSRAM_BANK(FSMC_Bank));
/* FSMC_Bank1_NORSRAM1 */
if(FSMC_Bank == FSMC_Bank1_NORSRAM1)
{
FSMC_Bank1->BTCR[FSMC_Bank] = 0x000030DB;
}
/* FSMC_Bank1_NORSRAM2, FSMC_Bank1_NORSRAM3 or FSMC_Bank1_NORSRAM4 */
else
{
FSMC_Bank1->BTCR[FSMC_Bank] = 0x000030D2;
}
FSMC_Bank1->BTCR[FSMC_Bank + 1] = 0x0FFFFFFF;
FSMC_Bank1E->BWTR[FSMC_Bank] = 0x0FFFFFFF;
}
/**
* @brief Initializes the FSMC NOR/SRAM Banks according to the specified
* parameters in the FSMC_NORSRAMInitStruct.
* @param FSMC_NORSRAMInitStruct : pointer to a FSMC_NORSRAMInitTypeDef
* structure that contains the configuration information for
* the FSMC NOR/SRAM specified Banks.
* @retval None
*/
void FSMC_NORSRAMInit(FSMC_NORSRAMInitTypeDef* FSMC_NORSRAMInitStruct)
{
/* Check the parameters */
assert_param(IS_FSMC_NORSRAM_BANK(FSMC_NORSRAMInitStruct->FSMC_Bank));
assert_param(IS_FSMC_MUX(FSMC_NORSRAMInitStruct->FSMC_DataAddressMux));
assert_param(IS_FSMC_MEMORY(FSMC_NORSRAMInitStruct->FSMC_MemoryType));
assert_param(IS_FSMC_MEMORY_WIDTH(FSMC_NORSRAMInitStruct->FSMC_MemoryDataWidth));
assert_param(IS_FSMC_BURSTMODE(FSMC_NORSRAMInitStruct->FSMC_BurstAccessMode));
assert_param(IS_FSMC_ASYNWAIT(FSMC_NORSRAMInitStruct->FSMC_AsynchronousWait));
assert_param(IS_FSMC_WAIT_POLARITY(FSMC_NORSRAMInitStruct->FSMC_WaitSignalPolarity));
assert_param(IS_FSMC_WRAP_MODE(FSMC_NORSRAMInitStruct->FSMC_WrapMode));
assert_param(IS_FSMC_WAIT_SIGNAL_ACTIVE(FSMC_NORSRAMInitStruct->FSMC_WaitSignalActive));
assert_param(IS_FSMC_WRITE_OPERATION(FSMC_NORSRAMInitStruct->FSMC_WriteOperation));
assert_param(IS_FSMC_WAITE_SIGNAL(FSMC_NORSRAMInitStruct->FSMC_WaitSignal));
assert_param(IS_FSMC_EXTENDED_MODE(FSMC_NORSRAMInitStruct->FSMC_ExtendedMode));
assert_param(IS_FSMC_WRITE_BURST(FSMC_NORSRAMInitStruct->FSMC_WriteBurst));
assert_param(IS_FSMC_ADDRESS_SETUP_TIME(FSMC_NORSRAMInitStruct->FSMC_ReadWriteTimingStruct->FSMC_AddressSetupTime));
assert_param(IS_FSMC_ADDRESS_HOLD_TIME(FSMC_NORSRAMInitStruct->FSMC_ReadWriteTimingStruct->FSMC_AddressHoldTime));
assert_param(IS_FSMC_DATASETUP_TIME(FSMC_NORSRAMInitStruct->FSMC_ReadWriteTimingStruct->FSMC_DataSetupTime));
assert_param(IS_FSMC_TURNAROUND_TIME(FSMC_NORSRAMInitStruct->FSMC_ReadWriteTimingStruct->FSMC_BusTurnAroundDuration));
assert_param(IS_FSMC_CLK_DIV(FSMC_NORSRAMInitStruct->FSMC_ReadWriteTimingStruct->FSMC_CLKDivision));
assert_param(IS_FSMC_DATA_LATENCY(FSMC_NORSRAMInitStruct->FSMC_ReadWriteTimingStruct->FSMC_DataLatency));
assert_param(IS_FSMC_ACCESS_MODE(FSMC_NORSRAMInitStruct->FSMC_ReadWriteTimingStruct->FSMC_AccessMode));
/* Bank1 NOR/SRAM control register configuration */
FSMC_Bank1->BTCR[FSMC_NORSRAMInitStruct->FSMC_Bank] =
(uint32_t)FSMC_NORSRAMInitStruct->FSMC_DataAddressMux |
FSMC_NORSRAMInitStruct->FSMC_MemoryType |
FSMC_NORSRAMInitStruct->FSMC_MemoryDataWidth |
FSMC_NORSRAMInitStruct->FSMC_BurstAccessMode |
FSMC_NORSRAMInitStruct->FSMC_AsynchronousWait |
FSMC_NORSRAMInitStruct->FSMC_WaitSignalPolarity |
FSMC_NORSRAMInitStruct->FSMC_WrapMode |
FSMC_NORSRAMInitStruct->FSMC_WaitSignalActive |
FSMC_NORSRAMInitStruct->FSMC_WriteOperation |
FSMC_NORSRAMInitStruct->FSMC_WaitSignal |
FSMC_NORSRAMInitStruct->FSMC_ExtendedMode |
FSMC_NORSRAMInitStruct->FSMC_WriteBurst;
if(FSMC_NORSRAMInitStruct->FSMC_MemoryType == FSMC_MemoryType_NOR)
{
FSMC_Bank1->BTCR[FSMC_NORSRAMInitStruct->FSMC_Bank] |= (uint32_t)FSMC_BCR1_FACCEN;
}
/* Bank1 NOR/SRAM timing register configuration */
FSMC_Bank1->BTCR[FSMC_NORSRAMInitStruct->FSMC_Bank+1] =
(uint32_t)FSMC_NORSRAMInitStruct->FSMC_ReadWriteTimingStruct->FSMC_AddressSetupTime |
(FSMC_NORSRAMInitStruct->FSMC_ReadWriteTimingStruct->FSMC_AddressHoldTime << 4) |
(FSMC_NORSRAMInitStruct->FSMC_ReadWriteTimingStruct->FSMC_DataSetupTime << 8) |
(FSMC_NORSRAMInitStruct->FSMC_ReadWriteTimingStruct->FSMC_BusTurnAroundDuration << 16) |
(FSMC_NORSRAMInitStruct->FSMC_ReadWriteTimingStruct->FSMC_CLKDivision << 20) |
(FSMC_NORSRAMInitStruct->FSMC_ReadWriteTimingStruct->FSMC_DataLatency << 24) |
FSMC_NORSRAMInitStruct->FSMC_ReadWriteTimingStruct->FSMC_AccessMode;
/* Bank1 NOR/SRAM timing register for write configuration, if extended mode is used */
if(FSMC_NORSRAMInitStruct->FSMC_ExtendedMode == FSMC_ExtendedMode_Enable)
{
assert_param(IS_FSMC_ADDRESS_SETUP_TIME(FSMC_NORSRAMInitStruct->FSMC_WriteTimingStruct->FSMC_AddressSetupTime));
assert_param(IS_FSMC_ADDRESS_HOLD_TIME(FSMC_NORSRAMInitStruct->FSMC_WriteTimingStruct->FSMC_AddressHoldTime));
assert_param(IS_FSMC_DATASETUP_TIME(FSMC_NORSRAMInitStruct->FSMC_WriteTimingStruct->FSMC_DataSetupTime));
assert_param(IS_FSMC_CLK_DIV(FSMC_NORSRAMInitStruct->FSMC_WriteTimingStruct->FSMC_CLKDivision));
assert_param(IS_FSMC_DATA_LATENCY(FSMC_NORSRAMInitStruct->FSMC_WriteTimingStruct->FSMC_DataLatency));
assert_param(IS_FSMC_ACCESS_MODE(FSMC_NORSRAMInitStruct->FSMC_WriteTimingStruct->FSMC_AccessMode));
FSMC_Bank1E->BWTR[FSMC_NORSRAMInitStruct->FSMC_Bank] =
(uint32_t)FSMC_NORSRAMInitStruct->FSMC_WriteTimingStruct->FSMC_AddressSetupTime |
(FSMC_NORSRAMInitStruct->FSMC_WriteTimingStruct->FSMC_AddressHoldTime << 4 )|
(FSMC_NORSRAMInitStruct->FSMC_WriteTimingStruct->FSMC_DataSetupTime << 8) |
(FSMC_NORSRAMInitStruct->FSMC_WriteTimingStruct->FSMC_CLKDivision << 20) |
(FSMC_NORSRAMInitStruct->FSMC_WriteTimingStruct->FSMC_DataLatency << 24) |
FSMC_NORSRAMInitStruct->FSMC_WriteTimingStruct->FSMC_AccessMode;
}
else
{
FSMC_Bank1E->BWTR[FSMC_NORSRAMInitStruct->FSMC_Bank] = 0x0FFFFFFF;
}
}
/**
* @brief Fills each FSMC_NORSRAMInitStruct member with its default value.
* @param FSMC_NORSRAMInitStruct: pointer to a FSMC_NORSRAMInitTypeDef
* structure which will be initialized.
* @retval None
*/
void FSMC_NORSRAMStructInit(FSMC_NORSRAMInitTypeDef* FSMC_NORSRAMInitStruct)
{
/* Reset NOR/SRAM Init structure parameters values */
FSMC_NORSRAMInitStruct->FSMC_Bank = FSMC_Bank1_NORSRAM1;
FSMC_NORSRAMInitStruct->FSMC_DataAddressMux = FSMC_DataAddressMux_Enable;
FSMC_NORSRAMInitStruct->FSMC_MemoryType = FSMC_MemoryType_SRAM;
FSMC_NORSRAMInitStruct->FSMC_MemoryDataWidth = FSMC_MemoryDataWidth_8b;
FSMC_NORSRAMInitStruct->FSMC_BurstAccessMode = FSMC_BurstAccessMode_Disable;
FSMC_NORSRAMInitStruct->FSMC_AsynchronousWait = FSMC_AsynchronousWait_Disable;
FSMC_NORSRAMInitStruct->FSMC_WaitSignalPolarity = FSMC_WaitSignalPolarity_Low;
FSMC_NORSRAMInitStruct->FSMC_WrapMode = FSMC_WrapMode_Disable;
FSMC_NORSRAMInitStruct->FSMC_WaitSignalActive = FSMC_WaitSignalActive_BeforeWaitState;
FSMC_NORSRAMInitStruct->FSMC_WriteOperation = FSMC_WriteOperation_Enable;
FSMC_NORSRAMInitStruct->FSMC_WaitSignal = FSMC_WaitSignal_Enable;
FSMC_NORSRAMInitStruct->FSMC_ExtendedMode = FSMC_ExtendedMode_Disable;
FSMC_NORSRAMInitStruct->FSMC_WriteBurst = FSMC_WriteBurst_Disable;
FSMC_NORSRAMInitStruct->FSMC_ReadWriteTimingStruct->FSMC_AddressSetupTime = 0xF;
FSMC_NORSRAMInitStruct->FSMC_ReadWriteTimingStruct->FSMC_AddressHoldTime = 0xF;
FSMC_NORSRAMInitStruct->FSMC_ReadWriteTimingStruct->FSMC_DataSetupTime = 0xFF;
FSMC_NORSRAMInitStruct->FSMC_ReadWriteTimingStruct->FSMC_BusTurnAroundDuration = 0xF;
FSMC_NORSRAMInitStruct->FSMC_ReadWriteTimingStruct->FSMC_CLKDivision = 0xF;
FSMC_NORSRAMInitStruct->FSMC_ReadWriteTimingStruct->FSMC_DataLatency = 0xF;
FSMC_NORSRAMInitStruct->FSMC_ReadWriteTimingStruct->FSMC_AccessMode = FSMC_AccessMode_A;
FSMC_NORSRAMInitStruct->FSMC_WriteTimingStruct->FSMC_AddressSetupTime = 0xF;
FSMC_NORSRAMInitStruct->FSMC_WriteTimingStruct->FSMC_AddressHoldTime = 0xF;
FSMC_NORSRAMInitStruct->FSMC_WriteTimingStruct->FSMC_DataSetupTime = 0xFF;
FSMC_NORSRAMInitStruct->FSMC_WriteTimingStruct->FSMC_BusTurnAroundDuration = 0xF;
FSMC_NORSRAMInitStruct->FSMC_WriteTimingStruct->FSMC_CLKDivision = 0xF;
FSMC_NORSRAMInitStruct->FSMC_WriteTimingStruct->FSMC_DataLatency = 0xF;
FSMC_NORSRAMInitStruct->FSMC_WriteTimingStruct->FSMC_AccessMode = FSMC_AccessMode_A;
}
/**
* @brief Enables or disables the specified NOR/SRAM Memory Bank.
* @param FSMC_Bank: specifies the FSMC Bank to be used
* This parameter can be one of the following values:
* @arg FSMC_Bank1_NORSRAM1: FSMC Bank1 NOR/SRAM1
* @arg FSMC_Bank1_NORSRAM2: FSMC Bank1 NOR/SRAM2
* @arg FSMC_Bank1_NORSRAM3: FSMC Bank1 NOR/SRAM3
* @arg FSMC_Bank1_NORSRAM4: FSMC Bank1 NOR/SRAM4
* @param NewState: new state of the FSMC_Bank. This parameter can be: ENABLE or DISABLE.
* @retval None
*/
void FSMC_NORSRAMCmd(uint32_t FSMC_Bank, FunctionalState NewState)
{
assert_param(IS_FSMC_NORSRAM_BANK(FSMC_Bank));
assert_param(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
/* Enable the selected NOR/SRAM Bank by setting the MBKEN bit in the BCRx register */
FSMC_Bank1->BTCR[FSMC_Bank] |= FSMC_BCR1_MBKEN;
}
else
{
/* Disable the selected NOR/SRAM Bank by clearing the MBKEN bit in the BCRx register */
FSMC_Bank1->BTCR[FSMC_Bank] &= (uint32_t)(~FSMC_BCR1_MBKEN);
}
}
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/

View File

@ -0,0 +1,438 @@
/**
******************************************************************************
* @file stm32l1xx_fsmc.h
* @author MCD Application Team
* @version V1.2.0
* @date 22-February-2013
* @brief This file contains all the functions prototypes for the FSMC firmware
* library.
******************************************************************************
* @attention
*
* <h2><center>&copy; COPYRIGHT 2013 STMicroelectronics</center></h2>
*
* Licensed under MCD-ST Liberty SW License Agreement V2, (the "License");
* You may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.st.com/software_license_agreement_liberty_v2
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
******************************************************************************
*/
/* Define to prevent recursive inclusion -------------------------------------*/
#ifndef __STM32L1xx_FSMC_H
#define __STM32L1xx_FSMC_H
#ifdef __cplusplus
extern "C" {
#endif
/* Includes ------------------------------------------------------------------*/
#include "stm32l1xx.h"
/** @addtogroup STM32L1xx_StdPeriph_Driver
* @{
*/
/** @addtogroup FSMC
* @{
*/
/* Exported types ------------------------------------------------------------*/
/**
* @brief Timing parameters For NOR/SRAM Banks
*/
typedef struct
{
uint32_t FSMC_AddressSetupTime; /*!< Defines the number of HCLK cycles to configure
the duration of the address setup time.
This parameter can be a value between 0 and 0xF.
@note It is not used with synchronous NOR Flash memories. */
uint32_t FSMC_AddressHoldTime; /*!< Defines the number of HCLK cycles to configure
the duration of the address hold time.
This parameter can be a value between 0 and 0xF.
@note It is not used with synchronous NOR Flash memories.*/
uint32_t FSMC_DataSetupTime; /*!< Defines the number of HCLK cycles to configure
the duration of the data setup time.
This parameter can be a value between 0 and 0xFF.
@note It is used for SRAMs, ROMs and asynchronous multiplexed NOR Flash memories. */
uint32_t FSMC_BusTurnAroundDuration; /*!< Defines the number of HCLK cycles to configure
the duration of the bus turnaround.
This parameter can be a value between 0 and 0xF.
@note It is only used for multiplexed NOR Flash memories. */
uint32_t FSMC_CLKDivision; /*!< Defines the period of CLK clock output signal, expressed in number of HCLK cycles.
This parameter can be a value between 1 and 0xF.
@note This parameter is not used for asynchronous NOR Flash, SRAM or ROM accesses. */
uint32_t FSMC_DataLatency; /*!< Defines the number of memory clock cycles to issue
to the memory before getting the first data.
The parameter value depends on the memory type as shown below:
- It must be set to 0 in case of a CRAM
- It is don't care in asynchronous NOR, SRAM or ROM accesses
- It may assume a value between 0 and 0xF in NOR Flash memories
with synchronous burst mode enable */
uint32_t FSMC_AccessMode; /*!< Specifies the asynchronous access mode.
This parameter can be a value of @ref FSMC_Access_Mode */
}FSMC_NORSRAMTimingInitTypeDef;
/**
* @brief FSMC NOR/SRAM Init structure definition
*/
typedef struct
{
uint32_t FSMC_Bank; /*!< Specifies the NOR/SRAM memory bank that will be used.
This parameter can be a value of @ref FSMC_NORSRAM_Bank */
uint32_t FSMC_DataAddressMux; /*!< Specifies whether the address and data values are
multiplexed on the databus or not.
This parameter can be a value of @ref FSMC_Data_Address_Bus_Multiplexing */
uint32_t FSMC_MemoryType; /*!< Specifies the type of external memory attached to
the corresponding memory bank.
This parameter can be a value of @ref FSMC_Memory_Type */
uint32_t FSMC_MemoryDataWidth; /*!< Specifies the external memory device width.
This parameter can be a value of @ref FSMC_Data_Width */
uint32_t FSMC_BurstAccessMode; /*!< Enables or disables the burst access mode for Flash memory,
valid only with synchronous burst Flash memories.
This parameter can be a value of @ref FSMC_Burst_Access_Mode */
uint32_t FSMC_AsynchronousWait; /*!< Enables or disables wait signal during asynchronous transfers,
valid only with asynchronous Flash memories.
This parameter can be a value of @ref FSMC_AsynchronousWait */
uint32_t FSMC_WaitSignalPolarity; /*!< Specifies the wait signal polarity, valid only when accessing
the Flash memory in burst mode.
This parameter can be a value of @ref FSMC_Wait_Signal_Polarity */
uint32_t FSMC_WrapMode; /*!< Enables or disables the Wrapped burst access mode for Flash
memory, valid only when accessing Flash memories in burst mode.
This parameter can be a value of @ref FSMC_Wrap_Mode */
uint32_t FSMC_WaitSignalActive; /*!< Specifies if the wait signal is asserted by the memory one
clock cycle before the wait state or during the wait state,
valid only when accessing memories in burst mode.
This parameter can be a value of @ref FSMC_Wait_Timing */
uint32_t FSMC_WriteOperation; /*!< Enables or disables the write operation in the selected bank by the FSMC.
This parameter can be a value of @ref FSMC_Write_Operation */
uint32_t FSMC_WaitSignal; /*!< Enables or disables the wait-state insertion via wait
signal, valid for Flash memory access in burst mode.
This parameter can be a value of @ref FSMC_Wait_Signal */
uint32_t FSMC_ExtendedMode; /*!< Enables or disables the extended mode.
This parameter can be a value of @ref FSMC_Extended_Mode */
uint32_t FSMC_WriteBurst; /*!< Enables or disables the write burst operation.
This parameter can be a value of @ref FSMC_Write_Burst */
FSMC_NORSRAMTimingInitTypeDef* FSMC_ReadWriteTimingStruct; /*!< Timing Parameters for write and read access if the ExtendedMode is not used*/
FSMC_NORSRAMTimingInitTypeDef* FSMC_WriteTimingStruct; /*!< Timing Parameters for write access if the ExtendedMode is used*/
}FSMC_NORSRAMInitTypeDef;
/* Exported constants --------------------------------------------------------*/
/** @defgroup FSMC_Exported_Constants
* @{
*/
/** @defgroup FSMC_NORSRAM_Bank
* @{
*/
#define FSMC_Bank1_NORSRAM1 ((uint32_t)0x00000000)
#define FSMC_Bank1_NORSRAM2 ((uint32_t)0x00000002)
#define FSMC_Bank1_NORSRAM3 ((uint32_t)0x00000004)
#define FSMC_Bank1_NORSRAM4 ((uint32_t)0x00000006)
#define IS_FSMC_NORSRAM_BANK(BANK) (((BANK) == FSMC_Bank1_NORSRAM1) || \
((BANK) == FSMC_Bank1_NORSRAM2) || \
((BANK) == FSMC_Bank1_NORSRAM3) || \
((BANK) == FSMC_Bank1_NORSRAM4))
/**
* @}
*/
/** @defgroup NOR_SRAM_Controller
* @{
*/
/** @defgroup FSMC_Data_Address_Bus_Multiplexing
* @{
*/
#define FSMC_DataAddressMux_Disable ((uint32_t)0x00000000)
#define FSMC_DataAddressMux_Enable ((uint32_t)0x00000002)
#define IS_FSMC_MUX(MUX) (((MUX) == FSMC_DataAddressMux_Disable) || \
((MUX) == FSMC_DataAddressMux_Enable))
/**
* @}
*/
/** @defgroup FSMC_Memory_Type
* @{
*/
#define FSMC_MemoryType_SRAM ((uint32_t)0x00000000)
#define FSMC_MemoryType_PSRAM ((uint32_t)0x00000004)
#define FSMC_MemoryType_NOR ((uint32_t)0x00000008)
#define IS_FSMC_MEMORY(MEMORY) (((MEMORY) == FSMC_MemoryType_SRAM) || \
((MEMORY) == FSMC_MemoryType_PSRAM)|| \
((MEMORY) == FSMC_MemoryType_NOR))
/**
* @}
*/
/** @defgroup FSMC_Data_Width
* @{
*/
#define FSMC_MemoryDataWidth_8b ((uint32_t)0x00000000)
#define FSMC_MemoryDataWidth_16b ((uint32_t)0x00000010)
#define IS_FSMC_MEMORY_WIDTH(WIDTH) (((WIDTH) == FSMC_MemoryDataWidth_8b) || \
((WIDTH) == FSMC_MemoryDataWidth_16b))
/**
* @}
*/
/** @defgroup FSMC_Burst_Access_Mode
* @{
*/
#define FSMC_BurstAccessMode_Disable ((uint32_t)0x00000000)
#define FSMC_BurstAccessMode_Enable ((uint32_t)0x00000100)
#define IS_FSMC_BURSTMODE(STATE) (((STATE) == FSMC_BurstAccessMode_Disable) || \
((STATE) == FSMC_BurstAccessMode_Enable))
/**
* @}
*/
/** @defgroup FSMC_AsynchronousWait
* @{
*/
#define FSMC_AsynchronousWait_Disable ((uint32_t)0x00000000)
#define FSMC_AsynchronousWait_Enable ((uint32_t)0x00008000)
#define IS_FSMC_ASYNWAIT(STATE) (((STATE) == FSMC_AsynchronousWait_Disable) || \
((STATE) == FSMC_AsynchronousWait_Enable))
/**
* @}
*/
/** @defgroup FSMC_Wait_Signal_Polarity
* @{
*/
#define FSMC_WaitSignalPolarity_Low ((uint32_t)0x00000000)
#define FSMC_WaitSignalPolarity_High ((uint32_t)0x00000200)
#define IS_FSMC_WAIT_POLARITY(POLARITY) (((POLARITY) == FSMC_WaitSignalPolarity_Low) || \
((POLARITY) == FSMC_WaitSignalPolarity_High))
/**
* @}
*/
/** @defgroup FSMC_Wrap_Mode
* @{
*/
#define FSMC_WrapMode_Disable ((uint32_t)0x00000000)
#define FSMC_WrapMode_Enable ((uint32_t)0x00000400)
#define IS_FSMC_WRAP_MODE(MODE) (((MODE) == FSMC_WrapMode_Disable) || \
((MODE) == FSMC_WrapMode_Enable))
/**
* @}
*/
/** @defgroup FSMC_Wait_Timing
* @{
*/
#define FSMC_WaitSignalActive_BeforeWaitState ((uint32_t)0x00000000)
#define FSMC_WaitSignalActive_DuringWaitState ((uint32_t)0x00000800)
#define IS_FSMC_WAIT_SIGNAL_ACTIVE(ACTIVE) (((ACTIVE) == FSMC_WaitSignalActive_BeforeWaitState) || \
((ACTIVE) == FSMC_WaitSignalActive_DuringWaitState))
/**
* @}
*/
/** @defgroup FSMC_Write_Operation
* @{
*/
#define FSMC_WriteOperation_Disable ((uint32_t)0x00000000)
#define FSMC_WriteOperation_Enable ((uint32_t)0x00001000)
#define IS_FSMC_WRITE_OPERATION(OPERATION) (((OPERATION) == FSMC_WriteOperation_Disable) || \
((OPERATION) == FSMC_WriteOperation_Enable))
/**
* @}
*/
/** @defgroup FSMC_Wait_Signal
* @{
*/
#define FSMC_WaitSignal_Disable ((uint32_t)0x00000000)
#define FSMC_WaitSignal_Enable ((uint32_t)0x00002000)
#define IS_FSMC_WAITE_SIGNAL(SIGNAL) (((SIGNAL) == FSMC_WaitSignal_Disable) || \
((SIGNAL) == FSMC_WaitSignal_Enable))
/**
* @}
*/
/** @defgroup FSMC_Extended_Mode
* @{
*/
#define FSMC_ExtendedMode_Disable ((uint32_t)0x00000000)
#define FSMC_ExtendedMode_Enable ((uint32_t)0x00004000)
#define IS_FSMC_EXTENDED_MODE(MODE) (((MODE) == FSMC_ExtendedMode_Disable) || \
((MODE) == FSMC_ExtendedMode_Enable))
/**
* @}
*/
/** @defgroup FSMC_Write_Burst
* @{
*/
#define FSMC_WriteBurst_Disable ((uint32_t)0x00000000)
#define FSMC_WriteBurst_Enable ((uint32_t)0x00080000)
#define IS_FSMC_WRITE_BURST(BURST) (((BURST) == FSMC_WriteBurst_Disable) || \
((BURST) == FSMC_WriteBurst_Enable))
/**
* @}
*/
/** @defgroup FSMC_Address_Setup_Time
* @{
*/
#define IS_FSMC_ADDRESS_SETUP_TIME(TIME) ((TIME) <= 0xF)
/**
* @}
*/
/** @defgroup FSMC_Address_Hold_Time
* @{
*/
#define IS_FSMC_ADDRESS_HOLD_TIME(TIME) ((TIME) <= 0xF)
/**
* @}
*/
/** @defgroup FSMC_Data_Setup_Time
* @{
*/
#define IS_FSMC_DATASETUP_TIME(TIME) (((TIME) > 0) && ((TIME) <= 0xFF))
/**
* @}
*/
/** @defgroup FSMC_Bus_Turn_around_Duration
* @{
*/
#define IS_FSMC_TURNAROUND_TIME(TIME) ((TIME) <= 0xF)
/**
* @}
*/
/** @defgroup FSMC_CLK_Division
* @{
*/
#define IS_FSMC_CLK_DIV(DIV) ((DIV) <= 0xF)
/**
* @}
*/
/** @defgroup FSMC_Data_Latency
* @{
*/
#define IS_FSMC_DATA_LATENCY(LATENCY) ((LATENCY) <= 0xF)
/**
* @}
*/
/** @defgroup FSMC_Access_Mode
* @{
*/
#define FSMC_AccessMode_A ((uint32_t)0x00000000)
#define FSMC_AccessMode_B ((uint32_t)0x10000000)
#define FSMC_AccessMode_C ((uint32_t)0x20000000)
#define FSMC_AccessMode_D ((uint32_t)0x30000000)
#define IS_FSMC_ACCESS_MODE(MODE) (((MODE) == FSMC_AccessMode_A) || \
((MODE) == FSMC_AccessMode_B) || \
((MODE) == FSMC_AccessMode_C) || \
((MODE) == FSMC_AccessMode_D))
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
/* Exported macro ------------------------------------------------------------*/
/* Exported functions ------------------------------------------------------- */
/* NOR/SRAM Controller functions **********************************************/
void FSMC_NORSRAMDeInit(uint32_t FSMC_Bank);
void FSMC_NORSRAMInit(FSMC_NORSRAMInitTypeDef* FSMC_NORSRAMInitStruct);
void FSMC_NORSRAMStructInit(FSMC_NORSRAMInitTypeDef* FSMC_NORSRAMInitStruct);
void FSMC_NORSRAMCmd(uint32_t FSMC_Bank, FunctionalState NewState);
#ifdef __cplusplus
}
#endif
#endif /*__STM32L1xx_FSMC_H */
/**
* @}
*/
/**
* @}
*/
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/

View File

@ -0,0 +1,557 @@
/**
******************************************************************************
* @file stm32l1xx_gpio.c
* @author MCD Application Team
* @version V1.2.0
* @date 22-February-2013
* @brief This file provides firmware functions to manage the following
* functionalities of the GPIO peripheral:
* + Initialization and Configuration
* + GPIO Read and Write
* + GPIO Alternate functions configuration
*
* @verbatim
===========================================================================
##### How to use this driver #####
===========================================================================
[..]
(#) Enable the GPIO AHB clock using RCC_AHBPeriphClockCmd()
(#) Configure the GPIO pin(s) using GPIO_Init()
Four possible configuration are available for each pin:
(++) Input: Floating, Pull-up, Pull-down.
(++) Output: Push-Pull (Pull-up, Pull-down or no Pull)
Open Drain (Pull-up, Pull-down or no Pull).
In output mode, the speed is configurable: Very Low, Low,
Medium or High.
(++) Alternate Function: Push-Pull (Pull-up, Pull-down or no Pull)
Open Drain (Pull-up, Pull-down or no Pull).
(++) Analog: required mode when a pin is to be used as ADC channel,
DAC output or comparator input.
(#) Peripherals alternate function:
(++) For ADC, DAC and comparators, configure the desired pin in
analog mode using GPIO_InitStruct->GPIO_Mode = GPIO_Mode_AN
(++) For other peripherals (TIM, USART...):
(+++) Connect the pin to the desired peripherals' Alternate
Function (AF) using GPIO_PinAFConfig() function.
(+++) Configure the desired pin in alternate function mode using
GPIO_InitStruct->GPIO_Mode = GPIO_Mode_AF
(+++) Select the type, pull-up/pull-down and output speed via
GPIO_PuPd, GPIO_OType and GPIO_Speed members.
(+++) Call GPIO_Init() function.
(#) To get the level of a pin configured in input mode use GPIO_ReadInputDataBit()
(#) To set/reset the level of a pin configured in output mode use
GPIO_SetBits()/GPIO_ResetBits()
(#) During and just after reset, the alternate functions are not
active and the GPIO pins are configured in input floating mode
(except JTAG pins).
(#) The LSE oscillator pins OSC32_IN and OSC32_OUT can be used as
general-purpose (PC14 and PC15, respectively) when the LSE
oscillator is off. The LSE has priority over the GPIO function.
(#) The HSE oscillator pins OSC_IN/OSC_OUT can be used as
general-purpose PH0 and PH1, respectively, when the HSE
oscillator is off. The HSE has priority over the GPIO function.
@endverbatim
*
******************************************************************************
* @attention
*
* <h2><center>&copy; COPYRIGHT 2013 STMicroelectronics</center></h2>
*
* Licensed under MCD-ST Liberty SW License Agreement V2, (the "License");
* You may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.st.com/software_license_agreement_liberty_v2
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "stm32l1xx_gpio.h"
#include "stm32l1xx_rcc.h"
/** @addtogroup STM32L1xx_StdPeriph_Driver
* @{
*/
/** @defgroup GPIO
* @brief GPIO driver modules
* @{
*/
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private function prototypes -----------------------------------------------*/
/* Private functions ---------------------------------------------------------*/
/** @defgroup GPIO_Private_Functions
* @{
*/
/** @defgroup GPIO_Group1 Initialization and Configuration
* @brief Initialization and Configuration
*
@verbatim
===============================================================================
##### Initialization and Configuration #####
===============================================================================
@endverbatim
* @{
*/
/**
* @brief Deinitializes the GPIOx peripheral registers to their default reset
* values.
* By default, The GPIO pins are configured in input floating mode
* (except JTAG pins).
* @param GPIOx: where x can be (A..H) to select the GPIO peripheral.
* @retval None
*/
void GPIO_DeInit(GPIO_TypeDef* GPIOx)
{
/* Check the parameters */
assert_param(IS_GPIO_ALL_PERIPH(GPIOx));
if(GPIOx == GPIOA)
{
RCC_AHBPeriphResetCmd(RCC_AHBPeriph_GPIOA, ENABLE);
RCC_AHBPeriphResetCmd(RCC_AHBPeriph_GPIOA, DISABLE);
}
else if(GPIOx == GPIOB)
{
RCC_AHBPeriphResetCmd(RCC_AHBPeriph_GPIOB, ENABLE);
RCC_AHBPeriphResetCmd(RCC_AHBPeriph_GPIOB, DISABLE);
}
else if(GPIOx == GPIOC)
{
RCC_AHBPeriphResetCmd(RCC_AHBPeriph_GPIOC, ENABLE);
RCC_AHBPeriphResetCmd(RCC_AHBPeriph_GPIOC, DISABLE);
}
else if(GPIOx == GPIOD)
{
RCC_AHBPeriphResetCmd(RCC_AHBPeriph_GPIOD, ENABLE);
RCC_AHBPeriphResetCmd(RCC_AHBPeriph_GPIOD, DISABLE);
}
else if(GPIOx == GPIOE)
{
RCC_AHBPeriphResetCmd(RCC_AHBPeriph_GPIOE, ENABLE);
RCC_AHBPeriphResetCmd(RCC_AHBPeriph_GPIOE, DISABLE);
}
else if(GPIOx == GPIOF)
{
RCC_AHBPeriphResetCmd(RCC_AHBPeriph_GPIOF, ENABLE);
RCC_AHBPeriphResetCmd(RCC_AHBPeriph_GPIOF, DISABLE);
}
else if(GPIOx == GPIOG)
{
RCC_AHBPeriphResetCmd(RCC_AHBPeriph_GPIOG, ENABLE);
RCC_AHBPeriphResetCmd(RCC_AHBPeriph_GPIOG, DISABLE);
}
else
{
if(GPIOx == GPIOH)
{
RCC_AHBPeriphResetCmd(RCC_AHBPeriph_GPIOH, ENABLE);
RCC_AHBPeriphResetCmd(RCC_AHBPeriph_GPIOH, DISABLE);
}
}
}
/**
* @brief Initializes the GPIOx peripheral according to the specified
* parameters in the GPIO_InitStruct.
* @param GPIOx: where x can be (A..H) to select the GPIO peripheral.
* @param GPIO_InitStruct: pointer to a GPIO_InitTypeDef structure that
* contains the configuration information for the specified GPIO
* peripheral.
* @retval None
*/
void GPIO_Init(GPIO_TypeDef* GPIOx, GPIO_InitTypeDef* GPIO_InitStruct)
{
uint32_t pinpos = 0x00, pos = 0x00 , currentpin = 0x00;
/* Check the parameters */
assert_param(IS_GPIO_ALL_PERIPH(GPIOx));
assert_param(IS_GPIO_PIN(GPIO_InitStruct->GPIO_Pin));
assert_param(IS_GPIO_MODE(GPIO_InitStruct->GPIO_Mode));
assert_param(IS_GPIO_PUPD(GPIO_InitStruct->GPIO_PuPd));
/* -------------------------Configure the port pins---------------- */
/*-- GPIO Mode Configuration --*/
for (pinpos = 0x00; pinpos < 0x10; pinpos++)
{
pos = ((uint32_t)0x01) << pinpos;
/* Get the port pins position */
currentpin = (GPIO_InitStruct->GPIO_Pin) & pos;
if (currentpin == pos)
{
GPIOx->MODER &= ~(GPIO_MODER_MODER0 << (pinpos * 2));
GPIOx->MODER |= (((uint32_t)GPIO_InitStruct->GPIO_Mode) << (pinpos * 2));
if ((GPIO_InitStruct->GPIO_Mode == GPIO_Mode_OUT) || (GPIO_InitStruct->GPIO_Mode == GPIO_Mode_AF))
{
/* Check Speed mode parameters */
assert_param(IS_GPIO_SPEED(GPIO_InitStruct->GPIO_Speed));
/* Speed mode configuration */
GPIOx->OSPEEDR &= ~(GPIO_OSPEEDER_OSPEEDR0 << (pinpos * 2));
GPIOx->OSPEEDR |= ((uint32_t)(GPIO_InitStruct->GPIO_Speed) << (pinpos * 2));
/*Check Output mode parameters */
assert_param(IS_GPIO_OTYPE(GPIO_InitStruct->GPIO_OType));
/* Output mode configuration */
GPIOx->OTYPER &= ~((GPIO_OTYPER_OT_0) << ((uint16_t)pinpos)) ;
GPIOx->OTYPER |= (uint16_t)(((uint16_t)GPIO_InitStruct->GPIO_OType) << ((uint16_t)pinpos));
}
/* Pull-up Pull down resistor configuration */
GPIOx->PUPDR &= ~(GPIO_PUPDR_PUPDR0 << ((uint16_t)pinpos * 2));
GPIOx->PUPDR |= (((uint32_t)GPIO_InitStruct->GPIO_PuPd) << (pinpos * 2));
}
}
}
/**
* @brief Fills each GPIO_InitStruct member with its default value.
* @param GPIO_InitStruct : pointer to a GPIO_InitTypeDef structure which will
* be initialized.
* @retval None
*/
void GPIO_StructInit(GPIO_InitTypeDef* GPIO_InitStruct)
{
/* Reset GPIO init structure parameters values */
GPIO_InitStruct->GPIO_Pin = GPIO_Pin_All;
GPIO_InitStruct->GPIO_Mode = GPIO_Mode_IN;
GPIO_InitStruct->GPIO_Speed = GPIO_Speed_400KHz;
GPIO_InitStruct->GPIO_OType = GPIO_OType_PP;
GPIO_InitStruct->GPIO_PuPd = GPIO_PuPd_NOPULL;
}
/**
* @brief Locks GPIO Pins configuration registers.
* The locked registers are GPIOx_MODER, GPIOx_OTYPER, GPIOx_OSPEEDR,
* GPIOx_PUPDR, GPIOx_AFRL and GPIOx_AFRH.
* The configuration of the locked GPIO pins can no longer be modified
* until the next reset.
* @param GPIOx: where x can be (A..H) to select the GPIO peripheral.
* @param GPIO_Pin: specifies the port bit to be written.
* This parameter can be any combination of GPIO_Pin_x where x can be (0..15).
* @retval None
*/
void GPIO_PinLockConfig(GPIO_TypeDef* GPIOx, uint16_t GPIO_Pin)
{
__IO uint32_t tmp = 0x00010000;
/* Check the parameters */
assert_param(IS_GPIO_ALL_PERIPH(GPIOx));
assert_param(IS_GPIO_PIN(GPIO_Pin));
tmp |= GPIO_Pin;
/* Set LCKK bit */
GPIOx->LCKR = tmp;
/* Reset LCKK bit */
GPIOx->LCKR = GPIO_Pin;
/* Set LCKK bit */
GPIOx->LCKR = tmp;
/* Read LCKK bit*/
tmp = GPIOx->LCKR;
/* Read LCKK bit*/
tmp = GPIOx->LCKR;
}
/**
* @}
*/
/** @defgroup GPIO_Group2 GPIO Read and Write
* @brief GPIO Read and Write
*
@verbatim
===============================================================================
##### GPIO Read and Write #####
===============================================================================
@endverbatim
* @{
*/
/**
* @brief Reads the specified input port pin.
* @param GPIOx: where x can be (A..H) to select the GPIO peripheral.
* @param GPIO_Pin: specifies the port bit to read.
* This parameter can be GPIO_Pin_x where x can be (0..15).
* @retval The input port pin value.
*/
uint8_t GPIO_ReadInputDataBit(GPIO_TypeDef* GPIOx, uint16_t GPIO_Pin)
{
uint8_t bitstatus = 0x00;
/* Check the parameters */
assert_param(IS_GPIO_ALL_PERIPH(GPIOx));
assert_param(IS_GET_GPIO_PIN(GPIO_Pin));
if ((GPIOx->IDR & GPIO_Pin) != (uint32_t)Bit_RESET)
{
bitstatus = (uint8_t)Bit_SET;
}
else
{
bitstatus = (uint8_t)Bit_RESET;
}
return bitstatus;
}
/**
* @brief Reads the specified GPIO input data port.
* @param GPIOx: where x can be (A..H) to select the GPIO peripheral.
* @retval GPIO input data port value.
*/
uint16_t GPIO_ReadInputData(GPIO_TypeDef* GPIOx)
{
/* Check the parameters */
assert_param(IS_GPIO_ALL_PERIPH(GPIOx));
return ((uint16_t)GPIOx->IDR);
}
/**
* @brief Reads the specified output data port bit.
* @param GPIOx: where x can be (A..H) to select the GPIO peripheral.
* @param GPIO_Pin: Specifies the port bit to read.
* This parameter can be GPIO_Pin_x where x can be (0..15).
* @retval The output port pin value.
*/
uint8_t GPIO_ReadOutputDataBit(GPIO_TypeDef* GPIOx, uint16_t GPIO_Pin)
{
uint8_t bitstatus = 0x00;
/* Check the parameters */
assert_param(IS_GPIO_ALL_PERIPH(GPIOx));
assert_param(IS_GET_GPIO_PIN(GPIO_Pin));
if ((GPIOx->ODR & GPIO_Pin) != (uint32_t)Bit_RESET)
{
bitstatus = (uint8_t)Bit_SET;
}
else
{
bitstatus = (uint8_t)Bit_RESET;
}
return bitstatus;
}
/**
* @brief Reads the specified GPIO output data port.
* @param GPIOx: where x can be (A..H) to select the GPIO peripheral.
* @retval GPIO output data port value.
*/
uint16_t GPIO_ReadOutputData(GPIO_TypeDef* GPIOx)
{
/* Check the parameters */
assert_param(IS_GPIO_ALL_PERIPH(GPIOx));
return ((uint16_t)GPIOx->ODR);
}
/**
* @brief Sets the selected data port bits.
* @param GPIOx: where x can be (A..H) to select the GPIO peripheral.
* @param GPIO_Pin: specifies the port bits to be written.
* This parameter can be any combination of GPIO_Pin_x where x can be (0..15).
* @note This functions uses GPIOx_BSRR register to allow atomic read/modify
* accesses. In this way, there is no risk of an IRQ occurring between
* the read and the modify access.
* @retval None
*/
void GPIO_SetBits(GPIO_TypeDef* GPIOx, uint16_t GPIO_Pin)
{
/* Check the parameters */
assert_param(IS_GPIO_ALL_PERIPH(GPIOx));
assert_param(IS_GPIO_PIN(GPIO_Pin));
GPIOx->BSRRL = GPIO_Pin;
}
/**
* @brief Clears the selected data port bits.
* @param GPIOx: where x can be (A..H) to select the GPIO peripheral.
* @param GPIO_Pin: specifies the port bits to be written.
* This parameter can be any combination of GPIO_Pin_x where x can be (0..15).
* @note This functions uses GPIOx_BSRR register to allow atomic read/modify
* accesses. In this way, there is no risk of an IRQ occurring between
* the read and the modify access.
* @retval None
*/
void GPIO_ResetBits(GPIO_TypeDef* GPIOx, uint16_t GPIO_Pin)
{
/* Check the parameters */
assert_param(IS_GPIO_ALL_PERIPH(GPIOx));
assert_param(IS_GPIO_PIN(GPIO_Pin));
GPIOx->BSRRH = GPIO_Pin;
}
/**
* @brief Sets or clears the selected data port bit.
* @param GPIOx: where x can be (A..H) to select the GPIO peripheral.
* @param GPIO_Pin: specifies the port bit to be written.
* This parameter can be one of GPIO_Pin_x where x can be (0..15).
* @param BitVal: specifies the value to be written to the selected bit.
* This parameter can be one of the BitAction enum values:
* @arg Bit_RESET: to clear the port pin
* @arg Bit_SET: to set the port pin
* @retval None
*/
void GPIO_WriteBit(GPIO_TypeDef* GPIOx, uint16_t GPIO_Pin, BitAction BitVal)
{
/* Check the parameters */
assert_param(IS_GPIO_ALL_PERIPH(GPIOx));
assert_param(IS_GET_GPIO_PIN(GPIO_Pin));
assert_param(IS_GPIO_BIT_ACTION(BitVal));
if (BitVal != Bit_RESET)
{
GPIOx->BSRRL = GPIO_Pin;
}
else
{
GPIOx->BSRRH = GPIO_Pin ;
}
}
/**
* @brief Writes data to the specified GPIO data port.
* @param GPIOx: where x can be (A..H) to select the GPIO peripheral.
* @param PortVal: specifies the value to be written to the port output data
* register.
* @retval None
*/
void GPIO_Write(GPIO_TypeDef* GPIOx, uint16_t PortVal)
{
/* Check the parameters */
assert_param(IS_GPIO_ALL_PERIPH(GPIOx));
GPIOx->ODR = PortVal;
}
/**
* @brief Toggles the specified GPIO pins..
* @param GPIOx: where x can be (A..H) to select the GPIO peripheral.
* @param GPIO_Pin: Specifies the pins to be toggled.
* @retval None
*/
void GPIO_ToggleBits(GPIO_TypeDef* GPIOx, uint16_t GPIO_Pin)
{
/* Check the parameters */
assert_param(IS_GPIO_ALL_PERIPH(GPIOx));
GPIOx->ODR ^= GPIO_Pin;
}
/**
* @}
*/
/** @defgroup GPIO_Group3 GPIO Alternate functions configuration functions
* @brief GPIO Alternate functions configuration functions
*
@verbatim
===============================================================================
##### GPIO Alternate functions configuration functions #####
===============================================================================
@endverbatim
* @{
*/
/**
* @brief Changes the mapping of the specified pin.
* @param GPIOx: where x can be (A..H) to select the GPIO peripheral.
* @param GPIO_PinSource: specifies the pin for the Alternate function.
* This parameter can be GPIO_PinSourcex where x can be (0..15).
* @param GPIO_AFSelection: selects the pin to used as Alternat function.
* This parameter can be one of the following values:
* @arg GPIO_AF_RTC_50Hz: RTC 50/60 Hz synchronization
* @arg GPIO_AF_MCO: Microcontroller clock output
* @arg GPIO_AF_RTC_AF1: Time stamp, Tamper, Alarm A out, Alarm B out,
* 512 Hz clock output (with an LSE oscillator of 32.768 kHz)
* @arg GPIO_AF_WKUP: wakeup
* @arg GPIO_AF_SWJ: SWJ (SW and JTAG)
* @arg GPIO_AF_TRACE: Connect TRACE pins to AF0 (default after reset)
* @arg GPIO_AF_TIM2c: Connect TIM2 pins to AF1
* @arg GPIO_AF_TIM3: Connect TIM3 pins to AF2
* @arg GPIO_AF_TIM4: Connect TIM4 pins to AF2
* @arg GPIO_AF_TIM5: Connect TIM5 pins to AF2
* @arg GPIO_AF_TIM9: Connect TIM9 pins to AF3
* @arg GPIO_AF_TIM10: Connect TIM10 pins to AF3
* @arg GPIO_AF_TIM11: Connect TIM11 pins to AF3
* @arg GPIO_AF_I2C1: Connect I2C1 pins to AF4
* @arg GPIO_AF_I2C2: Connect I2C2 pins to AF4
* @arg GPIO_AF_SPI1: Connect SPI1 pins to AF5
* @arg GPIO_AF_SPI2: Connect SPI2/I2S2 pins to AF5
* @arg GPIO_AF_SPI3: Connect SPI3/I2S3 pins to AF6
* @arg GPIO_AF_USART1: Connect USART1 pins to AF7
* @arg GPIO_AF_USART2: Connect USART2 pins to AF7
* @arg GPIO_AF_USART3: Connect USART3 pins to AF7
* @arg GPIO_AF_UART4: Connect UART4 pins to AF8
* @arg GPIO_AF_UART5: Connect UART5 pins to AF8
* @arg GPIO_AF_USB: Connect USB pins to AF10
* @arg GPIO_AF_LCD: Connect LCD pins to AF11
* @arg GPIO_AF_FSMC: Connect FSMC pins to AF12
* @arg GPIO_AF_SDIO: Connect SDIO pins to AF12
* @arg GPIO_AF_RI: Connect RI pins to AF14
* @arg GPIO_AF_EVENTOUT: Cortex-M3 EVENTOUT signal
* @note The pin should already been configured in Alternate Function mode(AF)
* using GPIO_InitStruct->GPIO_Mode = GPIO_Mode_AF
* @note Please refer to the Alternate function mapping table in the device
* datasheet for the detailed mapping of the system and peripherals'
* alternate function I/O pins.
* @note EVENTOUT is not mapped on PH0, PH1 and PH2.
* @retval None
*/
void GPIO_PinAFConfig(GPIO_TypeDef* GPIOx, uint16_t GPIO_PinSource, uint8_t GPIO_AF)
{
uint32_t temp = 0x00;
uint32_t temp_2 = 0x00;
/* Check the parameters */
assert_param(IS_GPIO_ALL_PERIPH(GPIOx));
assert_param(IS_GPIO_PIN_SOURCE(GPIO_PinSource));
assert_param(IS_GPIO_AF(GPIO_AF));
temp = ((uint32_t)(GPIO_AF) << ((uint32_t)((uint32_t)GPIO_PinSource & (uint32_t)0x07) * 4)) ;
GPIOx->AFR[GPIO_PinSource >> 0x03] &= ~((uint32_t)0xF << ((uint32_t)((uint32_t)GPIO_PinSource & (uint32_t)0x07) * 4)) ;
temp_2 = GPIOx->AFR[GPIO_PinSource >> 0x03] | temp;
GPIOx->AFR[GPIO_PinSource >> 0x03] = temp_2;
}
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/

View File

@ -0,0 +1,391 @@
/**
******************************************************************************
* @file stm32l1xx_gpio.h
* @author MCD Application Team
* @version V1.2.0
* @date 22-February-2013
* @brief This file contains all the functions prototypes for the GPIO
* firmware library.
******************************************************************************
* @attention
*
* <h2><center>&copy; COPYRIGHT 2013 STMicroelectronics</center></h2>
*
* Licensed under MCD-ST Liberty SW License Agreement V2, (the "License");
* You may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.st.com/software_license_agreement_liberty_v2
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
******************************************************************************
*/
/* Define to prevent recursive inclusion -------------------------------------*/
#ifndef __STM32L1xx_GPIO_H
#define __STM32L1xx_GPIO_H
#ifdef __cplusplus
extern "C" {
#endif
/* Includes ------------------------------------------------------------------*/
#include "stm32l1xx.h"
/** @addtogroup STM32L1xx_StdPeriph_Driver
* @{
*/
/** @addtogroup GPIO
* @{
*/
/* Exported types ------------------------------------------------------------*/
#define IS_GPIO_ALL_PERIPH(PERIPH) (((PERIPH) == GPIOA) || \
((PERIPH) == GPIOB) || \
((PERIPH) == GPIOC) || \
((PERIPH) == GPIOD) || \
((PERIPH) == GPIOE) || \
((PERIPH) == GPIOH) || \
((PERIPH) == GPIOF) || \
((PERIPH) == GPIOG))
/** @defgroup Configuration_Mode_enumeration
* @{
*/
typedef enum
{
GPIO_Mode_IN = 0x00, /*!< GPIO Input Mode */
GPIO_Mode_OUT = 0x01, /*!< GPIO Output Mode */
GPIO_Mode_AF = 0x02, /*!< GPIO Alternate function Mode */
GPIO_Mode_AN = 0x03 /*!< GPIO Analog Mode */
}GPIOMode_TypeDef;
#define IS_GPIO_MODE(MODE) (((MODE) == GPIO_Mode_IN) || ((MODE) == GPIO_Mode_OUT) || \
((MODE) == GPIO_Mode_AF)|| ((MODE) == GPIO_Mode_AN))
/**
* @}
*/
/** @defgroup Output_type_enumeration
* @{
*/
typedef enum
{ GPIO_OType_PP = 0x00,
GPIO_OType_OD = 0x01
}GPIOOType_TypeDef;
#define IS_GPIO_OTYPE(OTYPE) (((OTYPE) == GPIO_OType_PP) || ((OTYPE) == GPIO_OType_OD))
/**
* @}
*/
/** @defgroup Output_Maximum_frequency_enumeration
* @{
*/
typedef enum
{
GPIO_Speed_400KHz = 0x00, /*!< Very Low Speed */
GPIO_Speed_2MHz = 0x01, /*!< Low Speed */
GPIO_Speed_10MHz = 0x02, /*!< Medium Speed */
GPIO_Speed_40MHz = 0x03 /*!< High Speed */
}GPIOSpeed_TypeDef;
#define IS_GPIO_SPEED(SPEED) (((SPEED) == GPIO_Speed_400KHz) || ((SPEED) == GPIO_Speed_2MHz) || \
((SPEED) == GPIO_Speed_10MHz)|| ((SPEED) == GPIO_Speed_40MHz))
/**
* @}
*/
/** @defgroup Configuration_Pull-Up_Pull-Down_enumeration
* @{
*/
typedef enum
{ GPIO_PuPd_NOPULL = 0x00,
GPIO_PuPd_UP = 0x01,
GPIO_PuPd_DOWN = 0x02
}GPIOPuPd_TypeDef;
#define IS_GPIO_PUPD(PUPD) (((PUPD) == GPIO_PuPd_NOPULL) || ((PUPD) == GPIO_PuPd_UP) || \
((PUPD) == GPIO_PuPd_DOWN))
/**
* @}
*/
/** @defgroup Bit_SET_and_Bit_RESET_enumeration
* @{
*/
typedef enum
{ Bit_RESET = 0,
Bit_SET
}BitAction;
#define IS_GPIO_BIT_ACTION(ACTION) (((ACTION) == Bit_RESET) || ((ACTION) == Bit_SET))
/**
* @}
*/
/**
* @brief GPIO Init structure definition
*/
typedef struct
{
uint32_t GPIO_Pin; /*!< Specifies the GPIO pins to be configured.
This parameter can be any value of @ref GPIO_pins_define */
GPIOMode_TypeDef GPIO_Mode; /*!< Specifies the operating mode for the selected pins.
This parameter can be a value of @ref GPIOMode_TypeDef */
GPIOSpeed_TypeDef GPIO_Speed; /*!< Specifies the speed for the selected pins.
This parameter can be a value of @ref GPIOSpeed_TypeDef */
GPIOOType_TypeDef GPIO_OType; /*!< Specifies the operating output type for the selected pins.
This parameter can be a value of @ref GPIOOType_TypeDef */
GPIOPuPd_TypeDef GPIO_PuPd; /*!< Specifies the operating Pull-up/Pull down for the selected pins.
This parameter can be a value of @ref GPIOPuPd_TypeDef */
}GPIO_InitTypeDef;
/* Exported constants --------------------------------------------------------*/
/** @defgroup GPIO_Exported_Constants
* @{
*/
/** @defgroup GPIO_pins_define
* @{
*/
#define GPIO_Pin_0 ((uint16_t)0x0001) /*!< Pin 0 selected */
#define GPIO_Pin_1 ((uint16_t)0x0002) /*!< Pin 1 selected */
#define GPIO_Pin_2 ((uint16_t)0x0004) /*!< Pin 2 selected */
#define GPIO_Pin_3 ((uint16_t)0x0008) /*!< Pin 3 selected */
#define GPIO_Pin_4 ((uint16_t)0x0010) /*!< Pin 4 selected */
#define GPIO_Pin_5 ((uint16_t)0x0020) /*!< Pin 5 selected */
#define GPIO_Pin_6 ((uint16_t)0x0040) /*!< Pin 6 selected */
#define GPIO_Pin_7 ((uint16_t)0x0080) /*!< Pin 7 selected */
#define GPIO_Pin_8 ((uint16_t)0x0100) /*!< Pin 8 selected */
#define GPIO_Pin_9 ((uint16_t)0x0200) /*!< Pin 9 selected */
#define GPIO_Pin_10 ((uint16_t)0x0400) /*!< Pin 10 selected */
#define GPIO_Pin_11 ((uint16_t)0x0800) /*!< Pin 11 selected */
#define GPIO_Pin_12 ((uint16_t)0x1000) /*!< Pin 12 selected */
#define GPIO_Pin_13 ((uint16_t)0x2000) /*!< Pin 13 selected */
#define GPIO_Pin_14 ((uint16_t)0x4000) /*!< Pin 14 selected */
#define GPIO_Pin_15 ((uint16_t)0x8000) /*!< Pin 15 selected */
#define GPIO_Pin_All ((uint16_t)0xFFFF) /*!< All pins selected */
#define IS_GPIO_PIN(PIN) ((PIN) != (uint16_t)0x00)
#define IS_GET_GPIO_PIN(PIN) (((PIN) == GPIO_Pin_0) || \
((PIN) == GPIO_Pin_1) || \
((PIN) == GPIO_Pin_2) || \
((PIN) == GPIO_Pin_3) || \
((PIN) == GPIO_Pin_4) || \
((PIN) == GPIO_Pin_5) || \
((PIN) == GPIO_Pin_6) || \
((PIN) == GPIO_Pin_7) || \
((PIN) == GPIO_Pin_8) || \
((PIN) == GPIO_Pin_9) || \
((PIN) == GPIO_Pin_10) || \
((PIN) == GPIO_Pin_11) || \
((PIN) == GPIO_Pin_12) || \
((PIN) == GPIO_Pin_13) || \
((PIN) == GPIO_Pin_14) || \
((PIN) == GPIO_Pin_15))
/**
* @}
*/
/** @defgroup GPIO_Pin_sources
* @{
*/
#define GPIO_PinSource0 ((uint8_t)0x00)
#define GPIO_PinSource1 ((uint8_t)0x01)
#define GPIO_PinSource2 ((uint8_t)0x02)
#define GPIO_PinSource3 ((uint8_t)0x03)
#define GPIO_PinSource4 ((uint8_t)0x04)
#define GPIO_PinSource5 ((uint8_t)0x05)
#define GPIO_PinSource6 ((uint8_t)0x06)
#define GPIO_PinSource7 ((uint8_t)0x07)
#define GPIO_PinSource8 ((uint8_t)0x08)
#define GPIO_PinSource9 ((uint8_t)0x09)
#define GPIO_PinSource10 ((uint8_t)0x0A)
#define GPIO_PinSource11 ((uint8_t)0x0B)
#define GPIO_PinSource12 ((uint8_t)0x0C)
#define GPIO_PinSource13 ((uint8_t)0x0D)
#define GPIO_PinSource14 ((uint8_t)0x0E)
#define GPIO_PinSource15 ((uint8_t)0x0F)
#define IS_GPIO_PIN_SOURCE(PINSOURCE) (((PINSOURCE) == GPIO_PinSource0) || \
((PINSOURCE) == GPIO_PinSource1) || \
((PINSOURCE) == GPIO_PinSource2) || \
((PINSOURCE) == GPIO_PinSource3) || \
((PINSOURCE) == GPIO_PinSource4) || \
((PINSOURCE) == GPIO_PinSource5) || \
((PINSOURCE) == GPIO_PinSource6) || \
((PINSOURCE) == GPIO_PinSource7) || \
((PINSOURCE) == GPIO_PinSource8) || \
((PINSOURCE) == GPIO_PinSource9) || \
((PINSOURCE) == GPIO_PinSource10) || \
((PINSOURCE) == GPIO_PinSource11) || \
((PINSOURCE) == GPIO_PinSource12) || \
((PINSOURCE) == GPIO_PinSource13) || \
((PINSOURCE) == GPIO_PinSource14) || \
((PINSOURCE) == GPIO_PinSource15))
/**
* @}
*/
/** @defgroup GPIO_Alternat_function_selection_define
* @{
*/
/**
* @brief AF 0 selection
*/
#define GPIO_AF_RTC_50Hz ((uint8_t)0x00) /*!< RTC 50/60 Hz Alternate Function mapping */
#define GPIO_AF_MCO ((uint8_t)0x00) /*!< MCO Alternate Function mapping */
#define GPIO_AF_RTC_AF1 ((uint8_t)0x00) /*!< RTC_AF1 Alternate Function mapping */
#define GPIO_AF_WKUP ((uint8_t)0x00) /*!< Wakeup (WKUP1, WKUP2 and WKUP3) Alternate Function mapping */
#define GPIO_AF_SWJ ((uint8_t)0x00) /*!< SWJ (SW and JTAG) Alternate Function mapping */
#define GPIO_AF_TRACE ((uint8_t)0x00) /*!< TRACE Alternate Function mapping */
/**
* @brief AF 1 selection
*/
#define GPIO_AF_TIM2 ((uint8_t)0x01) /*!< TIM2 Alternate Function mapping */
/**
* @brief AF 2 selection
*/
#define GPIO_AF_TIM3 ((uint8_t)0x02) /*!< TIM3 Alternate Function mapping */
#define GPIO_AF_TIM4 ((uint8_t)0x02) /*!< TIM4 Alternate Function mapping */
#define GPIO_AF_TIM5 ((uint8_t)0x02) /*!< TIM5 Alternate Function mapping */
/**
* @brief AF 3 selection
*/
#define GPIO_AF_TIM9 ((uint8_t)0x03) /*!< TIM9 Alternate Function mapping */
#define GPIO_AF_TIM10 ((uint8_t)0x03) /*!< TIM10 Alternate Function mapping */
#define GPIO_AF_TIM11 ((uint8_t)0x03) /*!< TIM11 Alternate Function mapping */
/**
* @brief AF 4 selection
*/
#define GPIO_AF_I2C1 ((uint8_t)0x04) /*!< I2C1 Alternate Function mapping */
#define GPIO_AF_I2C2 ((uint8_t)0x04) /*!< I2C2 Alternate Function mapping */
/**
* @brief AF 5 selection
*/
#define GPIO_AF_SPI1 ((uint8_t)0x05) /*!< SPI1 Alternate Function mapping */
#define GPIO_AF_SPI2 ((uint8_t)0x05) /*!< SPI2 Alternate Function mapping */
/**
* @brief AF 6 selection
*/
#define GPIO_AF_SPI3 ((uint8_t)0x06) /*!< SPI3 Alternate Function mapping */
/**
* @brief AF 7 selection
*/
#define GPIO_AF_USART1 ((uint8_t)0x07) /*!< USART1 Alternate Function mapping */
#define GPIO_AF_USART2 ((uint8_t)0x07) /*!< USART2 Alternate Function mapping */
#define GPIO_AF_USART3 ((uint8_t)0x07) /*!< USART3 Alternate Function mapping */
/**
* @brief AF 8 selection
*/
#define GPIO_AF_UART4 ((uint8_t)0x08) /*!< UART4 Alternate Function mapping */
#define GPIO_AF_UART5 ((uint8_t)0x08) /*!< UART5 Alternate Function mapping */
/**
* @brief AF 10 selection
*/
#define GPIO_AF_USB ((uint8_t)0xA) /*!< USB Full speed device Alternate Function mapping */
/**
* @brief AF 11 selection
*/
#define GPIO_AF_LCD ((uint8_t)0x0B) /*!< LCD Alternate Function mapping */
/**
* @brief AF 12 selection
*/
#define GPIO_AF_FSMC ((uint8_t)0x0C) /*!< FSMC Alternate Function mapping */
#define GPIO_AF_SDIO ((uint8_t)0x0C) /*!< SDIO Alternate Function mapping */
/**
* @brief AF 14 selection
*/
#define GPIO_AF_RI ((uint8_t)0x0E) /*!< RI Alternate Function mapping */
/**
* @brief AF 15 selection
*/
#define GPIO_AF_EVENTOUT ((uint8_t)0x0F) /*!< EVENTOUT Alternate Function mapping */
#define IS_GPIO_AF(AF) (((AF) == GPIO_AF_RTC_50Hz) || ((AF) == GPIO_AF_MCO) || \
((AF) == GPIO_AF_RTC_AF1) || ((AF) == GPIO_AF_WKUP) || \
((AF) == GPIO_AF_SWJ) || ((AF) == GPIO_AF_TRACE) || \
((AF) == GPIO_AF_TIM2) || ((AF)== GPIO_AF_TIM3) || \
((AF) == GPIO_AF_TIM4) || ((AF)== GPIO_AF_TIM9) || \
((AF) == GPIO_AF_TIM10) || ((AF)== GPIO_AF_TIM11) || \
((AF) == GPIO_AF_I2C1) || ((AF) == GPIO_AF_I2C2) || \
((AF) == GPIO_AF_SPI1) || ((AF) == GPIO_AF_SPI2) || \
((AF) == GPIO_AF_USART1) || ((AF) == GPIO_AF_USART2) || \
((AF) == GPIO_AF_USART3) || ((AF) == GPIO_AF_USB) || \
((AF) == GPIO_AF_LCD) || ((AF) == GPIO_AF_RI) || \
((AF) == GPIO_AF_TIM5) || ((AF) == GPIO_AF_SPI3) || \
((AF) == GPIO_AF_UART4) || ((AF) == GPIO_AF_UART5) || \
((AF) == GPIO_AF_FSMC) || ((AF) == GPIO_AF_SDIO) || \
((AF) == GPIO_AF_EVENTOUT))
/**
* @}
*/
/** @defgroup GPIO_Legacy
* @{
*/
#define GPIO_Mode_AIN GPIO_Mode_AN
/**
* @}
*/
/**
* @}
*/
/* Exported macro ------------------------------------------------------------*/
/* Exported functions ------------------------------------------------------- */
/* Function used to set the GPIO configuration to the default reset state ****/
void GPIO_DeInit(GPIO_TypeDef* GPIOx);
/* Initialization and Configuration functions *********************************/
void GPIO_Init(GPIO_TypeDef* GPIOx, GPIO_InitTypeDef* GPIO_InitStruct);
void GPIO_StructInit(GPIO_InitTypeDef* GPIO_InitStruct);
void GPIO_PinLockConfig(GPIO_TypeDef* GPIOx, uint16_t GPIO_Pin);
/* GPIO Read and Write functions **********************************************/
uint8_t GPIO_ReadInputDataBit(GPIO_TypeDef* GPIOx, uint16_t GPIO_Pin);
uint16_t GPIO_ReadInputData(GPIO_TypeDef* GPIOx);
uint8_t GPIO_ReadOutputDataBit(GPIO_TypeDef* GPIOx, uint16_t GPIO_Pin);
uint16_t GPIO_ReadOutputData(GPIO_TypeDef* GPIOx);
void GPIO_SetBits(GPIO_TypeDef* GPIOx, uint16_t GPIO_Pin);
void GPIO_ResetBits(GPIO_TypeDef* GPIOx, uint16_t GPIO_Pin);
void GPIO_WriteBit(GPIO_TypeDef* GPIOx, uint16_t GPIO_Pin, BitAction BitVal);
void GPIO_Write(GPIO_TypeDef* GPIOx, uint16_t PortVal);
void GPIO_ToggleBits(GPIO_TypeDef* GPIOx, uint16_t GPIO_Pin);
/* GPIO Alternate functions configuration functions ***************************/
void GPIO_PinAFConfig(GPIO_TypeDef* GPIOx, uint16_t GPIO_PinSource, uint8_t GPIO_AF);
#ifdef __cplusplus
}
#endif
#endif /*__STM32L1xx_GPIO_H */
/**
* @}
*/
/**
* @}
*/
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,703 @@
/**
******************************************************************************
* @file stm32l1xx_i2c.h
* @author MCD Application Team
* @version V1.2.0
* @date 22-February-2013
* @brief This file contains all the functions prototypes for the I2C firmware
* library.
******************************************************************************
* @attention
*
* <h2><center>&copy; COPYRIGHT 2013 STMicroelectronics</center></h2>
*
* Licensed under MCD-ST Liberty SW License Agreement V2, (the "License");
* You may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.st.com/software_license_agreement_liberty_v2
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
******************************************************************************
*/
/* Define to prevent recursive inclusion -------------------------------------*/
#ifndef __STM32L1xx_I2C_H
#define __STM32L1xx_I2C_H
#ifdef __cplusplus
extern "C" {
#endif
/* Includes ------------------------------------------------------------------*/
#include "stm32l1xx.h"
/** @addtogroup STM32L1xx_StdPeriph_Driver
* @{
*/
/** @addtogroup I2C
* @{
*/
/* Exported types ------------------------------------------------------------*/
/**
* @brief I2C Init structure definition
*/
typedef struct
{
uint32_t I2C_ClockSpeed; /*!< Specifies the clock frequency.
This parameter must be set to a value lower than 400kHz */
uint16_t I2C_Mode; /*!< Specifies the I2C mode.
This parameter can be a value of @ref I2C_mode */
uint16_t I2C_DutyCycle; /*!< Specifies the I2C fast mode duty cycle.
This parameter can be a value of @ref I2C_duty_cycle_in_fast_mode */
uint16_t I2C_OwnAddress1; /*!< Specifies the first device own address.
This parameter can be a 7-bit or 10-bit address. */
uint16_t I2C_Ack; /*!< Enables or disables the acknowledgement.
This parameter can be a value of @ref I2C_acknowledgement */
uint16_t I2C_AcknowledgedAddress; /*!< Specifies if 7-bit or 10-bit address is acknowledged.
This parameter can be a value of @ref I2C_acknowledged_address */
}I2C_InitTypeDef;
/* Exported constants --------------------------------------------------------*/
/** @defgroup I2C_Exported_Constants
* @{
*/
#define IS_I2C_ALL_PERIPH(PERIPH) (((PERIPH) == I2C1) || \
((PERIPH) == I2C2))
/** @defgroup I2C_mode
* @{
*/
#define I2C_Mode_I2C ((uint16_t)0x0000)
#define I2C_Mode_SMBusDevice ((uint16_t)0x0002)
#define I2C_Mode_SMBusHost ((uint16_t)0x000A)
#define IS_I2C_MODE(MODE) (((MODE) == I2C_Mode_I2C) || \
((MODE) == I2C_Mode_SMBusDevice) || \
((MODE) == I2C_Mode_SMBusHost))
/**
* @}
*/
/** @defgroup I2C_duty_cycle_in_fast_mode
* @{
*/
#define I2C_DutyCycle_16_9 ((uint16_t)0x4000) /*!< I2C fast mode Tlow/Thigh = 16/9 */
#define I2C_DutyCycle_2 ((uint16_t)0xBFFF) /*!< I2C fast mode Tlow/Thigh = 2 */
#define IS_I2C_DUTY_CYCLE(CYCLE) (((CYCLE) == I2C_DutyCycle_16_9) || \
((CYCLE) == I2C_DutyCycle_2))
/**
* @}
*/
/** @defgroup I2C_acknowledgement
* @{
*/
#define I2C_Ack_Enable ((uint16_t)0x0400)
#define I2C_Ack_Disable ((uint16_t)0x0000)
#define IS_I2C_ACK_STATE(STATE) (((STATE) == I2C_Ack_Enable) || \
((STATE) == I2C_Ack_Disable))
/**
* @}
*/
/** @defgroup I2C_transfer_direction
* @{
*/
#define I2C_Direction_Transmitter ((uint8_t)0x00)
#define I2C_Direction_Receiver ((uint8_t)0x01)
#define IS_I2C_DIRECTION(DIRECTION) (((DIRECTION) == I2C_Direction_Transmitter) || \
((DIRECTION) == I2C_Direction_Receiver))
/**
* @}
*/
/** @defgroup I2C_acknowledged_address
* @{
*/
#define I2C_AcknowledgedAddress_7bit ((uint16_t)0x4000)
#define I2C_AcknowledgedAddress_10bit ((uint16_t)0xC000)
#define IS_I2C_ACKNOWLEDGE_ADDRESS(ADDRESS) (((ADDRESS) == I2C_AcknowledgedAddress_7bit) || \
((ADDRESS) == I2C_AcknowledgedAddress_10bit))
/**
* @}
*/
/** @defgroup I2C_registers
* @{
*/
#define I2C_Register_CR1 ((uint8_t)0x00)
#define I2C_Register_CR2 ((uint8_t)0x04)
#define I2C_Register_OAR1 ((uint8_t)0x08)
#define I2C_Register_OAR2 ((uint8_t)0x0C)
#define I2C_Register_DR ((uint8_t)0x10)
#define I2C_Register_SR1 ((uint8_t)0x14)
#define I2C_Register_SR2 ((uint8_t)0x18)
#define I2C_Register_CCR ((uint8_t)0x1C)
#define I2C_Register_TRISE ((uint8_t)0x20)
#define IS_I2C_REGISTER(REGISTER) (((REGISTER) == I2C_Register_CR1) || \
((REGISTER) == I2C_Register_CR2) || \
((REGISTER) == I2C_Register_OAR1) || \
((REGISTER) == I2C_Register_OAR2) || \
((REGISTER) == I2C_Register_DR) || \
((REGISTER) == I2C_Register_SR1) || \
((REGISTER) == I2C_Register_SR2) || \
((REGISTER) == I2C_Register_CCR) || \
((REGISTER) == I2C_Register_TRISE))
/**
* @}
*/
/** @defgroup I2C_SMBus_alert_pin_level
* @{
*/
#define I2C_SMBusAlert_Low ((uint16_t)0x2000)
#define I2C_SMBusAlert_High ((uint16_t)0xDFFF)
#define IS_I2C_SMBUS_ALERT(ALERT) (((ALERT) == I2C_SMBusAlert_Low) || \
((ALERT) == I2C_SMBusAlert_High))
/**
* @}
*/
/** @defgroup I2C_PEC_position
* @{
*/
#define I2C_PECPosition_Next ((uint16_t)0x0800)
#define I2C_PECPosition_Current ((uint16_t)0xF7FF)
#define IS_I2C_PEC_POSITION(POSITION) (((POSITION) == I2C_PECPosition_Next) || \
((POSITION) == I2C_PECPosition_Current))
/**
* @}
*/
/** @defgroup I2C_NACK_position
* @{
*/
#define I2C_NACKPosition_Next ((uint16_t)0x0800)
#define I2C_NACKPosition_Current ((uint16_t)0xF7FF)
#define IS_I2C_NACK_POSITION(POSITION) (((POSITION) == I2C_NACKPosition_Next) || \
((POSITION) == I2C_NACKPosition_Current))
/**
* @}
*/
/** @defgroup I2C_interrupts_definition
* @{
*/
#define I2C_IT_BUF ((uint16_t)0x0400)
#define I2C_IT_EVT ((uint16_t)0x0200)
#define I2C_IT_ERR ((uint16_t)0x0100)
#define IS_I2C_CONFIG_IT(IT) ((((IT) & (uint16_t)0xF8FF) == 0x00) && ((IT) != 0x00))
/**
* @}
*/
/** @defgroup I2C_interrupts_definition
* @{
*/
#define I2C_IT_SMBALERT ((uint32_t)0x01008000)
#define I2C_IT_TIMEOUT ((uint32_t)0x01004000)
#define I2C_IT_PECERR ((uint32_t)0x01001000)
#define I2C_IT_OVR ((uint32_t)0x01000800)
#define I2C_IT_AF ((uint32_t)0x01000400)
#define I2C_IT_ARLO ((uint32_t)0x01000200)
#define I2C_IT_BERR ((uint32_t)0x01000100)
#define I2C_IT_TXE ((uint32_t)0x06000080)
#define I2C_IT_RXNE ((uint32_t)0x06000040)
#define I2C_IT_STOPF ((uint32_t)0x02000010)
#define I2C_IT_ADD10 ((uint32_t)0x02000008)
#define I2C_IT_BTF ((uint32_t)0x02000004)
#define I2C_IT_ADDR ((uint32_t)0x02000002)
#define I2C_IT_SB ((uint32_t)0x02000001)
#define IS_I2C_CLEAR_IT(IT) ((((IT) & (uint16_t)0x20FF) == 0x00) && ((IT) != (uint16_t)0x00))
#define IS_I2C_GET_IT(IT) (((IT) == I2C_IT_SMBALERT) || ((IT) == I2C_IT_TIMEOUT) || \
((IT) == I2C_IT_PECERR) || ((IT) == I2C_IT_OVR) || \
((IT) == I2C_IT_AF) || ((IT) == I2C_IT_ARLO) || \
((IT) == I2C_IT_BERR) || ((IT) == I2C_IT_TXE) || \
((IT) == I2C_IT_RXNE) || ((IT) == I2C_IT_STOPF) || \
((IT) == I2C_IT_ADD10) || ((IT) == I2C_IT_BTF) || \
((IT) == I2C_IT_ADDR) || ((IT) == I2C_IT_SB))
/**
* @}
*/
/** @defgroup I2C_flags_definition
* @{
*/
/**
* @brief SR2 register flags
*/
#define I2C_FLAG_DUALF ((uint32_t)0x00800000)
#define I2C_FLAG_SMBHOST ((uint32_t)0x00400000)
#define I2C_FLAG_SMBDEFAULT ((uint32_t)0x00200000)
#define I2C_FLAG_GENCALL ((uint32_t)0x00100000)
#define I2C_FLAG_TRA ((uint32_t)0x00040000)
#define I2C_FLAG_BUSY ((uint32_t)0x00020000)
#define I2C_FLAG_MSL ((uint32_t)0x00010000)
/**
* @brief SR1 register flags
*/
#define I2C_FLAG_SMBALERT ((uint32_t)0x10008000)
#define I2C_FLAG_TIMEOUT ((uint32_t)0x10004000)
#define I2C_FLAG_PECERR ((uint32_t)0x10001000)
#define I2C_FLAG_OVR ((uint32_t)0x10000800)
#define I2C_FLAG_AF ((uint32_t)0x10000400)
#define I2C_FLAG_ARLO ((uint32_t)0x10000200)
#define I2C_FLAG_BERR ((uint32_t)0x10000100)
#define I2C_FLAG_TXE ((uint32_t)0x10000080)
#define I2C_FLAG_RXNE ((uint32_t)0x10000040)
#define I2C_FLAG_STOPF ((uint32_t)0x10000010)
#define I2C_FLAG_ADD10 ((uint32_t)0x10000008)
#define I2C_FLAG_BTF ((uint32_t)0x10000004)
#define I2C_FLAG_ADDR ((uint32_t)0x10000002)
#define I2C_FLAG_SB ((uint32_t)0x10000001)
#define IS_I2C_CLEAR_FLAG(FLAG) ((((FLAG) & (uint16_t)0x20FF) == 0x00) && ((FLAG) != (uint16_t)0x00))
#define IS_I2C_GET_FLAG(FLAG) (((FLAG) == I2C_FLAG_DUALF) || ((FLAG) == I2C_FLAG_SMBHOST) || \
((FLAG) == I2C_FLAG_SMBDEFAULT) || ((FLAG) == I2C_FLAG_GENCALL) || \
((FLAG) == I2C_FLAG_TRA) || ((FLAG) == I2C_FLAG_BUSY) || \
((FLAG) == I2C_FLAG_MSL) || ((FLAG) == I2C_FLAG_SMBALERT) || \
((FLAG) == I2C_FLAG_TIMEOUT) || ((FLAG) == I2C_FLAG_PECERR) || \
((FLAG) == I2C_FLAG_OVR) || ((FLAG) == I2C_FLAG_AF) || \
((FLAG) == I2C_FLAG_ARLO) || ((FLAG) == I2C_FLAG_BERR) || \
((FLAG) == I2C_FLAG_TXE) || ((FLAG) == I2C_FLAG_RXNE) || \
((FLAG) == I2C_FLAG_STOPF) || ((FLAG) == I2C_FLAG_ADD10) || \
((FLAG) == I2C_FLAG_BTF) || ((FLAG) == I2C_FLAG_ADDR) || \
((FLAG) == I2C_FLAG_SB))
/**
* @}
*/
/** @defgroup I2C_Events
* @{
*/
/**
===============================================================================
I2C Master Events (Events grouped in order of communication)
===============================================================================
*/
/**
* @brief Communication start
*
* After sending the START condition (I2C_GenerateSTART() function) the master
* has to wait for this event. It means that the Start condition has been correctly
* released on the I2C bus (the bus is free, no other devices is communicating).
*
*/
/* --EV5 */
#define I2C_EVENT_MASTER_MODE_SELECT ((uint32_t)0x00030001) /* BUSY, MSL and SB flag */
/**
* @brief Address Acknowledge
*
* After checking on EV5 (start condition correctly released on the bus), the
* master sends the address of the slave(s) with which it will communicate
* (I2C_Send7bitAddress() function, it also determines the direction of the communication:
* Master transmitter or Receiver). Then the master has to wait that a slave acknowledges
* his address. If an acknowledge is sent on the bus, one of the following events will
* be set:
*
* 1) In case of Master Receiver (7-bit addressing): the I2C_EVENT_MASTER_RECEIVER_MODE_SELECTED
* event is set.
*
* 2) In case of Master Transmitter (7-bit addressing): the I2C_EVENT_MASTER_TRANSMITTER_MODE_SELECTED
* is set
*
* 3) In case of 10-Bit addressing mode, the master (just after generating the START
* and checking on EV5) has to send the header of 10-bit addressing mode (I2C_SendData()
* function). Then master should wait on EV9. It means that the 10-bit addressing
* header has been correctly sent on the bus. Then master should send the second part of
* the 10-bit address (LSB) using the function I2C_Send7bitAddress(). Then master
* should wait for event EV6.
*
*/
/* --EV6 */
#define I2C_EVENT_MASTER_TRANSMITTER_MODE_SELECTED ((uint32_t)0x00070082) /* BUSY, MSL, ADDR, TXE and TRA flags */
#define I2C_EVENT_MASTER_RECEIVER_MODE_SELECTED ((uint32_t)0x00030002) /* BUSY, MSL and ADDR flags */
/* --EV9 */
#define I2C_EVENT_MASTER_MODE_ADDRESS10 ((uint32_t)0x00030008) /* BUSY, MSL and ADD10 flags */
/**
* @brief Communication events
*
* If a communication is established (START condition generated and slave address
* acknowledged) then the master has to check on one of the following events for
* communication procedures:
*
* 1) Master Receiver mode: The master has to wait on the event EV7 then to read
* the data received from the slave (I2C_ReceiveData() function).
*
* 2) Master Transmitter mode: The master has to send data (I2C_SendData()
* function) then to wait on event EV8 or EV8_2.
* These two events are similar:
* - EV8 means that the data has been written in the data register and is
* being shifted out.
* - EV8_2 means that the data has been physically shifted out and output
* on the bus.
* In most cases, using EV8 is sufficient for the application.
* Using EV8_2 leads to a slower communication but ensure more reliable test.
* EV8_2 is also more suitable than EV8 for testing on the last data transmission
* (before Stop condition generation).
*
* @note In case the user software does not guarantee that this event EV7 is
* managed before the current byte end of transfer, then user may check on EV7
* and BTF flag at the same time (ie. (I2C_EVENT_MASTER_BYTE_RECEIVED | I2C_FLAG_BTF)).
* In this case the communication may be slower.
*
*/
/* Master RECEIVER mode -----------------------------*/
/* --EV7 */
#define I2C_EVENT_MASTER_BYTE_RECEIVED ((uint32_t)0x00030040) /* BUSY, MSL and RXNE flags */
/* Master TRANSMITTER mode --------------------------*/
/* --EV8 */
#define I2C_EVENT_MASTER_BYTE_TRANSMITTING ((uint32_t)0x00070080) /* TRA, BUSY, MSL, TXE flags */
/* --EV8_2 */
#define I2C_EVENT_MASTER_BYTE_TRANSMITTED ((uint32_t)0x00070084) /* TRA, BUSY, MSL, TXE and BTF flags */
/**
===============================================================================
I2C Slave Events (Events grouped in order of communication)
===============================================================================
*/
/**
* @brief Communication start events
*
* Wait on one of these events at the start of the communication. It means that
* the I2C peripheral detected a Start condition on the bus (generated by master
* device) followed by the peripheral address. The peripheral generates an ACK
* condition on the bus (if the acknowledge feature is enabled through function
* I2C_AcknowledgeConfig()) and the events listed above are set :
*
* 1) In normal case (only one address managed by the slave), when the address
* sent by the master matches the own address of the peripheral (configured by
* I2C_OwnAddress1 field) the I2C_EVENT_SLAVE_XXX_ADDRESS_MATCHED event is set
* (where XXX could be TRANSMITTER or RECEIVER).
*
* 2) In case the address sent by the master matches the second address of the
* peripheral (configured by the function I2C_OwnAddress2Config() and enabled
* by the function I2C_DualAddressCmd()) the events I2C_EVENT_SLAVE_XXX_SECONDADDRESS_MATCHED
* (where XXX could be TRANSMITTER or RECEIVER) are set.
*
* 3) In case the address sent by the master is General Call (address 0x00) and
* if the General Call is enabled for the peripheral (using function I2C_GeneralCallCmd())
* the following event is set I2C_EVENT_SLAVE_GENERALCALLADDRESS_MATCHED.
*
*/
/* --EV1 (all the events below are variants of EV1) */
/* 1) Case of One Single Address managed by the slave */
#define I2C_EVENT_SLAVE_RECEIVER_ADDRESS_MATCHED ((uint32_t)0x00020002) /* BUSY and ADDR flags */
#define I2C_EVENT_SLAVE_TRANSMITTER_ADDRESS_MATCHED ((uint32_t)0x00060082) /* TRA, BUSY, TXE and ADDR flags */
/* 2) Case of Dual address managed by the slave */
#define I2C_EVENT_SLAVE_RECEIVER_SECONDADDRESS_MATCHED ((uint32_t)0x00820000) /* DUALF and BUSY flags */
#define I2C_EVENT_SLAVE_TRANSMITTER_SECONDADDRESS_MATCHED ((uint32_t)0x00860080) /* DUALF, TRA, BUSY and TXE flags */
/* 3) Case of General Call enabled for the slave */
#define I2C_EVENT_SLAVE_GENERALCALLADDRESS_MATCHED ((uint32_t)0x00120000) /* GENCALL and BUSY flags */
/**
* @brief Communication events
*
* Wait on one of these events when EV1 has already been checked and:
*
* - Slave RECEIVER mode:
* - EV2: When the application is expecting a data byte to be received.
* - EV4: When the application is expecting the end of the communication: master
* sends a stop condition and data transmission is stopped.
*
* - Slave Transmitter mode:
* - EV3: When a byte has been transmitted by the slave and the application is expecting
* the end of the byte transmission. The two events I2C_EVENT_SLAVE_BYTE_TRANSMITTED and
* I2C_EVENT_SLAVE_BYTE_TRANSMITTING are similar. The second one can optionally be
* used when the user software doesn't guarantee the EV3 is managed before the
* current byte end of transfer.
* - EV3_2: When the master sends a NACK in order to tell slave that data transmission
* shall end (before sending the STOP condition). In this case slave has to stop sending
* data bytes and expect a Stop condition on the bus.
*
* @note In case the user software does not guarantee that the event EV2 is
* managed before the current byte end of transfer, then user may check on EV2
* and BTF flag at the same time (ie. (I2C_EVENT_SLAVE_BYTE_RECEIVED | I2C_FLAG_BTF)).
* In this case the communication may be slower.
*
*/
/* Slave RECEIVER mode --------------------------*/
/* --EV2 */
#define I2C_EVENT_SLAVE_BYTE_RECEIVED ((uint32_t)0x00020040) /* BUSY and RXNE flags */
/* --EV4 */
#define I2C_EVENT_SLAVE_STOP_DETECTED ((uint32_t)0x00000010) /* STOPF flag */
/* Slave TRANSMITTER mode -----------------------*/
/* --EV3 */
#define I2C_EVENT_SLAVE_BYTE_TRANSMITTED ((uint32_t)0x00060084) /* TRA, BUSY, TXE and BTF flags */
#define I2C_EVENT_SLAVE_BYTE_TRANSMITTING ((uint32_t)0x00060080) /* TRA, BUSY and TXE flags */
/* --EV3_2 */
#define I2C_EVENT_SLAVE_ACK_FAILURE ((uint32_t)0x00000400) /* AF flag */
/*
===============================================================================
End of Events Description
===============================================================================
*/
#define IS_I2C_EVENT(EVENT) (((EVENT) == I2C_EVENT_SLAVE_TRANSMITTER_ADDRESS_MATCHED) || \
((EVENT) == I2C_EVENT_SLAVE_RECEIVER_ADDRESS_MATCHED) || \
((EVENT) == I2C_EVENT_SLAVE_TRANSMITTER_SECONDADDRESS_MATCHED) || \
((EVENT) == I2C_EVENT_SLAVE_RECEIVER_SECONDADDRESS_MATCHED) || \
((EVENT) == I2C_EVENT_SLAVE_GENERALCALLADDRESS_MATCHED) || \
((EVENT) == I2C_EVENT_SLAVE_BYTE_RECEIVED) || \
((EVENT) == (I2C_EVENT_SLAVE_BYTE_RECEIVED | I2C_FLAG_DUALF)) || \
((EVENT) == (I2C_EVENT_SLAVE_BYTE_RECEIVED | I2C_FLAG_GENCALL)) || \
((EVENT) == I2C_EVENT_SLAVE_BYTE_TRANSMITTED) || \
((EVENT) == (I2C_EVENT_SLAVE_BYTE_TRANSMITTED | I2C_FLAG_DUALF)) || \
((EVENT) == (I2C_EVENT_SLAVE_BYTE_TRANSMITTED | I2C_FLAG_GENCALL)) || \
((EVENT) == I2C_EVENT_SLAVE_STOP_DETECTED) || \
((EVENT) == I2C_EVENT_MASTER_MODE_SELECT) || \
((EVENT) == I2C_EVENT_MASTER_TRANSMITTER_MODE_SELECTED) || \
((EVENT) == I2C_EVENT_MASTER_RECEIVER_MODE_SELECTED) || \
((EVENT) == I2C_EVENT_MASTER_BYTE_RECEIVED) || \
((EVENT) == I2C_EVENT_MASTER_BYTE_TRANSMITTED) || \
((EVENT) == I2C_EVENT_MASTER_BYTE_TRANSMITTING) || \
((EVENT) == I2C_EVENT_MASTER_MODE_ADDRESS10) || \
((EVENT) == I2C_EVENT_SLAVE_ACK_FAILURE))
/**
* @}
*/
/** @defgroup I2C_own_address1
* @{
*/
#define IS_I2C_OWN_ADDRESS1(ADDRESS1) ((ADDRESS1) <= 0x3FF)
/**
* @}
*/
/** @defgroup I2C_clock_speed
* @{
*/
#define IS_I2C_CLOCK_SPEED(SPEED) (((SPEED) >= 0x1) && ((SPEED) <= 400000))
/**
* @}
*/
/**
* @}
*/
/* Exported macro ------------------------------------------------------------*/
/* Exported functions ------------------------------------------------------- */
/* Function used to set the I2C configuration to the default reset state *****/
void I2C_DeInit(I2C_TypeDef* I2Cx);
/* Initialization and Configuration functions *********************************/
void I2C_Init(I2C_TypeDef* I2Cx, I2C_InitTypeDef* I2C_InitStruct);
void I2C_StructInit(I2C_InitTypeDef* I2C_InitStruct);
void I2C_Cmd(I2C_TypeDef* I2Cx, FunctionalState NewState);
void I2C_GenerateSTART(I2C_TypeDef* I2Cx, FunctionalState NewState);
void I2C_GenerateSTOP(I2C_TypeDef* I2Cx, FunctionalState NewState);
void I2C_AcknowledgeConfig(I2C_TypeDef* I2Cx, FunctionalState NewState);
void I2C_OwnAddress2Config(I2C_TypeDef* I2Cx, uint8_t Address);
void I2C_DualAddressCmd(I2C_TypeDef* I2Cx, FunctionalState NewState);
void I2C_GeneralCallCmd(I2C_TypeDef* I2Cx, FunctionalState NewState);
void I2C_SoftwareResetCmd(I2C_TypeDef* I2Cx, FunctionalState NewState);
void I2C_SMBusAlertConfig(I2C_TypeDef* I2Cx, uint16_t I2C_SMBusAlert);
void I2C_ARPCmd(I2C_TypeDef* I2Cx, FunctionalState NewState);
void I2C_StretchClockCmd(I2C_TypeDef* I2Cx, FunctionalState NewState);
void I2C_FastModeDutyCycleConfig(I2C_TypeDef* I2Cx, uint16_t I2C_DutyCycle);
void I2C_Send7bitAddress(I2C_TypeDef* I2Cx, uint8_t Address, uint8_t I2C_Direction);
/* Data transfers functions ***************************************************/
void I2C_SendData(I2C_TypeDef* I2Cx, uint8_t Data);
uint8_t I2C_ReceiveData(I2C_TypeDef* I2Cx);
void I2C_NACKPositionConfig(I2C_TypeDef* I2Cx, uint16_t I2C_NACKPosition);
/* PEC management functions ***************************************************/
void I2C_TransmitPEC(I2C_TypeDef* I2Cx, FunctionalState NewState);
void I2C_PECPositionConfig(I2C_TypeDef* I2Cx, uint16_t I2C_PECPosition);
void I2C_CalculatePEC(I2C_TypeDef* I2Cx, FunctionalState NewState);
uint8_t I2C_GetPEC(I2C_TypeDef* I2Cx);
/* DMA transfers management functions *****************************************/
void I2C_DMACmd(I2C_TypeDef* I2Cx, FunctionalState NewState);
void I2C_DMALastTransferCmd(I2C_TypeDef* I2Cx, FunctionalState NewState);
/* Interrupts, events and flags management functions **************************/
uint16_t I2C_ReadRegister(I2C_TypeDef* I2Cx, uint8_t I2C_Register);
void I2C_ITConfig(I2C_TypeDef* I2Cx, uint16_t I2C_IT, FunctionalState NewState);
/*
===============================================================================
I2C State Monitoring Functions
===============================================================================
This I2C driver provides three different ways for I2C state monitoring
depending on the application requirements and constraints:
1. Basic state monitoring (Using I2C_CheckEvent() function)
-----------------------------------------------------------
It compares the status registers (SR1 and SR2) content to a given event
(can be the combination of one or more flags).
It returns SUCCESS if the current status includes the given flags
and returns ERROR if one or more flags are missing in the current status.
- When to use
- This function is suitable for most applications as well as for startup
activity since the events are fully described in the product reference
manual (RM0038).
- It is also suitable for users who need to define their own events.
- Limitations
- If an error occurs (ie. error flags are set besides to the monitored
flags), the I2C_CheckEvent() function may return SUCCESS despite
the communication hold or corrupted real state.
In this case, it is advised to use error interrupts to monitor
the error events and handle them in the interrupt IRQ handler.
Note
For error management, it is advised to use the following functions:
- I2C_ITConfig() to configure and enable the error interrupts (I2C_IT_ERR).
- I2Cx_ER_IRQHandler() which is called when the error interrupt occurs.
Where x is the peripheral instance (I2C1, I2C2 ...)
- I2C_GetFlagStatus() or I2C_GetITStatus() to be called into the
I2Cx_ER_IRQHandler() function in order to determine which error occurred.
- I2C_ClearFlag() or I2C_ClearITPendingBit() and/or I2C_SoftwareResetCmd()
and/or I2C_GenerateStop() in order to clear the error flag and source
and return to correct communciation status.
2. Advanced state monitoring (Using the function I2C_GetLastEvent())
--------------------------------------------------------------------
Using the function I2C_GetLastEvent() which returns the image of both status
registers in a single word (uint32_t) (Status Register 2 value is shifted left
by 16 bits and concatenated to Status Register 1).
- When to use
- This function is suitable for the same applications above but it
allows to overcome the mentioned limitation of I2C_GetFlagStatus()
function.
- The returned value could be compared to events already defined in
the library (stm32l1xx_i2c.h) or to custom values defined by user.
This function is suitable when multiple flags are monitored at the
same time.
- At the opposite of I2C_CheckEvent() function, this function allows
user to choose when an event is accepted (when all events flags are
set and no other flags are set or just when the needed flags are set
like I2C_CheckEvent() function.
- Limitations
- User may need to define his own events.
- Same remark concerning the error management is applicable for this
function if user decides to check only regular communication flags
(and ignores error flags).
3. Flag-based state monitoring (Using the function I2C_GetFlagStatus())
-----------------------------------------------------------------------
Using the function I2C_GetFlagStatus() which simply returns the status of
one single flag (ie. I2C_FLAG_RXNE ...).
- When to use
- This function could be used for specific applications or in debug
phase.
- It is suitable when only one flag checking is needed (most I2C
events are monitored through multiple flags).
- Limitations:
- When calling this function, the Status register is accessed.
Some flags are cleared when the status register is accessed.
So checking the status of one Flag, may clear other ones.
- Function may need to be called twice or more in order to monitor
one single event.
For detailed description of Events, please refer to section I2C_Events in
stm32l1xx_i2c.h file.
*/
/*
===============================================================================
1. Basic state monitoring
===============================================================================
*/
ErrorStatus I2C_CheckEvent(I2C_TypeDef* I2Cx, uint32_t I2C_EVENT);
/*
===============================================================================
2. Advanced state monitoring
===============================================================================
*/
uint32_t I2C_GetLastEvent(I2C_TypeDef* I2Cx);
/*
===============================================================================
3. Flag-based state monitoring
===============================================================================
*/
FlagStatus I2C_GetFlagStatus(I2C_TypeDef* I2Cx, uint32_t I2C_FLAG);
void I2C_ClearFlag(I2C_TypeDef* I2Cx, uint32_t I2C_FLAG);
ITStatus I2C_GetITStatus(I2C_TypeDef* I2Cx, uint32_t I2C_IT);
void I2C_ClearITPendingBit(I2C_TypeDef* I2Cx, uint32_t I2C_IT);
#ifdef __cplusplus
}
#endif
#endif /*__STM32L1xx_I2C_H */
/**
* @}
*/
/**
* @}
*/
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/

View File

@ -0,0 +1,266 @@
/**
******************************************************************************
* @file stm32l1xx_iwdg.c
* @author MCD Application Team
* @version V1.2.0
* @date 22-February-2013
* @brief This file provides firmware functions to manage the following
* functionalities of the Independent watchdog (IWDG) peripheral:
* + Prescaler and Counter configuration
* + IWDG activation
* + Flag management
*
* @verbatim
*
==============================================================================
##### IWDG features #####
==============================================================================
[..] The IWDG can be started by either software or hardware (configurable
through option byte).
[..] The IWDG is clocked by its own dedicated low-speed clock (LSI) and
thus stays active even if the main clock fails.
Once the IWDG is started, the LSI is forced ON and cannot be disabled
(LSI cannot be disabled too), and the counter starts counting down from
the reset value of 0xFFF. When it reaches the end of count value (0x000)
a system reset is generated.
The IWDG counter should be reloaded at regular intervals to prevent
an MCU reset.
[..] The IWDG is implemented in the VDD voltage domain that is still functional
in STOP and STANDBY mode (IWDG reset can wake-up from STANDBY).
[..] IWDGRST flag in RCC_CSR register can be used to inform when a IWDG
reset occurs.
[..] Min-max timeout value @37KHz (LSI): ~108us / ~28.3s
The IWDG timeout may vary due to LSI frequency dispersion. STM32L1xx
devices provide the capability to measure the LSI frequency (LSI clock
connected internally to TIM10 CH1 input capture). The measured value
can be used to have an IWDG timeout with an acceptable accuracy.
For more information, please refer to the STM32L1xx Reference manual.
##### How to use this driver #####
==============================================================================
[..]
(#) Enable write access to IWDG_PR and IWDG_RLR registers using
IWDG_WriteAccessCmd(IWDG_WriteAccess_Enable) function.
(#) Configure the IWDG prescaler using IWDG_SetPrescaler() function.
(#) Configure the IWDG counter value using IWDG_SetReload() function.
This value will be loaded in the IWDG counter each time the counter
is reloaded, then the IWDG will start counting down from this value.
(#) Start the IWDG using IWDG_Enable() function, when the IWDG is used
in software mode (no need to enable the LSI, it will be enabled
by hardware).
(#) Then the application program must reload the IWDG counter at regular
intervals during normal operation to prevent an MCU reset, using
IWDG_ReloadCounter() function.
@endverbatim
*
******************************************************************************
* @attention
*
* <h2><center>&copy; COPYRIGHT 2013 STMicroelectronics</center></h2>
*
* Licensed under MCD-ST Liberty SW License Agreement V2, (the "License");
* You may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.st.com/software_license_agreement_liberty_v2
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "stm32l1xx_iwdg.h"
/** @addtogroup STM32L1xx_StdPeriph_Driver
* @{
*/
/** @defgroup IWDG
* @brief IWDG driver modules
* @{
*/
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/* ---------------------- IWDG registers bit mask ----------------------------*/
/* KR register bit mask */
#define KR_KEY_RELOAD ((uint16_t)0xAAAA)
#define KR_KEY_ENABLE ((uint16_t)0xCCCC)
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private function prototypes -----------------------------------------------*/
/* Private functions ---------------------------------------------------------*/
/** @defgroup IWDG_Private_Functions
* @{
*/
/** @defgroup IWDG_Group1 Prescaler and Counter configuration functions
* @brief Prescaler and Counter configuration functions
*
@verbatim
==============================================================================
##### Prescaler and Counter configuration functions #####
==============================================================================
@endverbatim
* @{
*/
/**
* @brief Enables or disables write access to IWDG_PR and IWDG_RLR registers.
* @param IWDG_WriteAccess: new state of write access to IWDG_PR and IWDG_RLR registers.
* This parameter can be one of the following values:
* @arg IWDG_WriteAccess_Enable: Enable write access to IWDG_PR and IWDG_RLR registers
* @arg IWDG_WriteAccess_Disable: Disable write access to IWDG_PR and IWDG_RLR registers
* @retval None
*/
void IWDG_WriteAccessCmd(uint16_t IWDG_WriteAccess)
{
/* Check the parameters */
assert_param(IS_IWDG_WRITE_ACCESS(IWDG_WriteAccess));
IWDG->KR = IWDG_WriteAccess;
}
/**
* @brief Sets IWDG Prescaler value.
* @param IWDG_Prescaler: specifies the IWDG Prescaler value.
* This parameter can be one of the following values:
* @arg IWDG_Prescaler_4: IWDG prescaler set to 4
* @arg IWDG_Prescaler_8: IWDG prescaler set to 8
* @arg IWDG_Prescaler_16: IWDG prescaler set to 16
* @arg IWDG_Prescaler_32: IWDG prescaler set to 32
* @arg IWDG_Prescaler_64: IWDG prescaler set to 64
* @arg IWDG_Prescaler_128: IWDG prescaler set to 128
* @arg IWDG_Prescaler_256: IWDG prescaler set to 256
* @retval None
*/
void IWDG_SetPrescaler(uint8_t IWDG_Prescaler)
{
/* Check the parameters */
assert_param(IS_IWDG_PRESCALER(IWDG_Prescaler));
IWDG->PR = IWDG_Prescaler;
}
/**
* @brief Sets IWDG Reload value.
* @param Reload: specifies the IWDG Reload value.
* This parameter must be a number between 0 and 0x0FFF.
* @retval None
*/
void IWDG_SetReload(uint16_t Reload)
{
/* Check the parameters */
assert_param(IS_IWDG_RELOAD(Reload));
IWDG->RLR = Reload;
}
/**
* @brief Reloads IWDG counter with value defined in the reload register
* (write access to IWDG_PR and IWDG_RLR registers disabled).
* @param None
* @retval None
*/
void IWDG_ReloadCounter(void)
{
IWDG->KR = KR_KEY_RELOAD;
}
/**
* @}
*/
/** @defgroup IWDG_Group2 IWDG activation function
* @brief IWDG activation function
*
@verbatim
==============================================================================
##### IWDG activation function #####
==============================================================================
@endverbatim
* @{
*/
/**
* @brief Enables IWDG (write access to IWDG_PR and IWDG_RLR registers disabled).
* @param None.
* @retval None.
*/
void IWDG_Enable(void)
{
IWDG->KR = KR_KEY_ENABLE;
}
/**
* @}
*/
/** @defgroup IWDG_Group3 Flag management function
* @brief Flag management function
*
@verbatim
===============================================================================
##### Flag management function #####
===============================================================================
@endverbatim
* @{
*/
/**
* @brief Checks whether the specified IWDG flag is set or not.
* @param IWDG_FLAG: specifies the flag to check.
* This parameter can be one of the following values:
* @arg IWDG_FLAG_PVU: Prescaler Value Update on going
* @arg IWDG_FLAG_RVU: Reload Value Update on going
* @retval The new state of IWDG_FLAG (SET or RESET).
*/
FlagStatus IWDG_GetFlagStatus(uint16_t IWDG_FLAG)
{
FlagStatus bitstatus = RESET;
/* Check the parameters */
assert_param(IS_IWDG_FLAG(IWDG_FLAG));
if ((IWDG->SR & IWDG_FLAG) != (uint32_t)RESET)
{
bitstatus = SET;
}
else
{
bitstatus = RESET;
}
/* Return the flag status */
return bitstatus;
}
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/

View File

@ -0,0 +1,134 @@
/**
******************************************************************************
* @file stm32l1xx_iwdg.h
* @author MCD Application Team
* @version V1.2.0
* @date 22-February-2013
* @brief This file contains all the functions prototypes for the IWDG
* firmware library.
******************************************************************************
* @attention
*
* <h2><center>&copy; COPYRIGHT 2013 STMicroelectronics</center></h2>
*
* Licensed under MCD-ST Liberty SW License Agreement V2, (the "License");
* You may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.st.com/software_license_agreement_liberty_v2
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
******************************************************************************
*/
/* Define to prevent recursive inclusion -------------------------------------*/
#ifndef __STM32L1xx_IWDG_H
#define __STM32L1xx_IWDG_H
#ifdef __cplusplus
extern "C" {
#endif
/* Includes ------------------------------------------------------------------*/
#include "stm32l1xx.h"
/** @addtogroup STM32L1xx_StdPeriph_Driver
* @{
*/
/** @addtogroup IWDG
* @{
*/
/* Exported types ------------------------------------------------------------*/
/* Exported constants --------------------------------------------------------*/
/** @defgroup IWDG_Exported_Constants
* @{
*/
/** @defgroup IWDG_WriteAccess
* @{
*/
#define IWDG_WriteAccess_Enable ((uint16_t)0x5555)
#define IWDG_WriteAccess_Disable ((uint16_t)0x0000)
#define IS_IWDG_WRITE_ACCESS(ACCESS) (((ACCESS) == IWDG_WriteAccess_Enable) || \
((ACCESS) == IWDG_WriteAccess_Disable))
/**
* @}
*/
/** @defgroup IWDG_prescaler
* @{
*/
#define IWDG_Prescaler_4 ((uint8_t)0x00)
#define IWDG_Prescaler_8 ((uint8_t)0x01)
#define IWDG_Prescaler_16 ((uint8_t)0x02)
#define IWDG_Prescaler_32 ((uint8_t)0x03)
#define IWDG_Prescaler_64 ((uint8_t)0x04)
#define IWDG_Prescaler_128 ((uint8_t)0x05)
#define IWDG_Prescaler_256 ((uint8_t)0x06)
#define IS_IWDG_PRESCALER(PRESCALER) (((PRESCALER) == IWDG_Prescaler_4) || \
((PRESCALER) == IWDG_Prescaler_8) || \
((PRESCALER) == IWDG_Prescaler_16) || \
((PRESCALER) == IWDG_Prescaler_32) || \
((PRESCALER) == IWDG_Prescaler_64) || \
((PRESCALER) == IWDG_Prescaler_128)|| \
((PRESCALER) == IWDG_Prescaler_256))
/**
* @}
*/
/** @defgroup IWDG_Flag
* @{
*/
#define IWDG_FLAG_PVU ((uint16_t)0x0001)
#define IWDG_FLAG_RVU ((uint16_t)0x0002)
#define IS_IWDG_FLAG(FLAG) (((FLAG) == IWDG_FLAG_PVU) || ((FLAG) == IWDG_FLAG_RVU))
#define IS_IWDG_RELOAD(RELOAD) ((RELOAD) <= 0xFFF)
/**
* @}
*/
/**
* @}
*/
/* Exported macro ------------------------------------------------------------*/
/* Exported functions ------------------------------------------------------- */
/* Prescaler and Counter configuration functions ******************************/
void IWDG_WriteAccessCmd(uint16_t IWDG_WriteAccess);
void IWDG_SetPrescaler(uint8_t IWDG_Prescaler);
void IWDG_SetReload(uint16_t Reload);
void IWDG_ReloadCounter(void);
/* IWDG activation function ***************************************************/
void IWDG_Enable(void);
/* Flag management function ***************************************************/
FlagStatus IWDG_GetFlagStatus(uint16_t IWDG_FLAG);
#ifdef __cplusplus
}
#endif
#endif /* __STM32L1xx_IWDG_H */
/**
* @}
*/
/**
* @}
*/
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/

View File

@ -0,0 +1,640 @@
/**
******************************************************************************
* @file stm32l1xx_lcd.c
* @author MCD Application Team
* @version V1.2.0
* @date 22-February-2013
* @brief This file provides firmware functions to manage the following
* functionalities of the LCD controller (LCD) peripheral:
* + Initialization and configuration
* + LCD RAM memory write
* + Interrupts and flags management
*
* @verbatim
===============================================================================
##### LCD Clock #####
===============================================================================
[..] LCDCLK is the same as RTCCLK.
[..] To configure the RTCCLK/LCDCLK, proceed as follows:
(+) Enable the Power Controller (PWR) APB1 interface clock using the
RCC_APB1PeriphClockCmd() function.
(+) Enable access to RTC domain using the PWR_RTCAccessCmd() function.
(+) Select the RTC clock source using the RCC_RTCCLKConfig() function.
[..] The frequency generator allows you to achieve various LCD frame rates
starting from an LCD input clock frequency (LCDCLK) which can vary
from 32 kHz up to 1 MHz.
##### LCD and low power modes #####
===============================================================================
[..] The LCD still active during STOP mode.
##### How to use this driver #####
===============================================================================
[..]
(#) Enable LCD clock using
RCC_APB1PeriphClockCmd(RCC_APB1Periph_LCD, ENABLE) function.
(#) Configure the LCD prescaler, divider, duty, bias and voltage source
using LCD_Init() function.
(#) Optionally you can enable/configure:
(++) LCD High Drive using the LCD_HighDriveCmd() function.
(++) LCD COM/SEG Mux using the LCD_MuxSegmentCmd() function.
(++) LCD Pulse ON Duration using the LCD_PulseOnDurationConfig() function.
(++) LCD Dead Time using the LCD_DeadTimeConfig() function
(++) The LCD Blink mode and frequency using the LCD_BlinkConfig() function.
(++) The LCD Contrast using the LCD_ContrastConfig() function.
(#) Call the LCD_WaitForSynchro() function to wait for LCD_FCR register
synchronization.
(#) Call the LCD_Cmd() to enable the LCD controller.
(#) Wait until the LCD Controller status is enabled and the step-up
converter is ready using the LCD_GetFlagStatus() and
LCD_FLAG_ENS and LCD_FLAG_RDY flags.
(#) Write to the LCD RAM memory using the LCD_Write() function.
(#) Request an update display using the LCD_UpdateDisplayRequest()
function.
(#) Wait until the update display is finished by checking the UDD
flag status using the LCD_GetFlagStatus(LCD_FLAG_UDD).
@endverbatim
******************************************************************************
* @attention
*
* <h2><center>&copy; COPYRIGHT 2013 STMicroelectronics</center></h2>
*
* Licensed under MCD-ST Liberty SW License Agreement V2, (the "License");
* You may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.st.com/software_license_agreement_liberty_v2
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "stm32l1xx_lcd.h"
#include "stm32l1xx_rcc.h"
/** @addtogroup STM32L1xx_StdPeriph_Driver
* @{
*/
/** @defgroup LCD
* @brief LCD driver modules
* @{
*/
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/* ------------ LCD registers bit address in the alias region --------------- */
#define LCD_OFFSET (LCD_BASE - PERIPH_BASE)
/* --- CR Register ---*/
/* Alias word address of LCDEN bit */
#define CR_OFFSET (LCD_OFFSET + 0x00)
#define LCDEN_BitNumber 0x00
#define CR_LCDEN_BB (PERIPH_BB_BASE + (CR_OFFSET * 32) + (LCDEN_BitNumber * 4))
/* Alias word address of MUX_SEG bit */
#define MUX_SEG_BitNumber 0x07
#define CR_MUX_SEG_BB (PERIPH_BB_BASE + (CR_OFFSET * 32) + (MUX_SEG_BitNumber * 4))
/* --- FCR Register ---*/
/* Alias word address of HD bit */
#define FCR_OFFSET (LCD_OFFSET + 0x04)
#define HD_BitNumber 0x00
#define FCR_HD_BB (PERIPH_BB_BASE + (FCR_OFFSET * 32) + (HD_BitNumber * 4))
/* --- SR Register ---*/
/* Alias word address of UDR bit */
#define SR_OFFSET (LCD_OFFSET + 0x08)
#define UDR_BitNumber 0x02
#define SR_UDR_BB (PERIPH_BB_BASE + (SR_OFFSET * 32) + (UDR_BitNumber * 4))
#define FCR_MASK ((uint32_t)0xFC03FFFF) /* LCD FCR Mask */
#define CR_MASK ((uint32_t)0xFFFFFF81) /* LCD CR Mask */
#define PON_MASK ((uint32_t)0xFFFFFF8F) /* LCD PON Mask */
#define DEAD_MASK ((uint32_t)0xFFFFFC7F) /* LCD DEAD Mask */
#define BLINK_MASK ((uint32_t)0xFFFC1FFF) /* LCD BLINK Mask */
#define CONTRAST_MASK ((uint32_t)0xFFFFE3FF) /* LCD CONTRAST Mask */
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private function prototypes -----------------------------------------------*/
/* Private functions ---------------------------------------------------------*/
/** @defgroup LCD_Private_Functions
* @{
*/
/** @defgroup LCD_Group1 Initialization and Configuration functions
* @brief Initialization and Configuration functions
*
@verbatim
===============================================================================
##### Initialization and Configuration functions #####
===============================================================================
@endverbatim
* @{
*/
/**
* @brief Deinitializes the LCD peripheral registers to their default reset
* values.
* @param None
* @retval None
*/
void LCD_DeInit(void)
{
/* Enable LCD reset state */
RCC_APB1PeriphResetCmd(RCC_APB1Periph_LCD, ENABLE);
/* Release LCD from reset state */
RCC_APB1PeriphResetCmd(RCC_APB1Periph_LCD, DISABLE);
}
/**
* @brief Initializes the LCD peripheral according to the specified parameters
* in the LCD_InitStruct.
* @note This function can be used only when the LCD is disabled.
* @param LCD_InitStruct: pointer to a LCD_InitTypeDef structure that contains
* the configuration information for the specified LCD peripheral.
* @retval None
*/
void LCD_Init(LCD_InitTypeDef* LCD_InitStruct)
{
/* Check function parameters */
assert_param(IS_LCD_PRESCALER(LCD_InitStruct->LCD_Prescaler));
assert_param(IS_LCD_DIVIDER(LCD_InitStruct->LCD_Divider));
assert_param(IS_LCD_DUTY(LCD_InitStruct->LCD_Duty));
assert_param(IS_LCD_BIAS(LCD_InitStruct->LCD_Bias));
assert_param(IS_LCD_VOLTAGE_SOURCE(LCD_InitStruct->LCD_VoltageSource));
LCD->FCR &= (uint32_t)FCR_MASK;
LCD->FCR |= (uint32_t)(LCD_InitStruct->LCD_Prescaler | LCD_InitStruct->LCD_Divider);
LCD_WaitForSynchro();
LCD->CR &= (uint32_t)CR_MASK;
LCD->CR |= (uint32_t)(LCD_InitStruct->LCD_Duty | LCD_InitStruct->LCD_Bias | \
LCD_InitStruct->LCD_VoltageSource);
}
/**
* @brief Fills each LCD_InitStruct member with its default value.
* @param LCD_InitStruct: pointer to a LCD_InitTypeDef structure which will
* be initialized.
* @retval None
*/
void LCD_StructInit(LCD_InitTypeDef* LCD_InitStruct)
{
/*--------------- Reset LCD init structure parameters values -----------------*/
LCD_InitStruct->LCD_Prescaler = LCD_Prescaler_1; /*!< Initialize the LCD_Prescaler member */
LCD_InitStruct->LCD_Divider = LCD_Divider_16; /*!< Initialize the LCD_Divider member */
LCD_InitStruct->LCD_Duty = LCD_Duty_Static; /*!< Initialize the LCD_Duty member */
LCD_InitStruct->LCD_Bias = LCD_Bias_1_4; /*!< Initialize the LCD_Bias member */
LCD_InitStruct->LCD_VoltageSource = LCD_VoltageSource_Internal; /*!< Initialize the LCD_VoltageSource member */
}
/**
* @brief Enables or disables the LCD Controller.
* @param NewState: new state of the LCD peripheral.
* This parameter can be: ENABLE or DISABLE.
* @retval None
*/
void LCD_Cmd(FunctionalState NewState)
{
assert_param(IS_FUNCTIONAL_STATE(NewState));
/* Check the parameters */
assert_param(IS_FUNCTIONAL_STATE(NewState));
*(__IO uint32_t *) CR_LCDEN_BB = (uint32_t)NewState;
}
/**
* @brief Waits until the LCD FCR register is synchronized in the LCDCLK domain.
* This function must be called after any write operation to LCD_FCR register.
* @param None
* @retval None
*/
void LCD_WaitForSynchro(void)
{
/* Loop until FCRSF flag is set */
while ((LCD->SR & LCD_FLAG_FCRSF) == (uint32_t)RESET)
{
}
}
/**
* @brief Enables or disables the low resistance divider. Displays with high
* internal resistance may need a longer drive time to achieve
* satisfactory contrast. This function is useful in this case if some
* additional power consumption can be tolerated.
* @note When this mode is enabled, the PulseOn Duration (PON) have to be
* programmed to 1/CK_PS (LCD_PulseOnDuration_1).
* @param NewState: new state of the low resistance divider.
* This parameter can be: ENABLE or DISABLE.
* @retval None
*/
void LCD_HighDriveCmd(FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_FUNCTIONAL_STATE(NewState));
*(__IO uint32_t *) FCR_HD_BB = (uint32_t)NewState;
}
/**
* @brief Enables or disables the Mux Segment.
* @note This function can be used only when the LCD is disabled.
* @param NewState: new state of the Mux Segment.
* This parameter can be: ENABLE or DISABLE.
* @retval None
*/
void LCD_MuxSegmentCmd(FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_FUNCTIONAL_STATE(NewState));
*(__IO uint32_t *) CR_MUX_SEG_BB = (uint32_t)NewState;
}
/**
* @brief Configures the LCD pulses on duration.
* @param LCD_PulseOnDuration: specifies the LCD pulse on duration in terms of
* CK_PS (prescaled LCD clock period) pulses.
* This parameter can be one of the following values:
* @arg LCD_PulseOnDuration_0: 0 pulse
* @arg LCD_PulseOnDuration_1: Pulse ON duration = 1/CK_PS
* @arg LCD_PulseOnDuration_2: Pulse ON duration = 2/CK_PS
* @arg LCD_PulseOnDuration_3: Pulse ON duration = 3/CK_PS
* @arg LCD_PulseOnDuration_4: Pulse ON duration = 4/CK_PS
* @arg LCD_PulseOnDuration_5: Pulse ON duration = 5/CK_PS
* @arg LCD_PulseOnDuration_6: Pulse ON duration = 6/CK_PS
* @arg LCD_PulseOnDuration_7: Pulse ON duration = 7/CK_PS
* @retval None
*/
void LCD_PulseOnDurationConfig(uint32_t LCD_PulseOnDuration)
{
/* Check the parameters */
assert_param(IS_LCD_PULSE_ON_DURATION(LCD_PulseOnDuration));
LCD->FCR &= (uint32_t)PON_MASK;
LCD->FCR |= (uint32_t)(LCD_PulseOnDuration);
}
/**
* @brief Configures the LCD dead time.
* @param LCD_DeadTime: specifies the LCD dead time.
* This parameter can be one of the following values:
* @arg LCD_DeadTime_0: No dead Time
* @arg LCD_DeadTime_1: One Phase between different couple of Frame
* @arg LCD_DeadTime_2: Two Phase between different couple of Frame
* @arg LCD_DeadTime_3: Three Phase between different couple of Frame
* @arg LCD_DeadTime_4: Four Phase between different couple of Frame
* @arg LCD_DeadTime_5: Five Phase between different couple of Frame
* @arg LCD_DeadTime_6: Six Phase between different couple of Frame
* @arg LCD_DeadTime_7: Seven Phase between different couple of Frame
* @retval None
*/
void LCD_DeadTimeConfig(uint32_t LCD_DeadTime)
{
/* Check the parameters */
assert_param(IS_LCD_DEAD_TIME(LCD_DeadTime));
LCD->FCR &= (uint32_t)DEAD_MASK;
LCD->FCR |= (uint32_t)(LCD_DeadTime);
}
/**
* @brief Configures the LCD Blink mode and Blink frequency.
* @param LCD_BlinkMode: specifies the LCD blink mode.
* This parameter can be one of the following values:
* @arg LCD_BlinkMode_Off: Blink disabled
* @arg LCD_BlinkMode_SEG0_COM0: Blink enabled on SEG[0], COM[0] (1 pixel)
* @arg LCD_BlinkMode_SEG0_AllCOM: Blink enabled on SEG[0], all COM (up to 8
* pixels according to the programmed duty)
* @arg LCD_BlinkMode_AllSEG_AllCOM: Blink enabled on all SEG and all COM
* (all pixels)
* @param LCD_BlinkFrequency: specifies the LCD blink frequency.
* This parameter can be one of the following values:
* @arg LCD_BlinkFrequency_Div8: The Blink frequency = fLcd/8
* @arg LCD_BlinkFrequency_Div16: The Blink frequency = fLcd/16
* @arg LCD_BlinkFrequency_Div32: The Blink frequency = fLcd/32
* @arg LCD_BlinkFrequency_Div64: The Blink frequency = fLcd/64
* @arg LCD_BlinkFrequency_Div128: The Blink frequency = fLcd/128
* @arg LCD_BlinkFrequency_Div256: The Blink frequency = fLcd/256
* @arg LCD_BlinkFrequency_Div512: The Blink frequency = fLcd/512
* @arg LCD_BlinkFrequency_Div1024: The Blink frequency = fLcd/1024
* @retval None
*/
void LCD_BlinkConfig(uint32_t LCD_BlinkMode, uint32_t LCD_BlinkFrequency)
{
/* Check the parameters */
assert_param(IS_LCD_BLINK_MODE(LCD_BlinkMode));
assert_param(IS_LCD_BLINK_FREQUENCY(LCD_BlinkFrequency));
LCD->FCR &= (uint32_t)BLINK_MASK;
LCD->FCR |= (uint32_t)(LCD_BlinkMode | LCD_BlinkFrequency);
}
/**
* @brief Configures the LCD Contrast.
* @param LCD_Contrast: specifies the LCD Contrast.
* This parameter can be one of the following values:
* @arg LCD_Contrast_Level_0: Maximum Voltage = 2.60V
* @arg LCD_Contrast_Level_1: Maximum Voltage = 2.73V
* @arg LCD_Contrast_Level_2: Maximum Voltage = 2.86V
* @arg LCD_Contrast_Level_3: Maximum Voltage = 2.99V
* @arg LCD_Contrast_Level_4: Maximum Voltage = 3.12V
* @arg LCD_Contrast_Level_5: Maximum Voltage = 3.25V
* @arg LCD_Contrast_Level_6: Maximum Voltage = 3.38V
* @arg LCD_Contrast_Level_7: Maximum Voltage = 3.51V
* @retval None
*/
void LCD_ContrastConfig(uint32_t LCD_Contrast)
{
/* Check the parameters */
assert_param(IS_LCD_CONTRAST(LCD_Contrast));
LCD->FCR &= (uint32_t)CONTRAST_MASK;
LCD->FCR |= (uint32_t)(LCD_Contrast);
}
/**
* @}
*/
/** @defgroup LCD_Group2 LCD RAM memory write functions
* @brief LCD RAM memory write functions
*
@verbatim
===============================================================================
##### LCD RAM memory write functions #####
===============================================================================
[..] Using its double buffer memory the LCD controller ensures the coherency
of the displayed information without having to use interrupts to control
LCD_RAM modification.
[..] The application software can access the first buffer level (LCD_RAM) through
the APB interface. Once it has modified the LCD_RAM, it sets the UDR flag
in the LCD_SR register using the LCD_UpdateDisplayRequest() function.
[..] This UDR flag (update display request) requests the updated information
to be moved into the second buffer level (LCD_DISPLAY).
[..] This operation is done synchronously with the frame (at the beginning of
the next frame), until the update is completed, the LCD_RAM is write
protected and the UDR flag stays high.
[..] Once the update is completed another flag (UDD - Update Display Done) is
set and generates an interrupt if the UDDIE bit in the LCD_FCR register
is set.
[..] The time it takes to update LCD_DISPLAY is, in the worst case, one odd
and one even frame.
[..] The update will not occur (UDR = 1 and UDD = 0) until the display is
enabled (LCDEN = 1).
@endverbatim
* @{
*/
/**
* @brief Writes a word in the specific LCD RAM.
* @param LCD_RAMRegister: specifies the LCD Contrast.
* This parameter can be one of the following values:
* @arg LCD_RAMRegister_0: LCD RAM Register 0
* @arg LCD_RAMRegister_1: LCD RAM Register 1
* @arg LCD_RAMRegister_2: LCD RAM Register 2
* @arg LCD_RAMRegister_3: LCD RAM Register 3
* @arg LCD_RAMRegister_4: LCD RAM Register 4
* @arg LCD_RAMRegister_5: LCD RAM Register 5
* @arg LCD_RAMRegister_6: LCD RAM Register 6
* @arg LCD_RAMRegister_7: LCD RAM Register 7
* @arg LCD_RAMRegister_8: LCD RAM Register 8
* @arg LCD_RAMRegister_9: LCD RAM Register 9
* @arg LCD_RAMRegister_10: LCD RAM Register 10
* @arg LCD_RAMRegister_11: LCD RAM Register 11
* @arg LCD_RAMRegister_12: LCD RAM Register 12
* @arg LCD_RAMRegister_13: LCD RAM Register 13
* @arg LCD_RAMRegister_14: LCD RAM Register 14
* @arg LCD_RAMRegister_15: LCD RAM Register 15
* @param LCD_Data: specifies LCD Data Value to be written.
* @retval None
*/
void LCD_Write(uint32_t LCD_RAMRegister, uint32_t LCD_Data)
{
/* Check the parameters */
assert_param(IS_LCD_RAM_REGISTER(LCD_RAMRegister));
/* Copy data bytes to RAM register */
LCD->RAM[LCD_RAMRegister] = (uint32_t)LCD_Data;
}
/**
* @brief Enables the Update Display Request.
* @note Each time software modifies the LCD_RAM it must set the UDR bit to
* transfer the updated data to the second level buffer.
* The UDR bit stays set until the end of the update and during this
* time the LCD_RAM is write protected.
* @note When the display is disabled, the update is performed for all
* LCD_DISPLAY locations.
* When the display is enabled, the update is performed only for locations
* for which commons are active (depending on DUTY). For example if
* DUTY = 1/2, only the LCD_DISPLAY of COM0 and COM1 will be updated.
* @param None
* @retval None
*/
void LCD_UpdateDisplayRequest(void)
{
*(__IO uint32_t *) SR_UDR_BB = (uint32_t)0x01;
}
/**
* @}
*/
/** @defgroup LCD_Group3 Interrupts and flags management functions
* @brief Interrupts and flags management functions
*
@verbatim
===============================================================================
##### Interrupts and flags management functions #####
===============================================================================
@endverbatim
* @{
*/
/**
* @brief Enables or disables the specified LCD interrupts.
* @param LCD_IT: specifies the LCD interrupts sources to be enabled or disabled.
* This parameter can be any combination of the following values:
* @arg LCD_IT_SOF: Start of Frame Interrupt
* @arg LCD_IT_UDD: Update Display Done Interrupt
* @param NewState: new state of the specified LCD interrupts.
* This parameter can be: ENABLE or DISABLE.
* @retval None
*/
void LCD_ITConfig(uint32_t LCD_IT, FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_LCD_IT(LCD_IT));
assert_param(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
LCD->FCR |= LCD_IT;
}
else
{
LCD->FCR &= (uint32_t)~LCD_IT;
}
}
/**
* @brief Checks whether the specified LCD flag is set or not.
* @param LCD_FLAG: specifies the flag to check.
* This parameter can be one of the following values:
* @arg LCD_FLAG_ENS: LCD Enabled flag. It indicates the LCD controller status.
* @note The ENS bit is set immediately when the LCDEN bit in the LCD_CR
* goes from 0 to 1. On deactivation it reflects the real status of
* LCD so it becomes 0 at the end of the last displayed frame.
* @arg LCD_FLAG_SOF: Start of Frame flag. This flag is set by hardware at
* the beginning of a new frame, at the same time as the display data is
* updated.
* @arg LCD_FLAG_UDR: Update Display Request flag.
* @arg LCD_FLAG_UDD: Update Display Done flag.
* @arg LCD_FLAG_RDY: Step_up converter Ready flag. It indicates the status
* of the step-up converter.
* @arg LCD_FLAG_FCRSF: LCD Frame Control Register Synchronization Flag.
* This flag is set by hardware each time the LCD_FCR register is updated
* in the LCDCLK domain.
* @retval The new state of LCD_FLAG (SET or RESET).
*/
FlagStatus LCD_GetFlagStatus(uint32_t LCD_FLAG)
{
FlagStatus bitstatus = RESET;
/* Check the parameters */
assert_param(IS_LCD_GET_FLAG(LCD_FLAG));
if ((LCD->SR & LCD_FLAG) != (uint32_t)RESET)
{
bitstatus = SET;
}
else
{
bitstatus = RESET;
}
return bitstatus;
}
/**
* @brief Clears the LCD's pending flags.
* @param LCD_FLAG: specifies the flag to clear.
* This parameter can be any combination of the following values:
* @arg LCD_FLAG_SOF: Start of Frame Interrupt
* @arg LCD_FLAG_UDD: Update Display Done Interrupt
* @retval None
*/
void LCD_ClearFlag(uint32_t LCD_FLAG)
{
/* Check the parameters */
assert_param(IS_LCD_CLEAR_FLAG(LCD_FLAG));
/* Clear the corresponding LCD flag */
LCD->CLR = (uint32_t)LCD_FLAG;
}
/**
* @brief Checks whether the specified RTC interrupt has occurred or not.
* @param LCD_IT: specifies the LCD interrupts sources to check.
* This parameter can be one of the following values:
* @arg LCD_IT_SOF: Start of Frame Interrupt
* @arg LCD_IT_UDD: Update Display Done Interrupt.
* @note If the device is in STOP mode (PCLK not provided) UDD will not
* generate an interrupt even if UDDIE = 1.
* If the display is not enabled the UDD interrupt will never occur.
* @retval The new state of the LCD_IT (SET or RESET).
*/
ITStatus LCD_GetITStatus(uint32_t LCD_IT)
{
ITStatus bitstatus = RESET;
/* Check the parameters */
assert_param(IS_LCD_GET_IT(LCD_IT));
if ((LCD->SR & LCD_IT) != (uint16_t)RESET)
{
bitstatus = SET;
}
else
{
bitstatus = RESET;
}
if (((LCD->FCR & LCD_IT) != (uint16_t)RESET) && (bitstatus != (uint32_t)RESET))
{
bitstatus = SET;
}
else
{
bitstatus = RESET;
}
return bitstatus;
}
/**
* @brief Clears the LCD's interrupt pending bits.
* @param LCD_IT: specifies the interrupt pending bit to clear.
* This parameter can be any combination of the following values:
* @arg LCD_IT_SOF: Start of Frame Interrupt
* @arg LCD_IT_UDD: Update Display Done Interrupt
* @retval None
*/
void LCD_ClearITPendingBit(uint32_t LCD_IT)
{
/* Check the parameters */
assert_param(IS_LCD_IT(LCD_IT));
/* Clear the corresponding LCD pending bit */
LCD->CLR = (uint32_t)LCD_IT;
}
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/

View File

@ -0,0 +1,452 @@
/**
******************************************************************************
* @file stm32l1xx_lcd.h
* @author MCD Application Team
* @version V1.2.0
* @date 22-February-2013
* @brief This file contains all the functions prototypes for the LCD firmware
* library.
******************************************************************************
* @attention
*
* <h2><center>&copy; COPYRIGHT 2013 STMicroelectronics</center></h2>
*
* Licensed under MCD-ST Liberty SW License Agreement V2, (the "License");
* You may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.st.com/software_license_agreement_liberty_v2
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
******************************************************************************
*/
/* Define to prevent recursive inclusion -------------------------------------*/
#ifndef __STM32L1xx_LCD_H
#define __STM32L1xx_LCD_H
#ifdef __cplusplus
extern "C" {
#endif
/* Includes ------------------------------------------------------------------*/
#include "stm32l1xx.h"
/** @addtogroup STM32L1xx_StdPeriph_Driver
* @{
*/
/** @addtogroup LCD
* @{
*/
/* Exported types ------------------------------------------------------------*/
/**
* @brief LCD Init structure definition
*/
typedef struct
{
uint32_t LCD_Prescaler; /*!< Configures the LCD Prescaler.
This parameter can be one value of @ref LCD_Prescaler */
uint32_t LCD_Divider; /*!< Configures the LCD Divider.
This parameter can be one value of @ref LCD_Divider */
uint32_t LCD_Duty; /*!< Configures the LCD Duty.
This parameter can be one value of @ref LCD_Duty */
uint32_t LCD_Bias; /*!< Configures the LCD Bias.
This parameter can be one value of @ref LCD_Bias */
uint32_t LCD_VoltageSource; /*!< Selects the LCD Voltage source.
This parameter can be one value of @ref LCD_Voltage_Source */
}LCD_InitTypeDef;
/* Exported constants --------------------------------------------------------*/
/** @defgroup LCD_Exported_Constants
* @{
*/
/** @defgroup LCD_Prescaler
* @{
*/
#define LCD_Prescaler_1 ((uint32_t)0x00000000) /*!< CLKPS = LCDCLK */
#define LCD_Prescaler_2 ((uint32_t)0x00400000) /*!< CLKPS = LCDCLK/2 */
#define LCD_Prescaler_4 ((uint32_t)0x00800000) /*!< CLKPS = LCDCLK/4 */
#define LCD_Prescaler_8 ((uint32_t)0x00C00000) /*!< CLKPS = LCDCLK/8 */
#define LCD_Prescaler_16 ((uint32_t)0x01000000) /*!< CLKPS = LCDCLK/16 */
#define LCD_Prescaler_32 ((uint32_t)0x01400000) /*!< CLKPS = LCDCLK/32 */
#define LCD_Prescaler_64 ((uint32_t)0x01800000) /*!< CLKPS = LCDCLK/64 */
#define LCD_Prescaler_128 ((uint32_t)0x01C00000) /*!< CLKPS = LCDCLK/128 */
#define LCD_Prescaler_256 ((uint32_t)0x02000000) /*!< CLKPS = LCDCLK/256 */
#define LCD_Prescaler_512 ((uint32_t)0x02400000) /*!< CLKPS = LCDCLK/512 */
#define LCD_Prescaler_1024 ((uint32_t)0x02800000) /*!< CLKPS = LCDCLK/1024 */
#define LCD_Prescaler_2048 ((uint32_t)0x02C00000) /*!< CLKPS = LCDCLK/2048 */
#define LCD_Prescaler_4096 ((uint32_t)0x03000000) /*!< CLKPS = LCDCLK/4096 */
#define LCD_Prescaler_8192 ((uint32_t)0x03400000) /*!< CLKPS = LCDCLK/8192 */
#define LCD_Prescaler_16384 ((uint32_t)0x03800000) /*!< CLKPS = LCDCLK/16384 */
#define LCD_Prescaler_32768 ((uint32_t)0x03C00000) /*!< CLKPS = LCDCLK/32768 */
#define IS_LCD_PRESCALER(PRESCALER) (((PRESCALER) == LCD_Prescaler_1) || \
((PRESCALER) == LCD_Prescaler_2) || \
((PRESCALER) == LCD_Prescaler_4) || \
((PRESCALER) == LCD_Prescaler_8) || \
((PRESCALER) == LCD_Prescaler_16) || \
((PRESCALER) == LCD_Prescaler_32) || \
((PRESCALER) == LCD_Prescaler_64) || \
((PRESCALER) == LCD_Prescaler_128) || \
((PRESCALER) == LCD_Prescaler_256) || \
((PRESCALER) == LCD_Prescaler_512) || \
((PRESCALER) == LCD_Prescaler_1024) || \
((PRESCALER) == LCD_Prescaler_2048) || \
((PRESCALER) == LCD_Prescaler_4096) || \
((PRESCALER) == LCD_Prescaler_8192) || \
((PRESCALER) == LCD_Prescaler_16384) || \
((PRESCALER) == LCD_Prescaler_32768))
/**
* @}
*/
/** @defgroup LCD_Divider
* @{
*/
#define LCD_Divider_16 ((uint32_t)0x00000000) /*!< LCD frequency = CLKPS/16 */
#define LCD_Divider_17 ((uint32_t)0x00040000) /*!< LCD frequency = CLKPS/17 */
#define LCD_Divider_18 ((uint32_t)0x00080000) /*!< LCD frequency = CLKPS/18 */
#define LCD_Divider_19 ((uint32_t)0x000C0000) /*!< LCD frequency = CLKPS/19 */
#define LCD_Divider_20 ((uint32_t)0x00100000) /*!< LCD frequency = CLKPS/20 */
#define LCD_Divider_21 ((uint32_t)0x00140000) /*!< LCD frequency = CLKPS/21 */
#define LCD_Divider_22 ((uint32_t)0x00180000) /*!< LCD frequency = CLKPS/22 */
#define LCD_Divider_23 ((uint32_t)0x001C0000) /*!< LCD frequency = CLKPS/23 */
#define LCD_Divider_24 ((uint32_t)0x00200000) /*!< LCD frequency = CLKPS/24 */
#define LCD_Divider_25 ((uint32_t)0x00240000) /*!< LCD frequency = CLKPS/25 */
#define LCD_Divider_26 ((uint32_t)0x00280000) /*!< LCD frequency = CLKPS/26 */
#define LCD_Divider_27 ((uint32_t)0x002C0000) /*!< LCD frequency = CLKPS/27 */
#define LCD_Divider_28 ((uint32_t)0x00300000) /*!< LCD frequency = CLKPS/28 */
#define LCD_Divider_29 ((uint32_t)0x00340000) /*!< LCD frequency = CLKPS/29 */
#define LCD_Divider_30 ((uint32_t)0x00380000) /*!< LCD frequency = CLKPS/30 */
#define LCD_Divider_31 ((uint32_t)0x003C0000) /*!< LCD frequency = CLKPS/31 */
#define IS_LCD_DIVIDER(DIVIDER) (((DIVIDER) == LCD_Divider_16) || \
((DIVIDER) == LCD_Divider_17) || \
((DIVIDER) == LCD_Divider_18) || \
((DIVIDER) == LCD_Divider_19) || \
((DIVIDER) == LCD_Divider_20) || \
((DIVIDER) == LCD_Divider_21) || \
((DIVIDER) == LCD_Divider_22) || \
((DIVIDER) == LCD_Divider_23) || \
((DIVIDER) == LCD_Divider_24) || \
((DIVIDER) == LCD_Divider_25) || \
((DIVIDER) == LCD_Divider_26) || \
((DIVIDER) == LCD_Divider_27) || \
((DIVIDER) == LCD_Divider_28) || \
((DIVIDER) == LCD_Divider_29) || \
((DIVIDER) == LCD_Divider_30) || \
((DIVIDER) == LCD_Divider_31))
/**
* @}
*/
/** @defgroup LCD_Duty
* @{
*/
#define LCD_Duty_Static ((uint32_t)0x00000000) /*!< Static duty */
#define LCD_Duty_1_2 ((uint32_t)0x00000004) /*!< 1/2 duty */
#define LCD_Duty_1_3 ((uint32_t)0x00000008) /*!< 1/3 duty */
#define LCD_Duty_1_4 ((uint32_t)0x0000000C) /*!< 1/4 duty */
#define LCD_Duty_1_8 ((uint32_t)0x00000010) /*!< 1/4 duty */
#define IS_LCD_DUTY(DUTY) (((DUTY) == LCD_Duty_Static) || \
((DUTY) == LCD_Duty_1_2) || \
((DUTY) == LCD_Duty_1_3) || \
((DUTY) == LCD_Duty_1_4) || \
((DUTY) == LCD_Duty_1_8))
/**
* @}
*/
/** @defgroup LCD_Bias
* @{
*/
#define LCD_Bias_1_4 ((uint32_t)0x00000000) /*!< 1/4 Bias */
#define LCD_Bias_1_2 LCD_CR_BIAS_0 /*!< 1/2 Bias */
#define LCD_Bias_1_3 LCD_CR_BIAS_1 /*!< 1/3 Bias */
#define IS_LCD_BIAS(BIAS) (((BIAS) == LCD_Bias_1_4) || \
((BIAS) == LCD_Bias_1_2) || \
((BIAS) == LCD_Bias_1_3))
/**
* @}
*/
/** @defgroup LCD_Voltage_Source
* @{
*/
#define LCD_VoltageSource_Internal ((uint32_t)0x00000000) /*!< Internal voltage source for the LCD */
#define LCD_VoltageSource_External LCD_CR_VSEL /*!< External voltage source for the LCD */
#define IS_LCD_VOLTAGE_SOURCE(SOURCE) (((SOURCE) == LCD_VoltageSource_Internal) || \
((SOURCE) == LCD_VoltageSource_External))
/**
* @}
*/
/** @defgroup LCD_Interrupts
* @{
*/
#define LCD_IT_SOF LCD_FCR_SOFIE
#define LCD_IT_UDD LCD_FCR_UDDIE
#define IS_LCD_IT(IT) ((((IT) & (uint32_t)0xFFFFFFF5) == 0x00) && ((IT) != 0x00))
#define IS_LCD_GET_IT(IT) (((IT) == LCD_IT_SOF) || ((IT) == LCD_IT_UDD))
/**
* @}
*/
/** @defgroup LCD_PulseOnDuration
* @{
*/
#define LCD_PulseOnDuration_0 ((uint32_t)0x00000000) /*!< Pulse ON duration = 0 pulse */
#define LCD_PulseOnDuration_1 ((uint32_t)0x00000010) /*!< Pulse ON duration = 1/CK_PS */
#define LCD_PulseOnDuration_2 ((uint32_t)0x00000020) /*!< Pulse ON duration = 2/CK_PS */
#define LCD_PulseOnDuration_3 ((uint32_t)0x00000030) /*!< Pulse ON duration = 3/CK_PS */
#define LCD_PulseOnDuration_4 ((uint32_t)0x00000040) /*!< Pulse ON duration = 4/CK_PS */
#define LCD_PulseOnDuration_5 ((uint32_t)0x00000050) /*!< Pulse ON duration = 5/CK_PS */
#define LCD_PulseOnDuration_6 ((uint32_t)0x00000060) /*!< Pulse ON duration = 6/CK_PS */
#define LCD_PulseOnDuration_7 ((uint32_t)0x00000070) /*!< Pulse ON duration = 7/CK_PS */
#define IS_LCD_PULSE_ON_DURATION(DURATION) (((DURATION) == LCD_PulseOnDuration_0) || \
((DURATION) == LCD_PulseOnDuration_1) || \
((DURATION) == LCD_PulseOnDuration_2) || \
((DURATION) == LCD_PulseOnDuration_3) || \
((DURATION) == LCD_PulseOnDuration_4) || \
((DURATION) == LCD_PulseOnDuration_5) || \
((DURATION) == LCD_PulseOnDuration_6) || \
((DURATION) == LCD_PulseOnDuration_7))
/**
* @}
*/
/** @defgroup LCD_DeadTime
* @{
*/
#define LCD_DeadTime_0 ((uint32_t)0x00000000) /*!< No dead Time */
#define LCD_DeadTime_1 ((uint32_t)0x00000080) /*!< One Phase between different couple of Frame */
#define LCD_DeadTime_2 ((uint32_t)0x00000100) /*!< Two Phase between different couple of Frame */
#define LCD_DeadTime_3 ((uint32_t)0x00000180) /*!< Three Phase between different couple of Frame */
#define LCD_DeadTime_4 ((uint32_t)0x00000200) /*!< Four Phase between different couple of Frame */
#define LCD_DeadTime_5 ((uint32_t)0x00000280) /*!< Five Phase between different couple of Frame */
#define LCD_DeadTime_6 ((uint32_t)0x00000300) /*!< Six Phase between different couple of Frame */
#define LCD_DeadTime_7 ((uint32_t)0x00000380) /*!< Seven Phase between different couple of Frame */
#define IS_LCD_DEAD_TIME(TIME) (((TIME) == LCD_DeadTime_0) || \
((TIME) == LCD_DeadTime_1) || \
((TIME) == LCD_DeadTime_2) || \
((TIME) == LCD_DeadTime_3) || \
((TIME) == LCD_DeadTime_4) || \
((TIME) == LCD_DeadTime_5) || \
((TIME) == LCD_DeadTime_6) || \
((TIME) == LCD_DeadTime_7))
/**
* @}
*/
/** @defgroup LCD_BlinkMode
* @{
*/
#define LCD_BlinkMode_Off ((uint32_t)0x00000000) /*!< Blink disabled */
#define LCD_BlinkMode_SEG0_COM0 ((uint32_t)0x00010000) /*!< Blink enabled on SEG[0], COM[0] (1 pixel) */
#define LCD_BlinkMode_SEG0_AllCOM ((uint32_t)0x00020000) /*!< Blink enabled on SEG[0], all COM (up to
8 pixels according to the programmed duty) */
#define LCD_BlinkMode_AllSEG_AllCOM ((uint32_t)0x00030000) /*!< Blink enabled on all SEG and all COM (all pixels) */
#define IS_LCD_BLINK_MODE(MODE) (((MODE) == LCD_BlinkMode_Off) || \
((MODE) == LCD_BlinkMode_SEG0_COM0) || \
((MODE) == LCD_BlinkMode_SEG0_AllCOM) || \
((MODE) == LCD_BlinkMode_AllSEG_AllCOM))
/**
* @}
*/
/** @defgroup LCD_BlinkFrequency
* @{
*/
#define LCD_BlinkFrequency_Div8 ((uint32_t)0x00000000) /*!< The Blink frequency = fLCD/8 */
#define LCD_BlinkFrequency_Div16 ((uint32_t)0x00002000) /*!< The Blink frequency = fLCD/16 */
#define LCD_BlinkFrequency_Div32 ((uint32_t)0x00004000) /*!< The Blink frequency = fLCD/32 */
#define LCD_BlinkFrequency_Div64 ((uint32_t)0x00006000) /*!< The Blink frequency = fLCD/64 */
#define LCD_BlinkFrequency_Div128 ((uint32_t)0x00008000) /*!< The Blink frequency = fLCD/128 */
#define LCD_BlinkFrequency_Div256 ((uint32_t)0x0000A000) /*!< The Blink frequency = fLCD/256 */
#define LCD_BlinkFrequency_Div512 ((uint32_t)0x0000C000) /*!< The Blink frequency = fLCD/512 */
#define LCD_BlinkFrequency_Div1024 ((uint32_t)0x0000E000) /*!< The Blink frequency = fLCD/1024 */
#define IS_LCD_BLINK_FREQUENCY(FREQUENCY) (((FREQUENCY) == LCD_BlinkFrequency_Div8) || \
((FREQUENCY) == LCD_BlinkFrequency_Div16) || \
((FREQUENCY) == LCD_BlinkFrequency_Div32) || \
((FREQUENCY) == LCD_BlinkFrequency_Div64) || \
((FREQUENCY) == LCD_BlinkFrequency_Div128) || \
((FREQUENCY) == LCD_BlinkFrequency_Div256) || \
((FREQUENCY) == LCD_BlinkFrequency_Div512) || \
((FREQUENCY) == LCD_BlinkFrequency_Div1024))
/**
* @}
*/
/** @defgroup LCD_Contrast
* @{
*/
#define LCD_Contrast_Level_0 ((uint32_t)0x00000000) /*!< Maximum Voltage = 2.60V */
#define LCD_Contrast_Level_1 ((uint32_t)0x00000400) /*!< Maximum Voltage = 2.73V */
#define LCD_Contrast_Level_2 ((uint32_t)0x00000800) /*!< Maximum Voltage = 2.86V */
#define LCD_Contrast_Level_3 ((uint32_t)0x00000C00) /*!< Maximum Voltage = 2.99V */
#define LCD_Contrast_Level_4 ((uint32_t)0x00001000) /*!< Maximum Voltage = 3.12V */
#define LCD_Contrast_Level_5 ((uint32_t)0x00001400) /*!< Maximum Voltage = 3.25V */
#define LCD_Contrast_Level_6 ((uint32_t)0x00001800) /*!< Maximum Voltage = 3.38V */
#define LCD_Contrast_Level_7 ((uint32_t)0x00001C00) /*!< Maximum Voltage = 3.51V */
#define IS_LCD_CONTRAST(CONTRAST) (((CONTRAST) == LCD_Contrast_Level_0) || \
((CONTRAST) == LCD_Contrast_Level_1) || \
((CONTRAST) == LCD_Contrast_Level_2) || \
((CONTRAST) == LCD_Contrast_Level_3) || \
((CONTRAST) == LCD_Contrast_Level_4) || \
((CONTRAST) == LCD_Contrast_Level_5) || \
((CONTRAST) == LCD_Contrast_Level_6) || \
((CONTRAST) == LCD_Contrast_Level_7))
/**
* @}
*/
/** @defgroup LCD_Flag
* @{
*/
#define LCD_FLAG_ENS LCD_SR_ENS
#define LCD_FLAG_SOF LCD_SR_SOF
#define LCD_FLAG_UDR LCD_SR_UDR
#define LCD_FLAG_UDD LCD_SR_UDD
#define LCD_FLAG_RDY LCD_SR_RDY
#define LCD_FLAG_FCRSF LCD_SR_FCRSR
#define IS_LCD_GET_FLAG(FLAG) (((FLAG) == LCD_FLAG_ENS) || ((FLAG) == LCD_FLAG_SOF) || \
((FLAG) == LCD_FLAG_UDR) || ((FLAG) == LCD_FLAG_UDD) || \
((FLAG) == LCD_FLAG_RDY) || ((FLAG) == LCD_FLAG_FCRSF))
#define IS_LCD_CLEAR_FLAG(FLAG) ((((FLAG) & (uint32_t)0xFFFFFFF5) == 0x00) && ((FLAG) != 0x00))
/**
* @}
*/
/** @defgroup LCD_RAMRegister
* @{
*/
#define LCD_RAMRegister_0 ((uint32_t)0x00000000) /*!< LCD RAM Register 0 */
#define LCD_RAMRegister_1 ((uint32_t)0x00000001) /*!< LCD RAM Register 1 */
#define LCD_RAMRegister_2 ((uint32_t)0x00000002) /*!< LCD RAM Register 2 */
#define LCD_RAMRegister_3 ((uint32_t)0x00000003) /*!< LCD RAM Register 3 */
#define LCD_RAMRegister_4 ((uint32_t)0x00000004) /*!< LCD RAM Register 4 */
#define LCD_RAMRegister_5 ((uint32_t)0x00000005) /*!< LCD RAM Register 5 */
#define LCD_RAMRegister_6 ((uint32_t)0x00000006) /*!< LCD RAM Register 6 */
#define LCD_RAMRegister_7 ((uint32_t)0x00000007) /*!< LCD RAM Register 7 */
#define LCD_RAMRegister_8 ((uint32_t)0x00000008) /*!< LCD RAM Register 8 */
#define LCD_RAMRegister_9 ((uint32_t)0x00000009) /*!< LCD RAM Register 9 */
#define LCD_RAMRegister_10 ((uint32_t)0x0000000A) /*!< LCD RAM Register 10 */
#define LCD_RAMRegister_11 ((uint32_t)0x0000000B) /*!< LCD RAM Register 11 */
#define LCD_RAMRegister_12 ((uint32_t)0x0000000C) /*!< LCD RAM Register 12 */
#define LCD_RAMRegister_13 ((uint32_t)0x0000000D) /*!< LCD RAM Register 13 */
#define LCD_RAMRegister_14 ((uint32_t)0x0000000E) /*!< LCD RAM Register 14 */
#define LCD_RAMRegister_15 ((uint32_t)0x0000000F) /*!< LCD RAM Register 15 */
#define IS_LCD_RAM_REGISTER(REGISTER) (((REGISTER) == LCD_RAMRegister_0) || \
((REGISTER) == LCD_RAMRegister_1) || \
((REGISTER) == LCD_RAMRegister_2) || \
((REGISTER) == LCD_RAMRegister_3) || \
((REGISTER) == LCD_RAMRegister_4) || \
((REGISTER) == LCD_RAMRegister_5) || \
((REGISTER) == LCD_RAMRegister_6) || \
((REGISTER) == LCD_RAMRegister_7) || \
((REGISTER) == LCD_RAMRegister_8) || \
((REGISTER) == LCD_RAMRegister_9) || \
((REGISTER) == LCD_RAMRegister_10) || \
((REGISTER) == LCD_RAMRegister_11) || \
((REGISTER) == LCD_RAMRegister_12) || \
((REGISTER) == LCD_RAMRegister_13) || \
((REGISTER) == LCD_RAMRegister_14) || \
((REGISTER) == LCD_RAMRegister_15))
/**
* @}
*/
/**
* @}
*/
/* Exported macro ------------------------------------------------------------*/
/* Exported functions ------------------------------------------------------- */
/* Function used to set the LCD configuration to the default reset state *****/
void LCD_DeInit(void);
/* Initialization and Configuration functions *********************************/
void LCD_Init(LCD_InitTypeDef* LCD_InitStruct);
void LCD_StructInit(LCD_InitTypeDef* LCD_InitStruct);
void LCD_Cmd(FunctionalState NewState);
void LCD_WaitForSynchro(void);
void LCD_HighDriveCmd(FunctionalState NewState);
void LCD_MuxSegmentCmd(FunctionalState NewState);
void LCD_PulseOnDurationConfig(uint32_t LCD_PulseOnDuration);
void LCD_DeadTimeConfig(uint32_t LCD_DeadTime);
void LCD_BlinkConfig(uint32_t LCD_BlinkMode, uint32_t LCD_BlinkFrequency);
void LCD_ContrastConfig(uint32_t LCD_Contrast);
/* LCD RAM memory write functions *********************************************/
void LCD_Write(uint32_t LCD_RAMRegister, uint32_t LCD_Data);
void LCD_UpdateDisplayRequest(void);
/* Interrupts and flags management functions **********************************/
void LCD_ITConfig(uint32_t LCD_IT, FunctionalState NewState);
FlagStatus LCD_GetFlagStatus(uint32_t LCD_FLAG);
void LCD_ClearFlag(uint32_t LCD_FLAG);
ITStatus LCD_GetITStatus(uint32_t LCD_IT);
void LCD_ClearITPendingBit(uint32_t LCD_IT);
#ifdef __cplusplus
}
#endif
#endif /* __STM32L1xx_LCD_H */
/**
* @}
*/
/**
* @}
*/
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/

View File

@ -0,0 +1,557 @@
/**
******************************************************************************
* @file stm32l1xx_opamp.c
* @author MCD Application Team
* @version V1.2.0
* @date 22-February-2013
* @brief This file provides firmware functions to manage the following
* functionalities of the operational amplifiers (opamp) peripheral:
* + Initialization and configuration
* + Calibration management
*
* @verbatim
==============================================================================
##### How to use this driver #####
==============================================================================
[..] The device integrates three independent rail-to-rail operational amplifiers
OPAMP1, OPAMP2 and OPAMP3:
(+) Internal connections to the ADC.
(+) Internal connections to the DAC.
(+) Internal connection to COMP1 (only OPAMP3).
(+) Internal connection for unity gain (voltage follower) configuration.
(+) Calibration capability.
(+) Selectable gain-bandwidth (2MHz in normal mode, 500KHz in low power mode).
[..]
(#) COMP AHB clock must be enabled to get write access
to OPAMP registers using
(#) RCC_APB1PeriphClockCmd(RCC_APB1Periph_COMP, ENABLE)
(#) Configure the corresponding GPIO to OPAMPx INP, OPAMPx_INN (if used)
and OPAMPx_OUT in analog mode.
(#) Configure (close/open) the OPAMP switches using OPAMP_SwitchCmd()
(#) Enable the OPAMP peripheral using OPAMP_Cmd()
-@- In order to use OPAMP outputs as ADC inputs, the opamps must be enabled
and the ADC must use the OPAMP output channel number:
(+@) OPAMP1 output is connected to ADC channel 3.
(+@) OPAMP2 output is connected to ADC channel 8.
(+@) OPAMP3 output is connected to ADC channel 13 (SW1 switch must be closed).
* @endverbatim
*
******************************************************************************
* @attention
*
* <h2><center>&copy; COPYRIGHT 2013 STMicroelectronics</center></h2>
*
* Licensed under MCD-ST Liberty SW License Agreement V2, (the "License");
* You may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.st.com/software_license_agreement_liberty_v2
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "stm32l1xx_opamp.h"
/** @addtogroup STM32L1xx_StdPeriph_Driver
* @{
*/
/** @defgroup OPAMP
* @brief OPAMP driver modules
* @{
*/
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private function prototypes -----------------------------------------------*/
/* Private functions ---------------------------------------------------------*/
/** @defgroup OPAMP_Private_Functions
* @{
*/
/** @defgroup OPAMP_Group1 Initialization and configuration
* @brief Initialization and configuration
*
@verbatim
===============================================================================
##### Initialization and configuration #####
===============================================================================
@endverbatim
* @{
*/
/**
* @brief Deinitialize the OPAMPs register to its default reset value.
* @note At startup, OTR and LPOTR registers are set to factory programmed values.
* @param None.
* @retval None.
*/
void OPAMP_DeInit(void)
{
/*!< Set OPAMP_CSR register to reset value */
OPAMP->CSR = 0x00010101;
/*!< Set OPAMP_OTR register to reset value */
OPAMP->OTR = (uint32_t)(* (uint32_t*)FLASH_R_BASE + 0x00000038);
/*!< Set OPAMP_LPOTR register to reset value */
OPAMP->LPOTR = (uint32_t)(* (uint32_t*)FLASH_R_BASE + 0x0000003C);
}
/**
* @brief Close or Open the OPAMP switches.
* @param OPAMP_OPAMPxSwitchy: selects the OPAMPx switch.
* This parameter can be any combinations of the following values:
* @arg OPAMP_OPAMP1Switch3: used to connect internally OPAMP1 output to
* OPAMP1 negative input (internal follower)
* @arg OPAMP_OPAMP1Switch4: used to connect PA2 to OPAMP1 negative input
* @arg OPAMP_OPAMP1Switch5: used to connect PA1 to OPAMP1 positive input
* @arg OPAMP_OPAMP1Switch6: used to connect DAC_OUT1 to OPAMP1 positive input
* @arg OPAMP_OPAMP1SwitchANA: used to meet 1 nA input leakage
* @arg OPAMP_OPAMP2Switch3: used to connect internally OPAMP2 output to
* OPAMP2 negative input (internal follower)
* @arg OPAMP_OPAMP2Switch4: used to connect PA7 to OPAMP2 negative input
* @arg OPAMP_OPAMP2Switch5: used to connect PA6 to OPAMP2 positive input
* @arg OPAMP_OPAMP2Switch6: used to connect DAC_OUT1 to OPAMP2 positive input
* @arg OPAMP_OPAMP2Switch7: used to connect DAC_OUT2 to OPAMP2 positive input
* @arg OPAMP_OPAMP2SwitchANA: used to meet 1 nA input leakage
* @arg OPAMP_OPAMP3Switch3: used to connect internally OPAMP3 output to
* OPAMP3 negative input (internal follower)
* @arg OPAMP_OPAMP3Switch4: used to connect PC2 to OPAMP3 negative input
* @arg OPAMP_OPAMP3Switch5: used to connect PC1 to OPAMP3 positive input
* @arg OPAMP_OPAMP3Switch6: used to connect DAC_OUT1 to OPAMP3 positive input
* @arg OPAMP_OPAMP3SwitchANA: used to meet 1 nA input leakage on negative input
*
* @param NewState: New state of the OPAMP switch.
* This parameter can be:
* ENABLE to close the OPAMP switch
* or DISABLE to open the OPAMP switch
* @note OPAMP_OPAMP2Switch6 and OPAMP_OPAMP2Switch7 mustn't be closed together.
* @retval None
*/
void OPAMP_SwitchCmd(uint32_t OPAMP_OPAMPxSwitchy, FunctionalState NewState)
{
/* Check the parameter */
assert_param(IS_OPAMP_SWITCH(OPAMP_OPAMPxSwitchy));
assert_param(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
/* Close the selected switches */
OPAMP->CSR |= (uint32_t) OPAMP_OPAMPxSwitchy;
}
else
{
/* Open the selected switches */
OPAMP->CSR &= (~(uint32_t)OPAMP_OPAMPxSwitchy);
}
}
/**
* @brief Enable or disable the OPAMP peripheral.
* @param OPAMP_Selection: the selected OPAMP.
* This parameter can be one of the following values:
* @arg OPAMP_Selection_OPAMP1: OPAMP1 is selected
* @arg OPAMP_Selection_OPAMP2: OPAMP2 is selected
* @arg OPAMP_Selection_OPAMP3: OPAMP3 is selected
* @param NewState: new state of the selected OPAMP peripheral.
* This parameter can be: ENABLE or DISABLE.
* @retval None
*/
void OPAMP_Cmd(uint32_t OPAMP_Selection, FunctionalState NewState)
{
/* Check the parameter */
assert_param(IS_OPAMP_ALL_PERIPH(OPAMP_Selection));
assert_param(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
/* Enable the selected OPAMP */
OPAMP->CSR &= (~(uint32_t) OPAMP_Selection);
}
else
{
/* Disable the selected OPAMP */
OPAMP->CSR |= (uint32_t) OPAMP_Selection;
}
}
/**
* @brief Enable or disable the low power mode for OPAMP peripheral.
* @param OPAMP_Selection: the selected OPAMP.
* This parameter can be one of the following values:
* @arg OPAMP_Selection_OPAMP1: OPAMP1 selected
* @arg OPAMP_Selection_OPAMP2: OPAMP2 selected
* @arg OPAMP_Selection_OPAMP3: OPAMP3 selected
* @param NewState: new low power state of the selected OPAMP peripheral.
* This parameter can be: ENABLE or DISABLE.
* @retval None
*/
void OPAMP_LowPowerCmd(uint32_t OPAMP_Selection, FunctionalState NewState)
{
/* Check the parameter */
assert_param(IS_OPAMP_ALL_PERIPH(OPAMP_Selection));
assert_param(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
/* Set the selected OPAMP in low power mode */
OPAMP->CSR |= (uint32_t) (OPAMP_Selection << 7);
}
else
{
/* Disable the low power mode for the selected OPAMP */
OPAMP->CSR &= (~(uint32_t) (OPAMP_Selection << 7));
}
}
/**
* @brief Select the OPAMP power range.
* @note The OPAMP power range selection must be performed while OPAMPs are powered down.
* @param OPAMP_Range: the selected OPAMP power range.
* This parameter can be one of the following values:
* @arg OPAMP_PowerRange_Low: Low power range is selected (VDDA is lower than 2.4V).
* @arg OPAMP_PowerRange_High: High power range is selected (VDDA is higher than 2.4V).
* @retval None
*/
void OPAMP_PowerRangeSelect(uint32_t OPAMP_PowerRange)
{
/* Check the parameter */
assert_param(IS_OPAMP_RANGE(OPAMP_PowerRange));
/* Reset the OPAMP range bit */
OPAMP->CSR &= (~(uint32_t) (OPAMP_CSR_AOP_RANGE));
/* Select the OPAMP power range */
OPAMP->CSR |= OPAMP_PowerRange;
}
/**
* @}
*/
/** @defgroup OPAMP_Group2 Calibration functions
* @brief Calibration functions
*
@verbatim
===============================================================================
##### Calibration functions #####
===============================================================================
@endverbatim
* @{
*/
/**
* @brief Select the trimming mode.
* @param OffsetTrimming: the selected offset trimming mode.
* This parameter can be one of the following values:
* @arg OffsetTrimming_Factory: factory trimming values are used for offset
* calibration.
* @arg OffsetTrimming_User: user trimming values are used for offset
* calibration.
* @note When OffsetTrimming_User is selected, use OPAMP_OffsetTrimConfig()
* function or OPAMP_OffsetTrimLowPowerConfig() function to adjust
* trimming value.
* @retval None
*/
void OPAMP_OffsetTrimmingModeSelect(uint32_t OPAMP_Trimming)
{
/* Check the parameter */
assert_param(IS_OPAMP_TRIMMING(OPAMP_Trimming));
/* Reset the OPAMP_OTR range bit */
OPAMP->CSR &= (~(uint32_t) (OPAMP_OTR_OT_USER));
/* Select the OPAMP offset trimming */
OPAMP->CSR |= OPAMP_Trimming;
}
/**
* @brief Configure the trimming value of OPAMPs in normal mode.
* @param OPAMP_Selection: the selected OPAMP.
* This parameter can be one of the following values:
* @arg OPAMP_Selection_OPAMP1: OPAMP1 is selected to configure the trimming value.
* @arg OPAMP_Selection_OPAMP2: OPAMP2 is selected to configure the trimming value.
* @arg OPAMP_Selection_OPAMP3: OPAMP3 is selected to configure the trimming value.
* @param OPAMP_Input: the selected OPAMP input.
* This parameter can be one of the following values:
* @arg OPAMP_Input_NMOS: NMOS input is selected to configure the trimming value.
* @arg OPAMP_Input_PMOS: PMOS input is selected to configure the trimming value.
* @param OPAMP_TrimValue: the trimming value. This parameter can be any value lower
* or equal to 0x0000001F.
* @retval None
*/
void OPAMP_OffsetTrimConfig(uint32_t OPAMP_Selection, uint32_t OPAMP_Input, uint32_t OPAMP_TrimValue)
{
uint32_t tmpreg = 0;
/* Check the parameter */
assert_param(IS_OPAMP_ALL_PERIPH(OPAMP_Selection));
assert_param(IS_OPAMP_INPUT(OPAMP_Input));
assert_param(IS_OPAMP_TRIMMINGVALUE(OPAMP_TrimValue));
/* Get the OPAMP_OTR value */
tmpreg = OPAMP->OTR;
if(OPAMP_Selection == OPAMP_Selection_OPAMP1)
{
/* Reset the OPAMP inputs selection */
tmpreg &= (uint32_t)~(OPAMP_CSR_OPA1CAL_L | OPAMP_CSR_OPA1CAL_H);
/* Select the OPAMP input */
tmpreg |= OPAMP_Input;
if(OPAMP_Input == OPAMP_Input_PMOS)
{
/* Reset the trimming value corresponding to OPAMP1 PMOS input */
tmpreg &= (0xFFFFFFE0);
/* Set the new trimming value corresponding to OPAMP1 PMOS input */
tmpreg |= (OPAMP_TrimValue);
}
else
{
/* Reset the trimming value corresponding to OPAMP1 NMOS input */
tmpreg &= (0xFFFFFC1F);
/* Set the new trimming value corresponding to OPAMP1 NMOS input */
tmpreg |= (OPAMP_TrimValue<<5);
}
}
else if (OPAMP_Selection == OPAMP_Selection_OPAMP2)
{
/* Reset the OPAMP inputs selection */
tmpreg &= (uint32_t)~(OPAMP_CSR_OPA2CAL_L | OPAMP_CSR_OPA2CAL_H);
/* Select the OPAMP input */
tmpreg |= (uint32_t)(OPAMP_Input<<8);
if(OPAMP_Input == OPAMP_Input_PMOS)
{
/* Reset the trimming value corresponding to OPAMP2 PMOS input */
tmpreg &= (0xFFFF83FF);
/* Set the new trimming value corresponding to OPAMP2 PMOS input */
tmpreg |= (OPAMP_TrimValue<<10);
}
else
{
/* Reset the trimming value corresponding to OPAMP2 NMOS input */
tmpreg &= (0xFFF07FFF);
/* Set the new trimming value corresponding to OPAMP2 NMOS input */
tmpreg |= (OPAMP_TrimValue<<15);
}
}
else
{
/* Reset the OPAMP inputs selection */
tmpreg &= (uint32_t)~(OPAMP_CSR_OPA3CAL_L | OPAMP_CSR_OPA3CAL_H);
/* Select the OPAMP input */
tmpreg |= (uint32_t)(OPAMP_Input<<16);
if(OPAMP_Input == OPAMP_Input_PMOS)
{
/* Reset the trimming value corresponding to OPAMP3 PMOS input */
tmpreg &= (0xFE0FFFFF);
/* Set the new trimming value corresponding to OPAMP3 PMOS input */
tmpreg |= (OPAMP_TrimValue<<20);
}
else
{
/* Reset the trimming value corresponding to OPAMP3 NMOS input */
tmpreg &= (0xC1FFFFFF);
/* Set the new trimming value corresponding to OPAMP3 NMOS input */
tmpreg |= (OPAMP_TrimValue<<25);
}
}
/* Set the OPAMP_OTR register */
OPAMP->OTR = tmpreg;
}
/**
* @brief Configure the trimming value of OPAMPs in low power mode.
* @param OPAMP_Selection: the selected OPAMP.
* This parameter can be one of the following values:
* @arg OPAMP_Selection_OPAMP1: OPAMP1 is selected to configure the trimming value.
* @arg OPAMP_Selection_OPAMP2: OPAMP2 is selected to configure the trimming value.
* @arg OPAMP_Selection_OPAMP3: OPAMP3 is selected to configure the trimming value.
* @param OPAMP_Input: the selected OPAMP input.
* This parameter can be one of the following values:
* @arg OPAMP_Input_NMOS: NMOS input is selected to configure the trimming value.
* @arg OPAMP_Input_PMOS: PMOS input is selected to configure the trimming value.
* @param OPAMP_TrimValue: the trimming value.
* This parameter can be any value lower or equal to 0x0000001F.
* @retval None
*/
void OPAMP_OffsetTrimLowPowerConfig(uint32_t OPAMP_Selection, uint32_t OPAMP_Input, uint32_t OPAMP_TrimValue)
{
uint32_t tmpreg = 0;
/* Check the parameter */
assert_param(IS_OPAMP_ALL_PERIPH(OPAMP_Selection));
assert_param(IS_OPAMP_INPUT(OPAMP_Input));
assert_param(IS_OPAMP_TRIMMINGVALUE(OPAMP_TrimValue));
/* Get the OPAMP_LPOTR value */
tmpreg = OPAMP->LPOTR;
if(OPAMP_Selection == OPAMP_Selection_OPAMP1)
{
/* Reset the OPAMP inputs selection */
tmpreg &= (uint32_t)~(OPAMP_CSR_OPA1CAL_L | OPAMP_CSR_OPA1CAL_H);
/* Select the OPAMP input */
tmpreg |= OPAMP_Input;
if(OPAMP_Input == OPAMP_Input_PMOS)
{
/* Reset the trimming value corresponding to OPAMP1 PMOS input */
tmpreg &= (0xFFFFFFE0);
/* Set the new trimming value corresponding to OPAMP1 PMOS input */
tmpreg |= (OPAMP_TrimValue);
}
else
{
/* Reset the trimming value corresponding to OPAMP1 NMOS input */
tmpreg &= (0xFFFFFC1F);
/* Set the new trimming value corresponding to OPAMP1 NMOS input */
tmpreg |= (OPAMP_TrimValue<<5);
}
}
else if (OPAMP_Selection == OPAMP_Selection_OPAMP2)
{
/* Reset the OPAMP inputs selection */
tmpreg &= (uint32_t)~(OPAMP_CSR_OPA2CAL_L | OPAMP_CSR_OPA2CAL_H);
/* Select the OPAMP input */
tmpreg |= (uint32_t)(OPAMP_Input<<8);
if(OPAMP_Input == OPAMP_Input_PMOS)
{
/* Reset the trimming value corresponding to OPAMP2 PMOS input */
tmpreg &= (0xFFFF83FF);
/* Set the new trimming value corresponding to OPAMP2 PMOS input */
tmpreg |= (OPAMP_TrimValue<<10);
}
else
{
/* Reset the trimming value corresponding to OPAMP2 NMOS input */
tmpreg &= (0xFFF07FFF);
/* Set the new trimming value corresponding to OPAMP2 NMOS input */
tmpreg |= (OPAMP_TrimValue<<15);
}
}
else
{
/* Reset the OPAMP inputs selection */
tmpreg &= (uint32_t)~(OPAMP_CSR_OPA3CAL_L | OPAMP_CSR_OPA3CAL_H);
/* Select the OPAMP input */
tmpreg |= (uint32_t)(OPAMP_Input<<16);
if(OPAMP_Input == OPAMP_Input_PMOS)
{
/* Reset the trimming value corresponding to OPAMP3 PMOS input */
tmpreg &= (0xFE0FFFFF);
/* Set the new trimming value corresponding to OPAMP3 PMOS input */
tmpreg |= (OPAMP_TrimValue<<20);
}
else
{
/* Reset the trimming value corresponding to OPAMP3 NMOS input */
tmpreg &= (0xC1FFFFFF);
/* Set the new trimming value corresponding to OPAMP3 NMOS input */
tmpreg |= (OPAMP_TrimValue<<25);
}
}
/* Set the OPAMP_LPOTR register */
OPAMP->LPOTR = tmpreg;
}
/**
* @brief Checks whether the specified OPAMP calibration flag is set or not.
* @note User should wait until calibration flag change the value when changing
* the trimming value.
* @param OPAMP_Selection: the selected OPAMP.
* This parameter can be one of the following values:
* @arg OPAMP_Selection_OPAMP1: OPAMP1 is selected.
* @arg OPAMP_Selection_OPAMP2: OPAMP2 is selected.
* @arg OPAMP_Selection_OPAMP3: OPAMP3 is selected.
* @retval The new state of the OPAMP calibration flag (SET or RESET).
*/
FlagStatus OPAMP_GetFlagStatus(uint32_t OPAMP_Selection)
{
FlagStatus bitstatus = RESET;
uint32_t tmpreg = 0;
/* Check the parameter */
assert_param(IS_OPAMP_ALL_PERIPH(OPAMP_Selection));
/* Get the CSR register value */
tmpreg = OPAMP->CSR;
/* Check if OPAMP1 is selected */
if(OPAMP_Selection == OPAMP_Selection_OPAMP1)
{
/* Check OPAMP1 CAL bit status */
if ((tmpreg & OPAMP_CSR_OPA1CALOUT) != (uint32_t)RESET)
{
bitstatus = SET;
}
else
{
bitstatus = RESET;
}
}
/* Check if OPAMP2 is selected */
else if(OPAMP_Selection == OPAMP_Selection_OPAMP2)
{
/* Check OPAMP2 CAL bit status */
if ((tmpreg & OPAMP_CSR_OPA2CALOUT) != (uint32_t)RESET)
{
bitstatus = SET;
}
else
{
bitstatus = RESET;
}
}
else
{
/* Check OPAMP3 CAL bit status */
if ((tmpreg & OPAMP_CSR_OPA3CALOUT) != (uint32_t)RESET)
{
bitstatus = SET;
}
else
{
bitstatus = RESET;
}
}
return bitstatus;
}
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/

View File

@ -0,0 +1,187 @@
/**
******************************************************************************
* @file stm32l1xx_opamp.h
* @author MCD Application Team
* @version V1.2.0
* @date 22-February-2013
* @brief This file contains all the functions prototypes for the operational
* amplifiers (opamp) firmware library.
******************************************************************************
* @attention
*
* <h2><center>&copy; COPYRIGHT 2013 STMicroelectronics</center></h2>
*
* Licensed under MCD-ST Liberty SW License Agreement V2, (the "License");
* You may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.st.com/software_license_agreement_liberty_v2
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
******************************************************************************
*/
/* Define to prevent recursive inclusion -------------------------------------*/
#ifndef __STM32L1xx_OPAMP_H
#define __STM32L1xx_OPAMP_H
#ifdef __cplusplus
extern "C" {
#endif
/* Includes ------------------------------------------------------------------*/
#include "stm32l1xx.h"
/** @addtogroup STM32L1xx_StdPeriph_Driver
* @{
*/
/** @addtogroup OPAMP
* @{
*/
/* Exported types ------------------------------------------------------------*/
/* Exported constants --------------------------------------------------------*/
/** @defgroup OPAMP_Exported_Constants
* @{
*/
/** @defgroup OPAMP_Selection
* @{
*/
#define OPAMP_Selection_OPAMP1 OPAMP_CSR_OPA1PD
#define OPAMP_Selection_OPAMP2 OPAMP_CSR_OPA2PD
#define OPAMP_Selection_OPAMP3 OPAMP_CSR_OPA3PD
#define IS_OPAMP_ALL_PERIPH(PERIPH) (((PERIPH) == OPAMP_Selection_OPAMP1) || \
((PERIPH) == OPAMP_Selection_OPAMP2) || \
((PERIPH) == OPAMP_Selection_OPAMP3))
/**
* @}
*/
/** @defgroup OPAMP_Switches
* @{
*/
/* OPAMP1 Switches */
#define OPAMP_OPAMP1Switch3 OPAMP_CSR_S3SEL1 /*!< OPAMP1 Switch 3 */
#define OPAMP_OPAMP1Switch4 OPAMP_CSR_S4SEL1 /*!< OPAMP1 Switch 4 */
#define OPAMP_OPAMP1Switch5 OPAMP_CSR_S5SEL1 /*!< OPAMP1 Switch 5 */
#define OPAMP_OPAMP1Switch6 OPAMP_CSR_S6SEL1 /*!< OPAMP1 Switch 6 */
#define OPAMP_OPAMP1SwitchANA OPAMP_CSR_ANAWSEL1 /*!< OPAMP1 Switch ANA */
/* OPAMP2 Switches */
#define OPAMP_OPAMP2Switch3 OPAMP_CSR_S3SEL2 /*!< OPAMP2 Switch 3 */
#define OPAMP_OPAMP2Switch4 OPAMP_CSR_S4SEL2 /*!< OPAMP2 Switch 4 */
#define OPAMP_OPAMP2Switch5 OPAMP_CSR_S5SEL2 /*!< OPAMP2 Switch 5 */
#define OPAMP_OPAMP2Switch6 OPAMP_CSR_S6SEL2 /*!< OPAMP2 Switch 6 */
#define OPAMP_OPAMP2Switch7 OPAMP_CSR_S7SEL2 /*!< OPAMP2 Switch 7 */
#define OPAMP_OPAMP2SwitchANA OPAMP_CSR_ANAWSEL2 /*!< OPAMP2 Switch ANA */
/* OPAMP3 Switches */
#define OPAMP_OPAMP3Switch3 OPAMP_CSR_S3SEL3 /*!< OPAMP3 Switch 3 */
#define OPAMP_OPAMP3Switch4 OPAMP_CSR_S4SEL3 /*!< OPAMP3 Switch 4 */
#define OPAMP_OPAMP3Switch5 OPAMP_CSR_S5SEL3 /*!< OPAMP3 Switch 5 */
#define OPAMP_OPAMP3Switch6 OPAMP_CSR_S6SEL3 /*!< OPAMP3 Switch 6 */
#define OPAMP_OPAMP3SwitchANA OPAMP_CSR_ANAWSEL3 /*!< OPAMP3 Switch ANA */
#define IS_OPAMP_SWITCH(SWITCH) ((((SWITCH) & (uint32_t)0xF0E1E1E1) == 0x00) && ((SWITCH) != 0x00))
/**
* @}
*/
/** @defgroup OPAMP_Trimming
* @{
*/
#define OPAMP_Trimming_Factory ((uint32_t)0x00000000) /*!< Factory trimming */
#define OPAMP_Trimming_User OPAMP_OTR_OT_USER /*!< User trimming */
#define IS_OPAMP_TRIMMING(TRIMMING) (((TRIMMING) == OPAMP_Trimming_Factory) || \
((TRIMMING) == OPAMP_Trimming_User))
/**
* @}
*/
/** @defgroup OPAMP_Input
* @{
*/
#define OPAMP_Input_NMOS OPAMP_CSR_OPA1CAL_H /*!< NMOS input */
#define OPAMP_Input_PMOS OPAMP_CSR_OPA1CAL_L /*!< PMOS input */
#define IS_OPAMP_INPUT(INPUT) (((INPUT) == OPAMP_Input_NMOS) || \
((INPUT) == OPAMP_Input_PMOS))
/**
* @}
*/
/** @defgroup OPAMP_TrimValue
* @{
*/
#define IS_OPAMP_TRIMMINGVALUE(VALUE) ((VALUE) <= 0x0000001F) /*!< Trimming value */
/**
* @}
*/
/** @defgroup OPAMP_PowerRange
* @{
*/
#define OPAMP_PowerRange_Low ((uint32_t)0x00000000) /*!< Low power range is selected (VDDA is lower than 2.4V) */
#define OPAMP_PowerRange_High OPAMP_CSR_AOP_RANGE /*!< High power range is selected (VDDA is higher than 2.4V) */
#define IS_OPAMP_RANGE(RANGE) (((RANGE) == OPAMP_PowerRange_Low) || \
((RANGE) == OPAMP_PowerRange_High))
/**
* @}
*/
/**
* @}
*/
/* Exported macro ------------------------------------------------------------*/
/* Exported functions ------------------------------------------------------- */
/* Initialization and Configuration functions *********************************/
void OPAMP_DeInit(void);
void OPAMP_SwitchCmd(uint32_t OPAMP_OPAMPxSwitchy, FunctionalState NewState);
void OPAMP_Cmd(uint32_t OPAMP_Selection, FunctionalState NewState);
void OPAMP_LowPowerCmd(uint32_t OPAMP_Selection, FunctionalState NewState);
void OPAMP_PowerRangeSelect(uint32_t OPAMP_PowerRange);
/* Calibration functions ******************************************************/
void OPAMP_OffsetTrimmingModeSelect(uint32_t OPAMP_Trimming);
void OPAMP_OffsetTrimConfig(uint32_t OPAMP_Selection, uint32_t OPAMP_Input, uint32_t OPAMP_TrimValue);
void OPAMP_OffsetTrimLowPowerConfig(uint32_t OPAMP_Selection, uint32_t OPAMP_Input, uint32_t OPAMP_TrimValue);
FlagStatus OPAMP_GetFlagStatus(uint32_t OPAMP_Selection);
#ifdef __cplusplus
}
#endif
#endif /*__STM32L1xx_OPAMP_H */
/**
* @}
*/
/**
* @}
*/
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/

View File

@ -0,0 +1,833 @@
/**
******************************************************************************
* @file stm32l1xx_pwr.c
* @author MCD Application Team
* @version V1.2.0
* @date 22-February-2013
* @brief This file provides firmware functions to manage the following
* functionalities of the Power Controller (PWR) peripheral:
* + RTC Domain Access
* + PVD configuration
* + WakeUp pins configuration
* + Ultra Low Power mode configuration
* + Voltage Scaling configuration
* + Low Power modes configuration
* + Flags management
*
******************************************************************************
* @attention
*
* <h2><center>&copy; COPYRIGHT 2013 STMicroelectronics</center></h2>
*
* Licensed under MCD-ST Liberty SW License Agreement V2, (the "License");
* You may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.st.com/software_license_agreement_liberty_v2
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "stm32l1xx_pwr.h"
#include "stm32l1xx_rcc.h"
/** @addtogroup STM32L1xx_StdPeriph_Driver
* @{
*/
/** @defgroup PWR
* @brief PWR driver modules
* @{
*/
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/* --------- PWR registers bit address in the alias region ---------- */
#define PWR_OFFSET (PWR_BASE - PERIPH_BASE)
/* --- CR Register ---*/
/* Alias word address of DBP bit */
#define CR_OFFSET (PWR_OFFSET + 0x00)
#define DBP_BitNumber 0x08
#define CR_DBP_BB (PERIPH_BB_BASE + (CR_OFFSET * 32) + (DBP_BitNumber * 4))
/* Alias word address of PVDE bit */
#define PVDE_BitNumber 0x04
#define CR_PVDE_BB (PERIPH_BB_BASE + (CR_OFFSET * 32) + (PVDE_BitNumber * 4))
/* Alias word address of ULP bit */
#define ULP_BitNumber 0x09
#define CR_ULP_BB (PERIPH_BB_BASE + (CR_OFFSET * 32) + (ULP_BitNumber * 4))
/* Alias word address of FWU bit */
#define FWU_BitNumber 0x0A
#define CR_FWU_BB (PERIPH_BB_BASE + (CR_OFFSET * 32) + (FWU_BitNumber * 4))
/* --- CSR Register ---*/
/* Alias word address of EWUP bit */
#define CSR_OFFSET (PWR_OFFSET + 0x04)
#define EWUP_BitNumber 0x08
#define CSR_EWUP_BB (PERIPH_BB_BASE + (CSR_OFFSET * 32) + (EWUP_BitNumber * 4))
/* ------------------ PWR registers bit mask ------------------------ */
/* CR register bit mask */
#define CR_DS_MASK ((uint32_t)0xFFFFFFFC)
#define CR_PLS_MASK ((uint32_t)0xFFFFFF1F)
#define CR_VOS_MASK ((uint32_t)0xFFFFE7FF)
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private function prototypes -----------------------------------------------*/
/* Private functions ---------------------------------------------------------*/
/** @defgroup PWR_Private_Functions
* @{
*/
/** @defgroup PWR_Group1 RTC Domain Access function
* @brief RTC Domain Access function
*
@verbatim
==============================================================================
##### RTC Domain Access function #####
==============================================================================
[..] After reset, the RTC Registers (RCC CSR Register, RTC registers and RTC backup
registers) are protected against possible stray write accesses.
[..] To enable access to RTC domain use the PWR_RTCAccessCmd(ENABLE) function.
@endverbatim
* @{
*/
/**
* @brief Deinitializes the PWR peripheral registers to their default reset values.
* @note Before calling this function, the VOS[1:0] bits should be configured
* to "10" and the system frequency has to be configured accordingly.
* To configure the VOS[1:0] bits, use the PWR_VoltageScalingConfig()
* function.
* @note ULP and FWU bits are not reset by this function.
* @param None
* @retval None
*/
void PWR_DeInit(void)
{
RCC_APB1PeriphResetCmd(RCC_APB1Periph_PWR, ENABLE);
RCC_APB1PeriphResetCmd(RCC_APB1Periph_PWR, DISABLE);
}
/**
* @brief Enables or disables access to the RTC and backup registers.
* @note If the HSE divided by 2, 4, 8 or 16 is used as the RTC clock, the
* RTC Domain Access should be kept enabled.
* @param NewState: new state of the access to the RTC and backup registers.
* This parameter can be: ENABLE or DISABLE.
* @retval None
*/
void PWR_RTCAccessCmd(FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_FUNCTIONAL_STATE(NewState));
*(__IO uint32_t *) CR_DBP_BB = (uint32_t)NewState;
}
/**
* @}
*/
/** @defgroup PWR_Group2 PVD configuration functions
* @brief PVD configuration functions
*
@verbatim
==============================================================================
##### PVD configuration functions #####
==============================================================================
[..]
(+) The PVD is used to monitor the VDD power supply by comparing it to a threshold
selected by the PVD Level (PLS[2:0] bits in the PWR_CR).
(+) The PVD can use an external input analog voltage (PVD_IN) which is compared
internally to VREFINT. The PVD_IN (PB7) has to be configured in Analog mode
when PWR_PVDLevel_7 is selected (PLS[2:0] = 111).
(+) A PVDO flag is available to indicate if VDD/VDDA is higher or lower than the
PVD threshold. This event is internally connected to the EXTI line16
and can generate an interrupt if enabled through the EXTI registers.
(+) The PVD is stopped in Standby mode.
@endverbatim
* @{
*/
/**
* @brief Configures the voltage threshold detected by the Power Voltage Detector(PVD).
* @param PWR_PVDLevel: specifies the PVD detection level.
* This parameter can be one of the following values:
* @arg PWR_PVDLevel_0: PVD detection level set to 1.9V.
* @arg PWR_PVDLevel_1: PVD detection level set to 2.1V.
* @arg PWR_PVDLevel_2: PVD detection level set to 2.3V.
* @arg PWR_PVDLevel_3: PVD detection level set to 2.5V.
* @arg PWR_PVDLevel_4: PVD detection level set to 2.7V.
* @arg PWR_PVDLevel_5: PVD detection level set to 2.9V.
* @arg PWR_PVDLevel_6: PVD detection level set to 3.1V.
* @arg PWR_PVDLevel_7: External input analog voltage (Compare internally to VREFINT).
* @retval None
*/
void PWR_PVDLevelConfig(uint32_t PWR_PVDLevel)
{
uint32_t tmpreg = 0;
/* Check the parameters */
assert_param(IS_PWR_PVD_LEVEL(PWR_PVDLevel));
tmpreg = PWR->CR;
/* Clear PLS[7:5] bits */
tmpreg &= CR_PLS_MASK;
/* Set PLS[7:5] bits according to PWR_PVDLevel value */
tmpreg |= PWR_PVDLevel;
/* Store the new value */
PWR->CR = tmpreg;
}
/**
* @brief Enables or disables the Power Voltage Detector(PVD).
* @param NewState: new state of the PVD.
* This parameter can be: ENABLE or DISABLE.
* @retval None
*/
void PWR_PVDCmd(FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_FUNCTIONAL_STATE(NewState));
*(__IO uint32_t *) CR_PVDE_BB = (uint32_t)NewState;
}
/**
* @}
*/
/** @defgroup PWR_Group3 WakeUp pins configuration functions
* @brief WakeUp pins configuration functions
*
@verbatim
==============================================================================
##### WakeUp pin configuration functions #####
==============================================================================
(+) WakeUp pins are used to wakeup the system from Standby mode. These pins are
forced in input pull down configuration and are active on rising edges.
(+) There are three WakeUp pins: WakeUp Pin 1 on PA.00, WakeUp Pin 2 on PC.13 and
WakeUp Pin 3 on PE.06.
@endverbatim
* @{
*/
/**
* @brief Enables or disables the WakeUp Pin functionality.
* @param PWR_WakeUpPin: specifies the WakeUpPin.
* This parameter can be: PWR_WakeUpPin_1, PWR_WakeUpPin_2 or PWR_WakeUpPin_3.
* @param NewState: new state of the WakeUp Pin functionality.
* This parameter can be: ENABLE or DISABLE.
* @retval None
*/
void PWR_WakeUpPinCmd(uint32_t PWR_WakeUpPin, FunctionalState NewState)
{
__IO uint32_t tmp = 0;
/* Check the parameters */
assert_param(IS_PWR_WAKEUP_PIN(PWR_WakeUpPin));
assert_param(IS_FUNCTIONAL_STATE(NewState));
tmp = CSR_EWUP_BB + PWR_WakeUpPin;
*(__IO uint32_t *) (tmp) = (uint32_t)NewState;
}
/**
* @}
*/
/** @defgroup PWR_Group4 Ultra Low Power mode configuration functions
* @brief Ultra Low Power mode configuration functions
*
@verbatim
==============================================================================
##### Ultra Low Power mode configuration functions #####
==============================================================================
[..]
(+) The internal voltage reference consumption is not negligible, in particular
in Stop and Standby mode. To reduce power consumption, use the PWR_UltraLowPowerCmd()
function (ULP bit (Ultra low power) in the PWR_CR register) to disable the
internal voltage reference. However, in this case, when exiting from the
Stop/Standby mode, the functions managed through the internal voltage reference
are not reliable during the internal voltage reference startup time (up to 3 ms).
To reduce the wakeup time, the device can exit from Stop/Standby mode without
waiting for the internal voltage reference startup time. This is performed
by using the PWR_FastWakeUpCmd() function (setting the FWU bit (Fast
wakeup) in the PWR_CR register) before entering Stop/Standby mode.
@endverbatim
* @{
*/
/**
* @brief Enables or disables the Fast WakeUp from Ultra Low Power mode.
* @param NewState: new state of the Fast WakeUp functionality.
* This parameter can be: ENABLE or DISABLE.
* @retval None
*/
void PWR_FastWakeUpCmd(FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_FUNCTIONAL_STATE(NewState));
*(__IO uint32_t *) CR_FWU_BB = (uint32_t)NewState;
}
/**
* @brief Enables or disables the Ultra Low Power mode.
* @param NewState: new state of the Ultra Low Power mode.
* This parameter can be: ENABLE or DISABLE.
* @retval None
*/
void PWR_UltraLowPowerCmd(FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_FUNCTIONAL_STATE(NewState));
*(__IO uint32_t *) CR_ULP_BB = (uint32_t)NewState;
}
/**
* @}
*/
/** @defgroup PWR_Group5 Voltage Scaling configuration functions
* @brief Voltage Scaling configuration functions
*
@verbatim
==============================================================================
##### Voltage Scaling configuration functions #####
==============================================================================
(+) The dynamic voltage scaling is a power management technique which consists in
increasing or decreasing the voltage used for the digital peripherals (VCORE),
according to the circumstances.
[..] Depending on the device voltage range, the maximum frequency and FLASH wait
state should be adapted accordingly:
[..]
+------------------------------------------------------------------+
| Wait states | HCLK clock frequency (MHz) |
| |------------------------------------------------|
| (Latency) | voltage range | voltage range |
| | 1.65 V - 3.6 V | 2.0 V - 3.6 V |
| |----------------|---------------|---------------|
| | Range 3 | Range 2 | Range 1 |
| | VCORE = 1.2 V | VCORE = 1.5 V | VCORE = 1.8 V |
|---------------- |----------------|---------------|---------------|
| 0WS(1CPU cycle) |0 < HCLK <= 2 |0 < HCLK <= 8 |0 < HCLK <= 16 |
|-----------------|----------------|---------------|---------------|
| 1WS(2CPU cycle) |2 < HCLK <= 4 |8 < HCLK <= 16 |16 < HCLK <= 32|
|-----------------|----------------|---------------|---------------|
| CPU Performance | Low | Medium | High |
|-----__----------|----------------|---------------|---------------|
|Power Performance| High | Medium | Low |
+------------------------------------------------------------------+
(+) To modify the Product voltage range, user application has to:
(++) Check VDD to identify which ranges are allowed (see table above).
(++) Check the PWR_FLAG_VOSF (Voltage Scaling update ongoing) using the PWR_GetFlagStatus()
function and wait until it is reset.
(++) Configure the Voltage range using the PWR_VoltageScalingConfig() function.
(+) When VCORE range 1 is selected and VDD drops below 2.0 V, the application must
reconfigure the system:
(++) Detect that VDD drops below 2.0 V using the PVD Level 1.
(++) Adapt the clock frequency to the voltage range that will be selected at next step.
(++) Select the required voltage range.
(++) When VCORE range 2 or range 3 is selected and VDD drops below 2.0 V, no system
reconfiguration is required.
(+) When VDD is above 2.0 V, any of the 3 voltage ranges can be selected.
(++) When the voltage range is above the targeted voltage range (e.g. from range
1 to 2).
(++) Adapt the clock frequency to the lower voltage range that will be selected
at next step.
(++) Select the required voltage range.
(++) When the voltage range is below the targeted voltage range (e.g. from range
3 to 1).
(++) Select the required voltage range.
(++) Tune the clock frequency if needed.
(+) When VDD is below 2.0 V, only range 2 and 3 can be selected:
(++) From range 2 to range 3.
(+++) Adapt the clock frequency to voltage range 3.
(+++) Select voltage range 3.
(++) From range 3 to range 2.
(+++) Select the voltage range 2.
(+++) Tune the clock frequency if needed.
@endverbatim
* @{
*/
/**
* @brief Configures the voltage scaling range.
* @note During voltage scaling configuration, the system clock is stopped
* until the regulator is stabilized (VOSF = 0). This must be taken
* into account during application developement, in case a critical
* reaction time to interrupt is needed, and depending on peripheral
* used (timer, communication,...).
*
* @param PWR_VoltageScaling: specifies the voltage scaling range.
* This parameter can be:
* @arg PWR_VoltageScaling_Range1: Voltage Scaling Range 1 (VCORE = 1.8V).
* @arg PWR_VoltageScaling_Range2: Voltage Scaling Range 2 (VCORE = 1.5V).
* @arg PWR_VoltageScaling_Range3: Voltage Scaling Range 3 (VCORE = 1.2V)
* @retval None
*/
void PWR_VoltageScalingConfig(uint32_t PWR_VoltageScaling)
{
uint32_t tmp = 0;
/* Check the parameters */
assert_param(IS_PWR_VOLTAGE_SCALING_RANGE(PWR_VoltageScaling));
tmp = PWR->CR;
tmp &= CR_VOS_MASK;
tmp |= PWR_VoltageScaling;
PWR->CR = tmp & 0xFFFFFFF3;
}
/**
* @}
*/
/** @defgroup PWR_Group6 Low Power modes configuration functions
* @brief Low Power modes configuration functions
*
@verbatim
==============================================================================
##### Low Power modes configuration functions #####
==============================================================================
[..] The devices feature five low-power modes:
(+) Low power run mode: regulator in low power mode, limited clock frequency,
limited number of peripherals running.
(+) Sleep mode: Cortex-M3 core stopped, peripherals kept running.
(+) Low power sleep mode: Cortex-M3 core stopped, limited clock frequency,
limited number of peripherals running, regulator in low power mode.
(+) Stop mode: all clocks are stopped, regulator running, regulator in low power mode.
(+) Standby mode: VCORE domain powered off.
*** Low power run mode (LP run) ***
===================================
[..]
(+) Entry:
(++) Decrease the system frequency.
(++) The regulator is forced in low power mode using the PWR_EnterLowPowerRunMode()
function.
(+) Exit:
(++) The regulator is forced in Main regulator mode sing the PWR_EnterLowPowerRunMode()
function.
(++) Increase the system frequency if needed.
*** Sleep mode ***
==================
[..]
(+) Entry:
(++) The Sleep mode is entered by using the PWR_EnterSleepMode(PWR_Regulator_ON,)
function with regulator ON.
(+) Exit:
(++) Any peripheral interrupt acknowledged by the nested vectored interrupt
controller (NVIC) can wake up the device from Sleep mode.
*** Low power sleep mode (LP sleep) ***
=======================================
[..]
(+) Entry:
(++) The Flash memory must be switched off by using the FLASH_SLEEPPowerDownCmd()
function.
(++) Decrease the system frequency.
(++) The regulator is forced in low power mode and the WFI or WFE instructions
are executed using the PWR_EnterSleepMode(PWR_Regulator_LowPower,) function
with regulator in LowPower.
(+) Exit:
(++) Any peripheral interrupt acknowledged by the nested vectored interrupt
controller (NVIC) can wake up the device from Sleep LP mode.
*** Stop mode ***
=================
[..] In Stop mode, all clocks in the VCORE domain are stopped, the PLL, the MSI,
the HSI and the HSE RC oscillators are disabled. Internal SRAM and register
contents are preserved.
The voltage regulator can be configured either in normal or low-power mode.
To minimize the consumption In Stop mode, VREFINT, the BOR, PVD, and temperature
sensor can be switched off before entering the Stop mode. They can be switched
on again by software after exiting the Stop mode using the PWR_UltraLowPowerCmd()
function.
(+) Entry:
(++) The Stop mode is entered using the PWR_EnterSTOPMode(PWR_Regulator_LowPower,)
function with regulator in LowPower or with Regulator ON.
(+) Exit:
(++) Any EXTI Line (Internal or External) configured in Interrupt/Event mode.
*** Standby mode ***
====================
[..] The Standby mode allows to achieve the lowest power consumption. It is based
on the Cortex-M3 deepsleep mode, with the voltage regulator disabled.
The VCORE domain is consequently powered off. The PLL, the MSI, the HSI
oscillator and the HSE oscillator are also switched off. SRAM and register
contents are lost except for the RTC registers, RTC backup registers and
Standby circuitry.
[..] The voltage regulator is OFF.
[..] To minimize the consumption In Standby mode, VREFINT, the BOR, PVD, and temperature
sensor can be switched off before entering the Standby mode. They can be switched
on again by software after exiting the Standby mode using the PWR_UltraLowPowerCmd()
function.
(+) Entry:
(++) The Standby mode is entered using the PWR_EnterSTANDBYMode() function.
(+) Exit:
(++) WKUP pin rising edge, RTC alarm (Alarm A and Alarm B), RTC wakeup,
tamper event, time-stamp event, external reset in NRST pin, IWDG reset.
*** Auto-wakeup (AWU) from low-power mode ***
=============================================
[..]The MCU can be woken up from low-power mode by an RTC Alarm event, an RTC
Wakeup event, a tamper event, a time-stamp event, or a comparator event,
without depending on an external interrupt (Auto-wakeup mode).
(+) RTC auto-wakeup (AWU) from the Stop mode
(++) To wake up from the Stop mode with an RTC alarm event, it is necessary to:
(+++) Configure the EXTI Line 17 to be sensitive to rising edges (Interrupt
or Event modes) using the EXTI_Init() function.
(+++) Enable the RTC Alarm Interrupt using the RTC_ITConfig() function
(+++) Configure the RTC to generate the RTC alarm using the RTC_SetAlarm()
and RTC_AlarmCmd() functions.
(++) To wake up from the Stop mode with an RTC Tamper or time stamp event, it
is necessary to:
(+++) Configure the EXTI Line 19 to be sensitive to rising edges (Interrupt
or Event modes) using the EXTI_Init() function.
(+++) Enable the RTC Tamper or time stamp Interrupt using the RTC_ITConfig()
function.
(+++) Configure the RTC to detect the tamper or time stamp event using the
RTC_TimeStampConfig(), RTC_TamperTriggerConfig() and RTC_TamperCmd()
functions.
(++) To wake up from the Stop mode with an RTC WakeUp event, it is necessary to:
(+++) Configure the EXTI Line 20 to be sensitive to rising edges (Interrupt
or Event modes) using the EXTI_Init() function.
(+++) Enable the RTC WakeUp Interrupt using the RTC_ITConfig() function.
(+++) Configure the RTC to generate the RTC WakeUp event using the RTC_WakeUpClockConfig(),
RTC_SetWakeUpCounter() and RTC_WakeUpCmd() functions.
(+) RTC auto-wakeup (AWU) from the Standby mode
(++) To wake up from the Standby mode with an RTC alarm event, it is necessary to:
(+++) Enable the RTC Alarm Interrupt using the RTC_ITConfig() function.
(+++) Configure the RTC to generate the RTC alarm using the RTC_SetAlarm()
and RTC_AlarmCmd() functions.
(++) To wake up from the Standby mode with an RTC Tamper or time stamp event, it
is necessary to:
(+++) Enable the RTC Tamper or time stamp Interrupt using the RTC_ITConfig()
function.
(+++) Configure the RTC to detect the tamper or time stamp event using the
RTC_TimeStampConfig(), RTC_TamperTriggerConfig() and RTC_TamperCmd()
functions.
(++) To wake up from the Standby mode with an RTC WakeUp event, it is necessary to:
(+++) Enable the RTC WakeUp Interrupt using the RTC_ITConfig() function
(+++) Configure the RTC to generate the RTC WakeUp event using the RTC_WakeUpClockConfig(),
RTC_SetWakeUpCounter() and RTC_WakeUpCmd() functions.
(+) Comparator auto-wakeup (AWU) from the Stop mode
(++) To wake up from the Stop mode with an comparator 1 or comparator 2 wakeup
event, it is necessary to:
(+++) Configure the EXTI Line 21 for comparator 1 or EXTI Line 22 for comparator 2
to be sensitive to to the selected edges (falling, rising or falling
and rising) (Interrupt or Event modes) using the EXTI_Init() function.
(+++) Configure the comparator to generate the event.
@endverbatim
* @{
*/
/**
* @brief Enters/Exits the Low Power Run mode.
* @note Low power run mode can only be entered when VCORE is in range 2.
* In addition, the dynamic voltage scaling must not be used when Low
* power run mode is selected. Only Stop and Sleep modes with regulator
* configured in Low power mode is allowed when Low power run mode is
* selected.
* @note In Low power run mode, all I/O pins keep the same state as in Run mode.
* @param NewState: new state of the Low Power Run mode.
* This parameter can be: ENABLE or DISABLE.
* @retval None
*/
void PWR_EnterLowPowerRunMode(FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
PWR->CR |= PWR_CR_LPSDSR;
PWR->CR |= PWR_CR_LPRUN;
}
else
{
PWR->CR &= (uint32_t)~((uint32_t)PWR_CR_LPRUN);
PWR->CR &= (uint32_t)~((uint32_t)PWR_CR_LPSDSR);
}
}
/**
* @brief Enters Sleep mode.
* @note In Sleep mode, all I/O pins keep the same state as in Run mode.
* @param PWR_Regulator: specifies the regulator state in Sleep mode.
* This parameter can be one of the following values:
* @arg PWR_Regulator_ON: Sleep mode with regulator ON
* @arg PWR_Regulator_LowPower: Sleep mode with regulator in low power mode
* @note Low power sleep mode can only be entered when VCORE is in range 2.
* @note When the voltage regulator operates in low power mode, an additional
* startup delay is incurred when waking up from Low power sleep mode.
* @param PWR_SLEEPEntry: specifies if SLEEP mode in entered with WFI or WFE instruction.
* This parameter can be one of the following values:
* @arg PWR_SLEEPEntry_WFI: enter SLEEP mode with WFI instruction
* @arg PWR_SLEEPEntry_WFE: enter SLEEP mode with WFE instruction
* @retval None
*/
void PWR_EnterSleepMode(uint32_t PWR_Regulator, uint8_t PWR_SLEEPEntry)
{
uint32_t tmpreg = 0;
/* Check the parameters */
assert_param(IS_PWR_REGULATOR(PWR_Regulator));
assert_param(IS_PWR_SLEEP_ENTRY(PWR_SLEEPEntry));
/* Select the regulator state in Sleep mode ---------------------------------*/
tmpreg = PWR->CR;
/* Clear PDDS and LPDSR bits */
tmpreg &= CR_DS_MASK;
/* Set LPDSR bit according to PWR_Regulator value */
tmpreg |= PWR_Regulator;
/* Store the new value */
PWR->CR = tmpreg;
/* Clear SLEEPDEEP bit of Cortex System Control Register */
SCB->SCR &= (uint32_t)~((uint32_t)SCB_SCR_SLEEPDEEP);
/* Select SLEEP mode entry -------------------------------------------------*/
if(PWR_SLEEPEntry == PWR_SLEEPEntry_WFI)
{
/* Request Wait For Interrupt */
__WFI();
}
else
{
/* Request Wait For Event */
__WFE();
}
}
/**
* @brief Enters STOP mode.
* @note In Stop mode, all I/O pins keep the same state as in Run mode.
* @note When exiting Stop mode by issuing an interrupt or a wakeup event,
* the MSI RC oscillator is selected as system clock.
* @note When the voltage regulator operates in low power mode, an additional
* startup delay is incurred when waking up from Stop mode.
* By keeping the internal regulator ON during Stop mode, the consumption
* is higher although the startup time is reduced.
* @param PWR_Regulator: specifies the regulator state in STOP mode.
* This parameter can be one of the following values:
* @arg PWR_Regulator_ON: STOP mode with regulator ON.
* @arg PWR_Regulator_LowPower: STOP mode with regulator in low power mode.
* @param PWR_STOPEntry: specifies if STOP mode in entered with WFI or WFE instruction.
* This parameter can be one of the following values:
* @arg PWR_STOPEntry_WFI: enter STOP mode with WFI instruction.
* @arg PWR_STOPEntry_WFE: enter STOP mode with WFE instruction.
* @retval None
*/
void PWR_EnterSTOPMode(uint32_t PWR_Regulator, uint8_t PWR_STOPEntry)
{
uint32_t tmpreg = 0;
/* Check the parameters */
assert_param(IS_PWR_REGULATOR(PWR_Regulator));
assert_param(IS_PWR_STOP_ENTRY(PWR_STOPEntry));
/* Select the regulator state in STOP mode ---------------------------------*/
tmpreg = PWR->CR;
/* Clear PDDS and LPDSR bits */
tmpreg &= CR_DS_MASK;
/* Set LPDSR bit according to PWR_Regulator value */
tmpreg |= PWR_Regulator;
/* Store the new value */
PWR->CR = tmpreg;
/* Set SLEEPDEEP bit of Cortex System Control Register */
SCB->SCR |= SCB_SCR_SLEEPDEEP;
/* Select STOP mode entry --------------------------------------------------*/
if(PWR_STOPEntry == PWR_STOPEntry_WFI)
{
/* Request Wait For Interrupt */
__WFI();
}
else
{
/* Request Wait For Event */
__WFE();
}
/* Reset SLEEPDEEP bit of Cortex System Control Register */
SCB->SCR &= (uint32_t)~((uint32_t)SCB_SCR_SLEEPDEEP);
}
/**
* @brief Enters STANDBY mode.
* @note In Standby mode, all I/O pins are high impedance except for:
* Reset pad (still available)
* RTC_AF1 pin (PC13) if configured for Wakeup pin 2 (WKUP2), tamper,
* time-stamp, RTC Alarm out, or RTC clock calibration out.
* WKUP pin 1 (PA0) and WKUP pin 3 (PE6), if enabled.
* @param None
* @retval None
*/
void PWR_EnterSTANDBYMode(void)
{
/* Clear Wakeup flag */
PWR->CR |= PWR_CR_CWUF;
/* Select STANDBY mode */
PWR->CR |= PWR_CR_PDDS;
/* Set SLEEPDEEP bit of Cortex System Control Register */
SCB->SCR |= SCB_SCR_SLEEPDEEP;
/* This option is used to ensure that store operations are completed */
#if defined ( __CC_ARM )
__force_stores();
#endif
/* Request Wait For Interrupt */
__WFI();
}
/**
* @}
*/
/** @defgroup PWR_Group7 Flags management functions
* @brief Flags management functions
*
@verbatim
==============================================================================
##### Flags management functions #####
==============================================================================
@endverbatim
* @{
*/
/**
* @brief Checks whether the specified PWR flag is set or not.
* @param PWR_FLAG: specifies the flag to check.
* This parameter can be one of the following values:
* @arg PWR_FLAG_WU: Wake Up flag. This flag indicates that a wakeup event
* was received from the WKUP pin or from the RTC alarm (Alarm A or Alarm B),
* RTC Tamper event, RTC TimeStamp event or RTC Wakeup.
* @arg PWR_FLAG_SB: StandBy flag. This flag indicates that the system was
* resumed from StandBy mode.
* @arg PWR_FLAG_PVDO: PVD Output. This flag is valid only if PVD is enabled
* by the PWR_PVDCmd() function.
* @arg PWR_FLAG_VREFINTRDY: Internal Voltage Reference Ready flag. This
* flag indicates the state of the internal voltage reference, VREFINT.
* @arg PWR_FLAG_VOS: Voltage Scaling select flag. A delay is required for
* the internal regulator to be ready after the voltage range is changed.
* The VOSF flag indicates that the regulator has reached the voltage level
* defined with bits VOS[1:0] of PWR_CR register.
* @arg PWR_FLAG_REGLP: Regulator LP flag. This flag is set by hardware
* when the MCU is in Low power run mode.
* When the MCU exits from Low power run mode, this flag stays SET until
* the regulator is ready in main mode. A polling on this flag is
* recommended to wait for the regulator main mode.
* This flag is RESET by hardware when the regulator is ready.
* @retval The new state of PWR_FLAG (SET or RESET).
*/
FlagStatus PWR_GetFlagStatus(uint32_t PWR_FLAG)
{
FlagStatus bitstatus = RESET;
/* Check the parameters */
assert_param(IS_PWR_GET_FLAG(PWR_FLAG));
if ((PWR->CSR & PWR_FLAG) != (uint32_t)RESET)
{
bitstatus = SET;
}
else
{
bitstatus = RESET;
}
/* Return the flag status */
return bitstatus;
}
/**
* @brief Clears the PWR's pending flags.
* @param PWR_FLAG: specifies the flag to clear.
* This parameter can be one of the following values:
* @arg PWR_FLAG_WU: Wake Up flag
* @arg PWR_FLAG_SB: StandBy flag
* @retval None
*/
void PWR_ClearFlag(uint32_t PWR_FLAG)
{
/* Check the parameters */
assert_param(IS_PWR_CLEAR_FLAG(PWR_FLAG));
PWR->CR |= PWR_FLAG << 2;
}
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/

View File

@ -0,0 +1,213 @@
/**
******************************************************************************
* @file stm32l1xx_pwr.h
* @author MCD Application Team
* @version V1.2.0
* @date 22-February-2013
* @brief This file contains all the functions prototypes for the PWR firmware
* library.
******************************************************************************
* @attention
*
* <h2><center>&copy; COPYRIGHT 2013 STMicroelectronics</center></h2>
*
* Licensed under MCD-ST Liberty SW License Agreement V2, (the "License");
* You may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.st.com/software_license_agreement_liberty_v2
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
******************************************************************************
*/
/* Define to prevent recursive inclusion -------------------------------------*/
#ifndef __STM32L1xx_PWR_H
#define __STM32L1xx_PWR_H
#ifdef __cplusplus
extern "C" {
#endif
/* Includes ------------------------------------------------------------------*/
#include "stm32l1xx.h"
/** @addtogroup STM32L1xx_StdPeriph_Driver
* @{
*/
/** @addtogroup PWR
* @{
*/
/* Exported types ------------------------------------------------------------*/
/* Exported constants --------------------------------------------------------*/
/** @defgroup PWR_Exported_Constants
* @{
*/
/** @defgroup PWR_PVD_detection_level
* @{
*/
#define PWR_PVDLevel_0 PWR_CR_PLS_LEV0
#define PWR_PVDLevel_1 PWR_CR_PLS_LEV1
#define PWR_PVDLevel_2 PWR_CR_PLS_LEV2
#define PWR_PVDLevel_3 PWR_CR_PLS_LEV3
#define PWR_PVDLevel_4 PWR_CR_PLS_LEV4
#define PWR_PVDLevel_5 PWR_CR_PLS_LEV5
#define PWR_PVDLevel_6 PWR_CR_PLS_LEV6
#define PWR_PVDLevel_7 PWR_CR_PLS_LEV7 /* External input analog voltage
(Compare internally to VREFINT) */
#define IS_PWR_PVD_LEVEL(LEVEL) (((LEVEL) == PWR_PVDLevel_0) || ((LEVEL) == PWR_PVDLevel_1)|| \
((LEVEL) == PWR_PVDLevel_2) || ((LEVEL) == PWR_PVDLevel_3)|| \
((LEVEL) == PWR_PVDLevel_4) || ((LEVEL) == PWR_PVDLevel_5)|| \
((LEVEL) == PWR_PVDLevel_6) || ((LEVEL) == PWR_PVDLevel_7))
/**
* @}
*/
/** @defgroup PWR_WakeUp_Pins
* @{
*/
#define PWR_WakeUpPin_1 ((uint32_t)0x00000000)
#define PWR_WakeUpPin_2 ((uint32_t)0x00000004)
#define PWR_WakeUpPin_3 ((uint32_t)0x00000008)
#define IS_PWR_WAKEUP_PIN(PIN) (((PIN) == PWR_WakeUpPin_1) || \
((PIN) == PWR_WakeUpPin_2) || \
((PIN) == PWR_WakeUpPin_3))
/**
* @}
*/
/** @defgroup PWR_Voltage_Scaling_Ranges
* @{
*/
#define PWR_VoltageScaling_Range1 PWR_CR_VOS_0
#define PWR_VoltageScaling_Range2 PWR_CR_VOS_1
#define PWR_VoltageScaling_Range3 PWR_CR_VOS
#define IS_PWR_VOLTAGE_SCALING_RANGE(RANGE) (((RANGE) == PWR_VoltageScaling_Range1) || \
((RANGE) == PWR_VoltageScaling_Range2) || \
((RANGE) == PWR_VoltageScaling_Range3))
/**
* @}
*/
/** @defgroup PWR_Regulator_state_is_Sleep_STOP_mode
* @{
*/
#define PWR_Regulator_ON ((uint32_t)0x00000000)
#define PWR_Regulator_LowPower PWR_CR_LPSDSR
#define IS_PWR_REGULATOR(REGULATOR) (((REGULATOR) == PWR_Regulator_ON) || \
((REGULATOR) == PWR_Regulator_LowPower))
/**
* @}
*/
/** @defgroup PWR_SLEEP_mode_entry
* @{
*/
#define PWR_SLEEPEntry_WFI ((uint8_t)0x01)
#define PWR_SLEEPEntry_WFE ((uint8_t)0x02)
#define IS_PWR_SLEEP_ENTRY(ENTRY) (((ENTRY) == PWR_SLEEPEntry_WFI) || ((ENTRY) == PWR_SLEEPEntry_WFE))
/**
* @}
*/
/** @defgroup PWR_STOP_mode_entry
* @{
*/
#define PWR_STOPEntry_WFI ((uint8_t)0x01)
#define PWR_STOPEntry_WFE ((uint8_t)0x02)
#define IS_PWR_STOP_ENTRY(ENTRY) (((ENTRY) == PWR_STOPEntry_WFI) || ((ENTRY) == PWR_STOPEntry_WFE))
/**
* @}
*/
/** @defgroup PWR_Flag
* @{
*/
#define PWR_FLAG_WU PWR_CSR_WUF
#define PWR_FLAG_SB PWR_CSR_SBF
#define PWR_FLAG_PVDO PWR_CSR_PVDO
#define PWR_FLAG_VREFINTRDY PWR_CSR_VREFINTRDYF
#define PWR_FLAG_VOS PWR_CSR_VOSF
#define PWR_FLAG_REGLP PWR_CSR_REGLPF
#define IS_PWR_GET_FLAG(FLAG) (((FLAG) == PWR_FLAG_WU) || ((FLAG) == PWR_FLAG_SB) || \
((FLAG) == PWR_FLAG_PVDO) || ((FLAG) == PWR_FLAG_VREFINTRDY) || \
((FLAG) == PWR_FLAG_VOS) || ((FLAG) == PWR_FLAG_REGLP))
#define IS_PWR_CLEAR_FLAG(FLAG) (((FLAG) == PWR_FLAG_WU) || ((FLAG) == PWR_FLAG_SB))
/**
* @}
*/
/**
* @}
*/
/* Exported macro ------------------------------------------------------------*/
/* Exported functions ------------------------------------------------------- */
/* Function used to set the PWR configuration to the default reset state ******/
void PWR_DeInit(void);
/* RTC Domain Access function *************************************************/
void PWR_RTCAccessCmd(FunctionalState NewState);
/* PVD configuration functions ************************************************/
void PWR_PVDLevelConfig(uint32_t PWR_PVDLevel);
void PWR_PVDCmd(FunctionalState NewState);
/* WakeUp pins configuration functions ****************************************/
void PWR_WakeUpPinCmd(uint32_t PWR_WakeUpPin, FunctionalState NewState);
/* Ultra Low Power mode configuration functions *******************************/
void PWR_FastWakeUpCmd(FunctionalState NewState);
void PWR_UltraLowPowerCmd(FunctionalState NewState);
/* Voltage Scaling configuration functions ************************************/
void PWR_VoltageScalingConfig(uint32_t PWR_VoltageScaling);
/* Low Power modes configuration functions ************************************/
void PWR_EnterLowPowerRunMode(FunctionalState NewState);
void PWR_EnterSleepMode(uint32_t PWR_Regulator, uint8_t PWR_SLEEPEntry);
void PWR_EnterSTOPMode(uint32_t PWR_Regulator, uint8_t PWR_STOPEntry);
void PWR_EnterSTANDBYMode(void);
/* Flags management functions *************************************************/
FlagStatus PWR_GetFlagStatus(uint32_t PWR_FLAG);
void PWR_ClearFlag(uint32_t PWR_FLAG);
#ifdef __cplusplus
}
#endif
#endif /* __STM32L1xx_PWR_H */
/**
* @}
*/
/**
* @}
*/
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,488 @@
/**
******************************************************************************
* @file stm32l1xx_rcc.h
* @author MCD Application Team
* @version V1.2.0
* @date 22-February-2013
* @brief This file contains all the functions prototypes for the RCC
* firmware library.
******************************************************************************
* @attention
*
* <h2><center>&copy; COPYRIGHT 2013 STMicroelectronics</center></h2>
*
* Licensed under MCD-ST Liberty SW License Agreement V2, (the "License");
* You may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.st.com/software_license_agreement_liberty_v2
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
******************************************************************************
*/
/* Define to prevent recursive inclusion -------------------------------------*/
#ifndef __STM32L1xx_RCC_H
#define __STM32L1xx_RCC_H
#ifdef __cplusplus
extern "C" {
#endif
/* Includes ------------------------------------------------------------------*/
#include "stm32l1xx.h"
/** @addtogroup STM32L1xx_StdPeriph_Driver
* @{
*/
/** @addtogroup RCC
* @{
*/
/* Exported types ------------------------------------------------------------*/
typedef struct
{
uint32_t SYSCLK_Frequency;
uint32_t HCLK_Frequency;
uint32_t PCLK1_Frequency;
uint32_t PCLK2_Frequency;
}RCC_ClocksTypeDef;
/* Exported constants --------------------------------------------------------*/
/** @defgroup RCC_Exported_Constants
* @{
*/
/** @defgroup RCC_HSE_configuration
* @{
*/
#define RCC_HSE_OFF ((uint8_t)0x00)
#define RCC_HSE_ON ((uint8_t)0x01)
#define RCC_HSE_Bypass ((uint8_t)0x05)
#define IS_RCC_HSE(HSE) (((HSE) == RCC_HSE_OFF) || ((HSE) == RCC_HSE_ON) || \
((HSE) == RCC_HSE_Bypass))
/**
* @}
*/
/** @defgroup RCC_MSI_Clock_Range
* @{
*/
#define RCC_MSIRange_0 RCC_ICSCR_MSIRANGE_0 /*!< MSI = 65.536 KHz */
#define RCC_MSIRange_1 RCC_ICSCR_MSIRANGE_1 /*!< MSI = 131.072 KHz */
#define RCC_MSIRange_2 RCC_ICSCR_MSIRANGE_2 /*!< MSI = 262.144 KHz */
#define RCC_MSIRange_3 RCC_ICSCR_MSIRANGE_3 /*!< MSI = 524.288 KHz */
#define RCC_MSIRange_4 RCC_ICSCR_MSIRANGE_4 /*!< MSI = 1.048 MHz */
#define RCC_MSIRange_5 RCC_ICSCR_MSIRANGE_5 /*!< MSI = 2.097 MHz */
#define RCC_MSIRange_6 RCC_ICSCR_MSIRANGE_6 /*!< MSI = 4.194 MHz */
#define IS_RCC_MSI_CLOCK_RANGE(RANGE) (((RANGE) == RCC_MSIRange_0) || \
((RANGE) == RCC_MSIRange_1) || \
((RANGE) == RCC_MSIRange_2) || \
((RANGE) == RCC_MSIRange_3) || \
((RANGE) == RCC_MSIRange_4) || \
((RANGE) == RCC_MSIRange_5) || \
((RANGE) == RCC_MSIRange_6))
/**
* @}
*/
/** @defgroup RCC_PLL_Clock_Source
* @{
*/
#define RCC_PLLSource_HSI ((uint8_t)0x00)
#define RCC_PLLSource_HSE ((uint8_t)0x01)
#define IS_RCC_PLL_SOURCE(SOURCE) (((SOURCE) == RCC_PLLSource_HSI) || \
((SOURCE) == RCC_PLLSource_HSE))
/**
* @}
*/
/** @defgroup RCC_PLL_Multiplication_Factor
* @{
*/
#define RCC_PLLMul_3 ((uint8_t)0x00)
#define RCC_PLLMul_4 ((uint8_t)0x04)
#define RCC_PLLMul_6 ((uint8_t)0x08)
#define RCC_PLLMul_8 ((uint8_t)0x0C)
#define RCC_PLLMul_12 ((uint8_t)0x10)
#define RCC_PLLMul_16 ((uint8_t)0x14)
#define RCC_PLLMul_24 ((uint8_t)0x18)
#define RCC_PLLMul_32 ((uint8_t)0x1C)
#define RCC_PLLMul_48 ((uint8_t)0x20)
#define IS_RCC_PLL_MUL(MUL) (((MUL) == RCC_PLLMul_3) || ((MUL) == RCC_PLLMul_4) || \
((MUL) == RCC_PLLMul_6) || ((MUL) == RCC_PLLMul_8) || \
((MUL) == RCC_PLLMul_12) || ((MUL) == RCC_PLLMul_16) || \
((MUL) == RCC_PLLMul_24) || ((MUL) == RCC_PLLMul_32) || \
((MUL) == RCC_PLLMul_48))
/**
* @}
*/
/** @defgroup RCC_PLL_Divider_Factor
* @{
*/
#define RCC_PLLDiv_2 ((uint8_t)0x40)
#define RCC_PLLDiv_3 ((uint8_t)0x80)
#define RCC_PLLDiv_4 ((uint8_t)0xC0)
#define IS_RCC_PLL_DIV(DIV) (((DIV) == RCC_PLLDiv_2) || ((DIV) == RCC_PLLDiv_3) || \
((DIV) == RCC_PLLDiv_4))
/**
* @}
*/
/** @defgroup RCC_System_Clock_Source
* @{
*/
#define RCC_SYSCLKSource_MSI RCC_CFGR_SW_MSI
#define RCC_SYSCLKSource_HSI RCC_CFGR_SW_HSI
#define RCC_SYSCLKSource_HSE RCC_CFGR_SW_HSE
#define RCC_SYSCLKSource_PLLCLK RCC_CFGR_SW_PLL
#define IS_RCC_SYSCLK_SOURCE(SOURCE) (((SOURCE) == RCC_SYSCLKSource_MSI) || \
((SOURCE) == RCC_SYSCLKSource_HSI) || \
((SOURCE) == RCC_SYSCLKSource_HSE) || \
((SOURCE) == RCC_SYSCLKSource_PLLCLK))
/**
* @}
*/
/** @defgroup RCC_AHB_Clock_Source
* @{
*/
#define RCC_SYSCLK_Div1 RCC_CFGR_HPRE_DIV1
#define RCC_SYSCLK_Div2 RCC_CFGR_HPRE_DIV2
#define RCC_SYSCLK_Div4 RCC_CFGR_HPRE_DIV4
#define RCC_SYSCLK_Div8 RCC_CFGR_HPRE_DIV8
#define RCC_SYSCLK_Div16 RCC_CFGR_HPRE_DIV16
#define RCC_SYSCLK_Div64 RCC_CFGR_HPRE_DIV64
#define RCC_SYSCLK_Div128 RCC_CFGR_HPRE_DIV128
#define RCC_SYSCLK_Div256 RCC_CFGR_HPRE_DIV256
#define RCC_SYSCLK_Div512 RCC_CFGR_HPRE_DIV512
#define IS_RCC_HCLK(HCLK) (((HCLK) == RCC_SYSCLK_Div1) || ((HCLK) == RCC_SYSCLK_Div2) || \
((HCLK) == RCC_SYSCLK_Div4) || ((HCLK) == RCC_SYSCLK_Div8) || \
((HCLK) == RCC_SYSCLK_Div16) || ((HCLK) == RCC_SYSCLK_Div64) || \
((HCLK) == RCC_SYSCLK_Div128) || ((HCLK) == RCC_SYSCLK_Div256) || \
((HCLK) == RCC_SYSCLK_Div512))
/**
* @}
*/
/** @defgroup RCC_APB1_APB2_Clock_Source
* @{
*/
#define RCC_HCLK_Div1 RCC_CFGR_PPRE1_DIV1
#define RCC_HCLK_Div2 RCC_CFGR_PPRE1_DIV2
#define RCC_HCLK_Div4 RCC_CFGR_PPRE1_DIV4
#define RCC_HCLK_Div8 RCC_CFGR_PPRE1_DIV8
#define RCC_HCLK_Div16 RCC_CFGR_PPRE1_DIV16
#define IS_RCC_PCLK(PCLK) (((PCLK) == RCC_HCLK_Div1) || ((PCLK) == RCC_HCLK_Div2) || \
((PCLK) == RCC_HCLK_Div4) || ((PCLK) == RCC_HCLK_Div8) || \
((PCLK) == RCC_HCLK_Div16))
/**
* @}
*/
/** @defgroup RCC_Interrupt_Source
* @{
*/
#define RCC_IT_LSIRDY ((uint8_t)0x01)
#define RCC_IT_LSERDY ((uint8_t)0x02)
#define RCC_IT_HSIRDY ((uint8_t)0x04)
#define RCC_IT_HSERDY ((uint8_t)0x08)
#define RCC_IT_PLLRDY ((uint8_t)0x10)
#define RCC_IT_MSIRDY ((uint8_t)0x20)
#define RCC_IT_LSECSS ((uint8_t)0x40)
#define RCC_IT_CSS ((uint8_t)0x80)
#define IS_RCC_IT(IT) ((((IT) & (uint8_t)0x80) == 0x00) && ((IT) != 0x00))
#define IS_RCC_GET_IT(IT) (((IT) == RCC_IT_LSIRDY) || ((IT) == RCC_IT_LSERDY) || \
((IT) == RCC_IT_HSIRDY) || ((IT) == RCC_IT_HSERDY) || \
((IT) == RCC_IT_PLLRDY) || ((IT) == RCC_IT_MSIRDY) || \
((IT) == RCC_IT_CSS) || ((IT) == RCC_IT_LSECSS))
#define IS_RCC_CLEAR_IT(IT) ((((IT) & (uint8_t)0x00) == 0x00) && ((IT) != 0x00))
/**
* @}
*/
/** @defgroup RCC_LSE_Configuration
* @{
*/
#define RCC_LSE_OFF ((uint8_t)0x00)
#define RCC_LSE_ON ((uint8_t)0x01)
#define RCC_LSE_Bypass ((uint8_t)0x05)
#define IS_RCC_LSE(LSE) (((LSE) == RCC_LSE_OFF) || ((LSE) == RCC_LSE_ON) || \
((LSE) == RCC_LSE_Bypass))
/**
* @}
*/
/** @defgroup RCC_RTC_Clock_Source
* @{
*/
#define RCC_RTCCLKSource_LSE RCC_CSR_RTCSEL_LSE
#define RCC_RTCCLKSource_LSI RCC_CSR_RTCSEL_LSI
#define RCC_RTCCLKSource_HSE_Div2 RCC_CSR_RTCSEL_HSE
#define RCC_RTCCLKSource_HSE_Div4 ((uint32_t)RCC_CSR_RTCSEL_HSE | RCC_CR_RTCPRE_0)
#define RCC_RTCCLKSource_HSE_Div8 ((uint32_t)RCC_CSR_RTCSEL_HSE | RCC_CR_RTCPRE_1)
#define RCC_RTCCLKSource_HSE_Div16 ((uint32_t)RCC_CSR_RTCSEL_HSE | RCC_CR_RTCPRE)
#define IS_RCC_RTCCLK_SOURCE(SOURCE) (((SOURCE) == RCC_RTCCLKSource_LSE) || \
((SOURCE) == RCC_RTCCLKSource_LSI) || \
((SOURCE) == RCC_RTCCLKSource_HSE_Div2) || \
((SOURCE) == RCC_RTCCLKSource_HSE_Div4) || \
((SOURCE) == RCC_RTCCLKSource_HSE_Div8) || \
((SOURCE) == RCC_RTCCLKSource_HSE_Div16))
/**
* @}
*/
/** @defgroup RCC_AHB_Peripherals
* @{
*/
#define RCC_AHBPeriph_GPIOA RCC_AHBENR_GPIOAEN
#define RCC_AHBPeriph_GPIOB RCC_AHBENR_GPIOBEN
#define RCC_AHBPeriph_GPIOC RCC_AHBENR_GPIOCEN
#define RCC_AHBPeriph_GPIOD RCC_AHBENR_GPIODEN
#define RCC_AHBPeriph_GPIOE RCC_AHBENR_GPIOEEN
#define RCC_AHBPeriph_GPIOH RCC_AHBENR_GPIOHEN
#define RCC_AHBPeriph_GPIOF RCC_AHBENR_GPIOFEN
#define RCC_AHBPeriph_GPIOG RCC_AHBENR_GPIOGEN
#define RCC_AHBPeriph_CRC RCC_AHBENR_CRCEN
#define RCC_AHBPeriph_FLITF RCC_AHBENR_FLITFEN
#define RCC_AHBPeriph_SRAM RCC_AHBLPENR_SRAMLPEN
#define RCC_AHBPeriph_DMA1 RCC_AHBENR_DMA1EN
#define RCC_AHBPeriph_DMA2 RCC_AHBENR_DMA2EN
#define RCC_AHBPeriph_AES RCC_AHBENR_AESEN
#define RCC_AHBPeriph_FSMC RCC_AHBENR_FSMCEN
#define IS_RCC_AHB_PERIPH(PERIPH) ((((PERIPH) & 0xB4FF6F00) == 0x00) && ((PERIPH) != 0x00))
#define IS_RCC_AHB_LPMODE_PERIPH(PERIPH) ((((PERIPH) & 0xB4FF6F00) == 0x00) && ((PERIPH) != 0x00))
/**
* @}
*/
/** @defgroup RCC_APB2_Peripherals
* @{
*/
#define RCC_APB2Periph_SYSCFG RCC_APB2ENR_SYSCFGEN
#define RCC_APB2Periph_TIM9 RCC_APB2ENR_TIM9EN
#define RCC_APB2Periph_TIM10 RCC_APB2ENR_TIM10EN
#define RCC_APB2Periph_TIM11 RCC_APB2ENR_TIM11EN
#define RCC_APB2Periph_ADC1 RCC_APB2ENR_ADC1EN
#define RCC_APB2Periph_SDIO RCC_APB2ENR_SDIOEN
#define RCC_APB2Periph_SPI1 RCC_APB2ENR_SPI1EN
#define RCC_APB2Periph_USART1 RCC_APB2ENR_USART1EN
#define IS_RCC_APB2_PERIPH(PERIPH) ((((PERIPH) & 0xFFFFA5E2) == 0x00) && ((PERIPH) != 0x00))
/**
* @}
*/
/** @defgroup RCC_APB1_Peripherals
* @{
*/
#define RCC_APB1Periph_TIM2 RCC_APB1ENR_TIM2EN
#define RCC_APB1Periph_TIM3 RCC_APB1ENR_TIM3EN
#define RCC_APB1Periph_TIM4 RCC_APB1ENR_TIM4EN
#define RCC_APB1Periph_TIM5 RCC_APB1ENR_TIM5EN
#define RCC_APB1Periph_TIM6 RCC_APB1ENR_TIM6EN
#define RCC_APB1Periph_TIM7 RCC_APB1ENR_TIM7EN
#define RCC_APB1Periph_LCD RCC_APB1ENR_LCDEN
#define RCC_APB1Periph_WWDG RCC_APB1ENR_WWDGEN
#define RCC_APB1Periph_SPI2 RCC_APB1ENR_SPI2EN
#define RCC_APB1Periph_SPI3 RCC_APB1ENR_SPI3EN
#define RCC_APB1Periph_USART2 RCC_APB1ENR_USART2EN
#define RCC_APB1Periph_USART3 RCC_APB1ENR_USART3EN
#define RCC_APB1Periph_UART4 RCC_APB1ENR_UART4EN
#define RCC_APB1Periph_UART5 RCC_APB1ENR_UART5EN
#define RCC_APB1Periph_I2C1 RCC_APB1ENR_I2C1EN
#define RCC_APB1Periph_I2C2 RCC_APB1ENR_I2C2EN
#define RCC_APB1Periph_USB RCC_APB1ENR_USBEN
#define RCC_APB1Periph_PWR RCC_APB1ENR_PWREN
#define RCC_APB1Periph_DAC RCC_APB1ENR_DACEN
#define RCC_APB1Periph_COMP RCC_APB1ENR_COMPEN
#define IS_RCC_APB1_PERIPH(PERIPH) ((((PERIPH) & 0x4F0135C0) == 0x00) && ((PERIPH) != 0x00))
/**
* @}
*/
/** @defgroup RCC_MCO_Clock_Source
* @{
*/
#define RCC_MCOSource_NoClock ((uint8_t)0x00)
#define RCC_MCOSource_SYSCLK ((uint8_t)0x01)
#define RCC_MCOSource_HSI ((uint8_t)0x02)
#define RCC_MCOSource_MSI ((uint8_t)0x03)
#define RCC_MCOSource_HSE ((uint8_t)0x04)
#define RCC_MCOSource_PLLCLK ((uint8_t)0x05)
#define RCC_MCOSource_LSI ((uint8_t)0x06)
#define RCC_MCOSource_LSE ((uint8_t)0x07)
#define IS_RCC_MCO_SOURCE(SOURCE) (((SOURCE) == RCC_MCOSource_NoClock) || ((SOURCE) == RCC_MCOSource_SYSCLK) || \
((SOURCE) == RCC_MCOSource_HSI) || ((SOURCE) == RCC_MCOSource_MSI) || \
((SOURCE) == RCC_MCOSource_HSE) || ((SOURCE) == RCC_MCOSource_PLLCLK) || \
((SOURCE) == RCC_MCOSource_LSI) || ((SOURCE) == RCC_MCOSource_LSE))
/**
* @}
*/
/** @defgroup RCC_MCO_Output_Divider
* @{
*/
#define RCC_MCODiv_1 ((uint8_t)0x00)
#define RCC_MCODiv_2 ((uint8_t)0x10)
#define RCC_MCODiv_4 ((uint8_t)0x20)
#define RCC_MCODiv_8 ((uint8_t)0x30)
#define RCC_MCODiv_16 ((uint8_t)0x40)
#define IS_RCC_MCO_DIV(DIV) (((DIV) == RCC_MCODiv_1) || ((DIV) == RCC_MCODiv_2) || \
((DIV) == RCC_MCODiv_4) || ((DIV) == RCC_MCODiv_8) || \
((DIV) == RCC_MCODiv_16))
/**
* @}
*/
/** @defgroup RCC_Flag
* @{
*/
#define RCC_FLAG_HSIRDY ((uint8_t)0x21)
#define RCC_FLAG_MSIRDY ((uint8_t)0x29)
#define RCC_FLAG_HSERDY ((uint8_t)0x31)
#define RCC_FLAG_PLLRDY ((uint8_t)0x39)
#define RCC_FLAG_LSERDY ((uint8_t)0x49)
#define RCC_FLAG_LSECSS ((uint8_t)0x4A)
#define RCC_FLAG_LSIRDY ((uint8_t)0x41)
#define RCC_FLAG_OBLRST ((uint8_t)0x59)
#define RCC_FLAG_PINRST ((uint8_t)0x5A)
#define RCC_FLAG_PORRST ((uint8_t)0x5B)
#define RCC_FLAG_SFTRST ((uint8_t)0x5C)
#define RCC_FLAG_IWDGRST ((uint8_t)0x5D)
#define RCC_FLAG_WWDGRST ((uint8_t)0x5E)
#define RCC_FLAG_LPWRRST ((uint8_t)0x5F)
#define IS_RCC_FLAG(FLAG) (((FLAG) == RCC_FLAG_HSIRDY) || ((FLAG) == RCC_FLAG_HSERDY) || \
((FLAG) == RCC_FLAG_MSIRDY) || ((FLAG) == RCC_FLAG_PLLRDY) || \
((FLAG) == RCC_FLAG_LSERDY) || ((FLAG) == RCC_FLAG_LSIRDY) || \
((FLAG) == RCC_FLAG_PINRST) || ((FLAG) == RCC_FLAG_PORRST) || \
((FLAG) == RCC_FLAG_SFTRST) || ((FLAG) == RCC_FLAG_IWDGRST)|| \
((FLAG) == RCC_FLAG_WWDGRST)|| ((FLAG) == RCC_FLAG_LPWRRST)|| \
((FLAG) == RCC_FLAG_WWDGRST)|| ((FLAG) == RCC_FLAG_LSECSS))
#define IS_RCC_HSI_CALIBRATION_VALUE(VALUE) ((VALUE) <= 0x1F)
#define IS_RCC_MSI_CALIBRATION_VALUE(VALUE) ((VALUE) <= 0x3F)
/**
* @}
*/
/**
* @}
*/
/* Exported macro ------------------------------------------------------------*/
/* Exported functions ------------------------------------------------------- */
/* Function used to set the RCC clock configuration to the default reset state */
void RCC_DeInit(void);
/* Internal/external clocks, PLL, CSS and MCO configuration functions *********/
void RCC_HSEConfig(uint8_t RCC_HSE);
ErrorStatus RCC_WaitForHSEStartUp(void);
void RCC_MSIRangeConfig(uint32_t RCC_MSIRange);
void RCC_AdjustMSICalibrationValue(uint8_t MSICalibrationValue);
void RCC_MSICmd(FunctionalState NewState);
void RCC_AdjustHSICalibrationValue(uint8_t HSICalibrationValue);
void RCC_HSICmd(FunctionalState NewState);
void RCC_LSEConfig(uint8_t RCC_LSE);
void RCC_LSICmd(FunctionalState NewState);
void RCC_PLLConfig(uint8_t RCC_PLLSource, uint8_t RCC_PLLMul, uint8_t RCC_PLLDiv);
void RCC_PLLCmd(FunctionalState NewState);
void RCC_ClockSecuritySystemCmd(FunctionalState NewState);
void RCC_LSEClockSecuritySystemCmd(FunctionalState NewState);
void RCC_MCOConfig(uint8_t RCC_MCOSource, uint8_t RCC_MCODiv);
/* System, AHB and APB busses clocks configuration functions ******************/
void RCC_SYSCLKConfig(uint32_t RCC_SYSCLKSource);
uint8_t RCC_GetSYSCLKSource(void);
void RCC_HCLKConfig(uint32_t RCC_SYSCLK);
void RCC_PCLK1Config(uint32_t RCC_HCLK);
void RCC_PCLK2Config(uint32_t RCC_HCLK);
void RCC_GetClocksFreq(RCC_ClocksTypeDef* RCC_Clocks);
/* Peripheral clocks configuration functions **********************************/
void RCC_RTCCLKConfig(uint32_t RCC_RTCCLKSource);
void RCC_RTCCLKCmd(FunctionalState NewState);
void RCC_RTCResetCmd(FunctionalState NewState);
void RCC_AHBPeriphClockCmd(uint32_t RCC_AHBPeriph, FunctionalState NewState);
void RCC_APB2PeriphClockCmd(uint32_t RCC_APB2Periph, FunctionalState NewState);
void RCC_APB1PeriphClockCmd(uint32_t RCC_APB1Periph, FunctionalState NewState);
void RCC_AHBPeriphResetCmd(uint32_t RCC_AHBPeriph, FunctionalState NewState);
void RCC_APB2PeriphResetCmd(uint32_t RCC_APB2Periph, FunctionalState NewState);
void RCC_APB1PeriphResetCmd(uint32_t RCC_APB1Periph, FunctionalState NewState);
void RCC_AHBPeriphClockLPModeCmd(uint32_t RCC_AHBPeriph, FunctionalState NewState);
void RCC_APB2PeriphClockLPModeCmd(uint32_t RCC_APB2Periph, FunctionalState NewState);
void RCC_APB1PeriphClockLPModeCmd(uint32_t RCC_APB1Periph, FunctionalState NewState);
/* Interrupts and flags management functions **********************************/
void RCC_ITConfig(uint8_t RCC_IT, FunctionalState NewState);
FlagStatus RCC_GetFlagStatus(uint8_t RCC_FLAG);
void RCC_ClearFlag(void);
ITStatus RCC_GetITStatus(uint8_t RCC_IT);
void RCC_ClearITPendingBit(uint8_t RCC_IT);
#ifdef __cplusplus
}
#endif
#endif /* __STM32L1xx_RCC_H */
/**
* @}
*/
/**
* @}
*/
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,896 @@
/**
******************************************************************************
* @file stm32l1xx_rtc.h
* @author MCD Application Team
* @version V1.2.0
* @date 22-February-2013
* @brief This file contains all the functions prototypes for the RTC firmware
* library.
******************************************************************************
* @attention
*
* <h2><center>&copy; COPYRIGHT 2013 STMicroelectronics</center></h2>
*
* Licensed under MCD-ST Liberty SW License Agreement V2, (the "License");
* You may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.st.com/software_license_agreement_liberty_v2
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
******************************************************************************
*/
/* Define to prevent recursive inclusion -------------------------------------*/
#ifndef __STM32L1xx_RTC_H
#define __STM32L1xx_RTC_H
#ifdef __cplusplus
extern "C" {
#endif
/* Includes ------------------------------------------------------------------*/
#include "stm32l1xx.h"
/** @addtogroup STM32L1xx_StdPeriph_Driver
* @{
*/
/** @addtogroup RTC
* @{
*/
/* Exported types ------------------------------------------------------------*/
/**
* @brief RTC Init structures definition
*/
typedef struct
{
uint32_t RTC_HourFormat; /*!< Specifies the RTC Hour Format.
This parameter can be a value of @ref RTC_Hour_Formats */
uint32_t RTC_AsynchPrediv; /*!< Specifies the RTC Asynchronous Predivider value.
This parameter must be set to a value lower than 0x7F */
uint32_t RTC_SynchPrediv; /*!< Specifies the RTC Synchronous Predivider value.
This parameter must be set to a value lower than 0x7FFF */
}RTC_InitTypeDef;
/**
* @brief RTC Time structure definition
*/
typedef struct
{
uint8_t RTC_Hours; /*!< Specifies the RTC Time Hour.
This parameter must be set to a value in the 0-12 range
if the RTC_HourFormat_12 is selected or 0-23 range if
the RTC_HourFormat_24 is selected. */
uint8_t RTC_Minutes; /*!< Specifies the RTC Time Minutes.
This parameter must be set to a value in the 0-59 range. */
uint8_t RTC_Seconds; /*!< Specifies the RTC Time Seconds.
This parameter must be set to a value in the 0-59 range. */
uint8_t RTC_H12; /*!< Specifies the RTC AM/PM Time.
This parameter can be a value of @ref RTC_AM_PM_Definitions */
}RTC_TimeTypeDef;
/**
* @brief RTC Date structure definition
*/
typedef struct
{
uint8_t RTC_WeekDay; /*!< Specifies the RTC Date WeekDay.
This parameter can be a value of @ref RTC_WeekDay_Definitions */
uint8_t RTC_Month; /*!< Specifies the RTC Date Month (in BCD format).
This parameter can be a value of @ref RTC_Month_Date_Definitions */
uint8_t RTC_Date; /*!< Specifies the RTC Date.
This parameter must be set to a value in the 1-31 range. */
uint8_t RTC_Year; /*!< Specifies the RTC Date Year.
This parameter must be set to a value in the 0-99 range. */
}RTC_DateTypeDef;
/**
* @brief RTC Alarm structure definition
*/
typedef struct
{
RTC_TimeTypeDef RTC_AlarmTime; /*!< Specifies the RTC Alarm Time members. */
uint32_t RTC_AlarmMask; /*!< Specifies the RTC Alarm Masks.
This parameter can be a value of @ref RTC_AlarmMask_Definitions */
uint32_t RTC_AlarmDateWeekDaySel; /*!< Specifies the RTC Alarm is on Date or WeekDay.
This parameter can be a value of @ref RTC_AlarmDateWeekDay_Definitions */
uint8_t RTC_AlarmDateWeekDay; /*!< Specifies the RTC Alarm Date/WeekDay.
If the Alarm Date is selected, this parameter
must be set to a value in the 1-31 range.
If the Alarm WeekDay is selected, this
parameter can be a value of @ref RTC_WeekDay_Definitions */
}RTC_AlarmTypeDef;
/* Exported constants --------------------------------------------------------*/
/** @defgroup RTC_Exported_Constants
* @{
*/
/** @defgroup RTC_Hour_Formats
* @{
*/
#define RTC_HourFormat_24 ((uint32_t)0x00000000)
#define RTC_HourFormat_12 ((uint32_t)0x00000040)
#define IS_RTC_HOUR_FORMAT(FORMAT) (((FORMAT) == RTC_HourFormat_12) || \
((FORMAT) == RTC_HourFormat_24))
/**
* @}
*/
/** @defgroup RTC_Asynchronous_Predivider
* @{
*/
#define IS_RTC_ASYNCH_PREDIV(PREDIV) ((PREDIV) <= 0x7F)
/**
* @}
*/
/** @defgroup RTC_Synchronous_Predivider
* @{
*/
#define IS_RTC_SYNCH_PREDIV(PREDIV) ((PREDIV) <= 0x7FFF)
/**
* @}
*/
/** @defgroup RTC_Time_Definitions
* @{
*/
#define IS_RTC_HOUR12(HOUR) (((HOUR) > 0) && ((HOUR) <= 12))
#define IS_RTC_HOUR24(HOUR) ((HOUR) <= 23)
#define IS_RTC_MINUTES(MINUTES) ((MINUTES) <= 59)
#define IS_RTC_SECONDS(SECONDS) ((SECONDS) <= 59)
/**
* @}
*/
/** @defgroup RTC_AM_PM_Definitions
* @{
*/
#define RTC_H12_AM ((uint8_t)0x00)
#define RTC_H12_PM ((uint8_t)0x40)
#define IS_RTC_H12(PM) (((PM) == RTC_H12_AM) || ((PM) == RTC_H12_PM))
/**
* @}
*/
/** @defgroup RTC_Year_Date_Definitions
* @{
*/
#define IS_RTC_YEAR(YEAR) ((YEAR) <= 99)
/**
* @}
*/
/** @defgroup RTC_Month_Date_Definitions
* @{
*/
/* Coded in BCD format */
#define RTC_Month_January ((uint8_t)0x01)
#define RTC_Month_February ((uint8_t)0x02)
#define RTC_Month_March ((uint8_t)0x03)
#define RTC_Month_April ((uint8_t)0x04)
#define RTC_Month_May ((uint8_t)0x05)
#define RTC_Month_June ((uint8_t)0x06)
#define RTC_Month_July ((uint8_t)0x07)
#define RTC_Month_August ((uint8_t)0x08)
#define RTC_Month_September ((uint8_t)0x09)
#define RTC_Month_October ((uint8_t)0x10)
#define RTC_Month_November ((uint8_t)0x11)
#define RTC_Month_December ((uint8_t)0x12)
#define IS_RTC_MONTH(MONTH) (((MONTH) >= 1) && ((MONTH) <= 12))
#define IS_RTC_DATE(DATE) (((DATE) >= 1) && ((DATE) <= 31))
/**
* @}
*/
/** @defgroup RTC_WeekDay_Definitions
* @{
*/
#define RTC_Weekday_Monday ((uint8_t)0x01)
#define RTC_Weekday_Tuesday ((uint8_t)0x02)
#define RTC_Weekday_Wednesday ((uint8_t)0x03)
#define RTC_Weekday_Thursday ((uint8_t)0x04)
#define RTC_Weekday_Friday ((uint8_t)0x05)
#define RTC_Weekday_Saturday ((uint8_t)0x06)
#define RTC_Weekday_Sunday ((uint8_t)0x07)
#define IS_RTC_WEEKDAY(WEEKDAY) (((WEEKDAY) == RTC_Weekday_Monday) || \
((WEEKDAY) == RTC_Weekday_Tuesday) || \
((WEEKDAY) == RTC_Weekday_Wednesday) || \
((WEEKDAY) == RTC_Weekday_Thursday) || \
((WEEKDAY) == RTC_Weekday_Friday) || \
((WEEKDAY) == RTC_Weekday_Saturday) || \
((WEEKDAY) == RTC_Weekday_Sunday))
/**
* @}
*/
/** @defgroup RTC_Alarm_Definitions
* @{
*/
#define IS_RTC_ALARM_DATE_WEEKDAY_DATE(DATE) (((DATE) > 0) && ((DATE) <= 31))
#define IS_RTC_ALARM_DATE_WEEKDAY_WEEKDAY(WEEKDAY) (((WEEKDAY) == RTC_Weekday_Monday) || \
((WEEKDAY) == RTC_Weekday_Tuesday) || \
((WEEKDAY) == RTC_Weekday_Wednesday) || \
((WEEKDAY) == RTC_Weekday_Thursday) || \
((WEEKDAY) == RTC_Weekday_Friday) || \
((WEEKDAY) == RTC_Weekday_Saturday) || \
((WEEKDAY) == RTC_Weekday_Sunday))
/**
* @}
*/
/** @defgroup RTC_AlarmDateWeekDay_Definitions
* @{
*/
#define RTC_AlarmDateWeekDaySel_Date ((uint32_t)0x00000000)
#define RTC_AlarmDateWeekDaySel_WeekDay ((uint32_t)0x40000000)
#define IS_RTC_ALARM_DATE_WEEKDAY_SEL(SEL) (((SEL) == RTC_AlarmDateWeekDaySel_Date) || \
((SEL) == RTC_AlarmDateWeekDaySel_WeekDay))
/**
* @}
*/
/** @defgroup RTC_AlarmMask_Definitions
* @{
*/
#define RTC_AlarmMask_None ((uint32_t)0x00000000)
#define RTC_AlarmMask_DateWeekDay ((uint32_t)0x80000000)
#define RTC_AlarmMask_Hours ((uint32_t)0x00800000)
#define RTC_AlarmMask_Minutes ((uint32_t)0x00008000)
#define RTC_AlarmMask_Seconds ((uint32_t)0x00000080)
#define RTC_AlarmMask_All ((uint32_t)0x80808080)
#define IS_ALARM_MASK(MASK) (((MASK) & 0x7F7F7F7F) == (uint32_t)RESET)
/**
* @}
*/
/** @defgroup RTC_Alarms_Definitions
* @{
*/
#define RTC_Alarm_A ((uint32_t)0x00000100)
#define RTC_Alarm_B ((uint32_t)0x00000200)
#define IS_RTC_ALARM(ALARM) (((ALARM) == RTC_Alarm_A) || ((ALARM) == RTC_Alarm_B))
#define IS_RTC_CMD_ALARM(ALARM) (((ALARM) & (RTC_Alarm_A | RTC_Alarm_B)) != (uint32_t)RESET)
/**
* @}
*/
/** @defgroup RTC_Alarm_Sub_Seconds_Masks_Definitions
* @{
*/
#define RTC_AlarmSubSecondMask_All ((uint32_t)0x00000000) /*!< All Alarm SS fields are masked.
There is no comparison on sub seconds
for Alarm */
#define RTC_AlarmSubSecondMask_SS14_1 ((uint32_t)0x01000000) /*!< SS[14:1] are don't care in Alarm
comparison. Only SS[0] is compared. */
#define RTC_AlarmSubSecondMask_SS14_2 ((uint32_t)0x02000000) /*!< SS[14:2] are don't care in Alarm
comparison. Only SS[1:0] are compared */
#define RTC_AlarmSubSecondMask_SS14_3 ((uint32_t)0x03000000) /*!< SS[14:3] are don't care in Alarm
comparison. Only SS[2:0] are compared */
#define RTC_AlarmSubSecondMask_SS14_4 ((uint32_t)0x04000000) /*!< SS[14:4] are don't care in Alarm
comparison. Only SS[3:0] are compared */
#define RTC_AlarmSubSecondMask_SS14_5 ((uint32_t)0x05000000) /*!< SS[14:5] are don't care in Alarm
comparison. Only SS[4:0] are compared */
#define RTC_AlarmSubSecondMask_SS14_6 ((uint32_t)0x06000000) /*!< SS[14:6] are don't care in Alarm
comparison. Only SS[5:0] are compared */
#define RTC_AlarmSubSecondMask_SS14_7 ((uint32_t)0x07000000) /*!< SS[14:7] are don't care in Alarm
comparison. Only SS[6:0] are compared */
#define RTC_AlarmSubSecondMask_SS14_8 ((uint32_t)0x08000000) /*!< SS[14:8] are don't care in Alarm
comparison. Only SS[7:0] are compared */
#define RTC_AlarmSubSecondMask_SS14_9 ((uint32_t)0x09000000) /*!< SS[14:9] are don't care in Alarm
comparison. Only SS[8:0] are compared */
#define RTC_AlarmSubSecondMask_SS14_10 ((uint32_t)0x0A000000) /*!< SS[14:10] are don't care in Alarm
comparison. Only SS[9:0] are compared */
#define RTC_AlarmSubSecondMask_SS14_11 ((uint32_t)0x0B000000) /*!< SS[14:11] are don't care in Alarm
comparison. Only SS[10:0] are compared */
#define RTC_AlarmSubSecondMask_SS14_12 ((uint32_t)0x0C000000) /*!< SS[14:12] are don't care in Alarm
comparison.Only SS[11:0] are compared */
#define RTC_AlarmSubSecondMask_SS14_13 ((uint32_t)0x0D000000) /*!< SS[14:13] are don't care in Alarm
comparison. Only SS[12:0] are compared */
#define RTC_AlarmSubSecondMask_SS14 ((uint32_t)0x0E000000) /*!< SS[14] is don't care in Alarm
comparison.Only SS[13:0] are compared */
#define RTC_AlarmSubSecondMask_None ((uint32_t)0x0F000000) /*!< SS[14:0] are compared and must match
to activate alarm. */
#define IS_RTC_ALARM_SUB_SECOND_MASK(MASK) (((MASK) == RTC_AlarmSubSecondMask_All) || \
((MASK) == RTC_AlarmSubSecondMask_SS14_1) || \
((MASK) == RTC_AlarmSubSecondMask_SS14_2) || \
((MASK) == RTC_AlarmSubSecondMask_SS14_3) || \
((MASK) == RTC_AlarmSubSecondMask_SS14_4) || \
((MASK) == RTC_AlarmSubSecondMask_SS14_5) || \
((MASK) == RTC_AlarmSubSecondMask_SS14_6) || \
((MASK) == RTC_AlarmSubSecondMask_SS14_7) || \
((MASK) == RTC_AlarmSubSecondMask_SS14_8) || \
((MASK) == RTC_AlarmSubSecondMask_SS14_9) || \
((MASK) == RTC_AlarmSubSecondMask_SS14_10) || \
((MASK) == RTC_AlarmSubSecondMask_SS14_11) || \
((MASK) == RTC_AlarmSubSecondMask_SS14_12) || \
((MASK) == RTC_AlarmSubSecondMask_SS14_13) || \
((MASK) == RTC_AlarmSubSecondMask_SS14) || \
((MASK) == RTC_AlarmSubSecondMask_None))
/**
* @}
*/
/** @defgroup RTC_Alarm_Sub_Seconds_Value
* @{
*/
#define IS_RTC_ALARM_SUB_SECOND_VALUE(VALUE) ((VALUE) <= 0x00007FFF)
/**
* @}
*/
/** @defgroup RTC_Wakeup_Timer_Definitions
* @{
*/
#define RTC_WakeUpClock_RTCCLK_Div16 ((uint32_t)0x00000000)
#define RTC_WakeUpClock_RTCCLK_Div8 ((uint32_t)0x00000001)
#define RTC_WakeUpClock_RTCCLK_Div4 ((uint32_t)0x00000002)
#define RTC_WakeUpClock_RTCCLK_Div2 ((uint32_t)0x00000003)
#define RTC_WakeUpClock_CK_SPRE_16bits ((uint32_t)0x00000004)
#define RTC_WakeUpClock_CK_SPRE_17bits ((uint32_t)0x00000006)
#define IS_RTC_WAKEUP_CLOCK(CLOCK) (((CLOCK) == RTC_WakeUpClock_RTCCLK_Div16) || \
((CLOCK) == RTC_WakeUpClock_RTCCLK_Div8) || \
((CLOCK) == RTC_WakeUpClock_RTCCLK_Div4) || \
((CLOCK) == RTC_WakeUpClock_RTCCLK_Div2) || \
((CLOCK) == RTC_WakeUpClock_CK_SPRE_16bits) || \
((CLOCK) == RTC_WakeUpClock_CK_SPRE_17bits))
#define IS_RTC_WAKEUP_COUNTER(COUNTER) ((COUNTER) <= 0xFFFF)
/**
* @}
*/
/** @defgroup RTC_Time_Stamp_Edges_definitions
* @{
*/
#define RTC_TimeStampEdge_Rising ((uint32_t)0x00000000)
#define RTC_TimeStampEdge_Falling ((uint32_t)0x00000008)
#define IS_RTC_TIMESTAMP_EDGE(EDGE) (((EDGE) == RTC_TimeStampEdge_Rising) || \
((EDGE) == RTC_TimeStampEdge_Falling))
/**
* @}
*/
/** @defgroup RTC_Output_selection_Definitions
* @{
*/
#define RTC_Output_Disable ((uint32_t)0x00000000)
#define RTC_Output_AlarmA ((uint32_t)0x00200000)
#define RTC_Output_AlarmB ((uint32_t)0x00400000)
#define RTC_Output_WakeUp ((uint32_t)0x00600000)
#define IS_RTC_OUTPUT(OUTPUT) (((OUTPUT) == RTC_Output_Disable) || \
((OUTPUT) == RTC_Output_AlarmA) || \
((OUTPUT) == RTC_Output_AlarmB) || \
((OUTPUT) == RTC_Output_WakeUp))
/**
* @}
*/
/** @defgroup RTC_Output_Polarity_Definitions
* @{
*/
#define RTC_OutputPolarity_High ((uint32_t)0x00000000)
#define RTC_OutputPolarity_Low ((uint32_t)0x00100000)
#define IS_RTC_OUTPUT_POL(POL) (((POL) == RTC_OutputPolarity_High) || \
((POL) == RTC_OutputPolarity_Low))
/**
* @}
*/
/** @defgroup RTC_Coarse_Calibration_Definitions
* @{
*/
#define RTC_CalibSign_Positive ((uint32_t)0x00000000)
#define RTC_CalibSign_Negative ((uint32_t)0x00000080)
#define IS_RTC_CALIB_SIGN(SIGN) (((SIGN) == RTC_CalibSign_Positive) || \
((SIGN) == RTC_CalibSign_Negative))
#define IS_RTC_CALIB_VALUE(VALUE) ((VALUE) < 0x20)
/**
* @}
*/
/** @defgroup RTC_Calib_Output_selection_Definitions
* @{
*/
#define RTC_CalibOutput_512Hz ((uint32_t)0x00000000)
#define RTC_CalibOutput_1Hz ((uint32_t)0x00080000)
#define IS_RTC_CALIB_OUTPUT(OUTPUT) (((OUTPUT) == RTC_CalibOutput_512Hz) || \
((OUTPUT) == RTC_CalibOutput_1Hz))
/**
* @}
*/
/** @defgroup RTC_Smooth_calib_period_Definitions
* @{
*/
#define RTC_SmoothCalibPeriod_32sec ((uint32_t)0x00000000) /*!< if RTCCLK = 32768 Hz, Smooth calibation
period is 32s, else 2exp20 RTCCLK seconds */
#define RTC_SmoothCalibPeriod_16sec ((uint32_t)0x00002000) /*!< if RTCCLK = 32768 Hz, Smooth calibation
period is 16s, else 2exp19 RTCCLK seconds */
#define RTC_SmoothCalibPeriod_8sec ((uint32_t)0x00004000) /*!< if RTCCLK = 32768 Hz, Smooth calibation
period is 8s, else 2exp18 RTCCLK seconds */
#define IS_RTC_SMOOTH_CALIB_PERIOD(PERIOD) (((PERIOD) == RTC_SmoothCalibPeriod_32sec) || \
((PERIOD) == RTC_SmoothCalibPeriod_16sec) || \
((PERIOD) == RTC_SmoothCalibPeriod_8sec))
/**
* @}
*/
/** @defgroup RTC_Smooth_calib_Plus_pulses_Definitions
* @{
*/
#define RTC_SmoothCalibPlusPulses_Set ((uint32_t)0x00008000) /*!< The number of RTCCLK pulses added
during a X -second window = Y - CALM[8:0].
with Y = 512, 256, 128 when X = 32, 16, 8 */
#define RTC_SmoothCalibPlusPulses_Reset ((uint32_t)0x00000000) /*!< The number of RTCCLK pulses subbstited
during a 32-second window = CALM[8:0]. */
#define IS_RTC_SMOOTH_CALIB_PLUS(PLUS) (((PLUS) == RTC_SmoothCalibPlusPulses_Set) || \
((PLUS) == RTC_SmoothCalibPlusPulses_Reset))
/**
* @}
*/
/** @defgroup RTC_Smooth_calib_Minus_pulses_Definitions
* @{
*/
#define IS_RTC_SMOOTH_CALIB_MINUS(VALUE) ((VALUE) <= 0x000001FF)
/**
* @}
*/
/** @defgroup RTC_DayLightSaving_Definitions
* @{
*/
#define RTC_DayLightSaving_SUB1H ((uint32_t)0x00020000)
#define RTC_DayLightSaving_ADD1H ((uint32_t)0x00010000)
#define IS_RTC_DAYLIGHT_SAVING(SAVE) (((SAVE) == RTC_DayLightSaving_SUB1H) || \
((SAVE) == RTC_DayLightSaving_ADD1H))
#define RTC_StoreOperation_Reset ((uint32_t)0x00000000)
#define RTC_StoreOperation_Set ((uint32_t)0x00040000)
#define IS_RTC_STORE_OPERATION(OPERATION) (((OPERATION) == RTC_StoreOperation_Reset) || \
((OPERATION) == RTC_StoreOperation_Set))
/**
* @}
*/
/** @defgroup RTC_Tamper_Trigger_Definitions
* @{
*/
#define RTC_TamperTrigger_RisingEdge ((uint32_t)0x00000000)
#define RTC_TamperTrigger_FallingEdge ((uint32_t)0x00000001)
#define RTC_TamperTrigger_LowLevel ((uint32_t)0x00000000)
#define RTC_TamperTrigger_HighLevel ((uint32_t)0x00000001)
#define IS_RTC_TAMPER_TRIGGER(TRIGGER) (((TRIGGER) == RTC_TamperTrigger_RisingEdge) || \
((TRIGGER) == RTC_TamperTrigger_FallingEdge) || \
((TRIGGER) == RTC_TamperTrigger_LowLevel) || \
((TRIGGER) == RTC_TamperTrigger_HighLevel))
/**
* @}
*/
/** @defgroup RTC_Tamper_Filter_Definitions
* @{
*/
#define RTC_TamperFilter_Disable ((uint32_t)0x00000000) /*!< Tamper filter is disabled */
#define RTC_TamperFilter_2Sample ((uint32_t)0x00000800) /*!< Tamper is activated after 2
consecutive samples at the active level */
#define RTC_TamperFilter_4Sample ((uint32_t)0x00001000) /*!< Tamper is activated after 4
consecutive samples at the active level */
#define RTC_TamperFilter_8Sample ((uint32_t)0x00001800) /*!< Tamper is activated after 8
consecutive samples at the active leve. */
#define IS_RTC_TAMPER_FILTER(FILTER) (((FILTER) == RTC_TamperFilter_Disable) || \
((FILTER) == RTC_TamperFilter_2Sample) || \
((FILTER) == RTC_TamperFilter_4Sample) || \
((FILTER) == RTC_TamperFilter_8Sample))
/**
* @}
*/
/** @defgroup RTC_Tamper_Sampling_Frequencies_Definitions
* @{
*/
#define RTC_TamperSamplingFreq_RTCCLK_Div32768 ((uint32_t)0x00000000) /*!< Each of the tamper inputs are sampled
with a frequency = RTCCLK / 32768 */
#define RTC_TamperSamplingFreq_RTCCLK_Div16384 ((uint32_t)0x000000100) /*!< Each of the tamper inputs are sampled
with a frequency = RTCCLK / 16384 */
#define RTC_TamperSamplingFreq_RTCCLK_Div8192 ((uint32_t)0x00000200) /*!< Each of the tamper inputs are sampled
with a frequency = RTCCLK / 8192 */
#define RTC_TamperSamplingFreq_RTCCLK_Div4096 ((uint32_t)0x00000300) /*!< Each of the tamper inputs are sampled
with a frequency = RTCCLK / 4096 */
#define RTC_TamperSamplingFreq_RTCCLK_Div2048 ((uint32_t)0x00000400) /*!< Each of the tamper inputs are sampled
with a frequency = RTCCLK / 2048 */
#define RTC_TamperSamplingFreq_RTCCLK_Div1024 ((uint32_t)0x00000500) /*!< Each of the tamper inputs are sampled
with a frequency = RTCCLK / 1024 */
#define RTC_TamperSamplingFreq_RTCCLK_Div512 ((uint32_t)0x00000600) /*!< Each of the tamper inputs are sampled
with a frequency = RTCCLK / 512 */
#define RTC_TamperSamplingFreq_RTCCLK_Div256 ((uint32_t)0x00000700) /*!< Each of the tamper inputs are sampled
with a frequency = RTCCLK / 256 */
#define IS_RTC_TAMPER_SAMPLING_FREQ(FREQ) (((FREQ) ==RTC_TamperSamplingFreq_RTCCLK_Div32768) || \
((FREQ) ==RTC_TamperSamplingFreq_RTCCLK_Div16384) || \
((FREQ) ==RTC_TamperSamplingFreq_RTCCLK_Div8192) || \
((FREQ) ==RTC_TamperSamplingFreq_RTCCLK_Div4096) || \
((FREQ) ==RTC_TamperSamplingFreq_RTCCLK_Div2048) || \
((FREQ) ==RTC_TamperSamplingFreq_RTCCLK_Div1024) || \
((FREQ) ==RTC_TamperSamplingFreq_RTCCLK_Div512) || \
((FREQ) ==RTC_TamperSamplingFreq_RTCCLK_Div256))
/**
* @}
*/
/** @defgroup RTC_Tamper_Pin_Precharge_Duration_Definitions
* @{
*/
#define RTC_TamperPrechargeDuration_1RTCCLK ((uint32_t)0x00000000) /*!< Tamper pins are pre-charged before
sampling during 1 RTCCLK cycle */
#define RTC_TamperPrechargeDuration_2RTCCLK ((uint32_t)0x00002000) /*!< Tamper pins are pre-charged before
sampling during 2 RTCCLK cycles */
#define RTC_TamperPrechargeDuration_4RTCCLK ((uint32_t)0x00004000) /*!< Tamper pins are pre-charged before
sampling during 4 RTCCLK cycles */
#define RTC_TamperPrechargeDuration_8RTCCLK ((uint32_t)0x00006000) /*!< Tamper pins are pre-charged before
sampling during 8 RTCCLK cycles */
#define IS_RTC_TAMPER_PRECHARGE_DURATION(DURATION) (((DURATION) == RTC_TamperPrechargeDuration_1RTCCLK) || \
((DURATION) == RTC_TamperPrechargeDuration_2RTCCLK) || \
((DURATION) == RTC_TamperPrechargeDuration_4RTCCLK) || \
((DURATION) == RTC_TamperPrechargeDuration_8RTCCLK))
/**
* @}
*/
/** @defgroup RTC_Tamper_Pins_Definitions
* @{
*/
#define RTC_Tamper_1 RTC_TAFCR_TAMP1E /*!< Tamper detection enable for
input tamper 1 */
#define RTC_Tamper_2 RTC_TAFCR_TAMP2E /*!< Tamper detection enable for
input tamper 2 */
#define RTC_Tamper_3 RTC_TAFCR_TAMP3E /*!< Tamper detection enable for
input tamper 3 */
#define IS_RTC_TAMPER(TAMPER) ((((TAMPER) & (uint32_t)0xFFFFFFD6) == 0x00) && ((TAMPER) != (uint32_t)RESET))
/**
* @}
*/
/** @defgroup RTC_Output_Type_ALARM_OUT
* @{
*/
#define RTC_OutputType_OpenDrain ((uint32_t)0x00000000)
#define RTC_OutputType_PushPull ((uint32_t)0x00040000)
#define IS_RTC_OUTPUT_TYPE(TYPE) (((TYPE) == RTC_OutputType_OpenDrain) || \
((TYPE) == RTC_OutputType_PushPull))
/**
* @}
*/
/** @defgroup RTC_Add_1_Second_Parameter_Definitions
* @{
*/
#define RTC_ShiftAdd1S_Reset ((uint32_t)0x00000000)
#define RTC_ShiftAdd1S_Set ((uint32_t)0x80000000)
#define IS_RTC_SHIFT_ADD1S(SEL) (((SEL) == RTC_ShiftAdd1S_Reset) || \
((SEL) == RTC_ShiftAdd1S_Set))
/**
* @}
*/
/** @defgroup RTC_Substract_Fraction_Of_Second_Value
* @{
*/
#define IS_RTC_SHIFT_SUBFS(FS) ((FS) <= 0x00007FFF)
/**
* @}
*/
/** @defgroup RTC_Backup_Registers_Definitions
* @{
*/
#define RTC_BKP_DR0 ((uint32_t)0x00000000)
#define RTC_BKP_DR1 ((uint32_t)0x00000001)
#define RTC_BKP_DR2 ((uint32_t)0x00000002)
#define RTC_BKP_DR3 ((uint32_t)0x00000003)
#define RTC_BKP_DR4 ((uint32_t)0x00000004)
#define RTC_BKP_DR5 ((uint32_t)0x00000005)
#define RTC_BKP_DR6 ((uint32_t)0x00000006)
#define RTC_BKP_DR7 ((uint32_t)0x00000007)
#define RTC_BKP_DR8 ((uint32_t)0x00000008)
#define RTC_BKP_DR9 ((uint32_t)0x00000009)
#define RTC_BKP_DR10 ((uint32_t)0x0000000A)
#define RTC_BKP_DR11 ((uint32_t)0x0000000B)
#define RTC_BKP_DR12 ((uint32_t)0x0000000C)
#define RTC_BKP_DR13 ((uint32_t)0x0000000D)
#define RTC_BKP_DR14 ((uint32_t)0x0000000E)
#define RTC_BKP_DR15 ((uint32_t)0x0000000F)
#define RTC_BKP_DR16 ((uint32_t)0x00000010)
#define RTC_BKP_DR17 ((uint32_t)0x00000011)
#define RTC_BKP_DR18 ((uint32_t)0x00000012)
#define RTC_BKP_DR19 ((uint32_t)0x00000013)
#define RTC_BKP_DR20 ((uint32_t)0x00000014)
#define RTC_BKP_DR21 ((uint32_t)0x00000015)
#define RTC_BKP_DR22 ((uint32_t)0x00000016)
#define RTC_BKP_DR23 ((uint32_t)0x00000017)
#define RTC_BKP_DR24 ((uint32_t)0x00000018)
#define RTC_BKP_DR25 ((uint32_t)0x00000019)
#define RTC_BKP_DR26 ((uint32_t)0x0000001A)
#define RTC_BKP_DR27 ((uint32_t)0x0000001B)
#define RTC_BKP_DR28 ((uint32_t)0x0000001C)
#define RTC_BKP_DR29 ((uint32_t)0x0000001D)
#define RTC_BKP_DR30 ((uint32_t)0x0000001E)
#define RTC_BKP_DR31 ((uint32_t)0x0000001F)
#define IS_RTC_BKP(BKP) (((BKP) == RTC_BKP_DR0) || \
((BKP) == RTC_BKP_DR1) || \
((BKP) == RTC_BKP_DR2) || \
((BKP) == RTC_BKP_DR3) || \
((BKP) == RTC_BKP_DR4) || \
((BKP) == RTC_BKP_DR5) || \
((BKP) == RTC_BKP_DR6) || \
((BKP) == RTC_BKP_DR7) || \
((BKP) == RTC_BKP_DR8) || \
((BKP) == RTC_BKP_DR9) || \
((BKP) == RTC_BKP_DR10) || \
((BKP) == RTC_BKP_DR11) || \
((BKP) == RTC_BKP_DR12) || \
((BKP) == RTC_BKP_DR13) || \
((BKP) == RTC_BKP_DR14) || \
((BKP) == RTC_BKP_DR15) || \
((BKP) == RTC_BKP_DR16) || \
((BKP) == RTC_BKP_DR17) || \
((BKP) == RTC_BKP_DR18) || \
((BKP) == RTC_BKP_DR19) || \
((BKP) == RTC_BKP_DR20) || \
((BKP) == RTC_BKP_DR21) || \
((BKP) == RTC_BKP_DR22) || \
((BKP) == RTC_BKP_DR23) || \
((BKP) == RTC_BKP_DR24) || \
((BKP) == RTC_BKP_DR25) || \
((BKP) == RTC_BKP_DR26) || \
((BKP) == RTC_BKP_DR27) || \
((BKP) == RTC_BKP_DR28) || \
((BKP) == RTC_BKP_DR29) || \
((BKP) == RTC_BKP_DR30) || \
((BKP) == RTC_BKP_DR31))
/**
* @}
*/
/** @defgroup RTC_Input_parameter_format_definitions
* @{
*/
#define RTC_Format_BIN ((uint32_t)0x000000000)
#define RTC_Format_BCD ((uint32_t)0x000000001)
#define IS_RTC_FORMAT(FORMAT) (((FORMAT) == RTC_Format_BIN) || ((FORMAT) == RTC_Format_BCD))
/**
* @}
*/
/** @defgroup RTC_Flags_Definitions
* @{
*/
#define RTC_FLAG_RECALPF ((uint32_t)0x00010000)
#define RTC_FLAG_TAMP3F ((uint32_t)0x00008000)
#define RTC_FLAG_TAMP2F ((uint32_t)0x00004000)
#define RTC_FLAG_TAMP1F ((uint32_t)0x00002000)
#define RTC_FLAG_TSOVF ((uint32_t)0x00001000)
#define RTC_FLAG_TSF ((uint32_t)0x00000800)
#define RTC_FLAG_WUTF ((uint32_t)0x00000400)
#define RTC_FLAG_ALRBF ((uint32_t)0x00000200)
#define RTC_FLAG_ALRAF ((uint32_t)0x00000100)
#define RTC_FLAG_INITF ((uint32_t)0x00000040)
#define RTC_FLAG_RSF ((uint32_t)0x00000020)
#define RTC_FLAG_INITS ((uint32_t)0x00000010)
#define RTC_FLAG_SHPF ((uint32_t)0x00000008)
#define RTC_FLAG_WUTWF ((uint32_t)0x00000004)
#define RTC_FLAG_ALRBWF ((uint32_t)0x00000002)
#define RTC_FLAG_ALRAWF ((uint32_t)0x00000001)
#define IS_RTC_GET_FLAG(FLAG) (((FLAG) == RTC_FLAG_TSOVF) || ((FLAG) == RTC_FLAG_TSF) || \
((FLAG) == RTC_FLAG_WUTF) || ((FLAG) == RTC_FLAG_ALRBF) || \
((FLAG) == RTC_FLAG_ALRAF) || ((FLAG) == RTC_FLAG_INITF) || \
((FLAG) == RTC_FLAG_RSF) || ((FLAG) == RTC_FLAG_WUTWF) || \
((FLAG) == RTC_FLAG_ALRBWF) || ((FLAG) == RTC_FLAG_ALRAWF) || \
((FLAG) == RTC_FLAG_TAMP1F) || ((FLAG) == RTC_FLAG_TAMP2F) || \
((FLAG) == RTC_FLAG_TAMP3F) || ((FLAG) == RTC_FLAG_RECALPF) || \
((FLAG) == RTC_FLAG_SHPF))
#define IS_RTC_CLEAR_FLAG(FLAG) (((FLAG) != (uint32_t)RESET) && (((FLAG) & 0xFFFF00DF) == (uint32_t)RESET))
/**
* @}
*/
/** @defgroup RTC_Interrupts_Definitions
* @{
*/
#define RTC_IT_TS ((uint32_t)0x00008000)
#define RTC_IT_WUT ((uint32_t)0x00004000)
#define RTC_IT_ALRB ((uint32_t)0x00002000)
#define RTC_IT_ALRA ((uint32_t)0x00001000)
#define RTC_IT_TAMP ((uint32_t)0x00000004) /* Used only to Enable the Tamper Interrupt */
#define RTC_IT_TAMP1 ((uint32_t)0x00020000)
#define RTC_IT_TAMP2 ((uint32_t)0x00040000)
#define RTC_IT_TAMP3 ((uint32_t)0x00080000)
#define IS_RTC_CONFIG_IT(IT) (((IT) != (uint32_t)RESET) && (((IT) & 0xFFFF0FFB) == (uint32_t)RESET))
#define IS_RTC_GET_IT(IT) (((IT) == RTC_IT_TS) || ((IT) == RTC_IT_WUT) || \
((IT) == RTC_IT_ALRB) || ((IT) == RTC_IT_ALRA) || \
((IT) == RTC_IT_TAMP1) || ((IT) == RTC_IT_TAMP2) || \
((IT) == RTC_IT_TAMP3))
#define IS_RTC_CLEAR_IT(IT) (((IT) != (uint32_t)RESET) && (((IT) & 0xFFF10FFF) == (uint32_t)RESET))
/**
* @}
*/
/** @defgroup RTC_Legacy
* @{
*/
#define RTC_DigitalCalibConfig RTC_CoarseCalibConfig
#define RTC_DigitalCalibCmd RTC_CoarseCalibCmd
/**
* @}
*/
/**
* @}
*/
/* Exported macro ------------------------------------------------------------*/
/* Exported functions ------------------------------------------------------- */
/* Function used to set the RTC configuration to the default reset state *****/
ErrorStatus RTC_DeInit(void);
/* Initialization and Configuration functions *********************************/
ErrorStatus RTC_Init(RTC_InitTypeDef* RTC_InitStruct);
void RTC_StructInit(RTC_InitTypeDef* RTC_InitStruct);
void RTC_WriteProtectionCmd(FunctionalState NewState);
ErrorStatus RTC_EnterInitMode(void);
void RTC_ExitInitMode(void);
ErrorStatus RTC_WaitForSynchro(void);
ErrorStatus RTC_RefClockCmd(FunctionalState NewState);
void RTC_BypassShadowCmd(FunctionalState NewState);
/* Time and Date configuration functions **************************************/
ErrorStatus RTC_SetTime(uint32_t RTC_Format, RTC_TimeTypeDef* RTC_TimeStruct);
void RTC_TimeStructInit(RTC_TimeTypeDef* RTC_TimeStruct);
void RTC_GetTime(uint32_t RTC_Format, RTC_TimeTypeDef* RTC_TimeStruct);
uint32_t RTC_GetSubSecond(void);
ErrorStatus RTC_SetDate(uint32_t RTC_Format, RTC_DateTypeDef* RTC_DateStruct);
void RTC_DateStructInit(RTC_DateTypeDef* RTC_DateStruct);
void RTC_GetDate(uint32_t RTC_Format, RTC_DateTypeDef* RTC_DateStruct);
/* Alarms (Alarm A and Alarm B) configuration functions **********************/
void RTC_SetAlarm(uint32_t RTC_Format, uint32_t RTC_Alarm, RTC_AlarmTypeDef* RTC_AlarmStruct);
void RTC_AlarmStructInit(RTC_AlarmTypeDef* RTC_AlarmStruct);
void RTC_GetAlarm(uint32_t RTC_Format, uint32_t RTC_Alarm, RTC_AlarmTypeDef* RTC_AlarmStruct);
ErrorStatus RTC_AlarmCmd(uint32_t RTC_Alarm, FunctionalState NewState);
void RTC_AlarmSubSecondConfig(uint32_t RTC_Alarm, uint32_t RTC_AlarmSubSecondValue, uint32_t RTC_AlarmSubSecondMask);
uint32_t RTC_GetAlarmSubSecond(uint32_t RTC_Alarm);
/* WakeUp Timer configuration functions ***************************************/
void RTC_WakeUpClockConfig(uint32_t RTC_WakeUpClock);
void RTC_SetWakeUpCounter(uint32_t RTC_WakeUpCounter);
uint32_t RTC_GetWakeUpCounter(void);
ErrorStatus RTC_WakeUpCmd(FunctionalState NewState);
/* Daylight Saving configuration functions ************************************/
void RTC_DayLightSavingConfig(uint32_t RTC_DayLightSaving, uint32_t RTC_StoreOperation);
uint32_t RTC_GetStoreOperation(void);
/* Output pin Configuration function ******************************************/
void RTC_OutputConfig(uint32_t RTC_Output, uint32_t RTC_OutputPolarity);
/* Coarse and Smooth Calibration configuration functions **********************/
ErrorStatus RTC_CoarseCalibConfig(uint32_t RTC_CalibSign, uint32_t Value);
ErrorStatus RTC_CoarseCalibCmd(FunctionalState NewState);
void RTC_CalibOutputCmd(FunctionalState NewState);
void RTC_CalibOutputConfig(uint32_t RTC_CalibOutput);
ErrorStatus RTC_SmoothCalibConfig(uint32_t RTC_SmoothCalibPeriod,
uint32_t RTC_SmoothCalibPlusPulses,
uint32_t RTC_SmouthCalibMinusPulsesValue);
/* TimeStamp configuration functions ******************************************/
void RTC_TimeStampCmd(uint32_t RTC_TimeStampEdge, FunctionalState NewState);
void RTC_GetTimeStamp(uint32_t RTC_Format, RTC_TimeTypeDef* RTC_StampTimeStruct,
RTC_DateTypeDef* RTC_StampDateStruct);
uint32_t RTC_GetTimeStampSubSecond(void);
/* Tampers configuration functions ********************************************/
void RTC_TamperTriggerConfig(uint32_t RTC_Tamper, uint32_t RTC_TamperTrigger);
void RTC_TamperCmd(uint32_t RTC_Tamper, FunctionalState NewState);
void RTC_TamperFilterConfig(uint32_t RTC_TamperFilter);
void RTC_TamperSamplingFreqConfig(uint32_t RTC_TamperSamplingFreq);
void RTC_TamperPinsPrechargeDuration(uint32_t RTC_TamperPrechargeDuration);
void RTC_TimeStampOnTamperDetectionCmd(FunctionalState NewState);
void RTC_TamperPullUpCmd(FunctionalState NewState);
/* Backup Data Registers configuration functions ******************************/
void RTC_WriteBackupRegister(uint32_t RTC_BKP_DR, uint32_t Data);
uint32_t RTC_ReadBackupRegister(uint32_t RTC_BKP_DR);
/* Output Type Config configuration functions *********************************/
void RTC_OutputTypeConfig(uint32_t RTC_OutputType);
/* RTC_Shift_control_synchonisation_functions *********************************/
ErrorStatus RTC_SynchroShiftConfig(uint32_t RTC_ShiftAdd1S, uint32_t RTC_ShiftSubFS);
/* Interrupts and flags management functions **********************************/
void RTC_ITConfig(uint32_t RTC_IT, FunctionalState NewState);
FlagStatus RTC_GetFlagStatus(uint32_t RTC_FLAG);
void RTC_ClearFlag(uint32_t RTC_FLAG);
ITStatus RTC_GetITStatus(uint32_t RTC_IT);
void RTC_ClearITPendingBit(uint32_t RTC_IT);
#ifdef __cplusplus
}
#endif
#endif /*__STM32L1xx_RTC_H */
/**
* @}
*/
/**
* @}
*/
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/

View File

@ -0,0 +1,984 @@
/**
******************************************************************************
* @file stm32l1xx_sdio.c
* @author MCD Application Team
* @version V1.2.0
* @date 22-February-2013
* @brief This file provides firmware functions to manage the following
* functionalities of the SDIO peripheral:
* + Initialization
* + Interrupts and flags management
*
* @verbatim
==============================================================================
##### How to use this driver #####
==============================================================================
[..]
(#) The SDIO clock (SDIOCLK = 48 MHz) is coming from a specific output of PLL
(PLLVCO) througth a fixed divider by 2.
Before to start working with SDIO peripheral make sure that the PLLVCO is
well configured to 96MHz.
The SDIO peripheral uses two clock signals:
(++) SDIO adapter clock (SDIOCLK = 48 MHz).
(++) APB2 bus clock (PCLK2).
PCLK2 and SDIO_CK clock frequencies must respect the following
condition: Frequenc(PCLK2) >= (3 / 8 x Frequency(SDIO_CK)).
(#) Enable peripheral clock using
RCC_APB2PeriphClockCmd(RCC_APB2Periph_SDIO, ENABLE).
(#) According to the SDIO mode, enable the GPIO clocks using
RCC_AHBPeriphClockCmd() function.
The I/O can be one of the following configurations:
(++) 1-bit data length: SDIO_CMD, SDIO_CK and D0.
(++) 4-bit data length: SDIO_CMD, SDIO_CK and D[3:0].
(++) 8-bit data length: SDIO_CMD, SDIO_CK and D[7:0].
(#) Peripheral's alternate function:
(++) Connect the pin to the desired peripherals' Alternate
Function (AF) using GPIO_PinAFConfig() function.
(++) Configure the desired pin in alternate function by:
GPIO_InitStruct->GPIO_Mode = GPIO_Mode_AF.
(++) Select the type, pull-up/pull-down and output speed via
GPIO_PuPd, GPIO_OType and GPIO_Speed members.
(++) Call GPIO_Init() function.
(#) Program the Clock Edge, Clock Bypass, Clock Power Save, Bus Wide,
hardware, flow control and the Clock Divider using the SDIO_Init()
function.
(#) Enable the Power ON State using the SDIO_SetPowerState(SDIO_PowerState_ON)
function.
(#) Enable the clock using the SDIO_ClockCmd() function.
(#) Enable the NVIC and the corresponding interrupt using the function
SDIO_ITConfig() if you need to use interrupt mode.
(#) When using the DMA mode
(++) Configure the DMA using DMA_Init() function.
(++) Active the needed channel Request using SDIO_DMACmd() function.
(#) Enable the DMA using the DMA_Cmd() function, when using DMA mode.
(#) To control the CPSM (Command Path State Machine) and send commands to the
card use the SDIO_SendCommand(), SDIO_GetCommandResponse() and
SDIO_GetResponse() functions. First, user has to fill the command
structure (pointer to SDIO_CmdInitTypeDef) according to the selected
command to be sent. The parameters that should be filled are:
(++) Command Argument.
(++) Command Index.
(++) Command Response type.
(++) Command Wait.
(++) CPSM Status (Enable or Disable).
To check if the command is well received, read the SDIO_CMDRESP register
using the SDIO_GetCommandResponse(). The SDIO responses registers
(SDIO_RESP1 to SDIO_RESP2), use the SDIO_GetResponse() function.
(#) To control the DPSM (Data Path State Machine) and send/receive
data to/from the card use the SDIO_DataConfig(), SDIO_GetDataCounter(),
SDIO_ReadData(), SDIO_WriteData() and SDIO_GetFIFOCount() functions.
*** Read Operations ***
-----------------------
[..]
(#) First, user has to fill the data structure (pointer to
SDIO_DataInitTypeDef) according to the selected data type to be received.
The parameters that should be filled are:
(++) Data TimeOut.
(++) Data Length.
(++) Data Block size.
(++) Data Transfer direction: should be from card (To SDIO).
(++) Data Transfer mode.
(++) DPSM Status (Enable or Disable).
(#) Configure the SDIO resources to receive the data from the card
according to selected transfer mode (Refer to Step 8, 9 and 10).
(#) Send the selected Read command (refer to step 11).
(#) Use the SDIO flags/interrupts to check the transfer status.
*** Write Operations ***
------------------------
[..]
(#) First, user has to fill the data structure (pointer to
SDIO_DataInitTypeDef) according to the selected data type to be received.
The parameters that should be filled are:
(++) Data TimeOut.
(++) Data Length.
(++) Data Block size.
(++) Data Transfer direction: should be to card (To CARD).
(++) Data Transfer mode.
(++) DPSM Status (Enable or Disable).
(#) Configure the SDIO resources to send the data to the card
according to selected transfer mode (Refer to Step 8, 9 and 10).
(#) Send the selected Write command (refer to step 11).
(#) Use the SDIO flags/interrupts to check the transfer status.
@endverbatim
*
******************************************************************************
* @attention
*
* <h2><center>&copy; COPYRIGHT 2013 STMicroelectronics</center></h2>
*
* Licensed under MCD-ST Liberty SW License Agreement V2, (the "License");
* You may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.st.com/software_license_agreement_liberty_v2
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "stm32l1xx_sdio.h"
#include "stm32l1xx_rcc.h"
/** @addtogroup STM32L1xx_StdPeriph_Driver
* @{
*/
/** @defgroup SDIO
* @brief SDIO driver modules
* @{
*/
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/* ------------ SDIO registers bit address in the alias region ----------- */
#define SDIO_OFFSET (SDIO_BASE - PERIPH_BASE)
/* --- CLKCR Register ---*/
/* Alias word address of CLKEN bit */
#define CLKCR_OFFSET (SDIO_OFFSET + 0x04)
#define CLKEN_BitNumber 0x08
#define CLKCR_CLKEN_BB (PERIPH_BB_BASE + (CLKCR_OFFSET * 32) + (CLKEN_BitNumber * 4))
/* --- CMD Register ---*/
/* Alias word address of SDIOSUSPEND bit */
#define CMD_OFFSET (SDIO_OFFSET + 0x0C)
#define SDIOSUSPEND_BitNumber 0x0B
#define CMD_SDIOSUSPEND_BB (PERIPH_BB_BASE + (CMD_OFFSET * 32) + (SDIOSUSPEND_BitNumber * 4))
/* Alias word address of ENCMDCOMPL bit */
#define ENCMDCOMPL_BitNumber 0x0C
#define CMD_ENCMDCOMPL_BB (PERIPH_BB_BASE + (CMD_OFFSET * 32) + (ENCMDCOMPL_BitNumber * 4))
/* Alias word address of NIEN bit */
#define NIEN_BitNumber 0x0D
#define CMD_NIEN_BB (PERIPH_BB_BASE + (CMD_OFFSET * 32) + (NIEN_BitNumber * 4))
/* Alias word address of ATACMD bit */
#define ATACMD_BitNumber 0x0E
#define CMD_ATACMD_BB (PERIPH_BB_BASE + (CMD_OFFSET * 32) + (ATACMD_BitNumber * 4))
/* --- DCTRL Register ---*/
/* Alias word address of DMAEN bit */
#define DCTRL_OFFSET (SDIO_OFFSET + 0x2C)
#define DMAEN_BitNumber 0x03
#define DCTRL_DMAEN_BB (PERIPH_BB_BASE + (DCTRL_OFFSET * 32) + (DMAEN_BitNumber * 4))
/* Alias word address of RWSTART bit */
#define RWSTART_BitNumber 0x08
#define DCTRL_RWSTART_BB (PERIPH_BB_BASE + (DCTRL_OFFSET * 32) + (RWSTART_BitNumber * 4))
/* Alias word address of RWSTOP bit */
#define RWSTOP_BitNumber 0x09
#define DCTRL_RWSTOP_BB (PERIPH_BB_BASE + (DCTRL_OFFSET * 32) + (RWSTOP_BitNumber * 4))
/* Alias word address of RWMOD bit */
#define RWMOD_BitNumber 0x0A
#define DCTRL_RWMOD_BB (PERIPH_BB_BASE + (DCTRL_OFFSET * 32) + (RWMOD_BitNumber * 4))
/* Alias word address of SDIOEN bit */
#define SDIOEN_BitNumber 0x0B
#define DCTRL_SDIOEN_BB (PERIPH_BB_BASE + (DCTRL_OFFSET * 32) + (SDIOEN_BitNumber * 4))
/* ---------------------- SDIO registers bit mask ------------------------ */
/* --- CLKCR Register ---*/
/* CLKCR register clear mask */
#define CLKCR_CLEAR_MASK ((uint32_t)0xFFFF8100)
/* --- PWRCTRL Register ---*/
/* SDIO PWRCTRL Mask */
#define PWR_PWRCTRL_MASK ((uint32_t)0xFFFFFFFC)
/* --- DCTRL Register ---*/
/* SDIO DCTRL Clear Mask */
#define DCTRL_CLEAR_MASK ((uint32_t)0xFFFFFF08)
/* --- CMD Register ---*/
/* CMD Register clear mask */
#define CMD_CLEAR_MASK ((uint32_t)0xFFFFF800)
/* SDIO RESP Registers Address */
#define SDIO_RESP_ADDR ((uint32_t)(SDIO_BASE + 0x14))
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private function prototypes -----------------------------------------------*/
/* Private functions ---------------------------------------------------------*/
/** @defgroup SDIO_Private_Functions
* @{
*/
/** @defgroup SDIO_Group1 Initialization and Configuration functions
* @brief Initialization and Configuration functions
*
@verbatim
==============================================================================
##### Initialization and Configuration functions #####
==============================================================================
@endverbatim
* @{
*/
/**
* @brief Deinitializes the SDIO peripheral registers to their default reset values.
* @param None
* @retval None
*/
void SDIO_DeInit(void)
{
RCC_APB2PeriphResetCmd(RCC_APB2Periph_SDIO, ENABLE);
RCC_APB2PeriphResetCmd(RCC_APB2Periph_SDIO, DISABLE);
}
/**
* @brief Initializes the SDIO peripheral according to the specified
* parameters in the SDIO_InitStruct.
* @param SDIO_InitStruct : pointer to a SDIO_InitTypeDef structure
* that contains the configuration information for the SDIO peripheral.
* @retval None
*/
void SDIO_Init(SDIO_InitTypeDef* SDIO_InitStruct)
{
uint32_t tmpreg = 0;
/* Check the parameters */
assert_param(IS_SDIO_CLOCK_EDGE(SDIO_InitStruct->SDIO_ClockEdge));
assert_param(IS_SDIO_CLOCK_BYPASS(SDIO_InitStruct->SDIO_ClockBypass));
assert_param(IS_SDIO_CLOCK_POWER_SAVE(SDIO_InitStruct->SDIO_ClockPowerSave));
assert_param(IS_SDIO_BUS_WIDE(SDIO_InitStruct->SDIO_BusWide));
assert_param(IS_SDIO_HARDWARE_FLOW_CONTROL(SDIO_InitStruct->SDIO_HardwareFlowControl));
/*---------------------------- SDIO CLKCR Configuration ------------------------*/
/* Get the SDIO CLKCR value */
tmpreg = SDIO->CLKCR;
/* Clear CLKDIV, PWRSAV, BYPASS, WIDBUS, NEGEDGE, HWFC_EN bits */
tmpreg &= CLKCR_CLEAR_MASK;
/* Set CLKDIV bits according to SDIO_ClockDiv value */
/* Set PWRSAV bit according to SDIO_ClockPowerSave value */
/* Set BYPASS bit according to SDIO_ClockBypass value */
/* Set WIDBUS bits according to SDIO_BusWide value */
/* Set NEGEDGE bits according to SDIO_ClockEdge value */
/* Set HWFC_EN bits according to SDIO_HardwareFlowControl value */
tmpreg |= (SDIO_InitStruct->SDIO_ClockDiv | SDIO_InitStruct->SDIO_ClockPowerSave |
SDIO_InitStruct->SDIO_ClockBypass | SDIO_InitStruct->SDIO_BusWide |
SDIO_InitStruct->SDIO_ClockEdge | SDIO_InitStruct->SDIO_HardwareFlowControl);
/* Write to SDIO CLKCR */
SDIO->CLKCR = tmpreg;
}
/**
* @brief Fills each SDIO_InitStruct member with its default value.
* @param SDIO_InitStruct: pointer to an SDIO_InitTypeDef structure which
* will be initialized.
* @retval None
*/
void SDIO_StructInit(SDIO_InitTypeDef* SDIO_InitStruct)
{
/* SDIO_InitStruct members default value */
SDIO_InitStruct->SDIO_ClockDiv = 0x00;
SDIO_InitStruct->SDIO_ClockEdge = SDIO_ClockEdge_Rising;
SDIO_InitStruct->SDIO_ClockBypass = SDIO_ClockBypass_Disable;
SDIO_InitStruct->SDIO_ClockPowerSave = SDIO_ClockPowerSave_Disable;
SDIO_InitStruct->SDIO_BusWide = SDIO_BusWide_1b;
SDIO_InitStruct->SDIO_HardwareFlowControl = SDIO_HardwareFlowControl_Disable;
}
/**
* @brief Enables or disables the SDIO Clock.
* @param NewState: new state of the SDIO Clock. This parameter can be: ENABLE or DISABLE.
* @retval None
*/
void SDIO_ClockCmd(FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_FUNCTIONAL_STATE(NewState));
*(__IO uint32_t *) CLKCR_CLKEN_BB = (uint32_t)NewState;
}
/**
* @brief Sets the power status of the controller.
* @param SDIO_PowerState: new state of the Power state.
* This parameter can be one of the following values:
* @arg SDIO_PowerState_OFF: SDIO Power OFF.
* @arg SDIO_PowerState_ON: SDIO Power ON.
* @retval None
*/
void SDIO_SetPowerState(uint32_t SDIO_PowerState)
{
/* Check the parameters */
assert_param(IS_SDIO_POWER_STATE(SDIO_PowerState));
SDIO->POWER = SDIO_PowerState;
}
/**
* @brief Gets the power status of the controller.
* @param None
* @retval Power status of the controller. The returned value can
* be one of the following:
* - 0x00: Power OFF
* - 0x02: Power UP
* - 0x03: Power ON
*/
uint32_t SDIO_GetPowerState(void)
{
return (SDIO->POWER & (~PWR_PWRCTRL_MASK));
}
/**
* @}
*/
/** @defgroup SDIO_Group2 DMA transfers management functions
* @brief DMA transfers management functions
*
@verbatim
==============================================================================
##### DMA transfers management functions #####
==============================================================================
[..] This section provide functions allowing to program SDIO DMA transfer.
@endverbatim
* @{
*/
/**
* @brief Enables or disables the SDIO DMA request.
* @param NewState: new state of the selected SDIO DMA request.
* This parameter can be: ENABLE or DISABLE.
* @retval None
*/
void SDIO_DMACmd(FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_FUNCTIONAL_STATE(NewState));
*(__IO uint32_t *) DCTRL_DMAEN_BB = (uint32_t)NewState;
}
/**
* @}
*/
/** @defgroup SDIO_Group3 Command path state machine (CPSM) management functions
* @brief Command path state machine (CPSM) management functions
*
@verbatim
==============================================================================
##### Command path state machine (CPSM) management functions #####
==============================================================================
[..] This section provide functions allowing to program and read the Command
path state machine (CPSM).
@endverbatim
* @{
*/
/**
* @brief Initializes the SDIO Command according to the specified
* parameters in the SDIO_CmdInitStruct and send the command.
* @param SDIO_CmdInitStruct : pointer to a SDIO_CmdInitTypeDef
* structure that contains the configuration information for the SDIO command.
* @retval None
*/
void SDIO_SendCommand(SDIO_CmdInitTypeDef *SDIO_CmdInitStruct)
{
uint32_t tmpreg = 0;
/* Check the parameters */
assert_param(IS_SDIO_CMD_INDEX(SDIO_CmdInitStruct->SDIO_CmdIndex));
assert_param(IS_SDIO_RESPONSE(SDIO_CmdInitStruct->SDIO_Response));
assert_param(IS_SDIO_WAIT(SDIO_CmdInitStruct->SDIO_Wait));
assert_param(IS_SDIO_CPSM(SDIO_CmdInitStruct->SDIO_CPSM));
/*---------------------------- SDIO ARG Configuration ------------------------*/
/* Set the SDIO Argument value */
SDIO->ARG = SDIO_CmdInitStruct->SDIO_Argument;
/*---------------------------- SDIO CMD Configuration ------------------------*/
/* Get the SDIO CMD value */
tmpreg = SDIO->CMD;
/* Clear CMDINDEX, WAITRESP, WAITINT, WAITPEND, CPSMEN bits */
tmpreg &= CMD_CLEAR_MASK;
/* Set CMDINDEX bits according to SDIO_CmdIndex value */
/* Set WAITRESP bits according to SDIO_Response value */
/* Set WAITINT and WAITPEND bits according to SDIO_Wait value */
/* Set CPSMEN bits according to SDIO_CPSM value */
tmpreg |= (uint32_t)SDIO_CmdInitStruct->SDIO_CmdIndex | SDIO_CmdInitStruct->SDIO_Response
| SDIO_CmdInitStruct->SDIO_Wait | SDIO_CmdInitStruct->SDIO_CPSM;
/* Write to SDIO CMD */
SDIO->CMD = tmpreg;
}
/**
* @brief Fills each SDIO_CmdInitStruct member with its default value.
* @param SDIO_CmdInitStruct: pointer to an SDIO_CmdInitTypeDef
* structure which will be initialized.
* @retval None
*/
void SDIO_CmdStructInit(SDIO_CmdInitTypeDef* SDIO_CmdInitStruct)
{
/* SDIO_CmdInitStruct members default value */
SDIO_CmdInitStruct->SDIO_Argument = 0x00;
SDIO_CmdInitStruct->SDIO_CmdIndex = 0x00;
SDIO_CmdInitStruct->SDIO_Response = SDIO_Response_No;
SDIO_CmdInitStruct->SDIO_Wait = SDIO_Wait_No;
SDIO_CmdInitStruct->SDIO_CPSM = SDIO_CPSM_Disable;
}
/**
* @brief Returns command index of last command for which response received.
* @param None
* @retval Returns the command index of the last command response received.
*/
uint8_t SDIO_GetCommandResponse(void)
{
return (uint8_t)(SDIO->RESPCMD);
}
/**
* @brief Returns response received from the card for the last command.
* @param SDIO_RESP: Specifies the SDIO response register.
* This parameter can be one of the following values:
* @arg SDIO_RESP1: Response Register 1.
* @arg SDIO_RESP2: Response Register 2.
* @arg SDIO_RESP3: Response Register 3.
* @arg SDIO_RESP4: Response Register 4.
* @retval The Corresponding response register value.
*/
uint32_t SDIO_GetResponse(uint32_t SDIO_RESP)
{
__IO uint32_t tmp = 0;
/* Check the parameters */
assert_param(IS_SDIO_RESP(SDIO_RESP));
tmp = SDIO_RESP_ADDR + SDIO_RESP;
return (*(__IO uint32_t *) tmp);
}
/**
* @}
*/
/** @defgroup SDIO_Group4 Data path state machine (DPSM) management functions
* @brief Data path state machine (DPSM) management functions
*
@verbatim
==============================================================================
##### Data path state machine (DPSM) management functions #####
==============================================================================
[..] This section provide functions allowing to program and read the Data path
state machine (DPSM).
@endverbatim
* @{
*/
/**
* @brief Initializes the SDIO data path according to the specified
* parameters in the SDIO_DataInitStruct.
* @param SDIO_DataInitStruct : pointer to a SDIO_DataInitTypeDef structure that
* contains the configuration information for the SDIO command.
* @retval None
*/
void SDIO_DataConfig(SDIO_DataInitTypeDef* SDIO_DataInitStruct)
{
uint32_t tmpreg = 0;
/* Check the parameters */
assert_param(IS_SDIO_DATA_LENGTH(SDIO_DataInitStruct->SDIO_DataLength));
assert_param(IS_SDIO_BLOCK_SIZE(SDIO_DataInitStruct->SDIO_DataBlockSize));
assert_param(IS_SDIO_TRANSFER_DIR(SDIO_DataInitStruct->SDIO_TransferDir));
assert_param(IS_SDIO_TRANSFER_MODE(SDIO_DataInitStruct->SDIO_TransferMode));
assert_param(IS_SDIO_DPSM(SDIO_DataInitStruct->SDIO_DPSM));
/*---------------------------- SDIO DTIMER Configuration ---------------------*/
/* Set the SDIO Data TimeOut value */
SDIO->DTIMER = SDIO_DataInitStruct->SDIO_DataTimeOut;
/*---------------------------- SDIO DLEN Configuration -----------------------*/
/* Set the SDIO DataLength value */
SDIO->DLEN = SDIO_DataInitStruct->SDIO_DataLength;
/*---------------------------- SDIO DCTRL Configuration ----------------------*/
/* Get the SDIO DCTRL value */
tmpreg = SDIO->DCTRL;
/* Clear DEN, DTMODE, DTDIR and DBCKSIZE bits */
tmpreg &= DCTRL_CLEAR_MASK;
/* Set DEN bit according to SDIO_DPSM value */
/* Set DTMODE bit according to SDIO_TransferMode value */
/* Set DTDIR bit according to SDIO_TransferDir value */
/* Set DBCKSIZE bits according to SDIO_DataBlockSize value */
tmpreg |= (uint32_t)SDIO_DataInitStruct->SDIO_DataBlockSize | SDIO_DataInitStruct->SDIO_TransferDir
| SDIO_DataInitStruct->SDIO_TransferMode | SDIO_DataInitStruct->SDIO_DPSM;
/* Write to SDIO DCTRL */
SDIO->DCTRL = tmpreg;
}
/**
* @brief Fills each SDIO_DataInitStruct member with its default value.
* @param SDIO_DataInitStruct: pointer to an SDIO_DataInitTypeDef structure which
* will be initialized.
* @retval None
*/
void SDIO_DataStructInit(SDIO_DataInitTypeDef* SDIO_DataInitStruct)
{
/* SDIO_DataInitStruct members default value */
SDIO_DataInitStruct->SDIO_DataTimeOut = 0xFFFFFFFF;
SDIO_DataInitStruct->SDIO_DataLength = 0x00;
SDIO_DataInitStruct->SDIO_DataBlockSize = SDIO_DataBlockSize_1b;
SDIO_DataInitStruct->SDIO_TransferDir = SDIO_TransferDir_ToCard;
SDIO_DataInitStruct->SDIO_TransferMode = SDIO_TransferMode_Block;
SDIO_DataInitStruct->SDIO_DPSM = SDIO_DPSM_Disable;
}
/**
* @brief Returns number of remaining data bytes to be transferred.
* @param None
* @retval Number of remaining data bytes to be transferred
*/
uint32_t SDIO_GetDataCounter(void)
{
return SDIO->DCOUNT;
}
/**
* @brief Read one data word from Rx FIFO.
* @param None
* @retval Data received
*/
uint32_t SDIO_ReadData(void)
{
return SDIO->FIFO;
}
/**
* @brief Write one data word to Tx FIFO.
* @param Data: 32-bit data word to write.
* @retval None
*/
void SDIO_WriteData(uint32_t Data)
{
SDIO->FIFO = Data;
}
/**
* @brief Returns the number of words left to be written to or read from FIFO.
* @param None
* @retval Remaining number of words.
*/
uint32_t SDIO_GetFIFOCount(void)
{
return SDIO->FIFOCNT;
}
/**
* @}
*/
/** @defgroup SDIO_Group5 SDIO IO Cards mode management functions
* @brief SDIO IO Cards mode management functions
*
@verbatim
==============================================================================
##### SDIO IO Cards mode management functions #####
==============================================================================
[..] This section provide functions allowing to program and read the SDIO IO
Cards.
@endverbatim
* @{
*/
/**
* @brief Starts the SD I/O Read Wait operation.
* @param NewState: new state of the Start SDIO Read Wait operation.
* This parameter can be: ENABLE or DISABLE.
* @retval None
*/
void SDIO_StartSDIOReadWait(FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_FUNCTIONAL_STATE(NewState));
*(__IO uint32_t *) DCTRL_RWSTART_BB = (uint32_t) NewState;
}
/**
* @brief Stops the SD I/O Read Wait operation.
* @param NewState: new state of the Stop SDIO Read Wait operation.
* This parameter can be: ENABLE or DISABLE.
* @retval None
*/
void SDIO_StopSDIOReadWait(FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_FUNCTIONAL_STATE(NewState));
*(__IO uint32_t *) DCTRL_RWSTOP_BB = (uint32_t) NewState;
}
/**
* @brief Sets one of the two options of inserting read wait interval.
* @param SDIO_ReadWaitMode: SD I/O Read Wait operation mode.
* This parametre can be:
* @arg SDIO_ReadWaitMode_CLK: Read Wait control by stopping SDIOCLK.
* @arg SDIO_ReadWaitMode_DATA2: Read Wait control using SDIO_DATA2.
* @retval None
*/
void SDIO_SetSDIOReadWaitMode(uint32_t SDIO_ReadWaitMode)
{
/* Check the parameters */
assert_param(IS_SDIO_READWAIT_MODE(SDIO_ReadWaitMode));
*(__IO uint32_t *) DCTRL_RWMOD_BB = SDIO_ReadWaitMode;
}
/**
* @brief Enables or disables the SD I/O Mode Operation.
* @param NewState: new state of SDIO specific operation.
* This parameter can be: ENABLE or DISABLE.
* @retval None
*/
void SDIO_SetSDIOOperation(FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_FUNCTIONAL_STATE(NewState));
*(__IO uint32_t *) DCTRL_SDIOEN_BB = (uint32_t)NewState;
}
/**
* @brief Enables or disables the SD I/O Mode suspend command sending.
* @param NewState: new state of the SD I/O Mode suspend command.
* This parameter can be: ENABLE or DISABLE.
* @retval None
*/
void SDIO_SendSDIOSuspendCmd(FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_FUNCTIONAL_STATE(NewState));
*(__IO uint32_t *) CMD_SDIOSUSPEND_BB = (uint32_t)NewState;
}
/**
* @}
*/
/** @defgroup SDIO_Group6 CE-ATA mode management functions
* @brief CE-ATA mode management functions
*
@verbatim
==============================================================================
##### CE-ATA mode management functions #####
==============================================================================
[..] This section provide functions allowing to program and read the CE-ATA
card.
@endverbatim
* @{
*/
/**
* @brief Enables or disables the command completion signal.
* @param NewState: new state of command completion signal.
* This parameter can be: ENABLE or DISABLE.
* @retval None
*/
void SDIO_CommandCompletionCmd(FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_FUNCTIONAL_STATE(NewState));
*(__IO uint32_t *) CMD_ENCMDCOMPL_BB = (uint32_t)NewState;
}
/**
* @brief Enables or disables the CE-ATA interrupt.
* @param NewState: new state of CE-ATA interrupt. This parameter can be: ENABLE or DISABLE.
* @retval None
*/
void SDIO_CEATAITCmd(FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_FUNCTIONAL_STATE(NewState));
*(__IO uint32_t *) CMD_NIEN_BB = (uint32_t)((~((uint32_t)NewState)) & ((uint32_t)0x1));
}
/**
* @brief Sends CE-ATA command (CMD61).
* @param NewState: new state of CE-ATA command. This parameter can be: ENABLE or DISABLE.
* @retval None
*/
void SDIO_SendCEATACmd(FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_FUNCTIONAL_STATE(NewState));
*(__IO uint32_t *) CMD_ATACMD_BB = (uint32_t)NewState;
}
/**
* @}
*/
/** @defgroup SDIO_Group7 Interrupts and flags management functions
* @brief Interrupts and flags management functions
@verbatim
==============================================================================
##### Interrupts and flags management functions #####
==============================================================================
@endverbatim
* @{
*/
/**
* @brief Enables or disables the SDIO interrupts.
* @param SDIO_IT: specifies the SDIO interrupt sources to be enabled or disabled.
* This parameter can be one or a combination of the following values:
* @arg SDIO_IT_CCRCFAIL: Command response received (CRC check failed) interrupt.
* @arg SDIO_IT_DCRCFAIL: Data block sent/received (CRC check failed) interrupt.
* @arg SDIO_IT_CTIMEOUT: Command response timeout interrupt.
* @arg SDIO_IT_DTIMEOUT: Data timeout interrupt.
* @arg SDIO_IT_TXUNDERR: Transmit FIFO underrun error interrupt.
* @arg SDIO_IT_RXOVERR: Received FIFO overrun error interrupt.
* @arg SDIO_IT_CMDREND: Command response received (CRC check passed) interrupt.
* @arg SDIO_IT_CMDSENT: Command sent (no response required) interrupt.
* @arg SDIO_IT_DATAEND: Data end (data counter, SDIDCOUNT, is zero) interrupt.
* @arg SDIO_IT_STBITERR: Start bit not detected on all data signals in wide
* bus mode interrupt.
* @arg SDIO_IT_DBCKEND: Data block sent/received (CRC check passed) interrupt.
* @arg SDIO_IT_CMDACT: Command transfer in progress interrupt.
* @arg SDIO_IT_TXACT: Data transmit in progress interrupt.
* @arg SDIO_IT_RXACT: Data receive in progress interrupt.
* @arg SDIO_IT_TXFIFOHE: Transmit FIFO Half Empty interrupt.
* @arg SDIO_IT_RXFIFOHF: Receive FIFO Half Full interrupt.
* @arg SDIO_IT_TXFIFOF: Transmit FIFO full interrupt.
* @arg SDIO_IT_RXFIFOF: Receive FIFO full interrupt.
* @arg SDIO_IT_TXFIFOE: Transmit FIFO empty interrupt.
* @arg SDIO_IT_RXFIFOE: Receive FIFO empty interrupt.
* @arg SDIO_IT_TXDAVL: Data available in transmit FIFO interrupt.
* @arg SDIO_IT_RXDAVL: Data available in receive FIFO interrupt.
* @arg SDIO_IT_SDIOIT: SD I/O interrupt received interrupt.
* @arg SDIO_IT_CEATAEND: CE-ATA command completion signal received for CMD61 interrupt.
* @param NewState: new state of the specified SDIO interrupts.
* This parameter can be: ENABLE or DISABLE.
* @retval None
*/
void SDIO_ITConfig(uint32_t SDIO_IT, FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_SDIO_IT(SDIO_IT));
assert_param(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
/* Enable the SDIO interrupts */
SDIO->MASK |= SDIO_IT;
}
else
{
/* Disable the SDIO interrupts */
SDIO->MASK &= ~SDIO_IT;
}
}
/**
* @brief Checks whether the specified SDIO flag is set or not.
* @param SDIO_FLAG: specifies the flag to check.
* This parameter can be one of the following values:
* @arg SDIO_FLAG_CCRCFAIL: Command response received (CRC check failed).
* @arg SDIO_FLAG_DCRCFAIL: Data block sent/received (CRC check failed).
* @arg SDIO_FLAG_CTIMEOUT: Command response timeout.
* @arg SDIO_FLAG_DTIMEOUT: Data timeout.
* @arg SDIO_FLAG_TXUNDERR: Transmit FIFO underrun error.
* @arg SDIO_FLAG_RXOVERR: Received FIFO overrun error.
* @arg SDIO_FLAG_CMDREND: Command response received (CRC check passed).
* @arg SDIO_FLAG_CMDSENT: Command sent (no response required).
* @arg SDIO_FLAG_DATAEND: Data end (data counter, SDIDCOUNT, is zero).
* @arg SDIO_FLAG_STBITERR: Start bit not detected on all data signals in wide
* bus mode.
* @arg SDIO_FLAG_DBCKEND: Data block sent/received (CRC check passed).
* @arg SDIO_FLAG_CMDACT: Command transfer in progress.
* @arg SDIO_FLAG_TXACT: Data transmit in progress.
* @arg SDIO_FLAG_RXACT: Data receive in progress.
* @arg SDIO_FLAG_TXFIFOHE: Transmit FIFO Half Empty.
* @arg SDIO_FLAG_RXFIFOHF: Receive FIFO Half Full.
* @arg SDIO_FLAG_TXFIFOF: Transmit FIFO full.
* @arg SDIO_FLAG_RXFIFOF: Receive FIFO full.
* @arg SDIO_FLAG_TXFIFOE: Transmit FIFO empty.
* @arg SDIO_FLAG_RXFIFOE: Receive FIFO empty.
* @arg SDIO_FLAG_TXDAVL: Data available in transmit FIFO.
* @arg SDIO_FLAG_RXDAVL: Data available in receive FIFO.
* @arg SDIO_FLAG_SDIOIT: SD I/O interrupt received.
* @arg SDIO_FLAG_CEATAEND: CE-ATA command completion signal received for CMD61.
* @retval The new state of SDIO_FLAG (SET or RESET).
*/
FlagStatus SDIO_GetFlagStatus(uint32_t SDIO_FLAG)
{
FlagStatus bitstatus = RESET;
/* Check the parameters */
assert_param(IS_SDIO_FLAG(SDIO_FLAG));
if ((SDIO->STA & SDIO_FLAG) != (uint32_t)RESET)
{
bitstatus = SET;
}
else
{
bitstatus = RESET;
}
return bitstatus;
}
/**
* @brief Clears the SDIO's pending flags.
* @param SDIO_FLAG: specifies the flag to clear.
* This parameter can be one or a combination of the following values:
* @arg SDIO_FLAG_CCRCFAIL: Command response received (CRC check failed).
* @arg SDIO_FLAG_DCRCFAIL: Data block sent/received (CRC check failed).
* @arg SDIO_FLAG_CTIMEOUT: Command response timeout.
* @arg SDIO_FLAG_DTIMEOUT: Data timeout.
* @arg SDIO_FLAG_TXUNDERR: Transmit FIFO underrun error.
* @arg SDIO_FLAG_RXOVERR: Received FIFO overrun error.
* @arg SDIO_FLAG_CMDREND: Command response received (CRC check passed).
* @arg SDIO_FLAG_CMDSENT: Command sent (no response required).
* @arg SDIO_FLAG_DATAEND: Data end (data counter, SDIDCOUNT, is zero).
* @arg SDIO_FLAG_STBITERR: Start bit not detected on all data signals in wide
* bus mode.
* @arg SDIO_FLAG_DBCKEND: Data block sent/received (CRC check passed).
* @arg SDIO_FLAG_SDIOIT: SD I/O interrupt received.
* @arg SDIO_FLAG_CEATAEND: CE-ATA command completion signal received for CMD61.
* @retval None
*/
void SDIO_ClearFlag(uint32_t SDIO_FLAG)
{
/* Check the parameters */
assert_param(IS_SDIO_CLEAR_FLAG(SDIO_FLAG));
SDIO->ICR = SDIO_FLAG;
}
/**
* @brief Checks whether the specified SDIO interrupt has occurred or not.
* @param SDIO_IT: specifies the SDIO interrupt source to check.
* This parameter can be one of the following values:
* @arg SDIO_IT_CCRCFAIL: Command response received (CRC check failed) interrupt.
* @arg SDIO_IT_DCRCFAIL: Data block sent/received (CRC check failed) interrupt.
* @arg SDIO_IT_CTIMEOUT: Command response timeout interrupt.
* @arg SDIO_IT_DTIMEOUT: Data timeout interrupt.
* @arg SDIO_IT_TXUNDERR: Transmit FIFO underrun error interrupt.
* @arg SDIO_IT_RXOVERR: Received FIFO overrun error interrupt.
* @arg SDIO_IT_CMDREND: Command response received (CRC check passed) interrupt.
* @arg SDIO_IT_CMDSENT: Command sent (no response required) interrupt.
* @arg SDIO_IT_DATAEND: Data end (data counter, SDIDCOUNT, is zero) interrupt.
* @arg SDIO_IT_STBITERR: Start bit not detected on all data signals in wide
* bus mode interrupt.
* @arg SDIO_IT_DBCKEND: Data block sent/received (CRC check passed) interrupt.
* @arg SDIO_IT_CMDACT: Command transfer in progress interrupt.
* @arg SDIO_IT_TXACT: Data transmit in progress interrupt.
* @arg SDIO_IT_RXACT: Data receive in progress interrupt.
* @arg SDIO_IT_TXFIFOHE: Transmit FIFO Half Empty interrupt.
* @arg SDIO_IT_RXFIFOHF: Receive FIFO Half Full interrupt.
* @arg SDIO_IT_TXFIFOF: Transmit FIFO full interrupt.
* @arg SDIO_IT_RXFIFOF: Receive FIFO full interrupt.
* @arg SDIO_IT_TXFIFOE: Transmit FIFO empty interrupt.
* @arg SDIO_IT_RXFIFOE: Receive FIFO empty interrupt.
* @arg SDIO_IT_TXDAVL: Data available in transmit FIFO interrupt.
* @arg SDIO_IT_RXDAVL: Data available in receive FIFO interrupt.
* @arg SDIO_IT_SDIOIT: SD I/O interrupt received interrupt.
* @arg SDIO_IT_CEATAEND: CE-ATA command completion signal received for CMD61 interrupt.
* @retval The new state of SDIO_IT (SET or RESET).
*/
ITStatus SDIO_GetITStatus(uint32_t SDIO_IT)
{
ITStatus bitstatus = RESET;
/* Check the parameters */
assert_param(IS_SDIO_GET_IT(SDIO_IT));
if ((SDIO->STA & SDIO_IT) != (uint32_t)RESET)
{
bitstatus = SET;
}
else
{
bitstatus = RESET;
}
return bitstatus;
}
/**
* @brief Clears the SDIO's interrupt pending bits.
* @param SDIO_IT: specifies the interrupt pending bit to clear.
* This parameter can be one or a combination of the following values:
* @arg SDIO_IT_CCRCFAIL: Command response received (CRC check failed) interrupt.
* @arg SDIO_IT_DCRCFAIL: Data block sent/received (CRC check failed) interrupt.
* @arg SDIO_IT_CTIMEOUT: Command response timeout interrupt.
* @arg SDIO_IT_DTIMEOUT: Data timeout interrupt.
* @arg SDIO_IT_TXUNDERR: Transmit FIFO underrun error interrupt.
* @arg SDIO_IT_RXOVERR: Received FIFO overrun error interrupt.
* @arg SDIO_IT_CMDREND: Command response received (CRC check passed) interrupt.
* @arg SDIO_IT_CMDSENT: Command sent (no response required) interrupt.
* @arg SDIO_IT_DATAEND: Data end (data counter, SDIDCOUNT, is zero) interrupt.
* @arg SDIO_IT_STBITERR: Start bit not detected on all data signals in wide
* bus mode interrupt.
* @arg SDIO_IT_SDIOIT: SD I/O interrupt received interrupt.
* @arg SDIO_IT_CEATAEND: CE-ATA command completion signal received for CMD61.
* @retval None
*/
void SDIO_ClearITPendingBit(uint32_t SDIO_IT)
{
/* Check the parameters */
assert_param(IS_SDIO_CLEAR_IT(SDIO_IT));
SDIO->ICR = SDIO_IT;
}
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/

View File

@ -0,0 +1,535 @@
/**
******************************************************************************
* @file stm32l1xx_sdio.h
* @author MCD Application Team
* @version V1.2.0
* @date 22-February-2013
* @brief This file contains all the functions prototypes for the SDIO firmware
* library.
******************************************************************************
* @attention
*
* <h2><center>&copy; COPYRIGHT 2013 STMicroelectronics</center></h2>
*
* Licensed under MCD-ST Liberty SW License Agreement V2, (the "License");
* You may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.st.com/software_license_agreement_liberty_v2
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
******************************************************************************
*/
/* Define to prevent recursive inclusion -------------------------------------*/
#ifndef __STM32L1xx_SDIO_H
#define __STM32L1xx_SDIO_H
#ifdef __cplusplus
extern "C" {
#endif
/* Includes ------------------------------------------------------------------*/
#include "stm32l1xx.h"
/** @addtogroup STM32L1xx_StdPeriph_Driver
* @{
*/
/** @addtogroup SDIO
* @{
*/
/* Exported types ------------------------------------------------------------*/
typedef struct
{
uint32_t SDIO_ClockEdge; /*!< Specifies the clock transition on which the bit capture is made.
This parameter can be a value of @ref SDIO_Clock_Edge */
uint32_t SDIO_ClockBypass; /*!< Specifies whether the SDIO Clock divider bypass is
enabled or disabled.
This parameter can be a value of @ref SDIO_Clock_Bypass */
uint32_t SDIO_ClockPowerSave; /*!< Specifies whether SDIO Clock output is enabled or
disabled when the bus is idle.
This parameter can be a value of @ref SDIO_Clock_Power_Save */
uint32_t SDIO_BusWide; /*!< Specifies the SDIO bus width.
This parameter can be a value of @ref SDIO_Bus_Wide */
uint32_t SDIO_HardwareFlowControl; /*!< Specifies whether the SDIO hardware flow control is enabled or disabled.
This parameter can be a value of @ref SDIO_Hardware_Flow_Control */
uint8_t SDIO_ClockDiv; /*!< Specifies the clock frequency of the SDIO controller.
This parameter can be a value between 0x00 and 0xFF. */
} SDIO_InitTypeDef;
typedef struct
{
uint32_t SDIO_Argument; /*!< Specifies the SDIO command argument which is sent
to a card as part of a command message. If a command
contains an argument, it must be loaded into this register
before writing the command to the command register */
uint32_t SDIO_CmdIndex; /*!< Specifies the SDIO command index. It must be lower than 0x40. */
uint32_t SDIO_Response; /*!< Specifies the SDIO response type.
This parameter can be a value of @ref SDIO_Response_Type */
uint32_t SDIO_Wait; /*!< Specifies whether SDIO wait-for-interrupt request is enabled or disabled.
This parameter can be a value of @ref SDIO_Wait_Interrupt_State */
uint32_t SDIO_CPSM; /*!< Specifies whether SDIO Command path state machine (CPSM)
is enabled or disabled.
This parameter can be a value of @ref SDIO_CPSM_State */
} SDIO_CmdInitTypeDef;
typedef struct
{
uint32_t SDIO_DataTimeOut; /*!< Specifies the data timeout period in card bus clock periods. */
uint32_t SDIO_DataLength; /*!< Specifies the number of data bytes to be transferred. */
uint32_t SDIO_DataBlockSize; /*!< Specifies the data block size for block transfer.
This parameter can be a value of @ref SDIO_Data_Block_Size */
uint32_t SDIO_TransferDir; /*!< Specifies the data transfer direction, whether the transfer
is a read or write.
This parameter can be a value of @ref SDIO_Transfer_Direction */
uint32_t SDIO_TransferMode; /*!< Specifies whether data transfer is in stream or block mode.
This parameter can be a value of @ref SDIO_Transfer_Type */
uint32_t SDIO_DPSM; /*!< Specifies whether SDIO Data path state machine (DPSM)
is enabled or disabled.
This parameter can be a value of @ref SDIO_DPSM_State */
} SDIO_DataInitTypeDef;
/* Exported constants --------------------------------------------------------*/
/** @defgroup SDIO_Exported_Constants
* @{
*/
/** @defgroup SDIO_Clock_Edge
* @{
*/
#define SDIO_ClockEdge_Rising ((uint32_t)0x00000000)
#define SDIO_ClockEdge_Falling ((uint32_t)0x00002000)
#define IS_SDIO_CLOCK_EDGE(EDGE) (((EDGE) == SDIO_ClockEdge_Rising) || \
((EDGE) == SDIO_ClockEdge_Falling))
/**
* @}
*/
/** @defgroup SDIO_Clock_Bypass
* @{
*/
#define SDIO_ClockBypass_Disable ((uint32_t)0x00000000)
#define SDIO_ClockBypass_Enable ((uint32_t)0x00000400)
#define IS_SDIO_CLOCK_BYPASS(BYPASS) (((BYPASS) == SDIO_ClockBypass_Disable) || \
((BYPASS) == SDIO_ClockBypass_Enable))
/**
* @}
*/
/** @defgroup SDIO_Clock_Power_Save
* @{
*/
#define SDIO_ClockPowerSave_Disable ((uint32_t)0x00000000)
#define SDIO_ClockPowerSave_Enable ((uint32_t)0x00000200)
#define IS_SDIO_CLOCK_POWER_SAVE(SAVE) (((SAVE) == SDIO_ClockPowerSave_Disable) || \
((SAVE) == SDIO_ClockPowerSave_Enable))
/**
* @}
*/
/** @defgroup SDIO_Bus_Wide
* @{
*/
#define SDIO_BusWide_1b ((uint32_t)0x00000000)
#define SDIO_BusWide_4b ((uint32_t)0x00000800)
#define SDIO_BusWide_8b ((uint32_t)0x00001000)
#define IS_SDIO_BUS_WIDE(WIDE) (((WIDE) == SDIO_BusWide_1b) || ((WIDE) == SDIO_BusWide_4b) || \
((WIDE) == SDIO_BusWide_8b))
/**
* @}
*/
/** @defgroup SDIO_Hardware_Flow_Control
* @{
*/
#define SDIO_HardwareFlowControl_Disable ((uint32_t)0x00000000)
#define SDIO_HardwareFlowControl_Enable ((uint32_t)0x00004000)
#define IS_SDIO_HARDWARE_FLOW_CONTROL(CONTROL) (((CONTROL) == SDIO_HardwareFlowControl_Disable) || \
((CONTROL) == SDIO_HardwareFlowControl_Enable))
/**
* @}
*/
/** @defgroup SDIO_Power_State
* @{
*/
#define SDIO_PowerState_OFF ((uint32_t)0x00000000)
#define SDIO_PowerState_ON ((uint32_t)0x00000003)
#define IS_SDIO_POWER_STATE(STATE) (((STATE) == SDIO_PowerState_OFF) || ((STATE) == SDIO_PowerState_ON))
/**
* @}
*/
/** @defgroup SDIO_Interrupt_soucres
* @{
*/
#define SDIO_IT_CCRCFAIL ((uint32_t)0x00000001)
#define SDIO_IT_DCRCFAIL ((uint32_t)0x00000002)
#define SDIO_IT_CTIMEOUT ((uint32_t)0x00000004)
#define SDIO_IT_DTIMEOUT ((uint32_t)0x00000008)
#define SDIO_IT_TXUNDERR ((uint32_t)0x00000010)
#define SDIO_IT_RXOVERR ((uint32_t)0x00000020)
#define SDIO_IT_CMDREND ((uint32_t)0x00000040)
#define SDIO_IT_CMDSENT ((uint32_t)0x00000080)
#define SDIO_IT_DATAEND ((uint32_t)0x00000100)
#define SDIO_IT_STBITERR ((uint32_t)0x00000200)
#define SDIO_IT_DBCKEND ((uint32_t)0x00000400)
#define SDIO_IT_CMDACT ((uint32_t)0x00000800)
#define SDIO_IT_TXACT ((uint32_t)0x00001000)
#define SDIO_IT_RXACT ((uint32_t)0x00002000)
#define SDIO_IT_TXFIFOHE ((uint32_t)0x00004000)
#define SDIO_IT_RXFIFOHF ((uint32_t)0x00008000)
#define SDIO_IT_TXFIFOF ((uint32_t)0x00010000)
#define SDIO_IT_RXFIFOF ((uint32_t)0x00020000)
#define SDIO_IT_TXFIFOE ((uint32_t)0x00040000)
#define SDIO_IT_RXFIFOE ((uint32_t)0x00080000)
#define SDIO_IT_TXDAVL ((uint32_t)0x00100000)
#define SDIO_IT_RXDAVL ((uint32_t)0x00200000)
#define SDIO_IT_SDIOIT ((uint32_t)0x00400000)
#define SDIO_IT_CEATAEND ((uint32_t)0x00800000)
#define IS_SDIO_IT(IT) ((((IT) & (uint32_t)0xFF000000) == 0x00) && ((IT) != (uint32_t)0x00))
/**
* @}
*/
/** @defgroup SDIO_Command_Index
* @{
*/
#define IS_SDIO_CMD_INDEX(INDEX) ((INDEX) < 0x40)
/**
* @}
*/
/** @defgroup SDIO_Response_Type
* @{
*/
#define SDIO_Response_No ((uint32_t)0x00000000)
#define SDIO_Response_Short ((uint32_t)0x00000040)
#define SDIO_Response_Long ((uint32_t)0x000000C0)
#define IS_SDIO_RESPONSE(RESPONSE) (((RESPONSE) == SDIO_Response_No) || \
((RESPONSE) == SDIO_Response_Short) || \
((RESPONSE) == SDIO_Response_Long))
/**
* @}
*/
/** @defgroup SDIO_Wait_Interrupt_State
* @{
*/
#define SDIO_Wait_No ((uint32_t)0x00000000) /*!< SDIO No Wait, TimeOut is enabled */
#define SDIO_Wait_IT ((uint32_t)0x00000100) /*!< SDIO Wait Interrupt Request */
#define SDIO_Wait_Pend ((uint32_t)0x00000200) /*!< SDIO Wait End of transfer */
#define IS_SDIO_WAIT(WAIT) (((WAIT) == SDIO_Wait_No) || ((WAIT) == SDIO_Wait_IT) || \
((WAIT) == SDIO_Wait_Pend))
/**
* @}
*/
/** @defgroup SDIO_CPSM_State
* @{
*/
#define SDIO_CPSM_Disable ((uint32_t)0x00000000)
#define SDIO_CPSM_Enable ((uint32_t)0x00000400)
#define IS_SDIO_CPSM(CPSM) (((CPSM) == SDIO_CPSM_Enable) || ((CPSM) == SDIO_CPSM_Disable))
/**
* @}
*/
/** @defgroup SDIO_Response_Registers
* @{
*/
#define SDIO_RESP1 ((uint32_t)0x00000000)
#define SDIO_RESP2 ((uint32_t)0x00000004)
#define SDIO_RESP3 ((uint32_t)0x00000008)
#define SDIO_RESP4 ((uint32_t)0x0000000C)
#define IS_SDIO_RESP(RESP) (((RESP) == SDIO_RESP1) || ((RESP) == SDIO_RESP2) || \
((RESP) == SDIO_RESP3) || ((RESP) == SDIO_RESP4))
/**
* @}
*/
/** @defgroup SDIO_Data_Length
* @{
*/
#define IS_SDIO_DATA_LENGTH(LENGTH) ((LENGTH) <= 0x01FFFFFF)
/**
* @}
*/
/** @defgroup SDIO_Data_Block_Size
* @{
*/
#define SDIO_DataBlockSize_1b ((uint32_t)0x00000000)
#define SDIO_DataBlockSize_2b ((uint32_t)0x00000010)
#define SDIO_DataBlockSize_4b ((uint32_t)0x00000020)
#define SDIO_DataBlockSize_8b ((uint32_t)0x00000030)
#define SDIO_DataBlockSize_16b ((uint32_t)0x00000040)
#define SDIO_DataBlockSize_32b ((uint32_t)0x00000050)
#define SDIO_DataBlockSize_64b ((uint32_t)0x00000060)
#define SDIO_DataBlockSize_128b ((uint32_t)0x00000070)
#define SDIO_DataBlockSize_256b ((uint32_t)0x00000080)
#define SDIO_DataBlockSize_512b ((uint32_t)0x00000090)
#define SDIO_DataBlockSize_1024b ((uint32_t)0x000000A0)
#define SDIO_DataBlockSize_2048b ((uint32_t)0x000000B0)
#define SDIO_DataBlockSize_4096b ((uint32_t)0x000000C0)
#define SDIO_DataBlockSize_8192b ((uint32_t)0x000000D0)
#define SDIO_DataBlockSize_16384b ((uint32_t)0x000000E0)
#define IS_SDIO_BLOCK_SIZE(SIZE) (((SIZE) == SDIO_DataBlockSize_1b) || \
((SIZE) == SDIO_DataBlockSize_2b) || \
((SIZE) == SDIO_DataBlockSize_4b) || \
((SIZE) == SDIO_DataBlockSize_8b) || \
((SIZE) == SDIO_DataBlockSize_16b) || \
((SIZE) == SDIO_DataBlockSize_32b) || \
((SIZE) == SDIO_DataBlockSize_64b) || \
((SIZE) == SDIO_DataBlockSize_128b) || \
((SIZE) == SDIO_DataBlockSize_256b) || \
((SIZE) == SDIO_DataBlockSize_512b) || \
((SIZE) == SDIO_DataBlockSize_1024b) || \
((SIZE) == SDIO_DataBlockSize_2048b) || \
((SIZE) == SDIO_DataBlockSize_4096b) || \
((SIZE) == SDIO_DataBlockSize_8192b) || \
((SIZE) == SDIO_DataBlockSize_16384b))
/**
* @}
*/
/** @defgroup SDIO_Transfer_Direction
* @{
*/
#define SDIO_TransferDir_ToCard ((uint32_t)0x00000000)
#define SDIO_TransferDir_ToSDIO ((uint32_t)0x00000002)
#define IS_SDIO_TRANSFER_DIR(DIR) (((DIR) == SDIO_TransferDir_ToCard) || \
((DIR) == SDIO_TransferDir_ToSDIO))
/**
* @}
*/
/** @defgroup SDIO_Transfer_Type
* @{
*/
#define SDIO_TransferMode_Block ((uint32_t)0x00000000)
#define SDIO_TransferMode_Stream ((uint32_t)0x00000004)
#define IS_SDIO_TRANSFER_MODE(MODE) (((MODE) == SDIO_TransferMode_Stream) || \
((MODE) == SDIO_TransferMode_Block))
/**
* @}
*/
/** @defgroup SDIO_DPSM_State
* @{
*/
#define SDIO_DPSM_Disable ((uint32_t)0x00000000)
#define SDIO_DPSM_Enable ((uint32_t)0x00000001)
#define IS_SDIO_DPSM(DPSM) (((DPSM) == SDIO_DPSM_Enable) || ((DPSM) == SDIO_DPSM_Disable))
/**
* @}
*/
/** @defgroup SDIO_Flags
* @{
*/
#define SDIO_FLAG_CCRCFAIL ((uint32_t)0x00000001)
#define SDIO_FLAG_DCRCFAIL ((uint32_t)0x00000002)
#define SDIO_FLAG_CTIMEOUT ((uint32_t)0x00000004)
#define SDIO_FLAG_DTIMEOUT ((uint32_t)0x00000008)
#define SDIO_FLAG_TXUNDERR ((uint32_t)0x00000010)
#define SDIO_FLAG_RXOVERR ((uint32_t)0x00000020)
#define SDIO_FLAG_CMDREND ((uint32_t)0x00000040)
#define SDIO_FLAG_CMDSENT ((uint32_t)0x00000080)
#define SDIO_FLAG_DATAEND ((uint32_t)0x00000100)
#define SDIO_FLAG_STBITERR ((uint32_t)0x00000200)
#define SDIO_FLAG_DBCKEND ((uint32_t)0x00000400)
#define SDIO_FLAG_CMDACT ((uint32_t)0x00000800)
#define SDIO_FLAG_TXACT ((uint32_t)0x00001000)
#define SDIO_FLAG_RXACT ((uint32_t)0x00002000)
#define SDIO_FLAG_TXFIFOHE ((uint32_t)0x00004000)
#define SDIO_FLAG_RXFIFOHF ((uint32_t)0x00008000)
#define SDIO_FLAG_TXFIFOF ((uint32_t)0x00010000)
#define SDIO_FLAG_RXFIFOF ((uint32_t)0x00020000)
#define SDIO_FLAG_TXFIFOE ((uint32_t)0x00040000)
#define SDIO_FLAG_RXFIFOE ((uint32_t)0x00080000)
#define SDIO_FLAG_TXDAVL ((uint32_t)0x00100000)
#define SDIO_FLAG_RXDAVL ((uint32_t)0x00200000)
#define SDIO_FLAG_SDIOIT ((uint32_t)0x00400000)
#define SDIO_FLAG_CEATAEND ((uint32_t)0x00800000)
#define IS_SDIO_FLAG(FLAG) (((FLAG) == SDIO_FLAG_CCRCFAIL) || \
((FLAG) == SDIO_FLAG_DCRCFAIL) || \
((FLAG) == SDIO_FLAG_CTIMEOUT) || \
((FLAG) == SDIO_FLAG_DTIMEOUT) || \
((FLAG) == SDIO_FLAG_TXUNDERR) || \
((FLAG) == SDIO_FLAG_RXOVERR) || \
((FLAG) == SDIO_FLAG_CMDREND) || \
((FLAG) == SDIO_FLAG_CMDSENT) || \
((FLAG) == SDIO_FLAG_DATAEND) || \
((FLAG) == SDIO_FLAG_STBITERR) || \
((FLAG) == SDIO_FLAG_DBCKEND) || \
((FLAG) == SDIO_FLAG_CMDACT) || \
((FLAG) == SDIO_FLAG_TXACT) || \
((FLAG) == SDIO_FLAG_RXACT) || \
((FLAG) == SDIO_FLAG_TXFIFOHE) || \
((FLAG) == SDIO_FLAG_RXFIFOHF) || \
((FLAG) == SDIO_FLAG_TXFIFOF) || \
((FLAG) == SDIO_FLAG_RXFIFOF) || \
((FLAG) == SDIO_FLAG_TXFIFOE) || \
((FLAG) == SDIO_FLAG_RXFIFOE) || \
((FLAG) == SDIO_FLAG_TXDAVL) || \
((FLAG) == SDIO_FLAG_RXDAVL) || \
((FLAG) == SDIO_FLAG_SDIOIT) || \
((FLAG) == SDIO_FLAG_CEATAEND))
#define IS_SDIO_CLEAR_FLAG(FLAG) ((((FLAG) & (uint32_t)0xFF3FF800) == 0x00) && ((FLAG) != (uint32_t)0x00))
#define IS_SDIO_GET_IT(IT) (((IT) == SDIO_IT_CCRCFAIL) || \
((IT) == SDIO_IT_DCRCFAIL) || \
((IT) == SDIO_IT_CTIMEOUT) || \
((IT) == SDIO_IT_DTIMEOUT) || \
((IT) == SDIO_IT_TXUNDERR) || \
((IT) == SDIO_IT_RXOVERR) || \
((IT) == SDIO_IT_CMDREND) || \
((IT) == SDIO_IT_CMDSENT) || \
((IT) == SDIO_IT_DATAEND) || \
((IT) == SDIO_IT_STBITERR) || \
((IT) == SDIO_IT_DBCKEND) || \
((IT) == SDIO_IT_CMDACT) || \
((IT) == SDIO_IT_TXACT) || \
((IT) == SDIO_IT_RXACT) || \
((IT) == SDIO_IT_TXFIFOHE) || \
((IT) == SDIO_IT_RXFIFOHF) || \
((IT) == SDIO_IT_TXFIFOF) || \
((IT) == SDIO_IT_RXFIFOF) || \
((IT) == SDIO_IT_TXFIFOE) || \
((IT) == SDIO_IT_RXFIFOE) || \
((IT) == SDIO_IT_TXDAVL) || \
((IT) == SDIO_IT_RXDAVL) || \
((IT) == SDIO_IT_SDIOIT) || \
((IT) == SDIO_IT_CEATAEND))
#define IS_SDIO_CLEAR_IT(IT) ((((IT) & (uint32_t)0xFF3FF800) == 0x00) && ((IT) != (uint32_t)0x00))
/**
* @}
*/
/** @defgroup SDIO_Read_Wait_Mode
* @{
*/
#define SDIO_ReadWaitMode_CLK ((uint32_t)0x00000001)
#define SDIO_ReadWaitMode_DATA2 ((uint32_t)0x00000000)
#define IS_SDIO_READWAIT_MODE(MODE) (((MODE) == SDIO_ReadWaitMode_CLK) || \
((MODE) == SDIO_ReadWaitMode_DATA2))
/**
* @}
*/
/**
* @}
*/
/* Exported macro ------------------------------------------------------------*/
/* Exported functions ------------------------------------------------------- */
/* Function used to set the SDIO configuration to the default reset state ****/
void SDIO_DeInit(void);
/* Initialization and Configuration functions *********************************/
void SDIO_Init(SDIO_InitTypeDef* SDIO_InitStruct);
void SDIO_StructInit(SDIO_InitTypeDef* SDIO_InitStruct);
void SDIO_ClockCmd(FunctionalState NewState);
void SDIO_SetPowerState(uint32_t SDIO_PowerState);
uint32_t SDIO_GetPowerState(void);
/* DMA transfers management functions *****************************************/
void SDIO_DMACmd(FunctionalState NewState);
/* Command path state machine (CPSM) management functions *********************/
void SDIO_SendCommand(SDIO_CmdInitTypeDef *SDIO_CmdInitStruct);
void SDIO_CmdStructInit(SDIO_CmdInitTypeDef* SDIO_CmdInitStruct);
uint8_t SDIO_GetCommandResponse(void);
uint32_t SDIO_GetResponse(uint32_t SDIO_RESP);
/* Data path state machine (DPSM) management functions ************************/
void SDIO_DataConfig(SDIO_DataInitTypeDef* SDIO_DataInitStruct);
void SDIO_DataStructInit(SDIO_DataInitTypeDef* SDIO_DataInitStruct);
uint32_t SDIO_GetDataCounter(void);
uint32_t SDIO_ReadData(void);
void SDIO_WriteData(uint32_t Data);
uint32_t SDIO_GetFIFOCount(void);
/* SDIO IO Cards mode management functions ************************************/
void SDIO_StartSDIOReadWait(FunctionalState NewState);
void SDIO_StopSDIOReadWait(FunctionalState NewState);
void SDIO_SetSDIOReadWaitMode(uint32_t SDIO_ReadWaitMode);
void SDIO_SetSDIOOperation(FunctionalState NewState);
void SDIO_SendSDIOSuspendCmd(FunctionalState NewState);
/* CE-ATA mode management functions *******************************************/
void SDIO_CommandCompletionCmd(FunctionalState NewState);
void SDIO_CEATAITCmd(FunctionalState NewState);
void SDIO_SendCEATACmd(FunctionalState NewState);
/* Interrupts and flags management functions **********************************/
void SDIO_ITConfig(uint32_t SDIO_IT, FunctionalState NewState);
FlagStatus SDIO_GetFlagStatus(uint32_t SDIO_FLAG);
void SDIO_ClearFlag(uint32_t SDIO_FLAG);
ITStatus SDIO_GetITStatus(uint32_t SDIO_IT);
void SDIO_ClearITPendingBit(uint32_t SDIO_IT);
#ifdef __cplusplus
}
#endif
#endif /* __STM32L1xx_SDIO_H */
/**
* @}
*/
/**
* @}
*/
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,524 @@
/**
******************************************************************************
* @file stm32l1xx_spi.h
* @author MCD Application Team
* @version V1.2.0
* @date 22-February-2013
* @brief This file contains all the functions prototypes for the SPI
* firmware library.
******************************************************************************
* @attention
*
* <h2><center>&copy; COPYRIGHT 2013 STMicroelectronics</center></h2>
*
* Licensed under MCD-ST Liberty SW License Agreement V2, (the "License");
* You may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.st.com/software_license_agreement_liberty_v2
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
******************************************************************************
*/
/* Define to prevent recursive inclusion -------------------------------------*/
#ifndef __STM32L1xx_SPI_H
#define __STM32L1xx_SPI_H
#ifdef __cplusplus
extern "C" {
#endif
/* Includes ------------------------------------------------------------------*/
#include "stm32l1xx.h"
/** @addtogroup STM32L1xx_StdPeriph_Driver
* @{
*/
/** @addtogroup SPI
* @{
*/
/* Exported types ------------------------------------------------------------*/
/**
* @brief SPI Init structure definition
*/
typedef struct
{
uint16_t SPI_Direction; /*!< Specifies the SPI unidirectional or bidirectional data mode.
This parameter can be a value of @ref SPI_data_direction */
uint16_t SPI_Mode; /*!< Specifies the SPI operating mode.
This parameter can be a value of @ref SPI_mode */
uint16_t SPI_DataSize; /*!< Specifies the SPI data size.
This parameter can be a value of @ref SPI_data_size */
uint16_t SPI_CPOL; /*!< Specifies the serial clock steady state.
This parameter can be a value of @ref SPI_Clock_Polarity */
uint16_t SPI_CPHA; /*!< Specifies the clock active edge for the bit capture.
This parameter can be a value of @ref SPI_Clock_Phase */
uint16_t SPI_NSS; /*!< Specifies whether the NSS signal is managed by
hardware (NSS pin) or by software using the SSI bit.
This parameter can be a value of @ref SPI_Slave_Select_management */
uint16_t SPI_BaudRatePrescaler; /*!< Specifies the Baud Rate prescaler value which will be
used to configure the transmit and receive SCK clock.
This parameter can be a value of @ref SPI_BaudRate_Prescaler
@note The communication clock is derived from the master
clock. The slave clock does not need to be set. */
uint16_t SPI_FirstBit; /*!< Specifies whether data transfers start from MSB or LSB bit.
This parameter can be a value of @ref SPI_MSB_LSB_transmission */
uint16_t SPI_CRCPolynomial; /*!< Specifies the polynomial used for the CRC calculation. */
}SPI_InitTypeDef;
/**
* @brief I2S Init structure definition
*/
typedef struct
{
uint16_t I2S_Mode; /*!< Specifies the I2S operating mode.
This parameter can be a value of @ref SPI_I2S_Mode */
uint16_t I2S_Standard; /*!< Specifies the standard used for the I2S communication.
This parameter can be a value of @ref SPI_I2S_Standard */
uint16_t I2S_DataFormat; /*!< Specifies the data format for the I2S communication.
This parameter can be a value of @ref SPI_I2S_Data_Format */
uint16_t I2S_MCLKOutput; /*!< Specifies whether the I2S MCLK output is enabled or not.
This parameter can be a value of @ref SPI_I2S_MCLK_Output */
uint32_t I2S_AudioFreq; /*!< Specifies the frequency selected for the I2S communication.
This parameter can be a value of @ref SPI_I2S_Audio_Frequency */
uint16_t I2S_CPOL; /*!< Specifies the idle state of the I2S clock.
This parameter can be a value of @ref SPI_I2S_Clock_Polarity */
}I2S_InitTypeDef;
/* Exported constants --------------------------------------------------------*/
/** @defgroup SPI_Exported_Constants
* @{
*/
#define IS_SPI_ALL_PERIPH(PERIPH) (((PERIPH) == SPI1) || \
((PERIPH) == SPI2) || \
((PERIPH) == SPI3))
#define IS_SPI_23_PERIPH(PERIPH) (((PERIPH) == SPI2) || \
((PERIPH) == SPI3))
/** @defgroup SPI_data_direction
* @{
*/
#define SPI_Direction_2Lines_FullDuplex ((uint16_t)0x0000)
#define SPI_Direction_2Lines_RxOnly ((uint16_t)0x0400)
#define SPI_Direction_1Line_Rx ((uint16_t)0x8000)
#define SPI_Direction_1Line_Tx ((uint16_t)0xC000)
#define IS_SPI_DIRECTION_MODE(MODE) (((MODE) == SPI_Direction_2Lines_FullDuplex) || \
((MODE) == SPI_Direction_2Lines_RxOnly) || \
((MODE) == SPI_Direction_1Line_Rx) || \
((MODE) == SPI_Direction_1Line_Tx))
/**
* @}
*/
/** @defgroup SPI_mode
* @{
*/
#define SPI_Mode_Master ((uint16_t)0x0104)
#define SPI_Mode_Slave ((uint16_t)0x0000)
#define IS_SPI_MODE(MODE) (((MODE) == SPI_Mode_Master) || \
((MODE) == SPI_Mode_Slave))
/**
* @}
*/
/** @defgroup SPI_data_size
* @{
*/
#define SPI_DataSize_16b ((uint16_t)0x0800)
#define SPI_DataSize_8b ((uint16_t)0x0000)
#define IS_SPI_DATASIZE(DATASIZE) (((DATASIZE) == SPI_DataSize_16b) || \
((DATASIZE) == SPI_DataSize_8b))
/**
* @}
*/
/** @defgroup SPI_Clock_Polarity
* @{
*/
#define SPI_CPOL_Low ((uint16_t)0x0000)
#define SPI_CPOL_High ((uint16_t)0x0002)
#define IS_SPI_CPOL(CPOL) (((CPOL) == SPI_CPOL_Low) || \
((CPOL) == SPI_CPOL_High))
/**
* @}
*/
/** @defgroup SPI_Clock_Phase
* @{
*/
#define SPI_CPHA_1Edge ((uint16_t)0x0000)
#define SPI_CPHA_2Edge ((uint16_t)0x0001)
#define IS_SPI_CPHA(CPHA) (((CPHA) == SPI_CPHA_1Edge) || \
((CPHA) == SPI_CPHA_2Edge))
/**
* @}
*/
/** @defgroup SPI_Slave_Select_management
* @{
*/
#define SPI_NSS_Soft ((uint16_t)0x0200)
#define SPI_NSS_Hard ((uint16_t)0x0000)
#define IS_SPI_NSS(NSS) (((NSS) == SPI_NSS_Soft) || \
((NSS) == SPI_NSS_Hard))
/**
* @}
*/
/** @defgroup SPI_BaudRate_Prescaler
* @{
*/
#define SPI_BaudRatePrescaler_2 ((uint16_t)0x0000)
#define SPI_BaudRatePrescaler_4 ((uint16_t)0x0008)
#define SPI_BaudRatePrescaler_8 ((uint16_t)0x0010)
#define SPI_BaudRatePrescaler_16 ((uint16_t)0x0018)
#define SPI_BaudRatePrescaler_32 ((uint16_t)0x0020)
#define SPI_BaudRatePrescaler_64 ((uint16_t)0x0028)
#define SPI_BaudRatePrescaler_128 ((uint16_t)0x0030)
#define SPI_BaudRatePrescaler_256 ((uint16_t)0x0038)
#define IS_SPI_BAUDRATE_PRESCALER(PRESCALER) (((PRESCALER) == SPI_BaudRatePrescaler_2) || \
((PRESCALER) == SPI_BaudRatePrescaler_4) || \
((PRESCALER) == SPI_BaudRatePrescaler_8) || \
((PRESCALER) == SPI_BaudRatePrescaler_16) || \
((PRESCALER) == SPI_BaudRatePrescaler_32) || \
((PRESCALER) == SPI_BaudRatePrescaler_64) || \
((PRESCALER) == SPI_BaudRatePrescaler_128) || \
((PRESCALER) == SPI_BaudRatePrescaler_256))
/**
* @}
*/
/** @defgroup SPI_MSB_LSB_transmission
* @{
*/
#define SPI_FirstBit_MSB ((uint16_t)0x0000)
#define SPI_FirstBit_LSB ((uint16_t)0x0080)
#define IS_SPI_FIRST_BIT(BIT) (((BIT) == SPI_FirstBit_MSB) || \
((BIT) == SPI_FirstBit_LSB))
/**
* @}
*/
/** @defgroup SPI_I2S_Mode
* @{
*/
#define I2S_Mode_SlaveTx ((uint16_t)0x0000)
#define I2S_Mode_SlaveRx ((uint16_t)0x0100)
#define I2S_Mode_MasterTx ((uint16_t)0x0200)
#define I2S_Mode_MasterRx ((uint16_t)0x0300)
#define IS_I2S_MODE(MODE) (((MODE) == I2S_Mode_SlaveTx) || \
((MODE) == I2S_Mode_SlaveRx) || \
((MODE) == I2S_Mode_MasterTx)|| \
((MODE) == I2S_Mode_MasterRx))
/**
* @}
*/
/** @defgroup SPI_I2S_Standard
* @{
*/
#define I2S_Standard_Phillips ((uint16_t)0x0000)
#define I2S_Standard_MSB ((uint16_t)0x0010)
#define I2S_Standard_LSB ((uint16_t)0x0020)
#define I2S_Standard_PCMShort ((uint16_t)0x0030)
#define I2S_Standard_PCMLong ((uint16_t)0x00B0)
#define IS_I2S_STANDARD(STANDARD) (((STANDARD) == I2S_Standard_Phillips) || \
((STANDARD) == I2S_Standard_MSB) || \
((STANDARD) == I2S_Standard_LSB) || \
((STANDARD) == I2S_Standard_PCMShort) || \
((STANDARD) == I2S_Standard_PCMLong))
/**
* @}
*/
/** @defgroup SPI_I2S_Data_Format
* @{
*/
#define I2S_DataFormat_16b ((uint16_t)0x0000)
#define I2S_DataFormat_16bextended ((uint16_t)0x0001)
#define I2S_DataFormat_24b ((uint16_t)0x0003)
#define I2S_DataFormat_32b ((uint16_t)0x0005)
#define IS_I2S_DATA_FORMAT(FORMAT) (((FORMAT) == I2S_DataFormat_16b) || \
((FORMAT) == I2S_DataFormat_16bextended) || \
((FORMAT) == I2S_DataFormat_24b) || \
((FORMAT) == I2S_DataFormat_32b))
/**
* @}
*/
/** @defgroup SPI_I2S_MCLK_Output
* @{
*/
#define I2S_MCLKOutput_Enable ((uint16_t)0x0200)
#define I2S_MCLKOutput_Disable ((uint16_t)0x0000)
#define IS_I2S_MCLK_OUTPUT(OUTPUT) (((OUTPUT) == I2S_MCLKOutput_Enable) || \
((OUTPUT) == I2S_MCLKOutput_Disable))
/**
* @}
*/
/** @defgroup SPI_I2S_Audio_Frequency
* @{
*/
#define I2S_AudioFreq_192k ((uint32_t)192000)
#define I2S_AudioFreq_96k ((uint32_t)96000)
#define I2S_AudioFreq_48k ((uint32_t)48000)
#define I2S_AudioFreq_44k ((uint32_t)44100)
#define I2S_AudioFreq_32k ((uint32_t)32000)
#define I2S_AudioFreq_22k ((uint32_t)22050)
#define I2S_AudioFreq_16k ((uint32_t)16000)
#define I2S_AudioFreq_11k ((uint32_t)11025)
#define I2S_AudioFreq_8k ((uint32_t)8000)
#define I2S_AudioFreq_Default ((uint32_t)2)
#define IS_I2S_AUDIO_FREQ(FREQ) ((((FREQ) >= I2S_AudioFreq_8k) && \
((FREQ) <= I2S_AudioFreq_192k)) || \
((FREQ) == I2S_AudioFreq_Default))
/**
* @}
*/
/** @defgroup SPI_I2S_Clock_Polarity
* @{
*/
#define I2S_CPOL_Low ((uint16_t)0x0000)
#define I2S_CPOL_High ((uint16_t)0x0008)
#define IS_I2S_CPOL(CPOL) (((CPOL) == I2S_CPOL_Low) || \
((CPOL) == I2S_CPOL_High))
/**
* @}
*/
/** @defgroup SPI_I2S_DMA_transfer_requests
* @{
*/
#define SPI_I2S_DMAReq_Tx ((uint16_t)0x0002)
#define SPI_I2S_DMAReq_Rx ((uint16_t)0x0001)
#define IS_SPI_I2S_DMAREQ(DMAREQ) ((((DMAREQ) & (uint16_t)0xFFFC) == 0x00) && ((DMAREQ) != 0x00))
/**
* @}
*/
/** @defgroup SPI_NSS_internal_software_management
* @{
*/
#define SPI_NSSInternalSoft_Set ((uint16_t)0x0100)
#define SPI_NSSInternalSoft_Reset ((uint16_t)0xFEFF)
#define IS_SPI_NSS_INTERNAL(INTERNAL) (((INTERNAL) == SPI_NSSInternalSoft_Set) || \
((INTERNAL) == SPI_NSSInternalSoft_Reset))
/**
* @}
*/
/** @defgroup SPI_CRC_Transmit_Receive
* @{
*/
#define SPI_CRC_Tx ((uint8_t)0x00)
#define SPI_CRC_Rx ((uint8_t)0x01)
#define IS_SPI_CRC(CRC) (((CRC) == SPI_CRC_Tx) || ((CRC) == SPI_CRC_Rx))
/**
* @}
*/
/** @defgroup SPI_direction_transmit_receive
* @{
*/
#define SPI_Direction_Rx ((uint16_t)0xBFFF)
#define SPI_Direction_Tx ((uint16_t)0x4000)
#define IS_SPI_DIRECTION(DIRECTION) (((DIRECTION) == SPI_Direction_Rx) || \
((DIRECTION) == SPI_Direction_Tx))
/**
* @}
*/
/** @defgroup SPI_I2S_interrupts_definition
* @{
*/
#define SPI_I2S_IT_TXE ((uint8_t)0x71)
#define SPI_I2S_IT_RXNE ((uint8_t)0x60)
#define SPI_I2S_IT_ERR ((uint8_t)0x50)
#define I2S_IT_UDR ((uint8_t)0x53)
#define SPI_I2S_IT_FRE ((uint8_t)0x58)
#define IS_SPI_I2S_CONFIG_IT(IT) (((IT) == SPI_I2S_IT_TXE) || \
((IT) == SPI_I2S_IT_RXNE) || \
((IT) == SPI_I2S_IT_ERR))
#define SPI_I2S_IT_OVR ((uint8_t)0x56)
#define SPI_IT_MODF ((uint8_t)0x55)
#define SPI_IT_CRCERR ((uint8_t)0x54)
#define IS_SPI_I2S_CLEAR_IT(IT) (((IT) == SPI_IT_CRCERR))
#define IS_SPI_I2S_GET_IT(IT) (((IT) == SPI_I2S_IT_RXNE) || ((IT) == SPI_I2S_IT_TXE) || \
((IT) == SPI_IT_CRCERR) || ((IT) == SPI_IT_MODF) || \
((IT) == SPI_I2S_IT_OVR) || ((IT) == I2S_IT_UDR) ||\
((IT) == SPI_I2S_IT_FRE))
/**
* @}
*/
/** @defgroup SPI_I2S_flags_definition
* @{
*/
#define SPI_I2S_FLAG_RXNE ((uint16_t)0x0001)
#define SPI_I2S_FLAG_TXE ((uint16_t)0x0002)
#define I2S_FLAG_CHSIDE ((uint16_t)0x0004)
#define I2S_FLAG_UDR ((uint16_t)0x0008)
#define SPI_FLAG_CRCERR ((uint16_t)0x0010)
#define SPI_FLAG_MODF ((uint16_t)0x0020)
#define SPI_I2S_FLAG_OVR ((uint16_t)0x0040)
#define SPI_I2S_FLAG_BSY ((uint16_t)0x0080)
#define SPI_I2S_FLAG_FRE ((uint16_t)0x0100)
#define IS_SPI_I2S_CLEAR_FLAG(FLAG) (((FLAG) == SPI_FLAG_CRCERR))
#define IS_SPI_I2S_GET_FLAG(FLAG) (((FLAG) == SPI_I2S_FLAG_BSY) || ((FLAG) == SPI_I2S_FLAG_OVR) || \
((FLAG) == SPI_FLAG_MODF) || ((FLAG) == SPI_FLAG_CRCERR) || \
((FLAG) == I2S_FLAG_UDR) || ((FLAG) == I2S_FLAG_CHSIDE) || \
((FLAG) == SPI_I2S_FLAG_TXE) || ((FLAG) == SPI_I2S_FLAG_RXNE)|| \
((FLAG) == SPI_I2S_FLAG_FRE))
/**
* @}
*/
/** @defgroup SPI_CRC_polynomial
* @{
*/
#define IS_SPI_CRC_POLYNOMIAL(POLYNOMIAL) ((POLYNOMIAL) >= 0x1)
/**
* @}
*/
/** @defgroup SPI_I2S_Legacy
* @{
*/
#define SPI_DMAReq_Tx SPI_I2S_DMAReq_Tx
#define SPI_DMAReq_Rx SPI_I2S_DMAReq_Rx
#define SPI_IT_TXE SPI_I2S_IT_TXE
#define SPI_IT_RXNE SPI_I2S_IT_RXNE
#define SPI_IT_ERR SPI_I2S_IT_ERR
#define SPI_IT_OVR SPI_I2S_IT_OVR
#define SPI_FLAG_RXNE SPI_I2S_FLAG_RXNE
#define SPI_FLAG_TXE SPI_I2S_FLAG_TXE
#define SPI_FLAG_OVR SPI_I2S_FLAG_OVR
#define SPI_FLAG_BSY SPI_I2S_FLAG_BSY
#define SPI_DeInit SPI_I2S_DeInit
#define SPI_ITConfig SPI_I2S_ITConfig
#define SPI_DMACmd SPI_I2S_DMACmd
#define SPI_SendData SPI_I2S_SendData
#define SPI_ReceiveData SPI_I2S_ReceiveData
#define SPI_GetFlagStatus SPI_I2S_GetFlagStatus
#define SPI_ClearFlag SPI_I2S_ClearFlag
#define SPI_GetITStatus SPI_I2S_GetITStatus
#define SPI_ClearITPendingBit SPI_I2S_ClearITPendingBit
/**
* @}
*/
/**
* @}
*/
/* Exported macro ------------------------------------------------------------*/
/* Exported functions ------------------------------------------------------- */
/* Function used to set the SPI configuration to the default reset state *****/
void SPI_I2S_DeInit(SPI_TypeDef* SPIx);
/* Initialization and Configuration functions *********************************/
void SPI_Init(SPI_TypeDef* SPIx, SPI_InitTypeDef* SPI_InitStruct);
void I2S_Init(SPI_TypeDef* SPIx, I2S_InitTypeDef* I2S_InitStruct);
void SPI_StructInit(SPI_InitTypeDef* SPI_InitStruct);
void I2S_StructInit(I2S_InitTypeDef* I2S_InitStruct);
void SPI_Cmd(SPI_TypeDef* SPIx, FunctionalState NewState);
void I2S_Cmd(SPI_TypeDef* SPIx, FunctionalState NewState);
void SPI_DataSizeConfig(SPI_TypeDef* SPIx, uint16_t SPI_DataSize);
void SPI_BiDirectionalLineConfig(SPI_TypeDef* SPIx, uint16_t SPI_Direction);
void SPI_NSSInternalSoftwareConfig(SPI_TypeDef* SPIx, uint16_t SPI_NSSInternalSoft);
void SPI_SSOutputCmd(SPI_TypeDef* SPIx, FunctionalState NewState);
/* Data transfers functions ***************************************************/
void SPI_I2S_SendData(SPI_TypeDef* SPIx, uint16_t Data);
uint16_t SPI_I2S_ReceiveData(SPI_TypeDef* SPIx);
/* Hardware CRC Calculation functions *****************************************/
void SPI_CalculateCRC(SPI_TypeDef* SPIx, FunctionalState NewState);
void SPI_TransmitCRC(SPI_TypeDef* SPIx);
uint16_t SPI_GetCRC(SPI_TypeDef* SPIx, uint8_t SPI_CRC);
uint16_t SPI_GetCRCPolynomial(SPI_TypeDef* SPIx);
/* DMA transfers management functions *****************************************/
void SPI_I2S_DMACmd(SPI_TypeDef* SPIx, uint16_t SPI_I2S_DMAReq, FunctionalState NewState);
/* Interrupts and flags management functions **********************************/
void SPI_I2S_ITConfig(SPI_TypeDef* SPIx, uint8_t SPI_I2S_IT, FunctionalState NewState);
FlagStatus SPI_I2S_GetFlagStatus(SPI_TypeDef* SPIx, uint16_t SPI_I2S_FLAG);
void SPI_I2S_ClearFlag(SPI_TypeDef* SPIx, uint16_t SPI_I2S_FLAG);
ITStatus SPI_I2S_GetITStatus(SPI_TypeDef* SPIx, uint8_t SPI_I2S_IT);
void SPI_I2S_ClearITPendingBit(SPI_TypeDef* SPIx, uint8_t SPI_I2S_IT);
#ifdef __cplusplus
}
#endif
#endif /*__STM32L1xx_SPI_H */
/**
* @}
*/
/**
* @}
*/
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/

View File

@ -0,0 +1,652 @@
/**
******************************************************************************
* @file stm32l1xx_syscfg.c
* @author MCD Application Team
* @version V1.2.0
* @date 22-February-2013
* @brief This file provides firmware functions to manage the following
* functionalities of the SYSCFG and RI peripherals:
* + SYSCFG Initialization and Configuration
* + RI Initialization and Configuration
*
@verbatim
===============================================================================
##### How to use this driver #####
===============================================================================
[..] This driver provides functions for:
(#) Remapping the memory accessible in the code area using
SYSCFG_MemoryRemapConfig().
(#) Manage the EXTI lines connection to the GPIOs using
SYSCFG_EXTILineConfig().
(#) Routing of I/Os toward the input captures of timers (TIM2, TIM3 and TIM4).
(#) Input routing of COMP1 and COMP2.
(#) Routing of internal reference voltage VREFINT to PB0 and PB1.
(#) The RI registers can be accessed only when the comparator
APB interface clock is enabled.
To enable comparator clock use:
RCC_APB1PeriphClockCmd(RCC_APB1Periph_COMP, ENABLE).
Following functions uses RI registers:
(++) SYSCFG_RIDeInit()
(++) SYSCFG_RITIMSelect()
(++) SYSCFG_RITIMInputCaptureConfig()
(++) SYSCFG_RIResistorConfig()
(++) SYSCFG_RIChannelSpeedConfig()
(++) SYSCFG_RIIOSwitchConfig()
(++) SYSCFG_RISwitchControlModeCmd()
(++) SYSCFG_RIHysteresisConfig()
(#) The SYSCFG registers can be accessed only when the SYSCFG
interface APB clock is enabled.
To enable SYSCFG APB clock use:
RCC_APB2PeriphClockCmd(RCC_APB2Periph_SYSCFG, ENABLE);
Following functions uses SYSCFG registers:
(++) SYSCFG_DeInit()
(++) SYSCFG_MemoryRemapConfig()
(++) SYSCFG_GetBootMode()
(++) SYSCFG_USBPuCmd()
(++) SYSCFG_EXTILineConfig()
@endverbatim
*
******************************************************************************
* @attention
*
* <h2><center>&copy; COPYRIGHT 2013 STMicroelectronics</center></h2>
*
* Licensed under MCD-ST Liberty SW License Agreement V2, (the "License");
* You may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.st.com/software_license_agreement_liberty_v2
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "stm32l1xx_syscfg.h"
#include "stm32l1xx_rcc.h"
/** @addtogroup STM32L1xx_StdPeriph_Driver
* @{
*/
/** @defgroup SYSCFG
* @brief SYSCFG driver modules
* @{
*/
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
#define TIM_SELECT_MASK ((uint32_t)0xFFFCFFFF) /*!< TIM select mask */
#define IC_ROUTING_MASK ((uint32_t)0x0000000F) /*!< Input Capture routing mask */
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private function prototypes -----------------------------------------------*/
/* Private functions ---------------------------------------------------------*/
/** @defgroup SYSCFG_Private_Functions
* @{
*/
/** @defgroup SYSCFG_Group1 SYSCFG Initialization and Configuration functions
* @brief SYSCFG Initialization and Configuration functions
*
@verbatim
===============================================================================
##### SYSCFG Initialization and Configuration functions #####
===============================================================================
@endverbatim
* @{
*/
/**
* @brief Deinitializes the SYSCFG registers to their default reset values.
* @param None.
* @retval None.
* @Note: MEMRMP bits are not reset by APB2 reset.
*/
void SYSCFG_DeInit(void)
{
RCC_APB2PeriphResetCmd(RCC_APB2Periph_SYSCFG, ENABLE);
RCC_APB2PeriphResetCmd(RCC_APB2Periph_SYSCFG, DISABLE);
}
/**
* @brief Deinitializes the RI registers to their default reset values.
* @param None.
* @retval None.
*/
void SYSCFG_RIDeInit(void)
{
RI->ICR = ((uint32_t)0x00000000); /*!< Set RI->ICR to reset value */
RI->ASCR1 = ((uint32_t)0x00000000); /*!< Set RI->ASCR1 to reset value */
RI->ASCR2 = ((uint32_t)0x00000000); /*!< Set RI->ASCR2 to reset value */
RI->HYSCR1 = ((uint32_t)0x00000000); /*!< Set RI->HYSCR1 to reset value */
RI->HYSCR2 = ((uint32_t)0x00000000); /*!< Set RI->HYSCR2 to reset value */
RI->HYSCR3 = ((uint32_t)0x00000000); /*!< Set RI->HYSCR3 to reset value */
RI->HYSCR4 = ((uint32_t)0x00000000); /*!< Set RI->HYSCR4 to reset value */
}
/**
* @brief Changes the mapping of the specified memory.
* @param SYSCFG_Memory: selects the memory remapping.
* This parameter can be one of the following values:
* @arg SYSCFG_MemoryRemap_Flash: Main Flash memory mapped at 0x00000000
* @arg SYSCFG_MemoryRemap_SystemFlash: System Flash memory mapped at 0x00000000
* @arg SYSCFG_MemoryRemap_FSMC: FSMC memory mapped at 0x00000000
* @arg SYSCFG_MemoryRemap_SRAM: Embedded SRAM mapped at 0x00000000
* @retval None
*/
void SYSCFG_MemoryRemapConfig(uint8_t SYSCFG_MemoryRemap)
{
/* Check the parameters */
assert_param(IS_SYSCFG_MEMORY_REMAP_CONFING(SYSCFG_MemoryRemap));
SYSCFG->MEMRMP = SYSCFG_MemoryRemap;
}
/**
* @brief Returns the boot mode as configured by user.
* @param None.
* @retval The boot mode as configured by user. The returned value can be one
* of the following values:
* - 0x00000000: Boot is configured in Main Flash memory
* - 0x00000100: Boot is configured in System Flash memory
* - 0x00000200: Boot is configured in FSMC memory
* - 0x00000300: Boot is configured in Embedded SRAM memory
*/
uint32_t SYSCFG_GetBootMode(void)
{
return (SYSCFG->MEMRMP & SYSCFG_MEMRMP_BOOT_MODE);
}
/**
* @brief Control the internal pull-up on USB DP line.
* @param NewState: New state of the internal pull-up on USB DP line.
* This parameter can be ENABLE: Connect internal pull-up on USB DP line.
* or DISABLE: Disconnect internal pull-up on USB DP line.
* @retval None
*/
void SYSCFG_USBPuCmd(FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
/* Connect internal pull-up on USB DP line */
SYSCFG->PMC |= (uint32_t) SYSCFG_PMC_USB_PU;
}
else
{
/* Disconnect internal pull-up on USB DP line */
SYSCFG->PMC &= (uint32_t)(~SYSCFG_PMC_USB_PU);
}
}
/**
* @brief Selects the GPIO pin used as EXTI Line.
* @param EXTI_PortSourceGPIOx : selects the GPIO port to be used as source
* for EXTI lines where x can be (A, B, C, D, E, F, G or H).
* @param EXTI_PinSourcex: specifies the EXTI line to be configured.
* This parameter can be EXTI_PinSourcex where x can be (0..15).
* @retval None
*/
void SYSCFG_EXTILineConfig(uint8_t EXTI_PortSourceGPIOx, uint8_t EXTI_PinSourcex)
{
uint32_t tmp = 0x00;
/* Check the parameters */
assert_param(IS_EXTI_PORT_SOURCE(EXTI_PortSourceGPIOx));
assert_param(IS_EXTI_PIN_SOURCE(EXTI_PinSourcex));
tmp = ((uint32_t)0x0F) << (0x04 * (EXTI_PinSourcex & (uint8_t)0x03));
SYSCFG->EXTICR[EXTI_PinSourcex >> 0x02] &= ~tmp;
SYSCFG->EXTICR[EXTI_PinSourcex >> 0x02] |= (((uint32_t)EXTI_PortSourceGPIOx) << (0x04 * (EXTI_PinSourcex & (uint8_t)0x03)));
}
/**
* @}
*/
/** @defgroup SYSCFG_Group2 RI Initialization and Configuration functions
* @brief RI Initialization and Configuration functions
*
@verbatim
===============================================================================
##### RI Initialization and Configuration functions #####
===============================================================================
@endverbatim
* @{
*/
/**
* @brief Configures the routing interface to select which Timer to be routed.
* @note Routing capability can be applied only on one of the three timers
* (TIM2, TIM3 or TIM4) at a time.
* @param TIM_Select: Timer select.
* This parameter can be one of the following values:
* @arg TIM_Select_None: No timer selected and default Timer mapping is enabled.
* @arg TIM_Select_TIM2: Timer 2 Input Captures to be routed.
* @arg TIM_Select_TIM3: Timer 3 Input Captures to be routed.
* @arg TIM_Select_TIM4: Timer 4 Input Captures to be routed.
* @retval None.
*/
void SYSCFG_RITIMSelect(uint32_t TIM_Select)
{
uint32_t tmpreg = 0;
/* Check the parameters */
assert_param(IS_RI_TIM(TIM_Select));
/* Get the old register value */
tmpreg = RI->ICR;
/* Clear the TIMx select bits */
tmpreg &= TIM_SELECT_MASK;
/* Select the Timer */
tmpreg |= (TIM_Select);
/* Write to RI->ICR register */
RI->ICR = tmpreg;
}
/**
* @brief Configures the routing interface to map Input Capture 1, 2, 3 or 4
* to a selected I/O pin.
* @param RI_InputCapture selects which input capture to be routed.
* This parameter can be one (or combination) of the following parameters:
* @arg RI_InputCapture_IC1: Input capture 1 is selected.
* @arg RI_InputCapture_IC2: Input capture 2 is selected.
* @arg RI_InputCapture_IC3: Input capture 3 is selected.
* @arg RI_InputCapture_IC4: Input capture 4 is selected.
* @param RI_InputCaptureRouting: selects which pin to be routed to Input Capture.
* This parameter can be one of the following values:
* @param RI_InputCaptureRouting_0 to RI_InputCaptureRouting_15
* e.g.
* SYSCFG_RITIMSelect(TIM_Select_TIM2)
* SYSCFG_RITIMInputCaptureConfig(RI_InputCapture_IC1, RI_InputCaptureRouting_1)
* allows routing of Input capture IC1 of TIM2 to PA4.
* For details about correspondence between RI_InputCaptureRouting_x
* and I/O pins refer to the parameters' description in the header file
* or refer to the product reference manual.
* @note Input capture selection bits are not reset by this function.
* To reset input capture selection bits, use SYSCFG_RIDeInit() function.
* @note The I/O should be configured in alternate function mode (AF14) using
* GPIO_PinAFConfig() function.
* @retval None.
*/
void SYSCFG_RITIMInputCaptureConfig(uint32_t RI_InputCapture, uint32_t RI_InputCaptureRouting)
{
uint32_t tmpreg = 0;
/* Check the parameters */
assert_param(IS_RI_INPUTCAPTURE(RI_InputCapture));
assert_param(IS_RI_INPUTCAPTURE_ROUTING(RI_InputCaptureRouting));
/* Get the old register value */
tmpreg = RI->ICR;
/* Select input captures to be routed */
tmpreg |= (RI_InputCapture);
if((RI_InputCapture & RI_InputCapture_IC1) == RI_InputCapture_IC1)
{
/* Clear the input capture select bits */
tmpreg &= (uint32_t)(~IC_ROUTING_MASK);
/* Set RI_InputCaptureRouting bits */
tmpreg |= (uint32_t)( RI_InputCaptureRouting);
}
if((RI_InputCapture & RI_InputCapture_IC2) == RI_InputCapture_IC2)
{
/* Clear the input capture select bits */
tmpreg &= (uint32_t)(~(IC_ROUTING_MASK << 4));
/* Set RI_InputCaptureRouting bits */
tmpreg |= (uint32_t)( (RI_InputCaptureRouting << 4));
}
if((RI_InputCapture & RI_InputCapture_IC3) == RI_InputCapture_IC3)
{
/* Clear the input capture select bits */
tmpreg &= (uint32_t)(~(IC_ROUTING_MASK << 8));
/* Set RI_InputCaptureRouting bits */
tmpreg |= (uint32_t)( (RI_InputCaptureRouting << 8));
}
if((RI_InputCapture & RI_InputCapture_IC4) == RI_InputCapture_IC4)
{
/* Clear the input capture select bits */
tmpreg &= (uint32_t)(~(IC_ROUTING_MASK << 12));
/* Set RI_InputCaptureRouting bits */
tmpreg |= (uint32_t)( (RI_InputCaptureRouting << 12));
}
/* Write to RI->ICR register */
RI->ICR = tmpreg;
}
/**
* @brief Configures the Pull-up and Pull-down Resistors
* @param RI_Resistor selects the resistor to connect.
* This parameter can be one of the following values:
* @arg RI_Resistor_10KPU: 10K pull-up resistor.
* @arg RI_Resistor_400KPU: 400K pull-up resistor.
* @arg RI_Resistor_10KPD: 10K pull-down resistor.
* @arg RI_Resistor_400KPD: 400K pull-down resistor.
* @param NewState: New state of the analog switch associated to the selected
* resistor.
* This parameter can be:
* ENABLE so the selected resistor is connected
* or DISABLE so the selected resistor is disconnected.
* @note To avoid extra power consumption, only one resistor should be enabled
* at a time.
* @retval None
*/
void SYSCFG_RIResistorConfig(uint32_t RI_Resistor, FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_RI_RESISTOR(RI_Resistor));
assert_param(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
/* Enable the resistor */
COMP->CSR |= (uint32_t) RI_Resistor;
}
else
{
/* Disable the Resistor */
COMP->CSR &= (uint32_t) (~RI_Resistor);
}
}
/**
* @brief Configures the ADC channels speed.
* @param RI_Channel selects the channel.
* This parameter can be one of the following values:
* @arg RI_Channel_3: Channel 3 is selected.
* @arg RI_Channel_8: Channel 8 is selected.
* @arg RI_Channel_13: Channel 13 is selected.
* @param RI_ChannelSpeed: The speed of the selected ADC channel
* This parameter can be:
* RI_ChannelSpeed_Fast: The selected channel is a fast ADC channel
* or RI_ChannelSpeed_Slow: The selected channel is a slow ADC channel.
* @retval None
*/
void SYSCFG_RIChannelSpeedConfig(uint32_t RI_Channel, uint32_t RI_ChannelSpeed)
{
/* Check the parameters */
assert_param(IS_RI_CHANNEL(RI_Channel));
assert_param(IS_RI_CHANNELSPEED(RI_ChannelSpeed));
if(RI_ChannelSpeed != RI_ChannelSpeed_Fast)
{
/* Set the selected channel as a slow ADC channel */
COMP->CSR &= (uint32_t) (~RI_Channel);
}
else
{
/* Set the selected channel as a fast ADC channel */
COMP->CSR |= (uint32_t) (RI_Channel);
}
}
/**
* @brief Close or Open the routing interface Input Output switches.
* @param RI_IOSwitch: selects the I/O analog switch number.
* This parameter can be one of the following values:
* @param RI_IOSwitch_CH0 --> RI_IOSwitch_CH15.
* @param RI_IOSwitch_CH18 --> RI_IOSwitch_CH25.
* @param RI_IOSwitch_GR10_1 --> RI_IOSwitch_GR10_4.
* @param RI_IOSwitch_GR6_1 --> RI_IOSwitch_GR6_2.
* @param RI_IOSwitch_GR5_1 --> RI_IOSwitch_GR5_3.
* @param RI_IOSwitch_GR4_1 --> RI_IOSwitch_GR4_3.
* @param RI_IOSwitch_VCOMP
* RI_IOSwitch_CH27
* @param RI_IOSwitch_CH28 --> RI_IOSwitch_CH30
* @param RI_IOSwitch_GR10_1 --> RI_IOSwitch_GR10_4
* @param RI_IOSwitch_GR6_1
* @param RI_IOSwitch_GR6_2
* @param RI_IOSwitch_GR5_1 --> RI_IOSwitch_GR5_3
* @param RI_IOSwitch_GR4_1 --> RI_IOSwitch_GR4_4
* @param RI_IOSwitch_CH0b --> RI_IOSwitch_CH3b
* @param RI_IOSwitch_CH6b --> RI_IOSwitch_CH12b
* @param RI_IOSwitch_GR6_3
* @param RI_IOSwitch_GR6_4
* @param RI_IOSwitch_GR5_4
* @param NewState: New state of the analog switch.
* This parameter can be
* ENABLE so the Input Output switch is closed
* or DISABLE so the Input Output switch is open.
* @retval None
*/
void SYSCFG_RIIOSwitchConfig(uint32_t RI_IOSwitch, FunctionalState NewState)
{
uint32_t ioswitchmask = 0;
/* Check the parameters */
assert_param(IS_RI_IOSWITCH(RI_IOSwitch));
/* Read Analog switch register index */
ioswitchmask = RI_IOSwitch >> 31;
/* Get Bits[30:0] of the IO switch */
RI_IOSwitch &= 0x7FFFFFFF;
if (NewState != DISABLE)
{
if (ioswitchmask != 0)
{
/* Close the analog switches */
RI->ASCR1 |= RI_IOSwitch;
}
else
{
/* Open the analog switches */
RI->ASCR2 |= RI_IOSwitch;
}
}
else
{
if (ioswitchmask != 0)
{
/* Close the analog switches */
RI->ASCR1 &= (~ (uint32_t)RI_IOSwitch);
}
else
{
/* Open the analog switches */
RI->ASCR2 &= (~ (uint32_t)RI_IOSwitch);
}
}
}
/**
* @brief Enable or disable the switch control mode.
* @param NewState: New state of the switch control mode. This parameter can
* be ENABLE: ADC analog switches closed if the corresponding
* I/O switch is also closed.
* When using COMP1, switch control mode must be enabled.
* or DISABLE: ADC analog switches open or controlled by the ADC interface.
* When using the ADC for acquisition, switch control mode
* must be disabled.
* @note COMP1 comparator and ADC cannot be used at the same time since
* they share the ADC switch matrix.
* @retval None
*/
void SYSCFG_RISwitchControlModeCmd(FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
/* Enable the Switch control mode */
RI->ASCR1 |= (uint32_t) RI_ASCR1_SCM;
}
else
{
/* Disable the Switch control mode */
RI->ASCR1 &= (uint32_t)(~RI_ASCR1_SCM);
}
}
/**
* @brief Enable or disable Hysteresis of the input schmitt triger of Ports A..E
* When the I/Os are programmed in input mode by standard I/O port
* registers, the Schmitt trigger and the hysteresis are enabled by default.
* When hysteresis is disabled, it is possible to read the
* corresponding port with a trigger level of VDDIO/2.
* @param RI_Port: selects the GPIO Port.
* This parameter can be one of the following values:
* @arg RI_PortA: Port A is selected
* @arg RI_PortB: Port B is selected
* @arg RI_PortC: Port C is selected
* @arg RI_PortD: Port D is selected
* @arg RI_PortE: Port E is selected
* @arg RI_PortF: Port F is selected
* @arg RI_PortG: Port G is selected
* @param RI_Pin : Selects the pin(s) on which to enable or disable hysteresis.
* This parameter can any value from RI_Pin_x where x can be (0..15) or RI_Pin_All.
* @param NewState new state of the Hysteresis.
* This parameter can be:
* ENABLE so the Hysteresis is on
* or DISABLE so the Hysteresis is off
* @retval None
*/
void SYSCFG_RIHysteresisConfig(uint8_t RI_Port, uint16_t RI_Pin,
FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_RI_PORT(RI_Port));
assert_param(IS_RI_PIN(RI_Pin));
assert_param(IS_FUNCTIONAL_STATE(NewState));
if(RI_Port == RI_PortA)
{
if (NewState != DISABLE)
{
/* Hysteresis on */
RI->HYSCR1 &= (uint32_t)~((uint32_t)RI_Pin);
}
else
{
/* Hysteresis off */
RI->HYSCR1 |= (uint32_t) RI_Pin;
}
}
else if(RI_Port == RI_PortB)
{
if (NewState != DISABLE)
{
/* Hysteresis on */
RI->HYSCR1 &= (uint32_t) (~((uint32_t)RI_Pin) << 16);
}
else
{
/* Hysteresis off */
RI->HYSCR1 |= (uint32_t) ((uint32_t)(RI_Pin) << 16);
}
}
else if(RI_Port == RI_PortC)
{
if (NewState != DISABLE)
{
/* Hysteresis on */
RI->HYSCR2 &= (uint32_t) (~((uint32_t)RI_Pin));
}
else
{
/* Hysteresis off */
RI->HYSCR2 |= (uint32_t) (RI_Pin );
}
}
else if(RI_Port == RI_PortD)
{
if (NewState != DISABLE)
{
/* Hysteresis on */
RI->HYSCR2 &= (uint32_t) (~((uint32_t)RI_Pin) << 16);
}
else
{
/* Hysteresis off */
RI->HYSCR2 |= (uint32_t) ((uint32_t)(RI_Pin) << 16);
}
}
else if(RI_Port == RI_PortE)
{
if (NewState != DISABLE)
{
/* Hysteresis on */
RI->HYSCR3 &= (uint32_t) (~((uint32_t)RI_Pin));
}
else
{
/* Hysteresis off */
RI->HYSCR3 |= (uint32_t) (RI_Pin );
}
}
else if(RI_Port == RI_PortF)
{
if (NewState != DISABLE)
{
/* Hysteresis on */
RI->HYSCR3 &= (uint32_t) (~((uint32_t)RI_Pin) << 16);
}
else
{
/* Hysteresis off */
RI->HYSCR3 |= (uint32_t) ((uint32_t)(RI_Pin) << 16);
}
}
else /* RI_Port == RI_PortG */
{
if (NewState != DISABLE)
{
/* Hysteresis on */
RI->HYSCR4 &= (uint32_t) (~((uint32_t)RI_Pin));
}
else
{
/* Hysteresis off */
RI->HYSCR4 |= (uint32_t) (RI_Pin);
}
}
}
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/

View File

@ -0,0 +1,476 @@
/**
******************************************************************************
* @file stm32l1xx_syscfg.h
* @author MCD Application Team
* @version V1.2.0
* @date 22-February-2013
* @brief This file contains all the functions prototypes for the SYSCFG
* firmware library.
******************************************************************************
* @attention
*
* <h2><center>&copy; COPYRIGHT 2013 STMicroelectronics</center></h2>
*
* Licensed under MCD-ST Liberty SW License Agreement V2, (the "License");
* You may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.st.com/software_license_agreement_liberty_v2
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
******************************************************************************
*/
/*!< Define to prevent recursive inclusion -------------------------------------*/
#ifndef __STM32L1xx_SYSCFG_H
#define __STM32L1xx_SYSCFG_H
#ifdef __cplusplus
extern "C" {
#endif
/*!< Includes ------------------------------------------------------------------*/
#include "stm32l1xx.h"
/** @addtogroup STM32L1xx_StdPeriph_Driver
* @{
*/
/** @addtogroup SYSCFG
* @{
*/
/* Exported types ------------------------------------------------------------*/
/* Exported constants --------------------------------------------------------*/
/** @defgroup SYSCFG_Exported_Constants
* @{
*/
/** @defgroup EXTI_Port_Sources
* @{
*/
#define EXTI_PortSourceGPIOA ((uint8_t)0x00)
#define EXTI_PortSourceGPIOB ((uint8_t)0x01)
#define EXTI_PortSourceGPIOC ((uint8_t)0x02)
#define EXTI_PortSourceGPIOD ((uint8_t)0x03)
#define EXTI_PortSourceGPIOE ((uint8_t)0x04)
#define EXTI_PortSourceGPIOH ((uint8_t)0x05)
#define EXTI_PortSourceGPIOF ((uint8_t)0x06)
#define EXTI_PortSourceGPIOG ((uint8_t)0x07)
#define IS_EXTI_PORT_SOURCE(PORTSOURCE) (((PORTSOURCE) == EXTI_PortSourceGPIOA) || \
((PORTSOURCE) == EXTI_PortSourceGPIOB) || \
((PORTSOURCE) == EXTI_PortSourceGPIOC) || \
((PORTSOURCE) == EXTI_PortSourceGPIOD) || \
((PORTSOURCE) == EXTI_PortSourceGPIOE) || \
((PORTSOURCE) == EXTI_PortSourceGPIOF) || \
((PORTSOURCE) == EXTI_PortSourceGPIOG) || \
((PORTSOURCE) == EXTI_PortSourceGPIOH))
/**
* @}
*/
/** @defgroup EXTI_Pin_sources
* @{
*/
#define EXTI_PinSource0 ((uint8_t)0x00)
#define EXTI_PinSource1 ((uint8_t)0x01)
#define EXTI_PinSource2 ((uint8_t)0x02)
#define EXTI_PinSource3 ((uint8_t)0x03)
#define EXTI_PinSource4 ((uint8_t)0x04)
#define EXTI_PinSource5 ((uint8_t)0x05)
#define EXTI_PinSource6 ((uint8_t)0x06)
#define EXTI_PinSource7 ((uint8_t)0x07)
#define EXTI_PinSource8 ((uint8_t)0x08)
#define EXTI_PinSource9 ((uint8_t)0x09)
#define EXTI_PinSource10 ((uint8_t)0x0A)
#define EXTI_PinSource11 ((uint8_t)0x0B)
#define EXTI_PinSource12 ((uint8_t)0x0C)
#define EXTI_PinSource13 ((uint8_t)0x0D)
#define EXTI_PinSource14 ((uint8_t)0x0E)
#define EXTI_PinSource15 ((uint8_t)0x0F)
#define IS_EXTI_PIN_SOURCE(PINSOURCE) (((PINSOURCE) == EXTI_PinSource0) || \
((PINSOURCE) == EXTI_PinSource1) || \
((PINSOURCE) == EXTI_PinSource2) || \
((PINSOURCE) == EXTI_PinSource3) || \
((PINSOURCE) == EXTI_PinSource4) || \
((PINSOURCE) == EXTI_PinSource5) || \
((PINSOURCE) == EXTI_PinSource6) || \
((PINSOURCE) == EXTI_PinSource7) || \
((PINSOURCE) == EXTI_PinSource8) || \
((PINSOURCE) == EXTI_PinSource9) || \
((PINSOURCE) == EXTI_PinSource10) || \
((PINSOURCE) == EXTI_PinSource11) || \
((PINSOURCE) == EXTI_PinSource12) || \
((PINSOURCE) == EXTI_PinSource13) || \
((PINSOURCE) == EXTI_PinSource14) || \
((PINSOURCE) == EXTI_PinSource15))
/**
* @}
*/
/** @defgroup SYSCFG_Memory_Remap_Config
* @{
*/
#define SYSCFG_MemoryRemap_Flash ((uint8_t)0x00)
#define SYSCFG_MemoryRemap_SystemFlash ((uint8_t)0x01)
#define SYSCFG_MemoryRemap_FSMC ((uint8_t)0x02)
#define SYSCFG_MemoryRemap_SRAM ((uint8_t)0x03)
#define IS_SYSCFG_MEMORY_REMAP_CONFING(REMAP) (((REMAP) == SYSCFG_MemoryRemap_Flash) || \
((REMAP) == SYSCFG_MemoryRemap_SystemFlash) || \
((REMAP) == SYSCFG_MemoryRemap_FSMC) || \
((REMAP) == SYSCFG_MemoryRemap_SRAM))
/**
* @}
*/
/** @defgroup RI_Resistor
* @{
*/
#define RI_Resistor_10KPU COMP_CSR_10KPU
#define RI_Resistor_400KPU COMP_CSR_400KPU
#define RI_Resistor_10KPD COMP_CSR_10KPD
#define RI_Resistor_400KPD COMP_CSR_400KPD
#define IS_RI_RESISTOR(RESISTOR) (((RESISTOR) == COMP_CSR_10KPU) || \
((RESISTOR) == COMP_CSR_400KPU) || \
((RESISTOR) == COMP_CSR_10KPD) || \
((RESISTOR) == COMP_CSR_400KPD))
/**
* @}
*/
/** @defgroup RI_Channel
* @{
*/
#define RI_Channel_3 ((uint32_t)0x04000000)
#define RI_Channel_8 ((uint32_t)0x08000000)
#define RI_Channel_13 ((uint32_t)0x10000000)
#define IS_RI_CHANNEL(CHANNEL) (((CHANNEL) == RI_Channel_3) || \
((CHANNEL) == RI_Channel_8) || \
((CHANNEL) == RI_Channel_13))
/**
* @}
*/
/** @defgroup RI_ChannelSpeed
* @{
*/
#define RI_ChannelSpeed_Fast ((uint32_t)0x00000000)
#define RI_ChannelSpeed_Slow ((uint32_t)0x00000001)
#define IS_RI_CHANNELSPEED(SPEED) (((SPEED) == RI_ChannelSpeed_Fast) || \
((SPEED) == RI_ChannelSpeed_Slow))
/**
* @}
*/
/** @defgroup RI_InputCapture
* @{
*/
#define RI_InputCapture_IC1 RI_ICR_IC1 /*!< Input Capture 1 */
#define RI_InputCapture_IC2 RI_ICR_IC2 /*!< Input Capture 2 */
#define RI_InputCapture_IC3 RI_ICR_IC3 /*!< Input Capture 3 */
#define RI_InputCapture_IC4 RI_ICR_IC4 /*!< Input Capture 4 */
#define IS_RI_INPUTCAPTURE(INPUTCAPTURE) ((((INPUTCAPTURE) & (uint32_t)0xFFC2FFFF) == 0x00) && ((INPUTCAPTURE) != (uint32_t)0x00))
/**
* @}
*/
/** @defgroup TIM_Select
* @{
*/
#define TIM_Select_None ((uint32_t)0x00000000) /*!< None selected */
#define TIM_Select_TIM2 ((uint32_t)0x00010000) /*!< Timer 2 selected */
#define TIM_Select_TIM3 ((uint32_t)0x00020000) /*!< Timer 3 selected */
#define TIM_Select_TIM4 ((uint32_t)0x00030000) /*!< Timer 4 selected */
#define IS_RI_TIM(TIM) (((TIM) == TIM_Select_None) || \
((TIM) == TIM_Select_TIM2) || \
((TIM) == TIM_Select_TIM3) || \
((TIM) == TIM_Select_TIM4))
/**
* @}
*/
/** @defgroup RI_InputCaptureRouting
* @{
*/
/* TIMx_IC1 TIMx_IC2 TIMx_IC3 TIMx_IC4 */
#define RI_InputCaptureRouting_0 ((uint32_t)0x00000000) /* PA0 PA1 PA2 PA3 */
#define RI_InputCaptureRouting_1 ((uint32_t)0x00000001) /* PA4 PA5 PA6 PA7 */
#define RI_InputCaptureRouting_2 ((uint32_t)0x00000002) /* PA8 PA9 PA10 PA11 */
#define RI_InputCaptureRouting_3 ((uint32_t)0x00000003) /* PA12 PA13 PA14 PA15 */
#define RI_InputCaptureRouting_4 ((uint32_t)0x00000004) /* PC0 PC1 PC2 PC3 */
#define RI_InputCaptureRouting_5 ((uint32_t)0x00000005) /* PC4 PC5 PC6 PC7 */
#define RI_InputCaptureRouting_6 ((uint32_t)0x00000006) /* PC8 PC9 PC10 PC11 */
#define RI_InputCaptureRouting_7 ((uint32_t)0x00000007) /* PC12 PC13 PC14 PC15 */
#define RI_InputCaptureRouting_8 ((uint32_t)0x00000008) /* PD0 PD1 PD2 PD3 */
#define RI_InputCaptureRouting_9 ((uint32_t)0x00000009) /* PD4 PD5 PD6 PD7 */
#define RI_InputCaptureRouting_10 ((uint32_t)0x0000000A) /* PD8 PD9 PD10 PD11 */
#define RI_InputCaptureRouting_11 ((uint32_t)0x0000000B) /* PD12 PD13 PD14 PD15 */
#define RI_InputCaptureRouting_12 ((uint32_t)0x0000000C) /* PE0 PE1 PE2 PE3 */
#define RI_InputCaptureRouting_13 ((uint32_t)0x0000000D) /* PE4 PE5 PE6 PE7 */
#define RI_InputCaptureRouting_14 ((uint32_t)0x0000000E) /* PE8 PE9 PE10 PE11 */
#define RI_InputCaptureRouting_15 ((uint32_t)0x0000000F) /* PE12 PE13 PE14 PE15 */
#define IS_RI_INPUTCAPTURE_ROUTING(ROUTING) (((ROUTING) == RI_InputCaptureRouting_0) || \
((ROUTING) == RI_InputCaptureRouting_1) || \
((ROUTING) == RI_InputCaptureRouting_2) || \
((ROUTING) == RI_InputCaptureRouting_3) || \
((ROUTING) == RI_InputCaptureRouting_4) || \
((ROUTING) == RI_InputCaptureRouting_5) || \
((ROUTING) == RI_InputCaptureRouting_6) || \
((ROUTING) == RI_InputCaptureRouting_7) || \
((ROUTING) == RI_InputCaptureRouting_8) || \
((ROUTING) == RI_InputCaptureRouting_9) || \
((ROUTING) == RI_InputCaptureRouting_10) || \
((ROUTING) == RI_InputCaptureRouting_11) || \
((ROUTING) == RI_InputCaptureRouting_12) || \
((ROUTING) == RI_InputCaptureRouting_13) || \
((ROUTING) == RI_InputCaptureRouting_14) || \
((ROUTING) == RI_InputCaptureRouting_15))
/**
* @}
*/
/** @defgroup RI_IOSwitch
* @{
*/
/* ASCR1 I/O switch: bit 31 is set to '1' to indicate that the mask is in ASCR1 register */
#define RI_IOSwitch_CH0 ((uint32_t)0x80000001)
#define RI_IOSwitch_CH1 ((uint32_t)0x80000002)
#define RI_IOSwitch_CH2 ((uint32_t)0x80000004)
#define RI_IOSwitch_CH3 ((uint32_t)0x80000008)
#define RI_IOSwitch_CH4 ((uint32_t)0x80000010)
#define RI_IOSwitch_CH5 ((uint32_t)0x80000020)
#define RI_IOSwitch_CH6 ((uint32_t)0x80000040)
#define RI_IOSwitch_CH7 ((uint32_t)0x80000080)
#define RI_IOSwitch_CH8 ((uint32_t)0x80000100)
#define RI_IOSwitch_CH9 ((uint32_t)0x80000200)
#define RI_IOSwitch_CH10 ((uint32_t)0x80000400)
#define RI_IOSwitch_CH11 ((uint32_t)0x80000800)
#define RI_IOSwitch_CH12 ((uint32_t)0x80001000)
#define RI_IOSwitch_CH13 ((uint32_t)0x80002000)
#define RI_IOSwitch_CH14 ((uint32_t)0x80004000)
#define RI_IOSwitch_CH15 ((uint32_t)0x80008000)
#define RI_IOSwitch_CH31 ((uint32_t)0x80010000)
#define RI_IOSwitch_CH18 ((uint32_t)0x80040000)
#define RI_IOSwitch_CH19 ((uint32_t)0x80080000)
#define RI_IOSwitch_CH20 ((uint32_t)0x80100000)
#define RI_IOSwitch_CH21 ((uint32_t)0x80200000)
#define RI_IOSwitch_CH22 ((uint32_t)0x80400000)
#define RI_IOSwitch_CH23 ((uint32_t)0x80800000)
#define RI_IOSwitch_CH24 ((uint32_t)0x81000000)
#define RI_IOSwitch_CH25 ((uint32_t)0x82000000)
#define RI_IOSwitch_VCOMP ((uint32_t)0x84000000) /* VCOMP is an internal switch used to connect
selected channel to COMP1 non inverting input */
#define RI_IOSwitch_CH27 ((uint32_t)0x88000000)
#define RI_IOSwitch_CH28 ((uint32_t)0x90000000)
#define RI_IOSwitch_CH29 ((uint32_t)0xA0000000)
#define RI_IOSwitch_CH30 ((uint32_t)0xC0000000)
/* ASCR2 IO switch: bit 31 is set to '0' to indicate that the mask is in ASCR2 register */
#define RI_IOSwitch_GR10_1 ((uint32_t)0x00000001)
#define RI_IOSwitch_GR10_2 ((uint32_t)0x00000002)
#define RI_IOSwitch_GR10_3 ((uint32_t)0x00000004)
#define RI_IOSwitch_GR10_4 ((uint32_t)0x00000008)
#define RI_IOSwitch_GR6_1 ((uint32_t)0x00000010)
#define RI_IOSwitch_GR6_2 ((uint32_t)0x00000020)
#define RI_IOSwitch_GR5_1 ((uint32_t)0x00000040)
#define RI_IOSwitch_GR5_2 ((uint32_t)0x00000080)
#define RI_IOSwitch_GR5_3 ((uint32_t)0x00000100)
#define RI_IOSwitch_GR4_1 ((uint32_t)0x00000200)
#define RI_IOSwitch_GR4_2 ((uint32_t)0x00000400)
#define RI_IOSwitch_GR4_3 ((uint32_t)0x00000800)
#define RI_IOSwitch_GR4_4 ((uint32_t)0x00008000)
#define RI_IOSwitch_CH0b ((uint32_t)0x00010000)
#define RI_IOSwitch_CH1b ((uint32_t)0x00020000)
#define RI_IOSwitch_CH2b ((uint32_t)0x00040000)
#define RI_IOSwitch_CH3b ((uint32_t)0x00080000)
#define RI_IOSwitch_CH6b ((uint32_t)0x00100000)
#define RI_IOSwitch_CH7b ((uint32_t)0x00200000)
#define RI_IOSwitch_CH8b ((uint32_t)0x00400000)
#define RI_IOSwitch_CH9b ((uint32_t)0x00800000)
#define RI_IOSwitch_CH10b ((uint32_t)0x01000000)
#define RI_IOSwitch_CH11b ((uint32_t)0x02000000)
#define RI_IOSwitch_CH12b ((uint32_t)0x04000000)
#define RI_IOSwitch_GR6_3 ((uint32_t)0x08000000)
#define RI_IOSwitch_GR6_4 ((uint32_t)0x10000000)
#define RI_IOSwitch_GR5_4 ((uint32_t)0x20000000)
#define IS_RI_IOSWITCH(IOSWITCH) (((IOSWITCH) == RI_IOSwitch_CH0) || \
((IOSWITCH) == RI_IOSwitch_CH1) || \
((IOSWITCH) == RI_IOSwitch_CH2) || \
((IOSWITCH) == RI_IOSwitch_CH3) || \
((IOSWITCH) == RI_IOSwitch_CH4) || \
((IOSWITCH) == RI_IOSwitch_CH5) || \
((IOSWITCH) == RI_IOSwitch_CH6) || \
((IOSWITCH) == RI_IOSwitch_CH7) || \
((IOSWITCH) == RI_IOSwitch_CH8) || \
((IOSWITCH) == RI_IOSwitch_CH9) || \
((IOSWITCH) == RI_IOSwitch_CH10) || \
((IOSWITCH) == RI_IOSwitch_CH11) || \
((IOSWITCH) == RI_IOSwitch_CH12) || \
((IOSWITCH) == RI_IOSwitch_CH13) || \
((IOSWITCH) == RI_IOSwitch_CH14) || \
((IOSWITCH) == RI_IOSwitch_CH15) || \
((IOSWITCH) == RI_IOSwitch_CH18) || \
((IOSWITCH) == RI_IOSwitch_CH19) || \
((IOSWITCH) == RI_IOSwitch_CH20) || \
((IOSWITCH) == RI_IOSwitch_CH21) || \
((IOSWITCH) == RI_IOSwitch_CH22) || \
((IOSWITCH) == RI_IOSwitch_CH23) || \
((IOSWITCH) == RI_IOSwitch_CH24) || \
((IOSWITCH) == RI_IOSwitch_CH25) || \
((IOSWITCH) == RI_IOSwitch_VCOMP) || \
((IOSWITCH) == RI_IOSwitch_CH27) || \
((IOSWITCH) == RI_IOSwitch_CH28) || \
((IOSWITCH) == RI_IOSwitch_CH29) || \
((IOSWITCH) == RI_IOSwitch_CH30) || \
((IOSWITCH) == RI_IOSwitch_CH31) || \
((IOSWITCH) == RI_IOSwitch_GR10_1) || \
((IOSWITCH) == RI_IOSwitch_GR10_2) || \
((IOSWITCH) == RI_IOSwitch_GR10_3) || \
((IOSWITCH) == RI_IOSwitch_GR10_4) || \
((IOSWITCH) == RI_IOSwitch_GR6_1) || \
((IOSWITCH) == RI_IOSwitch_GR6_2) || \
((IOSWITCH) == RI_IOSwitch_GR6_3) || \
((IOSWITCH) == RI_IOSwitch_GR6_4) || \
((IOSWITCH) == RI_IOSwitch_GR5_1) || \
((IOSWITCH) == RI_IOSwitch_GR5_2) || \
((IOSWITCH) == RI_IOSwitch_GR5_3) || \
((IOSWITCH) == RI_IOSwitch_GR5_4) || \
((IOSWITCH) == RI_IOSwitch_GR4_1) || \
((IOSWITCH) == RI_IOSwitch_GR4_2) || \
((IOSWITCH) == RI_IOSwitch_GR4_3) || \
((IOSWITCH) == RI_IOSwitch_GR4_4) || \
((IOSWITCH) == RI_IOSwitch_CH0b) || \
((IOSWITCH) == RI_IOSwitch_CH1b) || \
((IOSWITCH) == RI_IOSwitch_CH2b) || \
((IOSWITCH) == RI_IOSwitch_CH3b) || \
((IOSWITCH) == RI_IOSwitch_CH6b) || \
((IOSWITCH) == RI_IOSwitch_CH7b) || \
((IOSWITCH) == RI_IOSwitch_CH8b) || \
((IOSWITCH) == RI_IOSwitch_CH9b) || \
((IOSWITCH) == RI_IOSwitch_CH10b) || \
((IOSWITCH) == RI_IOSwitch_CH11b) || \
((IOSWITCH) == RI_IOSwitch_CH12b))
/**
* @}
*/
/** @defgroup RI_Port
* @{
*/
#define RI_PortA ((uint8_t)0x01) /*!< GPIOA selected */
#define RI_PortB ((uint8_t)0x02) /*!< GPIOB selected */
#define RI_PortC ((uint8_t)0x03) /*!< GPIOC selected */
#define RI_PortD ((uint8_t)0x04) /*!< GPIOD selected */
#define RI_PortE ((uint8_t)0x05) /*!< GPIOE selected */
#define RI_PortF ((uint8_t)0x06) /*!< GPIOF selected */
#define RI_PortG ((uint8_t)0x07) /*!< GPIOG selected */
#define IS_RI_PORT(PORT) (((PORT) == RI_PortA) || \
((PORT) == RI_PortB) || \
((PORT) == RI_PortC) || \
((PORT) == RI_PortD) || \
((PORT) == RI_PortE) || \
((PORT) == RI_PortF) || \
((PORT) == RI_PortG))
/**
* @}
*/
/** @defgroup RI_Pin define
* @{
*/
#define RI_Pin_0 ((uint16_t)0x0001) /*!< Pin 0 selected */
#define RI_Pin_1 ((uint16_t)0x0002) /*!< Pin 1 selected */
#define RI_Pin_2 ((uint16_t)0x0004) /*!< Pin 2 selected */
#define RI_Pin_3 ((uint16_t)0x0008) /*!< Pin 3 selected */
#define RI_Pin_4 ((uint16_t)0x0010) /*!< Pin 4 selected */
#define RI_Pin_5 ((uint16_t)0x0020) /*!< Pin 5 selected */
#define RI_Pin_6 ((uint16_t)0x0040) /*!< Pin 6 selected */
#define RI_Pin_7 ((uint16_t)0x0080) /*!< Pin 7 selected */
#define RI_Pin_8 ((uint16_t)0x0100) /*!< Pin 8 selected */
#define RI_Pin_9 ((uint16_t)0x0200) /*!< Pin 9 selected */
#define RI_Pin_10 ((uint16_t)0x0400) /*!< Pin 10 selected */
#define RI_Pin_11 ((uint16_t)0x0800) /*!< Pin 11 selected */
#define RI_Pin_12 ((uint16_t)0x1000) /*!< Pin 12 selected */
#define RI_Pin_13 ((uint16_t)0x2000) /*!< Pin 13 selected */
#define RI_Pin_14 ((uint16_t)0x4000) /*!< Pin 14 selected */
#define RI_Pin_15 ((uint16_t)0x8000) /*!< Pin 15 selected */
#define RI_Pin_All ((uint16_t)0xFFFF) /*!< All pins selected */
#define IS_RI_PIN(PIN) ((PIN) != (uint16_t)0x00)
/**
* @}
*/
/**
* @}
*/
/* Exported macro ------------------------------------------------------------*/
/* Exported functions ------------------------------------------------------- */
/* Function used to set the SYSCFG and RI configuration to the default reset state **/
void SYSCFG_DeInit(void);
void SYSCFG_RIDeInit(void);
/* SYSCFG Initialization and Configuration functions **************************/
void SYSCFG_MemoryRemapConfig(uint8_t SYSCFG_MemoryRemap);
uint32_t SYSCFG_GetBootMode(void);
void SYSCFG_USBPuCmd(FunctionalState NewState);
void SYSCFG_EXTILineConfig(uint8_t EXTI_PortSourceGPIOx, uint8_t EXTI_PinSourcex);
/* RI Initialization and Configuration functions ******************************/
void SYSCFG_RITIMSelect(uint32_t TIM_Select);
void SYSCFG_RITIMInputCaptureConfig(uint32_t RI_InputCapture, uint32_t RI_InputCaptureRouting);
void SYSCFG_RIResistorConfig(uint32_t RI_Resistor, FunctionalState NewState);
void SYSCFG_RIChannelSpeedConfig(uint32_t RI_Channel, uint32_t RI_ChannelSpeed);
void SYSCFG_RISwitchControlModeCmd(FunctionalState NewState);
void SYSCFG_RIIOSwitchConfig(uint32_t RI_IOSwitch, FunctionalState NewState);
void SYSCFG_RIHysteresisConfig(uint8_t RI_Port, uint16_t RI_Pin, FunctionalState NewState);
#ifdef __cplusplus
}
#endif
#endif /*__STM32L1xx_SYSCFG_H */
/**
* @}
*/
/**
* @}
*/
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,977 @@
/**
******************************************************************************
* @file stm32l1xx_tim.h
* @author MCD Application Team
* @version V1.2.0
* @date 22-February-2013
* @brief This file contains all the functions prototypes for the TIM firmware
* library.
******************************************************************************
* @attention
*
* <h2><center>&copy; COPYRIGHT 2013 STMicroelectronics</center></h2>
*
* Licensed under MCD-ST Liberty SW License Agreement V2, (the "License");
* You may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.st.com/software_license_agreement_liberty_v2
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
******************************************************************************
*/
/* Define to prevent recursive inclusion -------------------------------------*/
#ifndef __STM32L1xx_TIM_H
#define __STM32L1xx_TIM_H
#ifdef __cplusplus
extern "C" {
#endif
/* Includes ------------------------------------------------------------------*/
#include "stm32l1xx.h"
/** @addtogroup STM32L1xx_StdPeriph_Driver
* @{
*/
/** @addtogroup TIM
* @{
*/
/* Exported types ------------------------------------------------------------*/
/**
* @brief TIM Time Base Init structure definition
* @note This structure is used with all TIMx except for TIM6 and TIM7.
*/
typedef struct
{
uint16_t TIM_Prescaler; /*!< Specifies the prescaler value used to divide the TIM clock.
This parameter can be a number between 0x0000 and 0xFFFF */
uint16_t TIM_CounterMode; /*!< Specifies the counter mode.
This parameter can be a value of @ref TIM_Counter_Mode */
uint32_t TIM_Period; /*!< Specifies the period value to be loaded into the active
Auto-Reload Register at the next update event.
This parameter must be a number between 0x0000 and 0xFFFF. */
uint16_t TIM_ClockDivision; /*!< Specifies the clock division.
This parameter can be a value of @ref TIM_Clock_Division_CKD */
} TIM_TimeBaseInitTypeDef;
/**
* @brief TIM Output Compare Init structure definition
*/
typedef struct
{
uint16_t TIM_OCMode; /*!< Specifies the TIM mode.
This parameter can be a value of @ref TIM_Output_Compare_and_PWM_modes */
uint16_t TIM_OutputState; /*!< Specifies the TIM Output Compare state.
This parameter can be a value of @ref TIM_Output_Compare_state */
uint32_t TIM_Pulse; /*!< Specifies the pulse value to be loaded into the Capture Compare Register.
This parameter can be a number between 0x0000 and 0xFFFF */
uint16_t TIM_OCPolarity; /*!< Specifies the output polarity.
This parameter can be a value of @ref TIM_Output_Compare_Polarity */
} TIM_OCInitTypeDef;
/**
* @brief TIM Input Capture Init structure definition
*/
typedef struct
{
uint16_t TIM_Channel; /*!< Specifies the TIM channel.
This parameter can be a value of @ref TIM_Channel */
uint16_t TIM_ICPolarity; /*!< Specifies the active edge of the input signal.
This parameter can be a value of @ref TIM_Input_Capture_Polarity */
uint16_t TIM_ICSelection; /*!< Specifies the input.
This parameter can be a value of @ref TIM_Input_Capture_Selection */
uint16_t TIM_ICPrescaler; /*!< Specifies the Input Capture Prescaler.
This parameter can be a value of @ref TIM_Input_Capture_Prescaler */
uint16_t TIM_ICFilter; /*!< Specifies the input capture filter.
This parameter can be a number between 0x0 and 0xF */
} TIM_ICInitTypeDef;
/* Exported constants --------------------------------------------------------*/
/** @defgroup TIM_Exported_constants
* @{
*/
#define IS_TIM_ALL_PERIPH(PERIPH) (((PERIPH) == TIM2) || \
((PERIPH) == TIM3) || \
((PERIPH) == TIM4) || \
((PERIPH) == TIM5) || \
((PERIPH) == TIM6) || \
((PERIPH) == TIM7) || \
((PERIPH) == TIM9) || \
((PERIPH) == TIM10) || \
((PERIPH) == TIM11))
/* LIST1: TIM2, TIM3, TIM4, TIM5, TIM9, TIM10 and TIM11 */
#define IS_TIM_LIST1_PERIPH(PERIPH) (((PERIPH) == TIM2) || \
((PERIPH) == TIM3) || \
((PERIPH) == TIM4) || \
((PERIPH) == TIM5) || \
((PERIPH) == TIM9) || \
((PERIPH) == TIM10) || \
((PERIPH) == TIM11))
/* LIST3: TIM2, TIM3, TIM4 and TIM5 */
#define IS_TIM_LIST3_PERIPH(PERIPH) (((PERIPH) == TIM2) || \
((PERIPH) == TIM3) || \
((PERIPH) == TIM4) || \
((PERIPH) == TIM5))
/* LIST2: TIM2, TIM3, TIM4, TIM5 and TIM9 */
#define IS_TIM_LIST2_PERIPH(PERIPH) (((PERIPH) == TIM2) || \
((PERIPH) == TIM3) || \
((PERIPH) == TIM4) || \
((PERIPH) == TIM5) || \
((PERIPH) == TIM9))
/* LIST5: TIM2, TIM3, TIM4, TIM5, TIM6, TIM7 and TIM9 */
#define IS_TIM_LIST5_PERIPH(PERIPH) (((PERIPH) == TIM2) || \
((PERIPH) == TIM3) || \
((PERIPH) == TIM4) || \
((PERIPH) == TIM5) ||\
((PERIPH) == TIM6) || \
((PERIPH) == TIM7) ||\
((PERIPH) == TIM9))
/* LIST4: TIM2, TIM3, TIM4, TIM5, TIM6 and TIM7 */
#define IS_TIM_LIST4_PERIPH(PERIPH) (((PERIPH) == TIM2) || \
((PERIPH) == TIM3) || \
((PERIPH) == TIM4) || \
((PERIPH) == TIM5) ||\
((PERIPH) == TIM6) || \
((PERIPH) == TIM7))
/* LIST6: TIM2, TIM3, TIM9, TIM10 and TIM11 */
#define IS_TIM_LIST6_PERIPH(PERIPH) (((PERIPH) == TIM2) || \
((PERIPH) == TIM3) || \
((PERIPH) == TIM9) || \
((PERIPH) == TIM10) || \
((PERIPH) == TIM11))
/** @defgroup TIM_Output_Compare_and_PWM_modes
* @{
*/
#define TIM_OCMode_Timing ((uint16_t)0x0000)
#define TIM_OCMode_Active ((uint16_t)0x0010)
#define TIM_OCMode_Inactive ((uint16_t)0x0020)
#define TIM_OCMode_Toggle ((uint16_t)0x0030)
#define TIM_OCMode_PWM1 ((uint16_t)0x0060)
#define TIM_OCMode_PWM2 ((uint16_t)0x0070)
#define IS_TIM_OC_MODE(MODE) (((MODE) == TIM_OCMode_Timing) || \
((MODE) == TIM_OCMode_Active) || \
((MODE) == TIM_OCMode_Inactive) || \
((MODE) == TIM_OCMode_Toggle)|| \
((MODE) == TIM_OCMode_PWM1) || \
((MODE) == TIM_OCMode_PWM2))
#define IS_TIM_OCM(MODE) (((MODE) == TIM_OCMode_Timing) || \
((MODE) == TIM_OCMode_Active) || \
((MODE) == TIM_OCMode_Inactive) || \
((MODE) == TIM_OCMode_Toggle)|| \
((MODE) == TIM_OCMode_PWM1) || \
((MODE) == TIM_OCMode_PWM2) || \
((MODE) == TIM_ForcedAction_Active) || \
((MODE) == TIM_ForcedAction_InActive))
/**
* @}
*/
/** @defgroup TIM_One_Pulse_Mode
* @{
*/
#define TIM_OPMode_Single ((uint16_t)0x0008)
#define TIM_OPMode_Repetitive ((uint16_t)0x0000)
#define IS_TIM_OPM_MODE(MODE) (((MODE) == TIM_OPMode_Single) || \
((MODE) == TIM_OPMode_Repetitive))
/**
* @}
*/
/** @defgroup TIM_Channel
* @{
*/
#define TIM_Channel_1 ((uint16_t)0x0000)
#define TIM_Channel_2 ((uint16_t)0x0004)
#define TIM_Channel_3 ((uint16_t)0x0008)
#define TIM_Channel_4 ((uint16_t)0x000C)
#define IS_TIM_CHANNEL(CHANNEL) (((CHANNEL) == TIM_Channel_1) || \
((CHANNEL) == TIM_Channel_2) || \
((CHANNEL) == TIM_Channel_3) || \
((CHANNEL) == TIM_Channel_4))
#define IS_TIM_PWMI_CHANNEL(CHANNEL) (((CHANNEL) == TIM_Channel_1) || \
((CHANNEL) == TIM_Channel_2))
/**
* @}
*/
/** @defgroup TIM_Clock_Division_CKD
* @{
*/
#define TIM_CKD_DIV1 ((uint16_t)0x0000)
#define TIM_CKD_DIV2 ((uint16_t)0x0100)
#define TIM_CKD_DIV4 ((uint16_t)0x0200)
#define IS_TIM_CKD_DIV(DIV) (((DIV) == TIM_CKD_DIV1) || \
((DIV) == TIM_CKD_DIV2) || \
((DIV) == TIM_CKD_DIV4))
/**
* @}
*/
/** @defgroup TIM_Counter_Mode
* @{
*/
#define TIM_CounterMode_Up ((uint16_t)0x0000)
#define TIM_CounterMode_Down ((uint16_t)0x0010)
#define TIM_CounterMode_CenterAligned1 ((uint16_t)0x0020)
#define TIM_CounterMode_CenterAligned2 ((uint16_t)0x0040)
#define TIM_CounterMode_CenterAligned3 ((uint16_t)0x0060)
#define IS_TIM_COUNTER_MODE(MODE) (((MODE) == TIM_CounterMode_Up) || \
((MODE) == TIM_CounterMode_Down) || \
((MODE) == TIM_CounterMode_CenterAligned1) || \
((MODE) == TIM_CounterMode_CenterAligned2) || \
((MODE) == TIM_CounterMode_CenterAligned3))
/**
* @}
*/
/** @defgroup TIM_Output_Compare_Polarity
* @{
*/
#define TIM_OCPolarity_High ((uint16_t)0x0000)
#define TIM_OCPolarity_Low ((uint16_t)0x0002)
#define IS_TIM_OC_POLARITY(POLARITY) (((POLARITY) == TIM_OCPolarity_High) || \
((POLARITY) == TIM_OCPolarity_Low))
/**
* @}
*/
/** @defgroup TIM_Output_Compare_state
* @{
*/
#define TIM_OutputState_Disable ((uint16_t)0x0000)
#define TIM_OutputState_Enable ((uint16_t)0x0001)
#define IS_TIM_OUTPUT_STATE(STATE) (((STATE) == TIM_OutputState_Disable) || \
((STATE) == TIM_OutputState_Enable))
/**
* @}
*/
/** @defgroup TIM_Capture_Compare_state
* @{
*/
#define TIM_CCx_Enable ((uint16_t)0x0001)
#define TIM_CCx_Disable ((uint16_t)0x0000)
#define IS_TIM_CCX(CCX) (((CCX) == TIM_CCx_Enable) || \
((CCX) == TIM_CCx_Disable))
/**
* @}
*/
/** @defgroup TIM_Input_Capture_Polarity
* @{
*/
#define TIM_ICPolarity_Rising ((uint16_t)0x0000)
#define TIM_ICPolarity_Falling ((uint16_t)0x0002)
#define TIM_ICPolarity_BothEdge ((uint16_t)0x000A)
#define IS_TIM_IC_POLARITY(POLARITY) (((POLARITY) == TIM_ICPolarity_Rising) || \
((POLARITY) == TIM_ICPolarity_Falling)|| \
((POLARITY) == TIM_ICPolarity_BothEdge))
/**
* @}
*/
/** @defgroup TIM_Input_Capture_Selection
* @{
*/
#define TIM_ICSelection_DirectTI ((uint16_t)0x0001) /*!< TIM Input 1, 2, 3 or 4 is selected to be
connected to IC1, IC2, IC3 or IC4, respectively */
#define TIM_ICSelection_IndirectTI ((uint16_t)0x0002) /*!< TIM Input 1, 2, 3 or 4 is selected to be
connected to IC2, IC1, IC4 or IC3, respectively. */
#define TIM_ICSelection_TRC ((uint16_t)0x0003) /*!< TIM Input 1, 2, 3 or 4 is selected to be connected to TRC. */
#define IS_TIM_IC_SELECTION(SELECTION) (((SELECTION) == TIM_ICSelection_DirectTI) || \
((SELECTION) == TIM_ICSelection_IndirectTI) || \
((SELECTION) == TIM_ICSelection_TRC))
/**
* @}
*/
/** @defgroup TIM_Input_Capture_Prescaler
* @{
*/
#define TIM_ICPSC_DIV1 ((uint16_t)0x0000) /*!< Capture performed each time an edge is detected on the capture input. */
#define TIM_ICPSC_DIV2 ((uint16_t)0x0004) /*!< Capture performed once every 2 events. */
#define TIM_ICPSC_DIV4 ((uint16_t)0x0008) /*!< Capture performed once every 4 events. */
#define TIM_ICPSC_DIV8 ((uint16_t)0x000C) /*!< Capture performed once every 8 events. */
#define IS_TIM_IC_PRESCALER(PRESCALER) (((PRESCALER) == TIM_ICPSC_DIV1) || \
((PRESCALER) == TIM_ICPSC_DIV2) || \
((PRESCALER) == TIM_ICPSC_DIV4) || \
((PRESCALER) == TIM_ICPSC_DIV8))
/**
* @}
*/
/** @defgroup TIM_interrupt_sources
* @{
*/
#define TIM_IT_Update ((uint16_t)0x0001)
#define TIM_IT_CC1 ((uint16_t)0x0002)
#define TIM_IT_CC2 ((uint16_t)0x0004)
#define TIM_IT_CC3 ((uint16_t)0x0008)
#define TIM_IT_CC4 ((uint16_t)0x0010)
#define TIM_IT_Trigger ((uint16_t)0x0040)
#define IS_TIM_IT(IT) ((((IT) & (uint16_t)0xFFA0) == 0x0000) && ((IT) != 0x0000))
#define IS_TIM_GET_IT(IT) (((IT) == TIM_IT_Update) || \
((IT) == TIM_IT_CC1) || \
((IT) == TIM_IT_CC2) || \
((IT) == TIM_IT_CC3) || \
((IT) == TIM_IT_CC4) || \
((IT) == TIM_IT_Trigger))
/**
* @}
*/
/** @defgroup TIM_DMA_Base_address
* @{
*/
#define TIM_DMABase_CR1 ((uint16_t)0x0000)
#define TIM_DMABase_CR2 ((uint16_t)0x0001)
#define TIM_DMABase_SMCR ((uint16_t)0x0002)
#define TIM_DMABase_DIER ((uint16_t)0x0003)
#define TIM_DMABase_SR ((uint16_t)0x0004)
#define TIM_DMABase_EGR ((uint16_t)0x0005)
#define TIM_DMABase_CCMR1 ((uint16_t)0x0006)
#define TIM_DMABase_CCMR2 ((uint16_t)0x0007)
#define TIM_DMABase_CCER ((uint16_t)0x0008)
#define TIM_DMABase_CNT ((uint16_t)0x0009)
#define TIM_DMABase_PSC ((uint16_t)0x000A)
#define TIM_DMABase_ARR ((uint16_t)0x000B)
#define TIM_DMABase_CCR1 ((uint16_t)0x000D)
#define TIM_DMABase_CCR2 ((uint16_t)0x000E)
#define TIM_DMABase_CCR3 ((uint16_t)0x000F)
#define TIM_DMABase_CCR4 ((uint16_t)0x0010)
#define TIM_DMABase_DCR ((uint16_t)0x0012)
#define TIM_DMABase_OR ((uint16_t)0x0013)
#define IS_TIM_DMA_BASE(BASE) (((BASE) == TIM_DMABase_CR1) || \
((BASE) == TIM_DMABase_CR2) || \
((BASE) == TIM_DMABase_SMCR) || \
((BASE) == TIM_DMABase_DIER) || \
((BASE) == TIM_DMABase_SR) || \
((BASE) == TIM_DMABase_EGR) || \
((BASE) == TIM_DMABase_CCMR1) || \
((BASE) == TIM_DMABase_CCMR2) || \
((BASE) == TIM_DMABase_CCER) || \
((BASE) == TIM_DMABase_CNT) || \
((BASE) == TIM_DMABase_PSC) || \
((BASE) == TIM_DMABase_ARR) || \
((BASE) == TIM_DMABase_CCR1) || \
((BASE) == TIM_DMABase_CCR2) || \
((BASE) == TIM_DMABase_CCR3) || \
((BASE) == TIM_DMABase_CCR4) || \
((BASE) == TIM_DMABase_DCR) || \
((BASE) == TIM_DMABase_OR))
/**
* @}
*/
/** @defgroup TIM_DMA_Burst_Length
* @{
*/
#define TIM_DMABurstLength_1Transfer ((uint16_t)0x0000)
#define TIM_DMABurstLength_2Transfers ((uint16_t)0x0100)
#define TIM_DMABurstLength_3Transfers ((uint16_t)0x0200)
#define TIM_DMABurstLength_4Transfers ((uint16_t)0x0300)
#define TIM_DMABurstLength_5Transfers ((uint16_t)0x0400)
#define TIM_DMABurstLength_6Transfers ((uint16_t)0x0500)
#define TIM_DMABurstLength_7Transfers ((uint16_t)0x0600)
#define TIM_DMABurstLength_8Transfers ((uint16_t)0x0700)
#define TIM_DMABurstLength_9Transfers ((uint16_t)0x0800)
#define TIM_DMABurstLength_10Transfers ((uint16_t)0x0900)
#define TIM_DMABurstLength_11Transfers ((uint16_t)0x0A00)
#define TIM_DMABurstLength_12Transfers ((uint16_t)0x0B00)
#define TIM_DMABurstLength_13Transfers ((uint16_t)0x0C00)
#define TIM_DMABurstLength_14Transfers ((uint16_t)0x0D00)
#define TIM_DMABurstLength_15Transfers ((uint16_t)0x0E00)
#define TIM_DMABurstLength_16Transfers ((uint16_t)0x0F00)
#define TIM_DMABurstLength_17Transfers ((uint16_t)0x1000)
#define TIM_DMABurstLength_18Transfers ((uint16_t)0x1100)
#define IS_TIM_DMA_LENGTH(LENGTH) (((LENGTH) == TIM_DMABurstLength_1Transfer) || \
((LENGTH) == TIM_DMABurstLength_2Transfers) || \
((LENGTH) == TIM_DMABurstLength_3Transfers) || \
((LENGTH) == TIM_DMABurstLength_4Transfers) || \
((LENGTH) == TIM_DMABurstLength_5Transfers) || \
((LENGTH) == TIM_DMABurstLength_6Transfers) || \
((LENGTH) == TIM_DMABurstLength_7Transfers) || \
((LENGTH) == TIM_DMABurstLength_8Transfers) || \
((LENGTH) == TIM_DMABurstLength_9Transfers) || \
((LENGTH) == TIM_DMABurstLength_10Transfers) || \
((LENGTH) == TIM_DMABurstLength_11Transfers) || \
((LENGTH) == TIM_DMABurstLength_12Transfers) || \
((LENGTH) == TIM_DMABurstLength_13Transfers) || \
((LENGTH) == TIM_DMABurstLength_14Transfers) || \
((LENGTH) == TIM_DMABurstLength_15Transfers) || \
((LENGTH) == TIM_DMABurstLength_16Transfers) || \
((LENGTH) == TIM_DMABurstLength_17Transfers) || \
((LENGTH) == TIM_DMABurstLength_18Transfers))
/**
* @}
*/
/** @defgroup TIM_DMA_sources
* @{
*/
#define TIM_DMA_Update ((uint16_t)0x0100)
#define TIM_DMA_CC1 ((uint16_t)0x0200)
#define TIM_DMA_CC2 ((uint16_t)0x0400)
#define TIM_DMA_CC3 ((uint16_t)0x0800)
#define TIM_DMA_CC4 ((uint16_t)0x1000)
#define TIM_DMA_Trigger ((uint16_t)0x4000)
#define IS_TIM_DMA_SOURCE(SOURCE) ((((SOURCE) & (uint16_t)0xA0FF) == 0x0000) && ((SOURCE) != 0x0000))
/**
* @}
*/
/** @defgroup TIM_External_Trigger_Prescaler
* @{
*/
#define TIM_ExtTRGPSC_OFF ((uint16_t)0x0000)
#define TIM_ExtTRGPSC_DIV2 ((uint16_t)0x1000)
#define TIM_ExtTRGPSC_DIV4 ((uint16_t)0x2000)
#define TIM_ExtTRGPSC_DIV8 ((uint16_t)0x3000)
#define IS_TIM_EXT_PRESCALER(PRESCALER) (((PRESCALER) == TIM_ExtTRGPSC_OFF) || \
((PRESCALER) == TIM_ExtTRGPSC_DIV2) || \
((PRESCALER) == TIM_ExtTRGPSC_DIV4) || \
((PRESCALER) == TIM_ExtTRGPSC_DIV8))
/**
* @}
*/
/** @defgroup TIM_Internal_Trigger_Selection
* @{
*/
#define TIM_TS_ITR0 ((uint16_t)0x0000)
#define TIM_TS_ITR1 ((uint16_t)0x0010)
#define TIM_TS_ITR2 ((uint16_t)0x0020)
#define TIM_TS_ITR3 ((uint16_t)0x0030)
#define TIM_TS_TI1F_ED ((uint16_t)0x0040)
#define TIM_TS_TI1FP1 ((uint16_t)0x0050)
#define TIM_TS_TI2FP2 ((uint16_t)0x0060)
#define TIM_TS_ETRF ((uint16_t)0x0070)
#define IS_TIM_TRIGGER_SELECTION(SELECTION) (((SELECTION) == TIM_TS_ITR0) || \
((SELECTION) == TIM_TS_ITR1) || \
((SELECTION) == TIM_TS_ITR2) || \
((SELECTION) == TIM_TS_ITR3) || \
((SELECTION) == TIM_TS_TI1F_ED) || \
((SELECTION) == TIM_TS_TI1FP1) || \
((SELECTION) == TIM_TS_TI2FP2) || \
((SELECTION) == TIM_TS_ETRF))
#define IS_TIM_INTERNAL_TRIGGER_SELECTION(SELECTION) (((SELECTION) == TIM_TS_ITR0) || \
((SELECTION) == TIM_TS_ITR1) || \
((SELECTION) == TIM_TS_ITR2) || \
((SELECTION) == TIM_TS_ITR3))
/**
* @}
*/
/** @defgroup TIM_TIx_External_Clock_Source
* @{
*/
#define TIM_TIxExternalCLK1Source_TI1 ((uint16_t)0x0050)
#define TIM_TIxExternalCLK1Source_TI2 ((uint16_t)0x0060)
#define TIM_TIxExternalCLK1Source_TI1ED ((uint16_t)0x0040)
/**
* @}
*/
/** @defgroup TIM_External_Trigger_Polarity
* @{
*/
#define TIM_ExtTRGPolarity_Inverted ((uint16_t)0x8000)
#define TIM_ExtTRGPolarity_NonInverted ((uint16_t)0x0000)
#define IS_TIM_EXT_POLARITY(POLARITY) (((POLARITY) == TIM_ExtTRGPolarity_Inverted) || \
((POLARITY) == TIM_ExtTRGPolarity_NonInverted))
/**
* @}
*/
/** @defgroup TIM_Prescaler_Reload_Mode
* @{
*/
#define TIM_PSCReloadMode_Update ((uint16_t)0x0000)
#define TIM_PSCReloadMode_Immediate ((uint16_t)0x0001)
#define IS_TIM_PRESCALER_RELOAD(RELOAD) (((RELOAD) == TIM_PSCReloadMode_Update) || \
((RELOAD) == TIM_PSCReloadMode_Immediate))
/**
* @}
*/
/** @defgroup TIM_Forced_Action
* @{
*/
#define TIM_ForcedAction_Active ((uint16_t)0x0050)
#define TIM_ForcedAction_InActive ((uint16_t)0x0040)
#define IS_TIM_FORCED_ACTION(ACTION) (((ACTION) == TIM_ForcedAction_Active) || \
((ACTION) == TIM_ForcedAction_InActive))
/**
* @}
*/
/** @defgroup TIM_Encoder_Mode
* @{
*/
#define TIM_EncoderMode_TI1 ((uint16_t)0x0001)
#define TIM_EncoderMode_TI2 ((uint16_t)0x0002)
#define TIM_EncoderMode_TI12 ((uint16_t)0x0003)
#define IS_TIM_ENCODER_MODE(MODE) (((MODE) == TIM_EncoderMode_TI1) || \
((MODE) == TIM_EncoderMode_TI2) || \
((MODE) == TIM_EncoderMode_TI12))
/**
* @}
*/
/** @defgroup TIM_Event_Source
* @{
*/
#define TIM_EventSource_Update ((uint16_t)0x0001)
#define TIM_EventSource_CC1 ((uint16_t)0x0002)
#define TIM_EventSource_CC2 ((uint16_t)0x0004)
#define TIM_EventSource_CC3 ((uint16_t)0x0008)
#define TIM_EventSource_CC4 ((uint16_t)0x0010)
#define TIM_EventSource_Trigger ((uint16_t)0x0040)
#define IS_TIM_EVENT_SOURCE(SOURCE) ((((SOURCE) & (uint16_t)0xFFA0) == 0x0000) && ((SOURCE) != 0x0000))
/**
* @}
*/
/** @defgroup TIM_Update_Source
* @{
*/
#define TIM_UpdateSource_Global ((uint16_t)0x0000) /*!< Source of update is the counter overflow/underflow
or the setting of UG bit, or an update generation
through the slave mode controller. */
#define TIM_UpdateSource_Regular ((uint16_t)0x0001) /*!< Source of update is counter overflow/underflow. */
#define IS_TIM_UPDATE_SOURCE(SOURCE) (((SOURCE) == TIM_UpdateSource_Global) || \
((SOURCE) == TIM_UpdateSource_Regular))
/**
* @}
*/
/** @defgroup TIM_Output_Compare_Preload_State
* @{
*/
#define TIM_OCPreload_Enable ((uint16_t)0x0008)
#define TIM_OCPreload_Disable ((uint16_t)0x0000)
#define IS_TIM_OCPRELOAD_STATE(STATE) (((STATE) == TIM_OCPreload_Enable) || \
((STATE) == TIM_OCPreload_Disable))
/**
* @}
*/
/** @defgroup TIM_Output_Compare_Fast_State
* @{
*/
#define TIM_OCFast_Enable ((uint16_t)0x0004)
#define TIM_OCFast_Disable ((uint16_t)0x0000)
#define IS_TIM_OCFAST_STATE(STATE) (((STATE) == TIM_OCFast_Enable) || \
((STATE) == TIM_OCFast_Disable))
/**
* @}
*/
/** @defgroup TIM_Output_Compare_Clear_State
* @{
*/
#define TIM_OCClear_Enable ((uint16_t)0x0080)
#define TIM_OCClear_Disable ((uint16_t)0x0000)
#define IS_TIM_OCCLEAR_STATE(STATE) (((STATE) == TIM_OCClear_Enable) || \
((STATE) == TIM_OCClear_Disable))
/**
* @}
*/
/** @defgroup TIM_Trigger_Output_Source
* @{
*/
#define TIM_TRGOSource_Reset ((uint16_t)0x0000)
#define TIM_TRGOSource_Enable ((uint16_t)0x0010)
#define TIM_TRGOSource_Update ((uint16_t)0x0020)
#define TIM_TRGOSource_OC1 ((uint16_t)0x0030)
#define TIM_TRGOSource_OC1Ref ((uint16_t)0x0040)
#define TIM_TRGOSource_OC2Ref ((uint16_t)0x0050)
#define TIM_TRGOSource_OC3Ref ((uint16_t)0x0060)
#define TIM_TRGOSource_OC4Ref ((uint16_t)0x0070)
#define IS_TIM_TRGO_SOURCE(SOURCE) (((SOURCE) == TIM_TRGOSource_Reset) || \
((SOURCE) == TIM_TRGOSource_Enable) || \
((SOURCE) == TIM_TRGOSource_Update) || \
((SOURCE) == TIM_TRGOSource_OC1) || \
((SOURCE) == TIM_TRGOSource_OC1Ref) || \
((SOURCE) == TIM_TRGOSource_OC2Ref) || \
((SOURCE) == TIM_TRGOSource_OC3Ref) || \
((SOURCE) == TIM_TRGOSource_OC4Ref))
/**
* @}
*/
/** @defgroup TIM_Slave_Mode
* @{
*/
#define TIM_SlaveMode_Reset ((uint16_t)0x0004)
#define TIM_SlaveMode_Gated ((uint16_t)0x0005)
#define TIM_SlaveMode_Trigger ((uint16_t)0x0006)
#define TIM_SlaveMode_External1 ((uint16_t)0x0007)
#define IS_TIM_SLAVE_MODE(MODE) (((MODE) == TIM_SlaveMode_Reset) || \
((MODE) == TIM_SlaveMode_Gated) || \
((MODE) == TIM_SlaveMode_Trigger) || \
((MODE) == TIM_SlaveMode_External1))
/**
* @}
*/
/** @defgroup TIM_Master_Slave_Mode
* @{
*/
#define TIM_MasterSlaveMode_Enable ((uint16_t)0x0080)
#define TIM_MasterSlaveMode_Disable ((uint16_t)0x0000)
#define IS_TIM_MSM_STATE(STATE) (((STATE) == TIM_MasterSlaveMode_Enable) || \
((STATE) == TIM_MasterSlaveMode_Disable))
/**
* @}
*/
/** @defgroup TIM_Flags
* @{
*/
#define TIM_FLAG_Update ((uint16_t)0x0001)
#define TIM_FLAG_CC1 ((uint16_t)0x0002)
#define TIM_FLAG_CC2 ((uint16_t)0x0004)
#define TIM_FLAG_CC3 ((uint16_t)0x0008)
#define TIM_FLAG_CC4 ((uint16_t)0x0010)
#define TIM_FLAG_Trigger ((uint16_t)0x0040)
#define TIM_FLAG_CC1OF ((uint16_t)0x0200)
#define TIM_FLAG_CC2OF ((uint16_t)0x0400)
#define TIM_FLAG_CC3OF ((uint16_t)0x0800)
#define TIM_FLAG_CC4OF ((uint16_t)0x1000)
#define IS_TIM_GET_FLAG(FLAG) (((FLAG) == TIM_FLAG_Update) || \
((FLAG) == TIM_FLAG_CC1) || \
((FLAG) == TIM_FLAG_CC2) || \
((FLAG) == TIM_FLAG_CC3) || \
((FLAG) == TIM_FLAG_CC4) || \
((FLAG) == TIM_FLAG_Trigger) || \
((FLAG) == TIM_FLAG_CC1OF) || \
((FLAG) == TIM_FLAG_CC2OF) || \
((FLAG) == TIM_FLAG_CC3OF) || \
((FLAG) == TIM_FLAG_CC4OF))
#define IS_TIM_CLEAR_FLAG(TIM_FLAG) ((((TIM_FLAG) & (uint16_t)0xE1A0) == 0x0000) && ((TIM_FLAG) != 0x0000))
/**
* @}
*/
/** @defgroup TIM_Input_Capture_Filer_Value
* @{
*/
#define IS_TIM_IC_FILTER(ICFILTER) ((ICFILTER) <= 0xF)
/**
* @}
*/
/** @defgroup TIM_External_Trigger_Filter
* @{
*/
#define IS_TIM_EXT_FILTER(EXTFILTER) ((EXTFILTER) <= 0xF)
/**
* @}
*/
/** @defgroup TIM_OCReferenceClear
* @{
*/
#define TIM_OCReferenceClear_ETRF ((uint16_t)0x0008)
#define TIM_OCReferenceClear_OCREFCLR ((uint16_t)0x0000)
#define TIM_OCREFERENCECECLEAR_SOURCE(SOURCE) (((SOURCE) == TIM_OCReferenceClear_ETRF) || \
((SOURCE) == TIM_OCReferenceClear_OCREFCLR))
/**
* @}
*/
/** @defgroup TIM_Remap
* @{
*/
#define TIM2_TIM10_OC ((uint32_t)0xFFFE0000)
#define TIM2_TIM5_TRGO ((uint32_t)0xFFFE0001)
#define TIM3_TIM11_OC ((uint32_t)0xFFFE0000)
#define TIM3_TIM5_TRGO ((uint32_t)0xFFFE0001)
#define TIM9_GPIO ((uint32_t)0xFFFC0000)
#define TIM9_LSE ((uint32_t)0xFFFC0001)
#define TIM9_TIM3_TRGO ((uint32_t)0xFFFB0000)
#define TIM9_TS_IO ((uint32_t)0xFFFB0004)
#define TIM10_GPIO ((uint32_t)0xFFF40000)
#define TIM10_LSI ((uint32_t)0xFFF40001)
#define TIM10_LSE ((uint32_t)0xFFF40002)
#define TIM10_RTC ((uint32_t)0xFFF40003)
#define TIM10_RI ((uint32_t)0xFFF40008)
#define TIM10_ETR_LSE ((uint32_t)0xFFFB0000)
#define TIM10_ETR_TIM9_TRGO ((uint32_t)0xFFFB0004)
#define TIM11_GPIO ((uint32_t)0xFFF40000)
#define TIM11_MSI ((uint32_t)0xFFF40001)
#define TIM11_HSE_RTC ((uint32_t)0xFFF40002)
#define TIM11_RI ((uint32_t)0xFFF40008)
#define TIM11_ETR_LSE ((uint32_t)0xFFFB0000)
#define TIM11_ETR_TIM9_TRGO ((uint32_t)0xFFFB0004)
#define IS_TIM_REMAP(TIM_REMAP) (((TIM_REMAP) == TIM2_TIM10_OC)|| \
((TIM_REMAP) == TIM2_TIM5_TRGO)|| \
((TIM_REMAP) == TIM3_TIM11_OC)|| \
((TIM_REMAP) == TIM3_TIM5_TRGO)|| \
((TIM_REMAP) == TIM9_GPIO)|| \
((TIM_REMAP) == TIM9_LSE)|| \
((TIM_REMAP) == TIM9_TIM3_TRGO)|| \
((TIM_REMAP) == TIM9_TS_IO)|| \
((TIM_REMAP) == TIM10_GPIO)|| \
((TIM_REMAP) == TIM10_LSI)|| \
((TIM_REMAP) == TIM10_LSE)|| \
((TIM_REMAP) == TIM10_RTC)|| \
((TIM_REMAP) == TIM10_RI)|| \
((TIM_REMAP) == TIM10_ETR_LSE)|| \
((TIM_REMAP) == TIM10_ETR_TIM9_TRGO)|| \
((TIM_REMAP) == TIM11_GPIO)|| \
((TIM_REMAP) == TIM11_MSI)|| \
((TIM_REMAP) == TIM11_HSE_RTC)|| \
((TIM_REMAP) == TIM11_RI)|| \
((TIM_REMAP) == TIM11_ETR_LSE)|| \
((TIM_REMAP) == TIM11_ETR_TIM9_TRGO))
/**
* @}
*/
/** @defgroup TIM_Legacy
* @{
*/
#define TIM_DMABurstLength_1Byte TIM_DMABurstLength_1Transfer
#define TIM_DMABurstLength_2Bytes TIM_DMABurstLength_2Transfers
#define TIM_DMABurstLength_3Bytes TIM_DMABurstLength_3Transfers
#define TIM_DMABurstLength_4Bytes TIM_DMABurstLength_4Transfers
#define TIM_DMABurstLength_5Bytes TIM_DMABurstLength_5Transfers
#define TIM_DMABurstLength_6Bytes TIM_DMABurstLength_6Transfers
#define TIM_DMABurstLength_7Bytes TIM_DMABurstLength_7Transfers
#define TIM_DMABurstLength_8Bytes TIM_DMABurstLength_8Transfers
#define TIM_DMABurstLength_9Bytes TIM_DMABurstLength_9Transfers
#define TIM_DMABurstLength_10Bytes TIM_DMABurstLength_10Transfers
#define TIM_DMABurstLength_11Bytes TIM_DMABurstLength_11Transfers
#define TIM_DMABurstLength_12Bytes TIM_DMABurstLength_12Transfers
#define TIM_DMABurstLength_13Bytes TIM_DMABurstLength_13Transfers
#define TIM_DMABurstLength_14Bytes TIM_DMABurstLength_14Transfers
#define TIM_DMABurstLength_15Bytes TIM_DMABurstLength_15Transfers
#define TIM_DMABurstLength_16Bytes TIM_DMABurstLength_16Transfers
#define TIM_DMABurstLength_17Bytes TIM_DMABurstLength_17Transfers
#define TIM_DMABurstLength_18Bytes TIM_DMABurstLength_18Transfers
/**
* @}
*/
/**
* @}
*/
/* Exported macro ------------------------------------------------------------*/
/* Exported functions ------------------------------------------------------- */
/* TimeBase management ********************************************************/
void TIM_DeInit(TIM_TypeDef* TIMx);
void TIM_TimeBaseInit(TIM_TypeDef* TIMx, TIM_TimeBaseInitTypeDef* TIM_TimeBaseInitStruct);
void TIM_TimeBaseStructInit(TIM_TimeBaseInitTypeDef* TIM_TimeBaseInitStruct);
void TIM_PrescalerConfig(TIM_TypeDef* TIMx, uint16_t Prescaler, uint16_t TIM_PSCReloadMode);
void TIM_CounterModeConfig(TIM_TypeDef* TIMx, uint16_t TIM_CounterMode);
void TIM_SetCounter(TIM_TypeDef* TIMx, uint32_t Counter);
void TIM_SetAutoreload(TIM_TypeDef* TIMx, uint32_t Autoreload);
uint32_t TIM_GetCounter(TIM_TypeDef* TIMx);
uint16_t TIM_GetPrescaler(TIM_TypeDef* TIMx);
void TIM_UpdateDisableConfig(TIM_TypeDef* TIMx, FunctionalState NewState);
void TIM_UpdateRequestConfig(TIM_TypeDef* TIMx, uint16_t TIM_UpdateSource);
void TIM_ARRPreloadConfig(TIM_TypeDef* TIMx, FunctionalState NewState);
void TIM_SelectOnePulseMode(TIM_TypeDef* TIMx, uint16_t TIM_OPMode);
void TIM_SetClockDivision(TIM_TypeDef* TIMx, uint16_t TIM_CKD);
void TIM_Cmd(TIM_TypeDef* TIMx, FunctionalState NewState);
/* Output Compare management **************************************************/
void TIM_OC1Init(TIM_TypeDef* TIMx, TIM_OCInitTypeDef* TIM_OCInitStruct);
void TIM_OC2Init(TIM_TypeDef* TIMx, TIM_OCInitTypeDef* TIM_OCInitStruct);
void TIM_OC3Init(TIM_TypeDef* TIMx, TIM_OCInitTypeDef* TIM_OCInitStruct);
void TIM_OC4Init(TIM_TypeDef* TIMx, TIM_OCInitTypeDef* TIM_OCInitStruct);
void TIM_OCStructInit(TIM_OCInitTypeDef* TIM_OCInitStruct);
void TIM_SelectOCxM(TIM_TypeDef* TIMx, uint16_t TIM_Channel, uint16_t TIM_OCMode);
void TIM_SetCompare1(TIM_TypeDef* TIMx, uint32_t Compare1);
void TIM_SetCompare2(TIM_TypeDef* TIMx, uint32_t Compare2);
void TIM_SetCompare3(TIM_TypeDef* TIMx, uint32_t Compare3);
void TIM_SetCompare4(TIM_TypeDef* TIMx, uint32_t Compare4);
void TIM_ForcedOC1Config(TIM_TypeDef* TIMx, uint16_t TIM_ForcedAction);
void TIM_ForcedOC2Config(TIM_TypeDef* TIMx, uint16_t TIM_ForcedAction);
void TIM_ForcedOC3Config(TIM_TypeDef* TIMx, uint16_t TIM_ForcedAction);
void TIM_ForcedOC4Config(TIM_TypeDef* TIMx, uint16_t TIM_ForcedAction);
void TIM_OC1PreloadConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCPreload);
void TIM_OC2PreloadConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCPreload);
void TIM_OC3PreloadConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCPreload);
void TIM_OC4PreloadConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCPreload);
void TIM_OC1FastConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCFast);
void TIM_OC2FastConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCFast);
void TIM_OC3FastConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCFast);
void TIM_OC4FastConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCFast);
void TIM_ClearOC1Ref(TIM_TypeDef* TIMx, uint16_t TIM_OCClear);
void TIM_ClearOC2Ref(TIM_TypeDef* TIMx, uint16_t TIM_OCClear);
void TIM_ClearOC3Ref(TIM_TypeDef* TIMx, uint16_t TIM_OCClear);
void TIM_ClearOC4Ref(TIM_TypeDef* TIMx, uint16_t TIM_OCClear);
void TIM_OC1PolarityConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCPolarity);
void TIM_OC2PolarityConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCPolarity);
void TIM_OC3PolarityConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCPolarity);
void TIM_OC4PolarityConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCPolarity);
void TIM_SelectOCREFClear(TIM_TypeDef* TIMx, uint16_t TIM_OCReferenceClear);
void TIM_CCxCmd(TIM_TypeDef* TIMx, uint16_t TIM_Channel, uint16_t TIM_CCx);
/* Input Capture management ***************************************************/
void TIM_ICInit(TIM_TypeDef* TIMx, TIM_ICInitTypeDef* TIM_ICInitStruct);
void TIM_ICStructInit(TIM_ICInitTypeDef* TIM_ICInitStruct);
void TIM_PWMIConfig(TIM_TypeDef* TIMx, TIM_ICInitTypeDef* TIM_ICInitStruct);
uint32_t TIM_GetCapture1(TIM_TypeDef* TIMx);
uint32_t TIM_GetCapture2(TIM_TypeDef* TIMx);
uint32_t TIM_GetCapture3(TIM_TypeDef* TIMx);
uint32_t TIM_GetCapture4(TIM_TypeDef* TIMx);
void TIM_SetIC1Prescaler(TIM_TypeDef* TIMx, uint16_t TIM_ICPSC);
void TIM_SetIC2Prescaler(TIM_TypeDef* TIMx, uint16_t TIM_ICPSC);
void TIM_SetIC3Prescaler(TIM_TypeDef* TIMx, uint16_t TIM_ICPSC);
void TIM_SetIC4Prescaler(TIM_TypeDef* TIMx, uint16_t TIM_ICPSC);
/* Interrupts, DMA and flags management ***************************************/
void TIM_ITConfig(TIM_TypeDef* TIMx, uint16_t TIM_IT, FunctionalState NewState);
void TIM_GenerateEvent(TIM_TypeDef* TIMx, uint16_t TIM_EventSource);
FlagStatus TIM_GetFlagStatus(TIM_TypeDef* TIMx, uint16_t TIM_FLAG);
void TIM_ClearFlag(TIM_TypeDef* TIMx, uint16_t TIM_FLAG);
ITStatus TIM_GetITStatus(TIM_TypeDef* TIMx, uint16_t TIM_IT);
void TIM_ClearITPendingBit(TIM_TypeDef* TIMx, uint16_t TIM_IT);
void TIM_DMAConfig(TIM_TypeDef* TIMx, uint16_t TIM_DMABase, uint16_t TIM_DMABurstLength);
void TIM_DMACmd(TIM_TypeDef* TIMx, uint16_t TIM_DMASource, FunctionalState NewState);
void TIM_SelectCCDMA(TIM_TypeDef* TIMx, FunctionalState NewState);
/* Clocks management **********************************************************/
void TIM_InternalClockConfig(TIM_TypeDef* TIMx);
void TIM_ITRxExternalClockConfig(TIM_TypeDef* TIMx, uint16_t TIM_InputTriggerSource);
void TIM_TIxExternalClockConfig(TIM_TypeDef* TIMx, uint16_t TIM_TIxExternalCLKSource,
uint16_t TIM_ICPolarity, uint16_t ICFilter);
void TIM_ETRClockMode1Config(TIM_TypeDef* TIMx, uint16_t TIM_ExtTRGPrescaler, uint16_t TIM_ExtTRGPolarity,
uint16_t ExtTRGFilter);
void TIM_ETRClockMode2Config(TIM_TypeDef* TIMx, uint16_t TIM_ExtTRGPrescaler,
uint16_t TIM_ExtTRGPolarity, uint16_t ExtTRGFilter);
/* Synchronization management *************************************************/
void TIM_SelectInputTrigger(TIM_TypeDef* TIMx, uint16_t TIM_InputTriggerSource);
void TIM_SelectOutputTrigger(TIM_TypeDef* TIMx, uint16_t TIM_TRGOSource);
void TIM_SelectSlaveMode(TIM_TypeDef* TIMx, uint16_t TIM_SlaveMode);
void TIM_SelectMasterSlaveMode(TIM_TypeDef* TIMx, uint16_t TIM_MasterSlaveMode);
void TIM_ETRConfig(TIM_TypeDef* TIMx, uint16_t TIM_ExtTRGPrescaler, uint16_t TIM_ExtTRGPolarity,
uint16_t ExtTRGFilter);
/* Specific interface management **********************************************/
void TIM_EncoderInterfaceConfig(TIM_TypeDef* TIMx, uint16_t TIM_EncoderMode,
uint16_t TIM_IC1Polarity, uint16_t TIM_IC2Polarity);
void TIM_SelectHallSensor(TIM_TypeDef* TIMx, FunctionalState NewState);
/* Specific remapping management **********************************************/
void TIM_RemapConfig(TIM_TypeDef* TIMx, uint32_t TIM_Remap);
#ifdef __cplusplus
}
#endif
#endif /*__STM32L1xx_TIM_H */
/**
* @}
*/
/**
* @}
*/
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,427 @@
/**
******************************************************************************
* @file stm32l1xx_usart.h
* @author MCD Application Team
* @version V1.2.0
* @date 22-February-2013
* @brief This file contains all the functions prototypes for the USART
* firmware library.
******************************************************************************
* @attention
*
* <h2><center>&copy; COPYRIGHT 2013 STMicroelectronics</center></h2>
*
* Licensed under MCD-ST Liberty SW License Agreement V2, (the "License");
* You may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.st.com/software_license_agreement_liberty_v2
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
******************************************************************************
*/
/* Define to prevent recursive inclusion -------------------------------------*/
#ifndef __STM32L1xx_USART_H
#define __STM32L1xx_USART_H
#ifdef __cplusplus
extern "C" {
#endif
/* Includes ------------------------------------------------------------------*/
#include "stm32l1xx.h"
/** @addtogroup STM32L1xx_StdPeriph_Driver
* @{
*/
/** @addtogroup USART
* @{
*/
/* Exported types ------------------------------------------------------------*/
/**
* @brief USART Init Structure definition
*/
typedef struct
{
uint32_t USART_BaudRate; /*!< This member configures the USART communication baud rate.
The baud rate is computed using the following formula:
- IntegerDivider = ((PCLKx) / (8 * (OVR8+1) * (USART_InitStruct->USART_BaudRate)))
- FractionalDivider = ((IntegerDivider - ((u32) IntegerDivider)) * 8 * (OVR8+1)) + 0.5
Where OVR8 is the "oversampling by 8 mode" configuration bit in the CR1 register. */
uint16_t USART_WordLength; /*!< Specifies the number of data bits transmitted or received in a frame.
This parameter can be a value of @ref USART_Word_Length */
uint16_t USART_StopBits; /*!< Specifies the number of stop bits transmitted.
This parameter can be a value of @ref USART_Stop_Bits */
uint16_t USART_Parity; /*!< Specifies the parity mode.
This parameter can be a value of @ref USART_Parity
@note When parity is enabled, the computed parity is inserted
at the MSB position of the transmitted data (9th bit when
the word length is set to 9 data bits; 8th bit when the
word length is set to 8 data bits). */
uint16_t USART_Mode; /*!< Specifies wether the Receive or Transmit mode is enabled or disabled.
This parameter can be a value of @ref USART_Mode */
uint16_t USART_HardwareFlowControl; /*!< Specifies wether the hardware flow control mode is enabled
or disabled.
This parameter can be a value of @ref USART_Hardware_Flow_Control */
} USART_InitTypeDef;
/**
* @brief USART Clock Init Structure definition
*/
typedef struct
{
uint16_t USART_Clock; /*!< Specifies whether the USART clock is enabled or disabled.
This parameter can be a value of @ref USART_Clock */
uint16_t USART_CPOL; /*!< Specifies the steady state of the serial clock.
This parameter can be a value of @ref USART_Clock_Polarity */
uint16_t USART_CPHA; /*!< Specifies the clock transition on which the bit capture is made.
This parameter can be a value of @ref USART_Clock_Phase */
uint16_t USART_LastBit; /*!< Specifies whether the clock pulse corresponding to the last transmitted
data bit (MSB) has to be output on the SCLK pin in synchronous mode.
This parameter can be a value of @ref USART_Last_Bit */
} USART_ClockInitTypeDef;
/* Exported constants --------------------------------------------------------*/
/** @defgroup USART_Exported_Constants
* @{
*/
#define IS_USART_ALL_PERIPH(PERIPH) (((PERIPH) == USART1) || \
((PERIPH) == USART2) || \
((PERIPH) == USART3) || \
((PERIPH) == UART4) || \
((PERIPH) == UART5))
#define IS_USART_123_PERIPH(PERIPH) (((PERIPH) == USART1) || \
((PERIPH) == USART2) || \
((PERIPH) == USART3))
/** @defgroup USART_Word_Length
* @{
*/
#define USART_WordLength_8b ((uint16_t)0x0000)
#define USART_WordLength_9b ((uint16_t)0x1000)
#define IS_USART_WORD_LENGTH(LENGTH) (((LENGTH) == USART_WordLength_8b) || \
((LENGTH) == USART_WordLength_9b))
/**
* @}
*/
/** @defgroup USART_Stop_Bits
* @{
*/
#define USART_StopBits_1 ((uint16_t)0x0000)
#define USART_StopBits_0_5 ((uint16_t)0x1000)
#define USART_StopBits_2 ((uint16_t)0x2000)
#define USART_StopBits_1_5 ((uint16_t)0x3000)
#define IS_USART_STOPBITS(STOPBITS) (((STOPBITS) == USART_StopBits_1) || \
((STOPBITS) == USART_StopBits_0_5) || \
((STOPBITS) == USART_StopBits_2) || \
((STOPBITS) == USART_StopBits_1_5))
/**
* @}
*/
/** @defgroup USART_Parity
* @{
*/
#define USART_Parity_No ((uint16_t)0x0000)
#define USART_Parity_Even ((uint16_t)0x0400)
#define USART_Parity_Odd ((uint16_t)0x0600)
#define IS_USART_PARITY(PARITY) (((PARITY) == USART_Parity_No) || \
((PARITY) == USART_Parity_Even) || \
((PARITY) == USART_Parity_Odd))
/**
* @}
*/
/** @defgroup USART_Mode
* @{
*/
#define USART_Mode_Rx ((uint16_t)0x0004)
#define USART_Mode_Tx ((uint16_t)0x0008)
#define IS_USART_MODE(MODE) ((((MODE) & (uint16_t)0xFFF3) == 0x00) && ((MODE) != (uint16_t)0x00))
/**
* @}
*/
/** @defgroup USART_Hardware_Flow_Control
* @{
*/
#define USART_HardwareFlowControl_None ((uint16_t)0x0000)
#define USART_HardwareFlowControl_RTS ((uint16_t)0x0100)
#define USART_HardwareFlowControl_CTS ((uint16_t)0x0200)
#define USART_HardwareFlowControl_RTS_CTS ((uint16_t)0x0300)
#define IS_USART_HARDWARE_FLOW_CONTROL(CONTROL)\
(((CONTROL) == USART_HardwareFlowControl_None) || \
((CONTROL) == USART_HardwareFlowControl_RTS) || \
((CONTROL) == USART_HardwareFlowControl_CTS) || \
((CONTROL) == USART_HardwareFlowControl_RTS_CTS))
/**
* @}
*/
/** @defgroup USART_Clock
* @{
*/
#define USART_Clock_Disable ((uint16_t)0x0000)
#define USART_Clock_Enable ((uint16_t)0x0800)
#define IS_USART_CLOCK(CLOCK) (((CLOCK) == USART_Clock_Disable) || \
((CLOCK) == USART_Clock_Enable))
/**
* @}
*/
/** @defgroup USART_Clock_Polarity
* @{
*/
#define USART_CPOL_Low ((uint16_t)0x0000)
#define USART_CPOL_High ((uint16_t)0x0400)
#define IS_USART_CPOL(CPOL) (((CPOL) == USART_CPOL_Low) || ((CPOL) == USART_CPOL_High))
/**
* @}
*/
/** @defgroup USART_Clock_Phase
* @{
*/
#define USART_CPHA_1Edge ((uint16_t)0x0000)
#define USART_CPHA_2Edge ((uint16_t)0x0200)
#define IS_USART_CPHA(CPHA) (((CPHA) == USART_CPHA_1Edge) || ((CPHA) == USART_CPHA_2Edge))
/**
* @}
*/
/** @defgroup USART_Last_Bit
* @{
*/
#define USART_LastBit_Disable ((uint16_t)0x0000)
#define USART_LastBit_Enable ((uint16_t)0x0100)
#define IS_USART_LASTBIT(LASTBIT) (((LASTBIT) == USART_LastBit_Disable) || \
((LASTBIT) == USART_LastBit_Enable))
/**
* @}
*/
/** @defgroup USART_Interrupt_definition
* @{
*/
#define USART_IT_PE ((uint16_t)0x0028)
#define USART_IT_TXE ((uint16_t)0x0727)
#define USART_IT_TC ((uint16_t)0x0626)
#define USART_IT_RXNE ((uint16_t)0x0525)
#define USART_IT_IDLE ((uint16_t)0x0424)
#define USART_IT_LBD ((uint16_t)0x0846)
#define USART_IT_ORE_RX ((uint16_t)0x0325) /* In case interrupt is generated if the RXNEIE bit is set */
#define USART_IT_CTS ((uint16_t)0x096A)
#define USART_IT_ERR ((uint16_t)0x0060)
#define USART_IT_ORE_ER ((uint16_t)0x0360) /* In case interrupt is generated if the EIE bit is set */
#define USART_IT_NE ((uint16_t)0x0260)
#define USART_IT_FE ((uint16_t)0x0160)
/** @defgroup USART_Legacy
* @{
*/
#define USART_IT_ORE USART_IT_ORE_ER
/**
* @}
*/
#define IS_USART_CONFIG_IT(IT) (((IT) == USART_IT_PE) || ((IT) == USART_IT_TXE) || \
((IT) == USART_IT_TC) || ((IT) == USART_IT_RXNE) || \
((IT) == USART_IT_IDLE) || ((IT) == USART_IT_LBD) || \
((IT) == USART_IT_CTS) || ((IT) == USART_IT_ERR))
#define IS_USART_GET_IT(IT) (((IT) == USART_IT_PE) || ((IT) == USART_IT_TXE) || \
((IT) == USART_IT_TC) || ((IT) == USART_IT_RXNE) || \
((IT) == USART_IT_IDLE) || ((IT) == USART_IT_LBD) || \
((IT) == USART_IT_CTS) || ((IT) == USART_IT_ORE_RX) || \
((IT) == USART_IT_ORE_ER) || ((IT) == USART_IT_NE) || \
((IT) == USART_IT_FE))
#define IS_USART_CLEAR_IT(IT) (((IT) == USART_IT_TC) || ((IT) == USART_IT_RXNE) || \
((IT) == USART_IT_LBD) || ((IT) == USART_IT_CTS))
/**
* @}
*/
/** @defgroup USART_DMA_Requests
* @{
*/
#define USART_DMAReq_Tx ((uint16_t)0x0080)
#define USART_DMAReq_Rx ((uint16_t)0x0040)
#define IS_USART_DMAREQ(DMAREQ) ((((DMAREQ) & (uint16_t)0xFF3F) == 0x00) && ((DMAREQ) != (uint16_t)0x00))
/**
* @}
*/
/** @defgroup USART_WakeUp_methods
* @{
*/
#define USART_WakeUp_IdleLine ((uint16_t)0x0000)
#define USART_WakeUp_AddressMark ((uint16_t)0x0800)
#define IS_USART_WAKEUP(WAKEUP) (((WAKEUP) == USART_WakeUp_IdleLine) || \
((WAKEUP) == USART_WakeUp_AddressMark))
/**
* @}
*/
/** @defgroup USART_LIN_Break_Detection_Length
* @{
*/
#define USART_LINBreakDetectLength_10b ((uint16_t)0x0000)
#define USART_LINBreakDetectLength_11b ((uint16_t)0x0020)
#define IS_USART_LIN_BREAK_DETECT_LENGTH(LENGTH) \
(((LENGTH) == USART_LINBreakDetectLength_10b) || \
((LENGTH) == USART_LINBreakDetectLength_11b))
/**
* @}
*/
/** @defgroup USART_IrDA_Low_Power
* @{
*/
#define USART_IrDAMode_LowPower ((uint16_t)0x0004)
#define USART_IrDAMode_Normal ((uint16_t)0x0000)
#define IS_USART_IRDA_MODE(MODE) (((MODE) == USART_IrDAMode_LowPower) || \
((MODE) == USART_IrDAMode_Normal))
/**
* @}
*/
/** @defgroup USART_Flags
* @{
*/
#define USART_FLAG_CTS ((uint16_t)0x0200)
#define USART_FLAG_LBD ((uint16_t)0x0100)
#define USART_FLAG_TXE ((uint16_t)0x0080)
#define USART_FLAG_TC ((uint16_t)0x0040)
#define USART_FLAG_RXNE ((uint16_t)0x0020)
#define USART_FLAG_IDLE ((uint16_t)0x0010)
#define USART_FLAG_ORE ((uint16_t)0x0008)
#define USART_FLAG_NE ((uint16_t)0x0004)
#define USART_FLAG_FE ((uint16_t)0x0002)
#define USART_FLAG_PE ((uint16_t)0x0001)
#define IS_USART_FLAG(FLAG) (((FLAG) == USART_FLAG_PE) || ((FLAG) == USART_FLAG_TXE) || \
((FLAG) == USART_FLAG_TC) || ((FLAG) == USART_FLAG_RXNE) || \
((FLAG) == USART_FLAG_IDLE) || ((FLAG) == USART_FLAG_LBD) || \
((FLAG) == USART_FLAG_CTS) || ((FLAG) == USART_FLAG_ORE) || \
((FLAG) == USART_FLAG_NE) || ((FLAG) == USART_FLAG_FE))
#define IS_USART_CLEAR_FLAG(FLAG) ((((FLAG) & (uint16_t)0xFC9F) == 0x00) && ((FLAG) != (uint16_t)0x00))
#define IS_USART_BAUDRATE(BAUDRATE) (((BAUDRATE) > 0) && ((BAUDRATE) < 0x003D0901))
#define IS_USART_ADDRESS(ADDRESS) ((ADDRESS) <= 0xF)
#define IS_USART_DATA(DATA) ((DATA) <= 0x1FF)
/**
* @}
*/
/**
* @}
*/
/* Exported macro ------------------------------------------------------------*/
/* Exported functions ------------------------------------------------------- */
/* Function used to set the USART configuration to the default reset state ***/
void USART_DeInit(USART_TypeDef* USARTx);
/* Initialization and Configuration functions *********************************/
void USART_Init(USART_TypeDef* USARTx, USART_InitTypeDef* USART_InitStruct);
void USART_StructInit(USART_InitTypeDef* USART_InitStruct);
void USART_ClockInit(USART_TypeDef* USARTx, USART_ClockInitTypeDef* USART_ClockInitStruct);
void USART_ClockStructInit(USART_ClockInitTypeDef* USART_ClockInitStruct);
void USART_Cmd(USART_TypeDef* USARTx, FunctionalState NewState);
void USART_SetPrescaler(USART_TypeDef* USARTx, uint8_t USART_Prescaler);
void USART_OverSampling8Cmd(USART_TypeDef* USARTx, FunctionalState NewState);
void USART_OneBitMethodCmd(USART_TypeDef* USARTx, FunctionalState NewState);
/* Data transfers functions ***************************************************/
void USART_SendData(USART_TypeDef* USARTx, uint16_t Data);
uint16_t USART_ReceiveData(USART_TypeDef* USARTx);
/* Multi-Processor Communication functions ************************************/
void USART_SetAddress(USART_TypeDef* USARTx, uint8_t USART_Address);
void USART_WakeUpConfig(USART_TypeDef* USARTx, uint16_t USART_WakeUp);
void USART_ReceiverWakeUpCmd(USART_TypeDef* USARTx, FunctionalState NewState);
/* LIN mode functions *********************************************************/
void USART_LINBreakDetectLengthConfig(USART_TypeDef* USARTx, uint16_t USART_LINBreakDetectLength);
void USART_LINCmd(USART_TypeDef* USARTx, FunctionalState NewState);
void USART_SendBreak(USART_TypeDef* USARTx);
/* Half-duplex mode function **************************************************/
void USART_HalfDuplexCmd(USART_TypeDef* USARTx, FunctionalState NewState);
/* Smartcard mode functions ***************************************************/
void USART_SmartCardCmd(USART_TypeDef* USARTx, FunctionalState NewState);
void USART_SmartCardNACKCmd(USART_TypeDef* USARTx, FunctionalState NewState);
void USART_SetGuardTime(USART_TypeDef* USARTx, uint8_t USART_GuardTime);
/* IrDA mode functions ********************************************************/
void USART_IrDAConfig(USART_TypeDef* USARTx, uint16_t USART_IrDAMode);
void USART_IrDACmd(USART_TypeDef* USARTx, FunctionalState NewState);
/* DMA transfers management functions *****************************************/
void USART_DMACmd(USART_TypeDef* USARTx, uint16_t USART_DMAReq, FunctionalState NewState);
/* Interrupts and flags management functions **********************************/
void USART_ITConfig(USART_TypeDef* USARTx, uint16_t USART_IT, FunctionalState NewState);
FlagStatus USART_GetFlagStatus(USART_TypeDef* USARTx, uint16_t USART_FLAG);
void USART_ClearFlag(USART_TypeDef* USARTx, uint16_t USART_FLAG);
ITStatus USART_GetITStatus(USART_TypeDef* USARTx, uint16_t USART_IT);
void USART_ClearITPendingBit(USART_TypeDef* USARTx, uint16_t USART_IT);
#ifdef __cplusplus
}
#endif
#endif /* __STM32L1xx_USART_H */
/**
* @}
*/
/**
* @}
*/
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/

View File

@ -0,0 +1,313 @@
/**
******************************************************************************
* @file stm32l1xx_wwdg.c
* @author MCD Application Team
* @version V1.2.0
* @date 22-February-2013
* @brief This file provides firmware functions to manage the following
* functionalities of the Window watchdog (WWDG) peripheral:
* + Prescaler, Refresh window and Counter configuration
* + WWDG activation
* + Interrupts and flags management
*
* @verbatim
*
==============================================================================
##### WWDG features #####
==============================================================================
[..] Once enabled the WWDG generates a system reset on expiry of a programmed
time period, unless the program refreshes the counter (downcounter)
before to reach 0x3F value (i.e. a reset is generated when the counter
value rolls over from 0x40 to 0x3F).
[..] An MCU reset is also generated if the counter value is refreshed
before the counter has reached the refresh window value. This
implies that the counter must be refreshed in a limited window.
[..] Once enabled the WWDG cannot be disabled except by a system reset.
[..] WWDGRST flag in RCC_CSR register can be used to inform when a WWDG
reset occurs.
[..] The WWDG counter input clock is derived from the APB clock divided
by a programmable prescaler.
[..] WWDG counter clock = PCLK1 / Prescaler.
[..] WWDG timeout = (WWDG counter clock) * (counter value).
[..] Min-max timeout value @32MHz (PCLK1): ~128us / ~65.6ms.
##### How to use this driver #####
==============================================================================
[..]
(#) Enable WWDG clock using RCC_APB1PeriphClockCmd(RCC_APB1Periph_WWDG, ENABLE)
function.
(#) Configure the WWDG prescaler using WWDG_SetPrescaler() function.
(#) Configure the WWDG refresh window using WWDG_SetWindowValue() function.
(#) Set the WWDG counter value and start it using WWDG_Enable() function.
When the WWDG is enabled the counter value should be configured to
a value greater than 0x40 to prevent generating an immediate reset.
(#) Optionally you can enable the Early wakeup interrupt which is
generated when the counter reach 0x40.
Once enabled this interrupt cannot be disabled except by a system reset.
(#) Then the application program must refresh the WWDG counter at regular
intervals during normal operation to prevent an MCU reset, using
WWDG_SetCounter() function. This operation must occur only when
the counter value is lower than the refresh window value,
programmed using WWDG_SetWindowValue().
* @endverbatim
*
******************************************************************************
* @attention
*
* <h2><center>&copy; COPYRIGHT 2013 STMicroelectronics</center></h2>
*
* Licensed under MCD-ST Liberty SW License Agreement V2, (the "License");
* You may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.st.com/software_license_agreement_liberty_v2
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "stm32l1xx_wwdg.h"
#include "stm32l1xx_rcc.h"
/** @addtogroup STM32L1xx_StdPeriph_Driver
* @{
*/
/** @defgroup WWDG
* @brief WWDG driver modules
* @{
*/
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/* ----------- WWDG registers bit address in the alias region ----------- */
#define WWDG_OFFSET (WWDG_BASE - PERIPH_BASE)
/* Alias word address of EWI bit */
#define CFR_OFFSET (WWDG_OFFSET + 0x04)
#define EWI_BitNumber 0x09
#define CFR_EWI_BB (PERIPH_BB_BASE + (CFR_OFFSET * 32) + (EWI_BitNumber * 4))
/* --------------------- WWDG registers bit mask ------------------------ */
/* CFR register bit mask */
#define CFR_WDGTB_MASK ((uint32_t)0xFFFFFE7F)
#define CFR_W_MASK ((uint32_t)0xFFFFFF80)
#define BIT_MASK ((uint8_t)0x7F)
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private function prototypes -----------------------------------------------*/
/* Private functions ---------------------------------------------------------*/
/** @defgroup WWDG_Private_Functions
* @{
*/
/** @defgroup WWDG_Group1 Prescaler, Refresh window and Counter configuration functions
* @brief Prescaler, Refresh window and Counter configuration functions
*
@verbatim
==============================================================================
##### Prescaler, Refresh window and Counter configuration functions #####
==============================================================================
@endverbatim
* @{
*/
/**
* @brief Deinitializes the WWDG peripheral registers to their default reset values.
* @param None
* @retval None
*/
void WWDG_DeInit(void)
{
RCC_APB1PeriphResetCmd(RCC_APB1Periph_WWDG, ENABLE);
RCC_APB1PeriphResetCmd(RCC_APB1Periph_WWDG, DISABLE);
}
/**
* @brief Sets the WWDG Prescaler.
* @param WWDG_Prescaler: specifies the WWDG Prescaler.
* This parameter can be one of the following values:
* @arg WWDG_Prescaler_1: WWDG counter clock = (PCLK1/4096)/1
* @arg WWDG_Prescaler_2: WWDG counter clock = (PCLK1/4096)/2
* @arg WWDG_Prescaler_4: WWDG counter clock = (PCLK1/4096)/4
* @arg WWDG_Prescaler_8: WWDG counter clock = (PCLK1/4096)/8
* @retval None
*/
void WWDG_SetPrescaler(uint32_t WWDG_Prescaler)
{
uint32_t tmpreg = 0;
/* Check the parameters */
assert_param(IS_WWDG_PRESCALER(WWDG_Prescaler));
/* Clear WDGTB[1:0] bits */
tmpreg = WWDG->CFR & CFR_WDGTB_MASK;
/* Set WDGTB[1:0] bits according to WWDG_Prescaler value */
tmpreg |= WWDG_Prescaler;
/* Store the new value */
WWDG->CFR = tmpreg;
}
/**
* @brief Sets the WWDG window value.
* @param WindowValue: specifies the window value to be compared to the downcounter.
* This parameter value must be lower than 0x80.
* @retval None
*/
void WWDG_SetWindowValue(uint8_t WindowValue)
{
__IO uint32_t tmpreg = 0;
/* Check the parameters */
assert_param(IS_WWDG_WINDOW_VALUE(WindowValue));
/* Clear W[6:0] bits */
tmpreg = WWDG->CFR & CFR_W_MASK;
/* Set W[6:0] bits according to WindowValue value */
tmpreg |= WindowValue & (uint32_t) BIT_MASK;
/* Store the new value */
WWDG->CFR = tmpreg;
}
/**
* @brief Enables the WWDG Early Wakeup interrupt(EWI).
* @note Once enabled this interrupt cannot be disabled except by a system reset.
* @param None
* @retval None
*/
void WWDG_EnableIT(void)
{
*(__IO uint32_t *) CFR_EWI_BB = (uint32_t)ENABLE;
}
/**
* @brief Sets the WWDG counter value.
* @param Counter: specifies the watchdog counter value.
* This parameter must be a number between 0x40 and 0x7F (to prevent generating
* an immediate reset).
* @retval None
*/
void WWDG_SetCounter(uint8_t Counter)
{
/* Check the parameters */
assert_param(IS_WWDG_COUNTER(Counter));
/* Write to T[6:0] bits to configure the counter value, no need to do
a read-modify-write; writing a 0 to WDGA bit does nothing */
WWDG->CR = Counter & BIT_MASK;
}
/**
* @}
*/
/** @defgroup WWDG_Group2 WWDG activation functions
* @brief WWDG activation functions
*
@verbatim
==============================================================================
##### WWDG activation function #####
==============================================================================
@endverbatim
* @{
*/
/**
* @brief Enables WWDG and load the counter value.
* @param Counter: specifies the watchdog counter value.
* This parameter must be a number between 0x40 and 0x7F (to prevent generating
* an immediate reset).
* @retval None
*/
void WWDG_Enable(uint8_t Counter)
{
/* Check the parameters */
assert_param(IS_WWDG_COUNTER(Counter));
WWDG->CR = WWDG_CR_WDGA | Counter;
}
/**
* @}
*/
/** @defgroup WWDG_Group3 Interrupts and flags management functions
* @brief Interrupts and flags management functions
*
@verbatim
==============================================================================
##### Interrupts and flags management functions #####
==============================================================================
@endverbatim
* @{
*/
/**
* @brief Checks whether the Early Wakeup interrupt flag is set or not.
* @param None
* @retval The new state of the Early Wakeup interrupt flag (SET or RESET).
*/
FlagStatus WWDG_GetFlagStatus(void)
{
FlagStatus bitstatus = RESET;
if ((WWDG->SR) != (uint32_t)RESET)
{
bitstatus = SET;
}
else
{
bitstatus = RESET;
}
return bitstatus;
}
/**
* @brief Clears Early Wakeup interrupt flag.
* @param None
* @retval None
*/
void WWDG_ClearFlag(void)
{
WWDG->SR = (uint32_t)RESET;
}
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/

View File

@ -0,0 +1,110 @@
/**
******************************************************************************
* @file stm32l1xx_wwdg.h
* @author MCD Application Team
* @version V1.2.0
* @date 22-February-2013
* @brief This file contains all the functions prototypes for the WWDG
* firmware library.
******************************************************************************
* @attention
*
* <h2><center>&copy; COPYRIGHT 2013 STMicroelectronics</center></h2>
*
* Licensed under MCD-ST Liberty SW License Agreement V2, (the "License");
* You may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.st.com/software_license_agreement_liberty_v2
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
******************************************************************************
*/
/* Define to prevent recursive inclusion -------------------------------------*/
#ifndef __STM32L1xx_WWDG_H
#define __STM32L1xx_WWDG_H
#ifdef __cplusplus
extern "C" {
#endif
/* Includes ------------------------------------------------------------------*/
#include "stm32l1xx.h"
/** @addtogroup STM32L1xx_StdPeriph_Driver
* @{
*/
/** @addtogroup WWDG
* @{
*/
/* Exported types ------------------------------------------------------------*/
/* Exported constants --------------------------------------------------------*/
/** @defgroup WWDG_Exported_Constants
* @{
*/
/** @defgroup WWDG_Prescaler
* @{
*/
#define WWDG_Prescaler_1 ((uint32_t)0x00000000)
#define WWDG_Prescaler_2 ((uint32_t)0x00000080)
#define WWDG_Prescaler_4 ((uint32_t)0x00000100)
#define WWDG_Prescaler_8 ((uint32_t)0x00000180)
#define IS_WWDG_PRESCALER(PRESCALER) (((PRESCALER) == WWDG_Prescaler_1) || \
((PRESCALER) == WWDG_Prescaler_2) || \
((PRESCALER) == WWDG_Prescaler_4) || \
((PRESCALER) == WWDG_Prescaler_8))
#define IS_WWDG_WINDOW_VALUE(VALUE) ((VALUE) <= 0x7F)
#define IS_WWDG_COUNTER(COUNTER) (((COUNTER) >= 0x40) && ((COUNTER) <= 0x7F))
/**
* @}
*/
/**
* @}
*/
/* Exported macro ------------------------------------------------------------*/
/* Exported functions ------------------------------------------------------- */
/* Function used to set the WWDG configuration to the default reset state ****/
void WWDG_DeInit(void);
/* Prescaler, Refresh window and Counter configuration functions **************/
void WWDG_SetPrescaler(uint32_t WWDG_Prescaler);
void WWDG_SetWindowValue(uint8_t WindowValue);
void WWDG_EnableIT(void);
void WWDG_SetCounter(uint8_t Counter);
/* WWDG activation functions **************************************************/
void WWDG_Enable(uint8_t Counter);
/* Interrupts and flags management functions **********************************/
FlagStatus WWDG_GetFlagStatus(void);
void WWDG_ClearFlag(void);
#ifdef __cplusplus
}
#endif
#endif /* __STM32L1xx_WWDG_H */
/**
* @}
*/
/**
* @}
*/
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/

View File

@ -0,0 +1,519 @@
/**
******************************************************************************
* @file system_stm32l1xx.c
* @author MCD Application Team
* @version V1.2.0
* @date 8-January-2014
* @brief CMSIS Cortex-M3 Device Peripheral Access Layer System Source File.
* This file contains the system clock configuration for STM32L1xx Ultra
* Low power devices, and is generated by the clock configuration
* tool STM32L1xx_Clock_Configuration_V1.2.0.xls
*
* 1. This file provides two functions and one global variable to be called from
* user application:
* - SystemInit(): Setups the system clock (System clock source, PLL Multiplier
* and Divider factors, AHB/APBx prescalers and Flash settings),
* depending on the configuration made in the clock xls tool.
* This function is called at startup just after reset and
* before branch to main program. This call is made inside
* the "startup_stm32l1xx_xx.s" file.
*
* - SystemCoreClock variable: Contains the core clock (HCLK), it can be used
* by the user application to setup the SysTick
* timer or configure other parameters.
*
* - SystemCoreClockUpdate(): Updates the variable SystemCoreClock and must
* be called whenever the core clock is changed
* during program execution.
*
* 2. After each device reset the MSI (2.1 MHz Range) is used as system clock source.
* Then SystemInit() function is called, in "startup_stm32l1xx_xx.s" file, to
* configure the system clock before to branch to main program.
*
* 3. If the system clock source selected by user fails to startup, the SystemInit()
* function will do nothing and MSI still used as system clock source. User can
* add some code to deal with this issue inside the SetSysClock() function.
*
* 4. The default value of HSE crystal is set to 8MHz, refer to "HSE_VALUE" define
* in "stm32l1xx.h" file. When HSE is used as system clock source, directly or
* through PLL, and you are using different crystal you have to adapt the HSE
* value to your own configuration.
*
* 5. This file configures the system clock as follows:
*=============================================================================
* System Clock Configuration
*=============================================================================
* System clock source | HSI
*-----------------------------------------------------------------------------
* SYSCLK | 16000000 Hz
*-----------------------------------------------------------------------------
* HCLK | 8000000 Hz
*-----------------------------------------------------------------------------
* AHB Prescaler | 2
*-----------------------------------------------------------------------------
* APB1 Prescaler | 1
*-----------------------------------------------------------------------------
* APB2 Prescaler | 1
*-----------------------------------------------------------------------------
* HSE Frequency | 8000000 Hz
*-----------------------------------------------------------------------------
* PLL DIV | Not Used
*-----------------------------------------------------------------------------
* PLL MUL | Not Used
*-----------------------------------------------------------------------------
* VDD | 3.3 V
*-----------------------------------------------------------------------------
* Vcore | 1.5 V (Range 2)
*-----------------------------------------------------------------------------
* Flash Latency | 0 WS
*-----------------------------------------------------------------------------
* SDIO clock (SDIOCLK) | NA
*-----------------------------------------------------------------------------
* Require 48MHz for USB clock | Disabled
*-----------------------------------------------------------------------------
*=============================================================================
* @attention
*
* <h2><center>&copy; COPYRIGHT 2013 STMicroelectronics</center></h2>
*
* Licensed under MCD-ST Liberty SW License Agreement V2, (the "License");
* You may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.st.com/software_license_agreement_liberty_v2
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
******************************************************************************
*/
/** @addtogroup CMSIS
* @{
*/
/** @addtogroup stm32l1xx_system
* @{
*/
/** @addtogroup STM32L1xx_System_Private_Includes
* @{
*/
#include "stm32l1xx.h"
/**
* @}
*/
/** @addtogroup STM32L1xx_System_Private_TypesDefinitions
* @{
*/
/**
* @}
*/
/** @addtogroup STM32L1xx_System_Private_Defines
* @{
*/
/*!< Uncomment the following line if you need to use external SRAM mounted
on STM32L152D_EVAL board as data memory */
/* #define DATA_IN_ExtSRAM */
/*!< Uncomment the following line if you need to relocate your vector Table in
Internal SRAM. */
/* #define VECT_TAB_SRAM */
#define VECT_TAB_OFFSET 0x0 /*!< Vector Table base offset field.
This value must be a multiple of 0x200. */
/**
* @}
*/
/** @addtogroup STM32L1xx_System_Private_Macros
* @{
*/
/**
* @}
*/
/** @addtogroup STM32L1xx_System_Private_Variables
* @{
*/
uint32_t SystemCoreClock = 16000000;
__I uint8_t PLLMulTable[9] = {3, 4, 6, 8, 12, 16, 24, 32, 48};
__I uint8_t AHBPrescTable[16] = {0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 6, 7, 8, 9};
/**
* @}
*/
/** @addtogroup STM32L1xx_System_Private_FunctionPrototypes
* @{
*/
static void SetSysClock(void);
#ifdef DATA_IN_ExtSRAM
static void SystemInit_ExtMemCtl(void);
#endif /* DATA_IN_ExtSRAM */
/**
* @}
*/
/** @addtogroup STM32L1xx_System_Private_Functions
* @{
*/
/**
* @brief Setup the microcontroller system.
* Initialize the Embedded Flash Interface, the PLL and update the
* SystemCoreClock variable.
* @param None
* @retval None
*/
void SystemInit (void)
{
/*!< Set MSION bit */
RCC->CR |= (uint32_t)0x00000100;
/*!< Reset SW[1:0], HPRE[3:0], PPRE1[2:0], PPRE2[2:0], MCOSEL[2:0] and MCOPRE[2:0] bits */
RCC->CFGR &= (uint32_t)0x88FFC00C;
/*!< Reset HSION, HSEON, CSSON and PLLON bits */
RCC->CR &= (uint32_t)0xEEFEFFFE;
/*!< Reset HSEBYP bit */
RCC->CR &= (uint32_t)0xFFFBFFFF;
/*!< Reset PLLSRC, PLLMUL[3:0] and PLLDIV[1:0] bits */
RCC->CFGR &= (uint32_t)0xFF02FFFF;
/*!< Disable all interrupts */
RCC->CIR = 0x00000000;
#ifdef DATA_IN_ExtSRAM
SystemInit_ExtMemCtl();
#endif /* DATA_IN_ExtSRAM */
/* Configure the System clock frequency, AHB/APBx prescalers and Flash settings */
SetSysClock();
#ifdef VECT_TAB_SRAM
SCB->VTOR = SRAM_BASE | VECT_TAB_OFFSET; /* Vector Table Relocation in Internal SRAM. */
#else
SCB->VTOR = FLASH_BASE | VECT_TAB_OFFSET; /* Vector Table Relocation in Internal FLASH. */
#endif
}
/**
* @brief Update SystemCoreClock according to Clock Register Values
* The SystemCoreClock variable contains the core clock (HCLK), it can
* be used by the user application to setup the SysTick timer or configure
* other parameters.
*
* @note Each time the core clock (HCLK) changes, this function must be called
* to update SystemCoreClock variable value. Otherwise, any configuration
* based on this variable will be incorrect.
*
* @note - The system frequency computed by this function is not the real
* frequency in the chip. It is calculated based on the predefined
* constant and the selected clock source:
*
* - If SYSCLK source is MSI, SystemCoreClock will contain the MSI
* value as defined by the MSI range.
*
* - If SYSCLK source is HSI, SystemCoreClock will contain the HSI_VALUE(*)
*
* - If SYSCLK source is HSE, SystemCoreClock will contain the HSE_VALUE(**)
*
* - If SYSCLK source is PLL, SystemCoreClock will contain the HSE_VALUE(**)
* or HSI_VALUE(*) multiplied/divided by the PLL factors.
*
* (*) HSI_VALUE is a constant defined in stm32l1xx.h file (default value
* 16 MHz) but the real value may vary depending on the variations
* in voltage and temperature.
*
* (**) HSE_VALUE is a constant defined in stm32l1xx.h file (default value
* 8 MHz), user has to ensure that HSE_VALUE is same as the real
* frequency of the crystal used. Otherwise, this function may
* have wrong result.
*
* - The result of this function could be not correct when using fractional
* value for HSE crystal.
* @param None
* @retval None
*/
void SystemCoreClockUpdate (void)
{
uint32_t tmp = 0, pllmul = 0, plldiv = 0, pllsource = 0, msirange = 0;
/* Get SYSCLK source -------------------------------------------------------*/
tmp = RCC->CFGR & RCC_CFGR_SWS;
switch (tmp)
{
case 0x00: /* MSI used as system clock */
msirange = (RCC->ICSCR & RCC_ICSCR_MSIRANGE) >> 13;
SystemCoreClock = (32768 * (1 << (msirange + 1)));
break;
case 0x04: /* HSI used as system clock */
SystemCoreClock = HSI_VALUE;
break;
case 0x08: /* HSE used as system clock */
SystemCoreClock = HSE_VALUE;
break;
case 0x0C: /* PLL used as system clock */
/* Get PLL clock source and multiplication factor ----------------------*/
pllmul = RCC->CFGR & RCC_CFGR_PLLMUL;
plldiv = RCC->CFGR & RCC_CFGR_PLLDIV;
pllmul = PLLMulTable[(pllmul >> 18)];
plldiv = (plldiv >> 22) + 1;
pllsource = RCC->CFGR & RCC_CFGR_PLLSRC;
if (pllsource == 0x00)
{
/* HSI oscillator clock selected as PLL clock entry */
SystemCoreClock = (((HSI_VALUE) * pllmul) / plldiv);
}
else
{
/* HSE selected as PLL clock entry */
SystemCoreClock = (((HSE_VALUE) * pllmul) / plldiv);
}
break;
default: /* MSI used as system clock */
msirange = (RCC->ICSCR & RCC_ICSCR_MSIRANGE) >> 13;
SystemCoreClock = (32768 * (1 << (msirange + 1)));
break;
}
/* Compute HCLK clock frequency --------------------------------------------*/
/* Get HCLK prescaler */
tmp = AHBPrescTable[((RCC->CFGR & RCC_CFGR_HPRE) >> 4)];
/* HCLK clock frequency */
SystemCoreClock >>= tmp;
}
/**
* @brief Configures the System clock frequency, AHB/APBx prescalers and Flash
* settings.
* @note This function should be called only once the RCC clock configuration
* is reset to the default reset state (done in SystemInit() function).
* @param None
* @retval None
*/
static void SetSysClock(void)
{
__IO uint32_t StartUpCounter = 0, HSIStatus = 0;
/* SYSCLK, HCLK, PCLK2 and PCLK1 configuration ---------------------------*/
/* Enable HSI */
RCC->CR |= ((uint32_t)RCC_CR_HSION);
/* Wait till HSI is ready and if Time out is reached exit */
do
{
HSIStatus = RCC->CR & RCC_CR_HSIRDY;
} while((HSIStatus == 0) && (StartUpCounter != HSI_STARTUP_TIMEOUT));
if ((RCC->CR & RCC_CR_HSIRDY) != RESET)
{
HSIStatus = (uint32_t)0x01;
}
else
{
HSIStatus = (uint32_t)0x00;
}
if (HSIStatus == (uint32_t)0x01)
{
/* Flash 0 wait state */
FLASH->ACR &= ~FLASH_ACR_LATENCY;
/* Disable Prefetch Buffer */
FLASH->ACR &= ~FLASH_ACR_PRFTEN;
/* Disable 64-bit access */
FLASH->ACR &= ~FLASH_ACR_ACC64;
/* Power enable */
RCC->APB1ENR |= RCC_APB1ENR_PWREN;
/* Select the Voltage Range 2 (1.5 V) */
PWR->CR = PWR_CR_VOS_1;
/* Wait Until the Voltage Regulator is ready */
while((PWR->CSR & PWR_CSR_VOSF) != RESET)
{
}
/* HCLK = SYSCLK /2*/
RCC->CFGR |= (uint32_t)RCC_CFGR_HPRE_DIV2;
/* PCLK2 = HCLK /1*/
RCC->CFGR |= (uint32_t)RCC_CFGR_PPRE2_DIV1;
/* PCLK1 = HCLK /1*/
RCC->CFGR |= (uint32_t)RCC_CFGR_PPRE1_DIV1;
/* Select HSI as system clock source */
RCC->CFGR &= (uint32_t)((uint32_t)~(RCC_CFGR_SW));
RCC->CFGR |= (uint32_t)RCC_CFGR_SW_HSI;
/* Wait till HSI is used as system clock source */
while ((RCC->CFGR & (uint32_t)RCC_CFGR_SWS) != (uint32_t)RCC_CFGR_SWS_HSI)
{
}
}
else
{
/* If HSI fails to start-up, the application will have wrong clock
configuration. User can add here some code to deal with this error */
}
}
#ifdef DATA_IN_ExtSRAM
/**
* @brief Setup the external memory controller.
* Called in SystemInit() function before jump to main.
* This function configures the external SRAM mounted on STM32L152D_EVAL board
* This SRAM will be used as program data memory (including heap and stack).
* @param None
* @retval None
*/
void SystemInit_ExtMemCtl(void)
{
/*-- GPIOs Configuration -----------------------------------------------------*/
/*
+-------------------+--------------------+------------------+------------------+
+ SRAM pins assignment +
+-------------------+--------------------+------------------+------------------+
| PD0 <-> FSMC_D2 | PE0 <-> FSMC_NBL0 | PF0 <-> FSMC_A0 | PG0 <-> FSMC_A10 |
| PD1 <-> FSMC_D3 | PE1 <-> FSMC_NBL1 | PF1 <-> FSMC_A1 | PG1 <-> FSMC_A11 |
| PD4 <-> FSMC_NOE | PE7 <-> FSMC_D4 | PF2 <-> FSMC_A2 | PG2 <-> FSMC_A12 |
| PD5 <-> FSMC_NWE | PE8 <-> FSMC_D5 | PF3 <-> FSMC_A3 | PG3 <-> FSMC_A13 |
| PD8 <-> FSMC_D13 | PE9 <-> FSMC_D6 | PF4 <-> FSMC_A4 | PG4 <-> FSMC_A14 |
| PD9 <-> FSMC_D14 | PE10 <-> FSMC_D7 | PF5 <-> FSMC_A5 | PG5 <-> FSMC_A15 |
| PD10 <-> FSMC_D15 | PE11 <-> FSMC_D8 | PF12 <-> FSMC_A6 | PG10<-> FSMC_NE2 |
| PD11 <-> FSMC_A16 | PE12 <-> FSMC_D9 | PF13 <-> FSMC_A7 |------------------+
| PD12 <-> FSMC_A17 | PE13 <-> FSMC_D10 | PF14 <-> FSMC_A8 |
| PD13 <-> FSMC_A18 | PE14 <-> FSMC_D11 | PF15 <-> FSMC_A9 |
| PD14 <-> FSMC_D0 | PE15 <-> FSMC_D12 |------------------+
| PD15 <-> FSMC_D1 |--------------------+
+-------------------+
*/
/* Enable GPIOD, GPIOE, GPIOF and GPIOG interface clock */
RCC->AHBENR = 0x000080D8;
/* Connect PDx pins to FSMC Alternate function */
GPIOD->AFR[0] = 0x00CC00CC;
GPIOD->AFR[1] = 0xCCCCCCCC;
/* Configure PDx pins in Alternate function mode */
GPIOD->MODER = 0xAAAA0A0A;
/* Configure PDx pins speed to 40 MHz */
GPIOD->OSPEEDR = 0xFFFF0F0F;
/* Configure PDx pins Output type to push-pull */
GPIOD->OTYPER = 0x00000000;
/* No pull-up, pull-down for PDx pins */
GPIOD->PUPDR = 0x00000000;
/* Connect PEx pins to FSMC Alternate function */
GPIOE->AFR[0] = 0xC00000CC;
GPIOE->AFR[1] = 0xCCCCCCCC;
/* Configure PEx pins in Alternate function mode */
GPIOE->MODER = 0xAAAA800A;
/* Configure PEx pins speed to 40 MHz */
GPIOE->OSPEEDR = 0xFFFFC00F;
/* Configure PEx pins Output type to push-pull */
GPIOE->OTYPER = 0x00000000;
/* No pull-up, pull-down for PEx pins */
GPIOE->PUPDR = 0x00000000;
/* Connect PFx pins to FSMC Alternate function */
GPIOF->AFR[0] = 0x00CCCCCC;
GPIOF->AFR[1] = 0xCCCC0000;
/* Configure PFx pins in Alternate function mode */
GPIOF->MODER = 0xAA000AAA;
/* Configure PFx pins speed to 40 MHz */
GPIOF->OSPEEDR = 0xFF000FFF;
/* Configure PFx pins Output type to push-pull */
GPIOF->OTYPER = 0x00000000;
/* No pull-up, pull-down for PFx pins */
GPIOF->PUPDR = 0x00000000;
/* Connect PGx pins to FSMC Alternate function */
GPIOG->AFR[0] = 0x00CCCCCC;
GPIOG->AFR[1] = 0x00000C00;
/* Configure PGx pins in Alternate function mode */
GPIOG->MODER = 0x00200AAA;
/* Configure PGx pins speed to 40 MHz */
GPIOG->OSPEEDR = 0x00300FFF;
/* Configure PGx pins Output type to push-pull */
GPIOG->OTYPER = 0x00000000;
/* No pull-up, pull-down for PGx pins */
GPIOG->PUPDR = 0x00000000;
/*-- FSMC Configuration ------------------------------------------------------*/
/* Enable the FSMC interface clock */
RCC->AHBENR = 0x400080D8;
/* Configure and enable Bank1_SRAM3 */
FSMC_Bank1->BTCR[4] = 0x00001011;
FSMC_Bank1->BTCR[5] = 0x00000300;
FSMC_Bank1E->BWTR[4] = 0x0FFFFFFF;
/*
Bank1_SRAM3 is configured as follow:
p.FSMC_AddressSetupTime = 0;
p.FSMC_AddressHoldTime = 0;
p.FSMC_DataSetupTime = 3;
p.FSMC_BusTurnAroundDuration = 0;
p.FSMC_CLKDivision = 0;
p.FSMC_DataLatency = 0;
p.FSMC_AccessMode = FSMC_AccessMode_A;
FSMC_NORSRAMInitStructure.FSMC_Bank = FSMC_Bank1_NORSRAM3;
FSMC_NORSRAMInitStructure.FSMC_DataAddressMux = FSMC_DataAddressMux_Disable;
FSMC_NORSRAMInitStructure.FSMC_MemoryType = FSMC_MemoryType_SRAM;
FSMC_NORSRAMInitStructure.FSMC_MemoryDataWidth = FSMC_MemoryDataWidth_16b;
FSMC_NORSRAMInitStructure.FSMC_BurstAccessMode = FSMC_BurstAccessMode_Disable;
FSMC_NORSRAMInitStructure.FSMC_AsynchronousWait = FSMC_AsynchronousWait_Disable;
FSMC_NORSRAMInitStructure.FSMC_WaitSignalPolarity = FSMC_WaitSignalPolarity_Low;
FSMC_NORSRAMInitStructure.FSMC_WrapMode = FSMC_WrapMode_Disable;
FSMC_NORSRAMInitStructure.FSMC_WaitSignalActive = FSMC_WaitSignalActive_BeforeWaitState;
FSMC_NORSRAMInitStructure.FSMC_WriteOperation = FSMC_WriteOperation_Enable;
FSMC_NORSRAMInitStructure.FSMC_WaitSignal = FSMC_WaitSignal_Disable;
FSMC_NORSRAMInitStructure.FSMC_ExtendedMode = FSMC_ExtendedMode_Disable;
FSMC_NORSRAMInitStructure.FSMC_WriteBurst = FSMC_WriteBurst_Disable;
FSMC_NORSRAMInitStructure.FSMC_ReadWriteTimingStruct = &p;
FSMC_NORSRAMInitStructure.FSMC_WriteTimingStruct = &p;
FSMC_NORSRAMInit(&FSMC_NORSRAMInitStructure);
FSMC_NORSRAMCmd(FSMC_Bank1_NORSRAM3, ENABLE);
*/
}
#endif /* DATA_IN_ExtSRAM */
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
/******************* (C) COPYRIGHT 2013 STMicroelectronics *****END OF FILE****/

View File

@ -0,0 +1,104 @@
/**
******************************************************************************
* @file system_stm32l1xx.h
* @author MCD Application Team
* @version V1.2.0
* @date 22-February-2013
* @brief CMSIS Cortex-M3 Device Peripheral Access Layer System Header File.
******************************************************************************
* @attention
*
* <h2><center>&copy; COPYRIGHT 2013 STMicroelectronics</center></h2>
*
* Licensed under MCD-ST Liberty SW License Agreement V2, (the "License");
* You may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.st.com/software_license_agreement_liberty_v2
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
******************************************************************************
*/
/** @addtogroup CMSIS
* @{
*/
/** @addtogroup stm32l1xx_system
* @{
*/
/**
* @brief Define to prevent recursive inclusion
*/
#ifndef __SYSTEM_STM32L1XX_H
#define __SYSTEM_STM32L1XX_H
#ifdef __cplusplus
extern "C" {
#endif
/** @addtogroup STM32L1xx_System_Includes
* @{
*/
/**
* @}
*/
/** @addtogroup STM32L1xx_System_Exported_types
* @{
*/
extern uint32_t SystemCoreClock; /*!< System Clock Frequency (Core Clock) */
/**
* @}
*/
/** @addtogroup STM32L1xx_System_Exported_Constants
* @{
*/
/**
* @}
*/
/** @addtogroup STM32L1xx_System_Exported_Macros
* @{
*/
/**
* @}
*/
/** @addtogroup STM32L1xx_System_Exported_Functions
* @{
*/
extern void SystemInit(void);
extern void SystemCoreClockUpdate(void);
/**
* @}
*/
#ifdef __cplusplus
}
#endif
#endif /*__SYSTEM_STM32L1XX_H */
/**
* @}
*/
/**
* @}
*/
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/

View File

@ -0,0 +1,72 @@
/* mbed Microcontroller Library
*******************************************************************************
* Copyright (c) 2014, STMicroelectronics
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* 3. Neither the name of STMicroelectronics nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*******************************************************************************
*/
#ifndef MBED_PERIPHERALNAMES_H
#define MBED_PERIPHERALNAMES_H
#include "cmsis.h"
#ifdef __cplusplus
extern "C" {
#endif
typedef enum {
ADC_1 = (int)ADC1_BASE,
ADC_2 = (int)ADC_BASE
} ADCName;
typedef enum {
UART_1 = (int)USART1_BASE,
UART_2 = (int)USART2_BASE
} UARTName;
#define STDIO_UART_TX PA_2
#define STDIO_UART_RX PA_3
#define STDIO_UART UART_2
typedef enum {
SPI_1 = (int)SPI1_BASE,
SPI_2 = (int)SPI2_BASE
} SPIName;
typedef enum {
I2C_1 = (int)I2C1_BASE,
I2C_2 = (int)I2C2_BASE
} I2CName;
typedef enum {
PWM_2 = (int)TIM2_BASE,
PWM_3 = (int)TIM3_BASE
} PWMName;
#ifdef __cplusplus
}
#endif
#endif

View File

@ -0,0 +1,236 @@
/* mbed Microcontroller Library
*******************************************************************************
* Copyright (c) 2014, STMicroelectronics
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* 3. Neither the name of STMicroelectronics nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*******************************************************************************
*/
#ifndef MBED_PINNAMES_H
#define MBED_PINNAMES_H
#include "cmsis.h"
#ifdef __cplusplus
extern "C" {
#endif
// MODE (see GPIOMode_TypeDef structure)
// OTYPE (see GPIOOType_TypeDef structure)
// PUPD (see GPIOPuPd_TypeDef structure)
// AFNUM (see AF_mapping constant table)
#define STM_PIN_DATA(MODE, OTYPE, PUPD, AFNUM) (((AFNUM)<<8)|((PUPD)<<4)|((OTYPE)<<2)|((MODE)<<0))
#define STM_PIN_MODE(X) (((X)>>0) & 0x3)
#define STM_PIN_OTYPE(X) (((X)>>2) & 0x1)
#define STM_PIN_PUPD(X) (((X)>>4) & 0x3)
#define STM_PIN_AFNUM(X) (((X)>>8) & 0xF)
typedef enum {
PIN_INPUT,
PIN_OUTPUT
} PinDirection;
typedef enum {
// high nibble = port number (0=A, 1=B, 2=C, 3=D, 4=E, 5=F, 6=G, 7=H)
// low nibble = pin number
PA_0 = 0x00,
PA_1 = 0x01,
PA_2 = 0x02,
PA_3 = 0x03,
PA_4 = 0x04,
PA_5 = 0x05,
PA_6 = 0x06,
PA_7 = 0x07,
PA_8 = 0x08,
PA_9 = 0x09,
PA_10 = 0x0A,
PA_11 = 0x0B,
PA_12 = 0x0C,
PA_13 = 0x0D,
PA_14 = 0x0E,
PA_15 = 0x0F,
PB_0 = 0x10,
PB_1 = 0x11,
PB_2 = 0x12,
PB_3 = 0x13,
PB_4 = 0x14,
PB_5 = 0x15,
PB_6 = 0x16,
PB_7 = 0x17,
PB_8 = 0x18,
PB_9 = 0x19,
PB_10 = 0x1A,
PB_11 = 0x1B,
PB_12 = 0x1C,
PB_13 = 0x1D,
PB_14 = 0x1E,
PB_15 = 0x1F,
PC_0 = 0x20,
PC_1 = 0x21,
PC_2 = 0x22,
PC_3 = 0x23,
PC_4 = 0x24,
PC_5 = 0x25,
PC_6 = 0x26,
PC_7 = 0x27,
PC_8 = 0x28,
PC_9 = 0x29,
PC_10 = 0x2A,
PC_11 = 0x2B,
PC_12 = 0x2C,
PC_13 = 0x2D,
PC_14 = 0x2E,
PC_15 = 0x2F,
PD_0 = 0x30,
PD_1 = 0x31,
PD_2 = 0x32,
PD_3 = 0x33,
PD_4 = 0x34,
PD_5 = 0x35,
PD_6 = 0x36,
PD_7 = 0x37,
PD_8 = 0x38,
PD_9 = 0x39,
PD_10 = 0x3A,
PD_11 = 0x3B,
PD_12 = 0x3C,
PD_13 = 0x3D,
PD_14 = 0x3E,
PD_15 = 0x3F,
PE_0 = 0x40,
PE_1 = 0x41,
PE_2 = 0x42,
PE_3 = 0x43,
PE_4 = 0x44,
PE_5 = 0x45,
PE_6 = 0x46,
PE_7 = 0x47,
PE_8 = 0x48,
PE_9 = 0x49,
PE_10 = 0x4A,
PE_11 = 0x4B,
PE_12 = 0x4C,
PE_13 = 0x4D,
PE_14 = 0x4E,
PE_15 = 0x4F,
PF_0 = 0x50,
PF_1 = 0x51,
PF_2 = 0x52,
PF_3 = 0x53,
PF_4 = 0x54,
PF_5 = 0x55,
PF_6 = 0x56,
PF_7 = 0x57,
PF_8 = 0x58,
PF_9 = 0x59,
PF_10 = 0x5A,
PF_11 = 0x5B,
PF_12 = 0x5C,
PF_13 = 0x5D,
PF_14 = 0x5E,
PF_15 = 0x5F,
PG_0 = 0x60,
PG_1 = 0x61,
PG_2 = 0x62,
PG_3 = 0x63,
PG_4 = 0x64,
PG_5 = 0x65,
PG_6 = 0x66,
PG_7 = 0x67,
PG_8 = 0x68,
PG_9 = 0x69,
PG_10 = 0x6A,
PG_11 = 0x6B,
PG_12 = 0x6C,
PG_13 = 0x6D,
PG_14 = 0x6E,
PG_15 = 0x6F,
PH_0 = 0x70,
PH_1 = 0x71,
PH_2 = 0x72,
// Arduino connector namings
A0 = PA_0,
A1 = PA_1,
A2 = PA_4,
A3 = PB_0,
A4 = PC_1,
A5 = PC_0,
D0 = PA_3,
D1 = PA_2,
D2 = PA_10,
D3 = PB_3,
D4 = PB_5,
D5 = PB_4,
D6 = PB_10,
D7 = PA_8,
D8 = PA_9,
D9 = PC_7,
D10 = PB_6,
D11 = PA_7,
D12 = PA_6,
D13 = PA_5,
D14 = PB_9,
D15 = PB_8,
// Generic signals namings
LED1 = PA_5,
LED2 = PA_5,
LED3 = PA_5,
LED4 = PA_5,
USER_BUTTON = PC_13,
SERIAL_TX = PA_2,
SERIAL_RX = PA_3,
I2C_SCL = PB_8,
I2C_SDA = PB_9,
SPI_MOSI = PA_7,
SPI_MISO = PA_6,
SPI_SCK = PA_5,
SPI_CS = PB_6,
PWM_OUT = PB_3,
// Not connected
NC = (int)0xFFFFFFFF
} PinName;
typedef enum {
PullNone = 0,
PullUp = 1,
PullDown = 2,
OpenDrain = 3
} PinMode;
#ifdef __cplusplus
}
#endif
#endif

View File

@ -0,0 +1,51 @@
/* mbed Microcontroller Library
*******************************************************************************
* Copyright (c) 2014, STMicroelectronics
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* 3. Neither the name of STMicroelectronics nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*******************************************************************************
*/
#ifndef MBED_PORTNAMES_H
#define MBED_PORTNAMES_H
#ifdef __cplusplus
extern "C" {
#endif
typedef enum {
PortA = 0,
PortB = 1,
PortC = 2,
PortD = 3,
PortE = 4,
PortF = 5,
PortG = 6,
PortH = 7
} PortName;
#ifdef __cplusplus
}
#endif
#endif

View File

@ -0,0 +1,142 @@
/* mbed Microcontroller Library
* Copyright (c) 2014, STMicroelectronics
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* 3. Neither the name of STMicroelectronics nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "analogin_api.h"
#include "wait_api.h"
#if DEVICE_ANALOGIN
#include "cmsis.h"
#include "pinmap.h"
#include "error.h"
static const PinMap PinMap_ADC[] = {
{PA_0, ADC_1, STM_PIN_DATA(GPIO_Mode_AIN, 0)},
{PA_1, ADC_1, STM_PIN_DATA(GPIO_Mode_AIN, 0)},
{PA_4, ADC_1, STM_PIN_DATA(GPIO_Mode_AIN, 0)},
{PB_0, ADC_1, STM_PIN_DATA(GPIO_Mode_AIN, 0)},
{PC_1, ADC_1, STM_PIN_DATA(GPIO_Mode_AIN, 0)},
{PC_0, ADC_1, STM_PIN_DATA(GPIO_Mode_AIN, 0)},
{NC, NC, 0}
};
int adc_inited = 0;
void analogin_init(analogin_t *obj, PinName pin) {
ADC_TypeDef *adc;
ADC_InitTypeDef ADC_InitStructure;
// Get the peripheral name (ADC_1, ADC_2...) from the pin and assign it to the object
obj->adc = (ADCName)pinmap_peripheral(pin, PinMap_ADC);
if (obj->adc == (ADCName)NC) {
error("ADC pin mapping failed");
}
// Configure GPIO
pinmap_pinout(pin, PinMap_ADC);
// Save pin number for the read function
obj->pin = pin;
// The ADC initialization is done once
if (adc_inited == 0) {
adc_inited = 1;
// Get ADC registers structure address
adc = (ADC_TypeDef *)(obj->adc);
// Enable ADC clock
RCC_ADCCLKConfig(RCC_PCLK2_Div4);
RCC_APB2PeriphClockCmd(RCC_APB2Periph_ADC1, ENABLE);
// Configure ADC
ADC_InitStructure.ADC_Mode = ADC_Mode_Independent;
ADC_InitStructure.ADC_ScanConvMode = DISABLE;
ADC_InitStructure.ADC_ContinuousConvMode = DISABLE;
ADC_InitStructure.ADC_ExternalTrigConv = ADC_ExternalTrigConv_None;
ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right;
ADC_InitStructure.ADC_NbrOfChannel = 1;
ADC_Init(adc, &ADC_InitStructure);
// Enable ADC
ADC_Cmd(adc, ENABLE);
// Calibrate ADC
ADC_ResetCalibration(adc);
while(ADC_GetResetCalibrationStatus(adc));
ADC_StartCalibration(adc);
while(ADC_GetCalibrationStatus(adc));
}
}
static inline uint16_t adc_read(analogin_t *obj) {
// Get ADC registers structure address
ADC_TypeDef *adc = (ADC_TypeDef *)(obj->adc);
// Configure ADC channel
switch (obj->pin) {
case PA_0:
ADC_RegularChannelConfig(adc, ADC_Channel_0, 1, ADC_SampleTime_7Cycles5);
break;
case PA_1:
ADC_RegularChannelConfig(adc, ADC_Channel_1, 1, ADC_SampleTime_7Cycles5);
break;
case PA_4:
ADC_RegularChannelConfig(adc, ADC_Channel_4, 1, ADC_SampleTime_7Cycles5);
break;
case PB_0:
ADC_RegularChannelConfig(adc, ADC_Channel_8, 1, ADC_SampleTime_7Cycles5);
break;
case PC_1:
ADC_RegularChannelConfig(adc, ADC_Channel_11, 1, ADC_SampleTime_7Cycles5);
break;
case PC_0:
ADC_RegularChannelConfig(adc, ADC_Channel_10, 1, ADC_SampleTime_7Cycles5);
break;
default:
return 0;
}
ADC_SoftwareStartConvCmd(adc, ENABLE); // Start conversion
while(ADC_GetFlagStatus(adc, ADC_FLAG_EOC) == RESET); // Wait end of conversion
return(ADC_GetConversionValue(adc)); // Get conversion value
}
uint16_t analogin_read_u16(analogin_t *obj) {
return(adc_read(obj));
}
float analogin_read(analogin_t *obj) {
uint16_t value = adc_read(obj);
return (float)value * (1.0f / (float)0xFFF); // 12 bits range
}
#endif

View File

@ -0,0 +1,70 @@
/* mbed Microcontroller Library
*******************************************************************************
* Copyright (c) 2014, STMicroelectronics
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* 3. Neither the name of STMicroelectronics nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*******************************************************************************
*/
#ifndef MBED_DEVICE_H
#define MBED_DEVICE_H
#define DEVICE_PORTIN 1
#define DEVICE_PORTOUT 1
#define DEVICE_PORTINOUT 1
#define DEVICE_INTERRUPTIN 0
#define DEVICE_ANALOGIN 0
#define DEVICE_ANALOGOUT 0
#define DEVICE_SERIAL 0
#define DEVICE_I2C 0
#define DEVICE_I2CSLAVE 0
#define DEVICE_SPI 0
#define DEVICE_SPISLAVE 0
#define DEVICE_RTC 0
#define DEVICE_PWMOUT 0
#define DEVICE_SLEEP 0
//=======================================
#define DEVICE_SEMIHOST 0
#define DEVICE_LOCALFILESYSTEM 0
#define DEVICE_ID_LENGTH 24
#define DEVICE_DEBUG_AWARENESS 0
#define DEVICE_STDIO_MESSAGES 0
//#define DEVICE_ERROR_RED 0
#include "objects.h"
#endif

View File

@ -0,0 +1,108 @@
/* mbed Microcontroller Library
*******************************************************************************
* Copyright (c) 2014, STMicroelectronics
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* 3. Neither the name of STMicroelectronics nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*******************************************************************************
*/
#include "gpio_api.h"
#include "pinmap.h"
#include "error.h"
uint32_t gpio_set(PinName pin) {
if (pin == NC) return 0;
pin_function(pin, STM_PIN_DATA(GPIO_Mode_IN, 0, GPIO_PuPd_NOPULL, 0));
return (uint32_t)(1 << ((uint32_t)pin & 0xF)); // Return the pin mask
}
void gpio_init(gpio_t *obj, PinName pin, PinDirection direction) {
GPIO_TypeDef *gpio;
if (pin == NC) return;
// Get GPIO structure base address
uint32_t pin_number = (uint32_t)pin;
uint32_t port_index = (pin_number >> 4);
switch (port_index) {
case 0:
gpio = (GPIO_TypeDef *)GPIOA_BASE;
break;
case 1:
gpio = (GPIO_TypeDef *)GPIOB_BASE;
break;
case 2:
gpio = (GPIO_TypeDef *)GPIOC_BASE;
break;
case 3:
gpio = (GPIO_TypeDef *)GPIOD_BASE;
break;
case 4:
gpio = (GPIO_TypeDef *)GPIOE_BASE;
break;
case 5:
gpio = (GPIO_TypeDef *)GPIOF_BASE;
break;
case 6:
gpio = (GPIO_TypeDef *)GPIOG_BASE;
break;
case 7:
gpio = (GPIO_TypeDef *)GPIOH_BASE;
break;
default:
error("GPIO port number is not correct.");
break;
}
// Fill GPIO object structure for future use
obj->pin = pin;
obj->mask = gpio_set(pin);
obj->reg_in = &gpio->IDR;
obj->reg_set = &gpio->BSRRL;
obj->reg_clr = &gpio->BSRRH;
// Configure GPIO
if (direction == PIN_OUTPUT) {
pin_function(pin, STM_PIN_DATA(GPIO_Mode_OUT, GPIO_OType_PP, GPIO_PuPd_NOPULL, 0));
}
else { // PIN_INPUT
pin_function(pin, STM_PIN_DATA(GPIO_Mode_IN, 0, GPIO_PuPd_NOPULL, 0));
}
}
void gpio_mode(gpio_t *obj, PinMode mode) {
pin_mode(obj->pin, mode);
}
void gpio_dir(gpio_t *obj, PinDirection direction) {
if (direction == PIN_OUTPUT) {
pin_function(obj->pin, STM_PIN_DATA(GPIO_Mode_OUT, GPIO_OType_PP, GPIO_PuPd_NOPULL, 0));
}
else { // PIN_INPUT
pin_function(obj->pin, STM_PIN_DATA(GPIO_Mode_IN, 0, GPIO_PuPd_NOPULL, 0));
}
}

View File

@ -0,0 +1,256 @@
/* mbed Microcontroller Library
*******************************************************************************
* Copyright (c) 2014, STMicroelectronics
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* 3. Neither the name of STMicroelectronics nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*******************************************************************************
*/
#include <stddef.h>
#include "cmsis.h"
#include "gpio_irq_api.h"
#include "error.h"
#define EDGE_NONE (0)
#define EDGE_RISE (1)
#define EDGE_FALL (2)
#define EDGE_BOTH (3)
#define CHANNEL_NUM (16)
static uint32_t channel_ids[CHANNEL_NUM] = {0};
static gpio_irq_handler irq_handler;
static void handle_interrupt_in(uint32_t channel) {
if (channel_ids[channel] == 0) return;
uint32_t exti_line = (uint32_t)(1 << channel);
if (EXTI_GetITStatus(exti_line) != RESET)
{
EXTI_ClearITPendingBit(exti_line);
}
// Warning:
// On this device we don't know if a rising or falling event occured.
// In case both rise and fall events are set, only the FALL event will be reported.
if (EXTI->FTSR & (uint32_t)(1 << channel)) {
irq_handler(channel_ids[channel], IRQ_FALL);
}
else {
irq_handler(channel_ids[channel], IRQ_RISE);
}
}
static void gpio_irq0(void) {handle_interrupt_in(0);}
static void gpio_irq1(void) {handle_interrupt_in(1);}
static void gpio_irq2(void) {handle_interrupt_in(2);}
static void gpio_irq3(void) {handle_interrupt_in(3);}
static void gpio_irq4(void) {handle_interrupt_in(4);}
static void gpio_irq5(void) {handle_interrupt_in(5);}
static void gpio_irq6(void) {handle_interrupt_in(6);}
static void gpio_irq7(void) {handle_interrupt_in(7);}
static void gpio_irq8(void) {handle_interrupt_in(8);}
static void gpio_irq9(void) {handle_interrupt_in(9);}
static void gpio_irq10(void) {handle_interrupt_in(10);}
static void gpio_irq11(void) {handle_interrupt_in(11);}
static void gpio_irq12(void) {handle_interrupt_in(12);}
static void gpio_irq13(void) {handle_interrupt_in(13);}
static void gpio_irq14(void) {handle_interrupt_in(14);}
static void gpio_irq15(void) {handle_interrupt_in(15);}
int gpio_irq_init(gpio_irq_t *obj, PinName pin, gpio_irq_handler handler, uint32_t id) {
IRQn_Type irq_n = (IRQn_Type)0;
uint32_t vector = 0;
if (pin == NC) return -1;
uint32_t pin_number = (uint32_t)pin;
uint32_t pin_index = (pin_number & 0xF);
uint32_t port_index = (pin_number >> 4);
// Select irq number and vector
switch (pin_index) {
case 0:
irq_n = EXTI0_IRQn;
vector = (uint32_t)&gpio_irq0;
break;
case 1:
irq_n = EXTI1_IRQn;
vector = (uint32_t)&gpio_irq1;
break;
case 2:
irq_n = EXTI2_IRQn;
vector = (uint32_t)&gpio_irq2;
break;
case 3:
irq_n = EXTI3_IRQn;
vector = (uint32_t)&gpio_irq3;
break;
case 4:
irq_n = EXTI4_IRQn;
vector = (uint32_t)&gpio_irq4;
break;
case 5:
irq_n = EXTI9_5_IRQn;
vector = (uint32_t)&gpio_irq5;
break;
case 6:
irq_n = EXTI9_5_IRQn;
vector = (uint32_t)&gpio_irq6;
break;
case 7:
irq_n = EXTI9_5_IRQn;
vector = (uint32_t)&gpio_irq7;
break;
case 8:
irq_n = EXTI9_5_IRQn;
vector = (uint32_t)&gpio_irq8;
break;
case 9:
irq_n = EXTI9_5_IRQn;
vector = (uint32_t)&gpio_irq9;
break;
case 10:
irq_n = EXTI15_10_IRQn;
vector = (uint32_t)&gpio_irq10;
break;
case 11:
irq_n = EXTI15_10_IRQn;
vector = (uint32_t)&gpio_irq11;
break;
case 12:
irq_n = EXTI15_10_IRQn;
vector = (uint32_t)&gpio_irq12;
break;
case 13:
irq_n = EXTI15_10_IRQn;
vector = (uint32_t)&gpio_irq13;
break;
case 14:
irq_n = EXTI15_10_IRQn;
vector = (uint32_t)&gpio_irq14;
break;
case 15:
irq_n = EXTI15_10_IRQn;
vector = (uint32_t)&gpio_irq15;
break;
default:
return -1;
}
// Enable GPIO and AFIO clocks
RCC_APB2PeriphClockCmd((uint32_t)(RCC_APB2Periph_GPIOA << port_index), ENABLE);
RCC_APB2PeriphClockCmd(RCC_APB2Periph_AFIO, ENABLE);
// Connect EXTI line to pin
GPIO_EXTILineConfig(port_index, pin_index);
// Configure EXTI line
EXTI_InitTypeDef EXTI_InitStructure;
EXTI_InitStructure.EXTI_Line = (uint32_t)(1 << pin_index);
EXTI_InitStructure.EXTI_Mode = EXTI_Mode_Interrupt;
EXTI_InitStructure.EXTI_Trigger = EXTI_Trigger_Falling;
EXTI_InitStructure.EXTI_LineCmd = ENABLE;
EXTI_Init(&EXTI_InitStructure);
// Enable and set EXTI interrupt to the lowest priority
NVIC_InitTypeDef NVIC_InitStructure;
NVIC_InitStructure.NVIC_IRQChannel = irq_n;
NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0x0F;
NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0x0F;
NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
NVIC_Init(&NVIC_InitStructure);
NVIC_SetVector(irq_n, vector);
NVIC_EnableIRQ(irq_n);
// Save for future use
obj->ch = pin_index;
obj->irq_n = irq_n;
obj->event = EDGE_NONE;
channel_ids[obj->ch] = id;
irq_handler = handler;
return 0;
}
void gpio_irq_free(gpio_irq_t *obj) {
channel_ids[obj->ch] = 0;
// Disable EXTI line
EXTI_InitTypeDef EXTI_InitStructure;
EXTI_StructInit(&EXTI_InitStructure);
EXTI_Init(&EXTI_InitStructure);
obj->event = EDGE_NONE;
}
void gpio_irq_set(gpio_irq_t *obj, gpio_irq_event event, uint32_t enable) {
EXTI_InitTypeDef EXTI_InitStructure;
EXTI_InitStructure.EXTI_Line = (uint32_t)(1 << obj->ch);
EXTI_InitStructure.EXTI_Mode = EXTI_Mode_Interrupt;
if (event == IRQ_RISE) {
if ((obj->event == EDGE_FALL) || (obj->event == EDGE_BOTH)) {
EXTI_InitStructure.EXTI_Trigger = EXTI_Trigger_Rising_Falling;
obj->event = EDGE_BOTH;
}
else { // NONE or RISE
EXTI_InitStructure.EXTI_Trigger = EXTI_Trigger_Rising;
obj->event = EDGE_RISE;
}
}
if (event == IRQ_FALL) {
if ((obj->event == EDGE_RISE) || (obj->event == EDGE_BOTH)) {
EXTI_InitStructure.EXTI_Trigger = EXTI_Trigger_Rising_Falling;
obj->event = EDGE_BOTH;
}
else { // NONE or FALL
EXTI_InitStructure.EXTI_Trigger = EXTI_Trigger_Falling;
obj->event = EDGE_FALL;
}
}
if (enable) {
EXTI_InitStructure.EXTI_LineCmd = ENABLE;
}
else {
EXTI_InitStructure.EXTI_LineCmd = DISABLE;
}
EXTI_Init(&EXTI_InitStructure);
}
void gpio_irq_enable(gpio_irq_t *obj) {
NVIC_EnableIRQ(obj->irq_n);
}
void gpio_irq_disable(gpio_irq_t *obj) {
NVIC_DisableIRQ(obj->irq_n);
obj->event = EDGE_NONE;
}

View File

@ -0,0 +1,67 @@
/* mbed Microcontroller Library
*******************************************************************************
* Copyright (c) 2014, STMicroelectronics
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* 3. Neither the name of STMicroelectronics nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*******************************************************************************
*/
#ifndef MBED_GPIO_OBJECT_H
#define MBED_GPIO_OBJECT_H
#include "cmsis.h"
#include "PortNames.h"
#include "PeripheralNames.h"
#include "PinNames.h"
#ifdef __cplusplus
extern "C" {
#endif
typedef struct {
PinName pin;
uint32_t mask;
__IO uint16_t *reg_in;
__IO uint16_t *reg_set;
__IO uint16_t *reg_clr;
} gpio_t;
static inline void gpio_write(gpio_t *obj, int value) {
if (value) {
*obj->reg_set = obj->mask;
}
else {
*obj->reg_clr = obj->mask;
}
}
static inline int gpio_read(gpio_t *obj) {
return ((*obj->reg_in & obj->mask) ? 1 : 0);
}
#ifdef __cplusplus
}
#endif
#endif

View File

@ -0,0 +1,337 @@
/* mbed Microcontroller Library
*******************************************************************************
* Copyright (c) 2014, STMicroelectronics
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* 3. Neither the name of STMicroelectronics nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*******************************************************************************
*/
#include "i2c_api.h"
#if DEVICE_I2C
#include "cmsis.h"
#include "pinmap.h"
#include "error.h"
/* Timeout values for flags and events waiting loops. These timeouts are
not based on accurate values, they just guarantee that the application will
not remain stuck if the I2C communication is corrupted. */
#define FLAG_TIMEOUT ((int)0x1000)
#define LONG_TIMEOUT ((int)0x8000)
static const PinMap PinMap_I2C_SDA[] = {
{PB_9, I2C_1, STM_PIN_DATA(GPIO_Mode_AF_OD, 8)}, // GPIO_Remap_I2C1
{NC, NC, 0}
};
static const PinMap PinMap_I2C_SCL[] = {
{PB_8, I2C_1, STM_PIN_DATA(GPIO_Mode_AF_OD, 8)}, // GPIO_Remap_I2C1
{NC, NC, 0}
};
void i2c_init(i2c_t *obj, PinName sda, PinName scl) {
// Determine the I2C to use
I2CName i2c_sda = (I2CName)pinmap_peripheral(sda, PinMap_I2C_SDA);
I2CName i2c_scl = (I2CName)pinmap_peripheral(scl, PinMap_I2C_SCL);
obj->i2c = (I2CName)pinmap_merge(i2c_sda, i2c_scl);
if (obj->i2c == (I2CName)NC) {
error("I2C pin mapping failed");
}
// Enable I2C clock
if (obj->i2c == I2C_1) {
RCC_APB1PeriphClockCmd(RCC_APB1Periph_I2C1, ENABLE);
}
if (obj->i2c == I2C_2) {
RCC_APB1PeriphClockCmd(RCC_APB1Periph_I2C2, ENABLE);
}
// Configure I2C pins
pinmap_pinout(sda, PinMap_I2C_SDA);
pinmap_pinout(scl, PinMap_I2C_SCL);
pin_mode(sda, OpenDrain);
pin_mode(scl, OpenDrain);
// Reset to clear pending flags if any
i2c_reset(obj);
// I2C configuration
i2c_frequency(obj, 100000); // 100 kHz per default
}
void i2c_frequency(i2c_t *obj, int hz) {
I2C_TypeDef *i2c = (I2C_TypeDef *)(obj->i2c);
I2C_InitTypeDef I2C_InitStructure;
if ((hz != 0) && (hz <= 400000)) {
// I2C configuration
I2C_InitStructure.I2C_Mode = I2C_Mode_I2C;
I2C_InitStructure.I2C_DutyCycle = I2C_DutyCycle_2;
I2C_InitStructure.I2C_OwnAddress1 = 0;
I2C_InitStructure.I2C_Ack = I2C_Ack_Enable;
I2C_InitStructure.I2C_AcknowledgedAddress = I2C_AcknowledgedAddress_7bit;
I2C_InitStructure.I2C_ClockSpeed = hz;
I2C_Cmd(i2c, ENABLE);
I2C_Init(i2c, &I2C_InitStructure);
}
}
inline int i2c_start(i2c_t *obj) {
I2C_TypeDef *i2c = (I2C_TypeDef *)(obj->i2c);
int timeout;
I2C_ClearFlag(i2c, I2C_FLAG_AF); // Clear Acknowledge failure flag
// Generate the START condition
I2C_GenerateSTART(i2c, ENABLE);
// Wait the START condition has been correctly sent
timeout = FLAG_TIMEOUT;
//while (I2C_CheckEvent(i2c, I2C_EVENT_MASTER_MODE_SELECT) == ERROR) {
while (I2C_GetFlagStatus(i2c, I2C_FLAG_SB) == RESET) {
if ((timeout--) == 0) {
return 1;
}
}
return 0;
}
inline int i2c_stop(i2c_t *obj) {
I2C_TypeDef *i2c = (I2C_TypeDef *)(obj->i2c);
I2C_GenerateSTOP(i2c, ENABLE);
return 0;
}
int i2c_read(i2c_t *obj, int address, char *data, int length, int stop) {
I2C_TypeDef *i2c = (I2C_TypeDef *)(obj->i2c);
int timeout;
int count;
int value;
if (length == 0) return 0;
/*
// Wait until the bus is not busy anymore
timeout = LONG_TIMEOUT;
while (I2C_GetFlagStatus(i2c, I2C_FLAG_BUSY) == SET) {
if ((timeout--) == 0) {
return 0;
}
}
*/
i2c_start(obj);
// Send slave address for read
I2C_Send7bitAddress(i2c, address, I2C_Direction_Receiver);
// Wait address is acknowledged
timeout = FLAG_TIMEOUT;
while (I2C_CheckEvent(i2c, I2C_EVENT_MASTER_RECEIVER_MODE_SELECTED) == ERROR) {
if ((timeout--) == 0) {
return 0;
}
}
// Read all bytes except last one
for (count = 0; count < (length - 1); count++) {
value = i2c_byte_read(obj, 0);
data[count] = (char)value;
}
// If not repeated start, send stop.
// Warning: must be done BEFORE the data is read.
if (stop) {
i2c_stop(obj);
}
// Read the last byte
value = i2c_byte_read(obj, 1);
data[count] = (char)value;
return length;
}
int i2c_write(i2c_t *obj, int address, const char *data, int length, int stop) {
I2C_TypeDef *i2c = (I2C_TypeDef *)(obj->i2c);
int timeout;
int count;
/*
// Wait until the bus is not busy anymore
timeout = LONG_TIMEOUT;
while (I2C_GetFlagStatus(i2c, I2C_FLAG_BUSY) == SET) {
if ((timeout--) == 0) {
return 0;
}
}
*/
i2c_start(obj);
// Send slave address for write
I2C_Send7bitAddress(i2c, address, I2C_Direction_Transmitter);
// Wait address is acknowledged
timeout = FLAG_TIMEOUT;
while (I2C_CheckEvent(i2c, I2C_EVENT_MASTER_TRANSMITTER_MODE_SELECTED) == ERROR) {
if ((timeout--) == 0) {
return 0;
}
}
for (count = 0; count < length; count++) {
if (i2c_byte_write(obj, data[count]) != 1) {
i2c_stop(obj);
return 0;
}
}
// If not repeated start, send stop.
if (stop) {
i2c_stop(obj);
}
return count;
}
int i2c_byte_read(i2c_t *obj, int last) {
I2C_TypeDef *i2c = (I2C_TypeDef *)(obj->i2c);
uint8_t data;
int timeout;
if (last) {
// Don't acknowledge the last byte
I2C_AcknowledgeConfig(i2c, DISABLE);
} else {
// Acknowledge the byte
I2C_AcknowledgeConfig(i2c, ENABLE);
}
// Wait until the byte is received
timeout = FLAG_TIMEOUT;
while (I2C_GetFlagStatus(i2c, I2C_FLAG_RXNE) == RESET) {
if ((timeout--) == 0) {
return 0;
}
}
data = I2C_ReceiveData(i2c);
return (int)data;
}
int i2c_byte_write(i2c_t *obj, int data) {
I2C_TypeDef *i2c = (I2C_TypeDef *)(obj->i2c);
int timeout;
I2C_SendData(i2c, (uint8_t)data);
// Wait until the byte is transmitted
timeout = FLAG_TIMEOUT;
//while (I2C_CheckEvent(i2c, I2C_EVENT_MASTER_BYTE_TRANSMITTED) == ERROR) {
while ((I2C_GetFlagStatus(i2c, I2C_FLAG_TXE) == RESET) &&
(I2C_GetFlagStatus(i2c, I2C_FLAG_BTF) == RESET)) {
if ((timeout--) == 0) {
return 0;
}
}
return 1;
}
void i2c_reset(i2c_t *obj) {
if (obj->i2c == I2C_1) {
RCC_APB1PeriphResetCmd(RCC_APB1Periph_I2C1, ENABLE);
RCC_APB1PeriphResetCmd(RCC_APB1Periph_I2C1, DISABLE);
}
if (obj->i2c == I2C_2) {
RCC_APB1PeriphResetCmd(RCC_APB1Periph_I2C2, ENABLE);
RCC_APB1PeriphResetCmd(RCC_APB1Periph_I2C2, DISABLE);
}
}
#if DEVICE_I2CSLAVE
void i2c_slave_address(i2c_t *obj, int idx, uint32_t address, uint32_t mask) {
I2C_TypeDef *i2c = (I2C_TypeDef *)(obj->i2c);
uint16_t tmpreg;
// Get the old register value
tmpreg = i2c->OAR1;
// Reset address bits
tmpreg &= 0xFC00;
// Set new address
tmpreg |= (uint16_t)((uint16_t)address & (uint16_t)0x00FE); // 7-bits
// Store the new register value
i2c->OAR1 = tmpreg;
}
void i2c_slave_mode(i2c_t *obj, int enable_slave) {
// Nothing to do
}
// See I2CSlave.h
#define NoData 0 // the slave has not been addressed
#define ReadAddressed 1 // the master has requested a read from this slave (slave = transmitter)
#define WriteGeneral 2 // the master is writing to all slave
#define WriteAddressed 3 // the master is writing to this slave (slave = receiver)
int i2c_slave_receive(i2c_t *obj) {
// TO BE DONE
return(0);
}
int i2c_slave_read(i2c_t *obj, char *data, int length) {
int count = 0;
// Read all bytes
for (count = 0; count < length; count++) {
data[count] = i2c_byte_read(obj, 0);
}
return count;
}
int i2c_slave_write(i2c_t *obj, const char *data, int length) {
int count = 0;
// Write all bytes
for (count = 0; count < length; count++) {
i2c_byte_write(obj, data[count]);
}
return count;
}
#endif // DEVICE_I2CSLAVE
#endif // DEVICE_I2C

View File

@ -0,0 +1,97 @@
/* mbed Microcontroller Library
*******************************************************************************
* Copyright (c) 2014, STMicroelectronics
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* 3. Neither the name of STMicroelectronics nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*******************************************************************************
*/
#ifndef MBED_OBJECTS_H
#define MBED_OBJECTS_H
#include "cmsis.h"
#include "PortNames.h"
#include "PeripheralNames.h"
#include "PinNames.h"
#ifdef __cplusplus
extern "C" {
#endif
struct gpio_irq_s {
uint32_t ch;
IRQn_Type irq_n;
uint32_t event; // 0=none, 1=rise, 2=fall, 3=rise+fall
};
struct port_s {
PortName port;
uint32_t mask;
PinDirection direction;
__IO uint16_t *reg_in;
__IO uint16_t *reg_out;
};
struct analogin_s {
ADCName adc;
PinName pin;
};
struct serial_s {
UARTName uart;
int index; // Used by irq
uint32_t baudrate;
uint32_t databits;
uint32_t stopbits;
uint32_t parity;
};
struct spi_s {
SPIName spi;
uint32_t bits;
uint32_t cpol;
uint32_t cpha;
uint32_t mode;
uint32_t nss;
uint32_t br_presc;
};
struct i2c_s {
I2CName i2c;
};
struct pwmout_s {
PWMName pwm;
PinName pin;
uint32_t period;
uint32_t pulse;
};
#include "gpio_object.h"
#ifdef __cplusplus
}
#endif
#endif

View File

@ -0,0 +1,171 @@
/* mbed Microcontroller Library
*******************************************************************************
* Copyright (c) 2014, STMicroelectronics
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* 3. Neither the name of STMicroelectronics nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*******************************************************************************
*/
#include "pinmap.h"
#include "error.h"
/**
* Configure pin (mode, speed, output type and pull-up/pull-down)
*/
void pin_function(PinName pin, int data) {
GPIO_TypeDef *gpio;
GPIO_InitTypeDef GPIO_InitStructure;
if (pin == NC) return;
// Get the pin informations
uint32_t mode = STM_PIN_MODE(data);
uint32_t otype = STM_PIN_OTYPE(data);
uint32_t pupd = STM_PIN_PUPD(data);
uint32_t afnum = STM_PIN_AFNUM(data);
// Get GPIO structure base address and enable clock
uint32_t pin_number = (uint32_t)pin;
uint32_t pin_index = (pin_number & 0xF);
uint32_t port_index = (pin_number >> 4);
switch (port_index) {
case 0:
gpio = (GPIO_TypeDef *)GPIOA_BASE;
RCC_AHBPeriphClockCmd(RCC_AHBPeriph_GPIOA, ENABLE);
break;
case 1:
gpio = (GPIO_TypeDef *)GPIOB_BASE;
RCC_AHBPeriphClockCmd(RCC_AHBPeriph_GPIOB, ENABLE);
break;
case 2:
gpio = (GPIO_TypeDef *)GPIOC_BASE;
RCC_AHBPeriphClockCmd(RCC_AHBPeriph_GPIOC, ENABLE);
break;
case 3:
gpio = (GPIO_TypeDef *)GPIOD_BASE;
RCC_AHBPeriphClockCmd(RCC_AHBPeriph_GPIOD, ENABLE);
break;
case 4:
gpio = (GPIO_TypeDef *)GPIOE_BASE;
RCC_AHBPeriphClockCmd(RCC_AHBPeriph_GPIOE, ENABLE);
break;
case 5:
gpio = (GPIO_TypeDef *)GPIOF_BASE;
RCC_AHBPeriphClockCmd(RCC_AHBPeriph_GPIOF, ENABLE);
break;
case 6:
gpio = (GPIO_TypeDef *)GPIOG_BASE;
RCC_AHBPeriphClockCmd(RCC_AHBPeriph_GPIOG, ENABLE);
break;
case 7:
gpio = (GPIO_TypeDef *)GPIOH_BASE;
RCC_AHBPeriphClockCmd(RCC_AHBPeriph_GPIOH, ENABLE);
break;
default:
error("GPIO port number is not correct.");
break;
}
// Configure GPIO
GPIO_InitStructure.GPIO_Pin = (uint16_t)(1 << pin_index);
GPIO_InitStructure.GPIO_Mode = (GPIOMode_TypeDef)mode;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_40MHz;
GPIO_InitStructure.GPIO_OType = (GPIOOType_TypeDef)otype;
GPIO_InitStructure.GPIO_PuPd = (GPIOPuPd_TypeDef)pupd;
GPIO_Init(gpio, &GPIO_InitStructure);
// Configure Alternate Function
if (afnum > 0) {
GPIO_PinAFConfig(gpio, (uint16_t)(1 << pin_index), afnum);
}
// *** TODO ***
// Disconnect JTAG-DP + SW-DP signals.
// Warning: Need to reconnect under reset
//if ((pin == PA_13) || (pin == PA_14)) {
//
//}
//if ((pin == PA_15) || (pin == PB_3) || (pin == PB_4)) {
//
//}
}
/**
* Configure pin pull-up/pull-down
*/
void pin_mode(PinName pin, PinMode mode) {
GPIO_TypeDef *gpio;
if (pin == NC) return;
// Get GPIO structure base address and enable clock
uint32_t pin_number = (uint32_t)pin;
uint32_t port_index = (pin_number >> 4);
switch (port_index) {
case 0:
gpio = (GPIO_TypeDef *)GPIOA_BASE;
RCC_AHBPeriphClockCmd(RCC_AHBPeriph_GPIOA, ENABLE);
break;
case 1:
gpio = (GPIO_TypeDef *)GPIOB_BASE;
RCC_AHBPeriphClockCmd(RCC_AHBPeriph_GPIOB, ENABLE);
break;
case 2:
gpio = (GPIO_TypeDef *)GPIOC_BASE;
RCC_AHBPeriphClockCmd(RCC_AHBPeriph_GPIOC, ENABLE);
break;
case 3:
gpio = (GPIO_TypeDef *)GPIOD_BASE;
RCC_AHBPeriphClockCmd(RCC_AHBPeriph_GPIOD, ENABLE);
break;
case 4:
gpio = (GPIO_TypeDef *)GPIOE_BASE;
RCC_AHBPeriphClockCmd(RCC_AHBPeriph_GPIOE, ENABLE);
break;
case 5:
gpio = (GPIO_TypeDef *)GPIOF_BASE;
RCC_AHBPeriphClockCmd(RCC_AHBPeriph_GPIOF, ENABLE);
break;
case 6:
gpio = (GPIO_TypeDef *)GPIOG_BASE;
RCC_AHBPeriphClockCmd(RCC_AHBPeriph_GPIOG, ENABLE);
break;
case 7:
gpio = (GPIO_TypeDef *)GPIOH_BASE;
RCC_AHBPeriphClockCmd(RCC_AHBPeriph_GPIOH, ENABLE);
break;
default:
error("GPIO port number is not correct.");
break;
}
// Configure pull-up/pull-down resistors
uint32_t pupd = (uint32_t)mode;
if (pupd > 2) pupd = 0; // Open-drain = No pull-up/No pull-down
gpio->PUPDR &= (uint32_t)(~(GPIO_PUPDR_PUPDR0 << (pin_number * 2)));
gpio->PUPDR |= (uint32_t)(pupd << (pin_number * 2));
}

View File

@ -0,0 +1,134 @@
/* mbed Microcontroller Library
*******************************************************************************
* Copyright (c) 2014, STMicroelectronics
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* 3. Neither the name of STMicroelectronics nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*******************************************************************************
*/
#include "port_api.h"
#include "pinmap.h"
#include "gpio_api.h"
#include "error.h"
#if DEVICE_PORTIN || DEVICE_PORTOUT
// high nibble = port number (0=A, 1=B, 2=C, 3=D, 4=E, 5=F, ...)
// low nibble = pin number
PinName port_pin(PortName port, int pin_n) {
return (PinName)(pin_n + (port << 4));
}
void port_init(port_t *obj, PortName port, int mask, PinDirection dir) {
GPIO_TypeDef *gpio;
uint32_t port_index = (uint32_t)port;
// Get GPIO structure base address and enable clock
switch (port_index) {
case 0:
gpio = (GPIO_TypeDef *)GPIOA_BASE;
RCC_AHBPeriphClockCmd(RCC_AHBPeriph_GPIOA, ENABLE);
break;
case 1:
gpio = (GPIO_TypeDef *)GPIOB_BASE;
RCC_AHBPeriphClockCmd(RCC_AHBPeriph_GPIOB, ENABLE);
break;
case 2:
gpio = (GPIO_TypeDef *)GPIOC_BASE;
RCC_AHBPeriphClockCmd(RCC_AHBPeriph_GPIOC, ENABLE);
break;
case 3:
gpio = (GPIO_TypeDef *)GPIOD_BASE;
RCC_AHBPeriphClockCmd(RCC_AHBPeriph_GPIOD, ENABLE);
break;
case 4:
gpio = (GPIO_TypeDef *)GPIOE_BASE;
RCC_AHBPeriphClockCmd(RCC_AHBPeriph_GPIOE, ENABLE);
break;
case 5:
gpio = (GPIO_TypeDef *)GPIOF_BASE;
RCC_AHBPeriphClockCmd(RCC_AHBPeriph_GPIOF, ENABLE);
break;
case 6:
gpio = (GPIO_TypeDef *)GPIOG_BASE;
RCC_AHBPeriphClockCmd(RCC_AHBPeriph_GPIOG, ENABLE);
break;
case 7:
gpio = (GPIO_TypeDef *)GPIOH_BASE;
RCC_AHBPeriphClockCmd(RCC_AHBPeriph_GPIOH, ENABLE);
break;
default:
error("GPIO port number is not correct.");
break;
}
// Fill PORT object structure for future use
obj->port = port;
obj->mask = mask;
obj->direction = dir;
obj->reg_in = &gpio->IDR;
obj->reg_out = &gpio->ODR;
port_dir(obj, dir);
}
void port_dir(port_t *obj, PinDirection dir) {
uint32_t i;
obj->direction = dir;
for (i = 0; i < 16; i++) { // Process all pins
if (obj->mask & (1 << i)) { // If the pin is used
if (dir == PIN_OUTPUT) {
pin_function(port_pin(obj->port, i), STM_PIN_DATA(GPIO_Mode_OUT, GPIO_OType_PP, GPIO_PuPd_NOPULL, 0));
}
else { // PIN_INPUT
pin_function(port_pin(obj->port, i), STM_PIN_DATA(GPIO_Mode_IN, 0, GPIO_PuPd_NOPULL, 0));
}
}
}
}
void port_mode(port_t *obj, PinMode mode) {
uint32_t i;
for (i = 0; i < 16; i++) { // Process all pins
if (obj->mask & (1 << i)) { // If the pin is used
pin_mode(port_pin(obj->port, i), mode);
}
}
}
void port_write(port_t *obj, int value) {
*obj->reg_out = (*obj->reg_out & ~obj->mask) | (value & obj->mask);
}
int port_read(port_t *obj) {
if (obj->direction == PIN_OUTPUT) {
return (*obj->reg_out & obj->mask);
}
else { // PIN_INPUT
return (*obj->reg_in & obj->mask);
}
}
#endif

View File

@ -0,0 +1,175 @@
/* mbed Microcontroller Library
*******************************************************************************
* Copyright (c) 2014, STMicroelectronics
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* 3. Neither the name of STMicroelectronics nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*******************************************************************************
*/
#include "pwmout_api.h"
#include "cmsis.h"
#include "pinmap.h"
#include "error.h"
// Only TIM2 and TIM3 can be used (TIM1 and TIM4 are used by the us_ticker)
static const PinMap PinMap_PWM[] = {
// TIM2 default
//{PA_2, PWM_2, STM_PIN_DATA(GPIO_Mode_AF_PP, 0)}, // TIM2_CH3 - ARDUINO D1
//{PA_3, PWM_2, STM_PIN_DATA(GPIO_Mode_AF_PP, 0)}, // TIM2_CH4 - ARDUINO D0
// TIM2 full remap
{PB_3, PWM_2, STM_PIN_DATA(GPIO_Mode_AF_PP, 5)}, // TIM2fr_CH2 - ARDUINO D3
//{PB_10, PWM_2, STM_PIN_DATA(GPIO_Mode_AF_PP, 5)}, // TIM2fr_CH3 - ARDUINO D6
// TIM3 default
//{PA_6, PWM_3, STM_PIN_DATA(GPIO_Mode_AF_PP, 0)}, // TIM3_CH1 - ARDUINO D12
//{PA_7, PWM_3, STM_PIN_DATA(GPIO_Mode_AF_PP, 0)}, // TIM3_CH2 - ARDUINO D11
// TIM3 full remap
//{PC_7, PWM_3, STM_PIN_DATA(GPIO_Mode_AF_PP, 6)}, // TIM3fr_CH2 - ARDUINO D9
// TIM3 partial remap
{PB_4, PWM_3, STM_PIN_DATA(GPIO_Mode_AF_PP, 7)}, // TIM3pr_CH1 - ARDUINO D5
{NC, NC, 0}
};
void pwmout_init(pwmout_t* obj, PinName pin) {
// Get the peripheral name from the pin and assign it to the object
obj->pwm = (PWMName)pinmap_peripheral(pin, PinMap_PWM);
if (obj->pwm == (PWMName)NC) {
error("PWM pinout mapping failed");
}
// Enable TIM clock
if (obj->pwm == PWM_2) RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2, ENABLE);
if (obj->pwm == PWM_3) RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM3, ENABLE);
// Configure GPIO
pinmap_pinout(pin, PinMap_PWM);
obj->pin = pin;
obj->period = 0;
obj->pulse = 0;
pwmout_period_us(obj, 20000); // 20 ms per default
}
void pwmout_free(pwmout_t* obj) {
TIM_TypeDef *tim = (TIM_TypeDef *)(obj->pwm);
TIM_DeInit(tim);
}
void pwmout_write(pwmout_t* obj, float value) {
TIM_TypeDef *tim = (TIM_TypeDef *)(obj->pwm);
TIM_OCInitTypeDef TIM_OCInitStructure;
if (value < 0.0) {
value = 0.0;
} else if (value > 1.0) {
value = 1.0;
}
//while(TIM_GetFlagStatus(tim, TIM_FLAG_Update) == RESET);
//TIM_ClearFlag(tim, TIM_FLAG_Update);
obj->pulse = (uint32_t)((float)obj->period * value);
TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1;
TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;
TIM_OCInitStructure.TIM_Pulse = obj->pulse;
TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High;
// Configure channel 1
if (obj->pin == PB_4) {
TIM_OC1PreloadConfig(tim, TIM_OCPreload_Enable);
TIM_OC1Init(tim, &TIM_OCInitStructure);
}
// Configure channel 2
if (obj->pin == PB_3) {
TIM_OC2PreloadConfig(tim, TIM_OCPreload_Enable);
TIM_OC2Init(tim, &TIM_OCInitStructure);
}
// Configure channel 3
//if (obj->pin == PB_10) {
// TIM_OC3PreloadConfig(tim, TIM_OCPreload_Enable);
// TIM_OC3Init(tim, &TIM_OCInitStructure);
//}
// Configure channel 4
//if (obj->pin == PA_3) {
// TIM_OC4PreloadConfig(tim, TIM_OCPreload_Enable);
// TIM_OC4Init(tim, &TIM_OCInitStructure);
//}
}
float pwmout_read(pwmout_t* obj) {
float value = 0;
if (obj->period > 0) {
value = (float)(obj->pulse) / (float)(obj->period);
}
return ((value > 1.0) ? (1.0) : (value));
}
void pwmout_period(pwmout_t* obj, float seconds) {
pwmout_period_us(obj, seconds * 1000000.0f);
}
void pwmout_period_ms(pwmout_t* obj, int ms) {
pwmout_period_us(obj, ms * 1000);
}
void pwmout_period_us(pwmout_t* obj, int us) {
TIM_TypeDef *tim = (TIM_TypeDef *)(obj->pwm);
TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure;
float dc = pwmout_read(obj);
TIM_Cmd(tim, DISABLE);
obj->period = us;
TIM_TimeBaseStructure.TIM_Period = obj->period - 1;
TIM_TimeBaseStructure.TIM_Prescaler = (uint16_t)(SystemCoreClock / 1000000) - 1; // 1 µs tick
TIM_TimeBaseStructure.TIM_ClockDivision = 0;
TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;
TIM_TimeBaseInit(tim, &TIM_TimeBaseStructure);
// Set duty cycle again
pwmout_write(obj, dc);
TIM_ARRPreloadConfig(tim, ENABLE);
TIM_Cmd(tim, ENABLE);
}
void pwmout_pulsewidth(pwmout_t* obj, float seconds) {
pwmout_pulsewidth_us(obj, seconds * 1000000.0f);
}
void pwmout_pulsewidth_ms(pwmout_t* obj, int ms) {
pwmout_pulsewidth_us(obj, ms * 1000);
}
void pwmout_pulsewidth_us(pwmout_t* obj, int us) {
float value = (float)us / (float)obj->period;
pwmout_write(obj, value);
}

View File

@ -0,0 +1,86 @@
/* mbed Microcontroller Library
*******************************************************************************
* Copyright (c) 2014, STMicroelectronics
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* 3. Neither the name of STMicroelectronics nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*******************************************************************************
*/
#include "rtc_api.h"
static int rtc_inited = 0;
void rtc_init(void) {
RCC_APB1PeriphClockCmd(RCC_APB1Periph_PWR | RCC_APB1Periph_BKP, ENABLE); // Enable PWR and Backup clock
PWR_BackupAccessCmd(ENABLE); // Allow access to Backup Domain
BKP_DeInit(); // Reset Backup Domain
// Uncomment these lines if you use the LSE
// Enable LSE and wait till it's ready
//RCC_LSEConfig(RCC_LSE_ON);
//while (RCC_GetFlagStatus(RCC_FLAG_LSERDY) == RESET) {}
//RCC_RTCCLKConfig(RCC_RTCCLKSource_LSE); // Select LSE as RTC Clock Source
// Uncomment these lines if you use the LSI
// Enable LSI and wait till it's ready
RCC_LSICmd(ENABLE);
while (RCC_GetFlagStatus(RCC_FLAG_LSIRDY) == RESET) {}
RCC_RTCCLKConfig(RCC_RTCCLKSource_LSI); // Select LSI as RTC Clock Source
RCC_RTCCLKCmd(ENABLE); // Enable RTC Clock
RTC_WaitForSynchro(); // Wait for RTC registers synchronization
RTC_WaitForLastTask(); // Wait until last write operation on RTC registers has finished
// Set RTC period to 1 sec
// For LSE: prescaler = RTCCLK/RTC period = 32768Hz/1Hz = 32768
// For LSI: prescaler = RTCCLK/RTC period = 40000Hz/1Hz = 40000
RTC_SetPrescaler(39999);
RTC_WaitForLastTask(); // Wait until last write operation on RTC registers has finished
rtc_inited = 1;
}
void rtc_free(void) {
RCC_DeInit(); // Resets the RCC clock configuration to the default reset state
rtc_inited = 0;
}
int rtc_isenabled(void) {
return rtc_inited;
}
time_t rtc_read(void) {
return (time_t)RTC_GetCounter();
}
void rtc_write(time_t t) {
RTC_WaitForLastTask(); // Wait until last write operation on RTC registers has finished
RTC_SetCounter(t); // Change the current time
RTC_WaitForLastTask(); // Wait until last write operation on RTC registers has finished
}

View File

@ -0,0 +1,280 @@
/* mbed Microcontroller Library
*******************************************************************************
* Copyright (c) 2014, STMicroelectronics
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* 3. Neither the name of STMicroelectronics nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*******************************************************************************
*/
#include "serial_api.h"
#include "cmsis.h"
#include "pinmap.h"
#include "error.h"
#include <string.h>
static const PinMap PinMap_UART_TX[] = {
{PA_9, UART_1, STM_PIN_DATA(GPIO_Mode_AF_PP, 0)},
{PA_2, UART_2, STM_PIN_DATA(GPIO_Mode_AF_PP, 0)},
{NC, NC, 0}
};
static const PinMap PinMap_UART_RX[] = {
{PA_10, UART_1, STM_PIN_DATA(GPIO_Mode_IN_FLOATING, 0)},
{PA_3, UART_2, STM_PIN_DATA(GPIO_Mode_IN_FLOATING, 0)},
{NC, NC, 0}
};
#define UART_NUM (2)
static uint32_t serial_irq_ids[UART_NUM] = {0};
static uart_irq_handler irq_handler;
int stdio_uart_inited = 0;
serial_t stdio_uart;
static void init_usart(serial_t *obj) {
USART_TypeDef *usart = (USART_TypeDef *)(obj->uart);
USART_InitTypeDef USART_InitStructure;
USART_Cmd(usart, DISABLE);
USART_InitStructure.USART_BaudRate = obj->baudrate;
USART_InitStructure.USART_WordLength = obj->databits;
USART_InitStructure.USART_StopBits = obj->stopbits;
USART_InitStructure.USART_Parity = obj->parity;
USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None;
USART_InitStructure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx;
USART_Init(usart, &USART_InitStructure);
USART_Cmd(usart, ENABLE);
}
void serial_init(serial_t *obj, PinName tx, PinName rx) {
// Determine the UART to use (UART_1, UART_2, ...)
UARTName uart_tx = (UARTName)pinmap_peripheral(tx, PinMap_UART_TX);
UARTName uart_rx = (UARTName)pinmap_peripheral(rx, PinMap_UART_RX);
// Get the peripheral name (UART_1, UART_2, ...) from the pin and assign it to the object
obj->uart = (UARTName)pinmap_merge(uart_tx, uart_rx);
if (obj->uart == (UARTName)NC) {
error("Serial pinout mapping failed");
}
// Enable USART clock
if (obj->uart == UART_1) {
RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1, ENABLE);
}
if (obj->uart == UART_2) {
RCC_APB1PeriphClockCmd(RCC_APB1Periph_USART2, ENABLE);
}
// Configure the UART pins
pinmap_pinout(tx, PinMap_UART_TX);
pinmap_pinout(rx, PinMap_UART_RX);
// Configure UART
obj->baudrate = 9600;
obj->databits = USART_WordLength_8b;
obj->stopbits = USART_StopBits_1;
obj->parity = USART_Parity_No;
init_usart(obj);
// The index is used by irq
if (obj->uart == UART_1) obj->index = 0;
if (obj->uart == UART_2) obj->index = 1;
// For stdio management
if (obj->uart == STDIO_UART) {
stdio_uart_inited = 1;
memcpy(&stdio_uart, obj, sizeof(serial_t));
}
}
void serial_free(serial_t *obj) {
serial_irq_ids[obj->index] = 0;
}
void serial_baud(serial_t *obj, int baudrate) {
obj->baudrate = baudrate;
init_usart(obj);
}
void serial_format(serial_t *obj, int data_bits, SerialParity parity, int stop_bits) {
if (data_bits == 8) {
obj->databits = USART_WordLength_8b;
}
else {
obj->databits = USART_WordLength_9b;
}
switch (parity) {
case ParityOdd:
case ParityForced0:
obj->parity = USART_Parity_Odd;
break;
case ParityEven:
case ParityForced1:
obj->parity = USART_Parity_Even;
break;
default: // ParityNone
obj->parity = USART_Parity_No;
break;
}
if (stop_bits == 2) {
obj->stopbits = USART_StopBits_2;
}
else {
obj->stopbits = USART_StopBits_1;
}
init_usart(obj);
}
/******************************************************************************
* INTERRUPTS HANDLING
******************************************************************************/
// not api
static void uart_irq(USART_TypeDef* usart, int id) {
if (serial_irq_ids[id] != 0) {
if (USART_GetITStatus(usart, USART_IT_TC) != RESET) {
irq_handler(serial_irq_ids[id], TxIrq);
USART_ClearITPendingBit(usart, USART_IT_TC);
}
if (USART_GetITStatus(usart, USART_IT_RXNE) != RESET) {
irq_handler(serial_irq_ids[id], RxIrq);
USART_ClearITPendingBit(usart, USART_IT_RXNE);
}
}
}
static void uart1_irq(void) {uart_irq((USART_TypeDef*)UART_1, 0);}
static void uart2_irq(void) {uart_irq((USART_TypeDef*)UART_2, 1);}
void serial_irq_handler(serial_t *obj, uart_irq_handler handler, uint32_t id) {
irq_handler = handler;
serial_irq_ids[obj->index] = id;
}
void serial_irq_set(serial_t *obj, SerialIrq irq, uint32_t enable) {
IRQn_Type irq_n = (IRQn_Type)0;
uint32_t vector = 0;
USART_TypeDef *usart = (USART_TypeDef *)(obj->uart);
if (obj->uart == UART_1) {
irq_n = USART1_IRQn;
vector = (uint32_t)&uart1_irq;
}
if (obj->uart == UART_2) {
irq_n = USART2_IRQn;
vector = (uint32_t)&uart2_irq;
}
if (enable) {
if (irq == RxIrq) {
USART_ITConfig(usart, USART_IT_RXNE, ENABLE);
}
else { // TxIrq
USART_ITConfig(usart, USART_IT_TC, ENABLE);
}
NVIC_SetVector(irq_n, vector);
NVIC_EnableIRQ(irq_n);
} else { // disable
int all_disabled = 0;
if (irq == RxIrq) {
USART_ITConfig(usart, USART_IT_RXNE, DISABLE);
// Check if TxIrq is disabled too
if ((usart->CR1 & USART_CR1_TXEIE) == 0) all_disabled = 1;
}
else { // TxIrq
USART_ITConfig(usart, USART_IT_TXE, DISABLE);
// Check if RxIrq is disabled too
if ((usart->CR1 & USART_CR1_RXNEIE) == 0) all_disabled = 1;
}
if (all_disabled) NVIC_DisableIRQ(irq_n);
}
}
/******************************************************************************
* READ/WRITE
******************************************************************************/
int serial_getc(serial_t *obj) {
USART_TypeDef *usart = (USART_TypeDef *)(obj->uart);
while (!serial_readable(obj));
return (int)(USART_ReceiveData(usart));
}
void serial_putc(serial_t *obj, int c) {
USART_TypeDef *usart = (USART_TypeDef *)(obj->uart);
while (!serial_writable(obj));
USART_SendData(usart, (uint16_t)c);
}
int serial_readable(serial_t *obj) {
int status;
USART_TypeDef *usart = (USART_TypeDef *)(obj->uart);
// Check if data is received
status = ((USART_GetFlagStatus(usart, USART_FLAG_RXNE) != RESET) ? 1 : 0);
return status;
}
int serial_writable(serial_t *obj) {
int status;
USART_TypeDef *usart = (USART_TypeDef *)(obj->uart);
// Check if data is transmitted
status = ((USART_GetFlagStatus(usart, USART_FLAG_TXE) != RESET) ? 1 : 0);
return status;
}
void serial_clear(serial_t *obj) {
USART_TypeDef *usart = (USART_TypeDef *)(obj->uart);
USART_ClearFlag(usart, USART_FLAG_TXE);
USART_ClearFlag(usart, USART_FLAG_RXNE);
}
void serial_pinout_tx(PinName tx) {
pinmap_pinout(tx, PinMap_UART_TX);
}
void serial_break_set(serial_t *obj) {
USART_TypeDef *usart = (USART_TypeDef *)(obj->uart);
USART_SendBreak(usart);
}
void serial_break_clear(serial_t *obj) {
}

View File

@ -0,0 +1,70 @@
/* mbed Microcontroller Library
*******************************************************************************
* Copyright (c) 2014, STMicroelectronics
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* 3. Neither the name of STMicroelectronics nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*******************************************************************************
*/
#include "sleep_api.h"
#include "cmsis.h"
// This function is only necessary if the HSE is used.
/*
static void SYSCLKConfig_STOP(void)
{
ErrorStatus HSEStartUpStatus;
RCC_HSEConfig(RCC_HSE_ON); // Enable HSE
HSEStartUpStatus = RCC_WaitForHSEStartUp(); // Wait till HSE is ready
if (HSEStartUpStatus == SUCCESS) {
RCC_PLLCmd(ENABLE); // Enable PLL
while(RCC_GetFlagStatus(RCC_FLAG_PLLRDY) == RESET) {} // Wait till PLL is ready
RCC_SYSCLKConfig(RCC_SYSCLKSource_PLLCLK); // Select PLL as system clock source
while(RCC_GetSYSCLKSource() != 0x08) {} // Wait till PLL is used as system clock source
}
}
*/
void sleep(void)
{
SCB->SCR = 0; // Normal sleep mode for ARM core
__WFI();
}
void deepsleep(void)
{
// Enable PWR clock
RCC_APB1PeriphClockCmd(RCC_APB1Periph_PWR, ENABLE);
// Request to enter STOP mode with regulator in low power mode
PWR_EnterSTOPMode(PWR_Regulator_LowPower, PWR_STOPEntry_WFI);
// At this stage the system has resumed from STOP mode.
// Re-configure the system clock: enable HSE, PLL and select
// PLL as system clock source (because HSE and PLL are disabled in STOP mode).
//SYSCLKConfig_STOP();
}

View File

@ -0,0 +1,261 @@
/* mbed Microcontroller Library
*******************************************************************************
* Copyright (c) 2014, STMicroelectronics
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* 3. Neither the name of STMicroelectronics nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*******************************************************************************
*/
#include "spi_api.h"
#if DEVICE_SPI
#include <math.h>
#include "cmsis.h"
#include "pinmap.h"
#include "error.h"
static const PinMap PinMap_SPI_MOSI[] = {
{PA_7, SPI_1, STM_PIN_DATA(GPIO_Mode_AF_PP, 0)},
{PB_5, SPI_1, STM_PIN_DATA(GPIO_Mode_AF_PP, 1)}, // Remap
{NC, NC, 0}
};
static const PinMap PinMap_SPI_MISO[] = {
{PA_6, SPI_1, STM_PIN_DATA(GPIO_Mode_AF_PP, 0)},
{PB_4, SPI_1, STM_PIN_DATA(GPIO_Mode_AF_PP, 1)}, // Remap
{NC, NC, 0}
};
static const PinMap PinMap_SPI_SCLK[] = {
{PA_5, SPI_1, STM_PIN_DATA(GPIO_Mode_AF_PP, 0)},
{PB_3, SPI_1, STM_PIN_DATA(GPIO_Mode_AF_PP, 1)}, // Remap
{NC, NC, 0}
};
// Only used in Slave mode
static const PinMap PinMap_SPI_SSEL[] = {
{PB_6, SPI_1, STM_PIN_DATA(GPIO_Mode_IN_FLOATING, 0)}, // Generic IO, not real H/W NSS pin
//{PA_4, SPI_1, STM_PIN_DATA(GPIO_Mode_IN_FLOATING, 0)},
//{PA_15, SPI_1, STM_PIN_DATA(GPIO_Mode_IN_FLOATING, 1)}, // Remap
{NC, NC, 0}
};
static void init_spi(spi_t *obj) {
SPI_TypeDef *spi = (SPI_TypeDef *)(obj->spi);
SPI_InitTypeDef SPI_InitStructure;
SPI_Cmd(spi, DISABLE);
SPI_InitStructure.SPI_Mode = obj->mode;
SPI_InitStructure.SPI_NSS = obj->nss;
SPI_InitStructure.SPI_Direction = SPI_Direction_2Lines_FullDuplex;
SPI_InitStructure.SPI_DataSize = obj->bits;
SPI_InitStructure.SPI_CPOL = obj->cpol;
SPI_InitStructure.SPI_CPHA = obj->cpha;
SPI_InitStructure.SPI_BaudRatePrescaler = obj->br_presc;
SPI_InitStructure.SPI_FirstBit = SPI_FirstBit_MSB;
SPI_InitStructure.SPI_CRCPolynomial = 7;
SPI_Init(spi, &SPI_InitStructure);
SPI_Cmd(spi, ENABLE);
}
void spi_init(spi_t *obj, PinName mosi, PinName miso, PinName sclk, PinName ssel) {
// Determine the SPI to use
SPIName spi_mosi = (SPIName)pinmap_peripheral(mosi, PinMap_SPI_MOSI);
SPIName spi_miso = (SPIName)pinmap_peripheral(miso, PinMap_SPI_MISO);
SPIName spi_sclk = (SPIName)pinmap_peripheral(sclk, PinMap_SPI_SCLK);
SPIName spi_ssel = (SPIName)pinmap_peripheral(ssel, PinMap_SPI_SSEL);
SPIName spi_data = (SPIName)pinmap_merge(spi_mosi, spi_miso);
SPIName spi_cntl = (SPIName)pinmap_merge(spi_sclk, spi_ssel);
obj->spi = (SPIName)pinmap_merge(spi_data, spi_cntl);
if (obj->spi == (SPIName)NC) {
error("SPI pinout mapping failed");
}
// Enable SPI clock
if (obj->spi == SPI_1) {
RCC_APB2PeriphClockCmd(RCC_APB2Periph_SPI1, ENABLE);
}
if (obj->spi == SPI_2) {
RCC_APB1PeriphClockCmd(RCC_APB1Periph_SPI2, ENABLE);
}
// Configure the SPI pins
pinmap_pinout(mosi, PinMap_SPI_MOSI);
pinmap_pinout(miso, PinMap_SPI_MISO);
pinmap_pinout(sclk, PinMap_SPI_SCLK);
// Save new values
obj->bits = SPI_DataSize_8b;
obj->cpol = SPI_CPOL_Low;
obj->cpha = SPI_CPHA_1Edge;
obj->br_presc = SPI_BaudRatePrescaler_64; // Closest to 1MHz (72MHz/64 = 1.125MHz)
if (ssel == NC) { // Master
obj->mode = SPI_Mode_Master;
obj->nss = SPI_NSS_Soft;
}
else { // Slave
pinmap_pinout(ssel, PinMap_SPI_SSEL);
obj->mode = SPI_Mode_Slave;
obj->nss = SPI_NSS_Soft;
}
init_spi(obj);
}
void spi_free(spi_t *obj) {
SPI_TypeDef *spi = (SPI_TypeDef *)(obj->spi);
SPI_I2S_DeInit(spi);
}
void spi_format(spi_t *obj, int bits, int mode, int slave) {
// Save new values
if (bits == 8) {
obj->bits = SPI_DataSize_8b;
}
else {
obj->bits = SPI_DataSize_16b;
}
switch (mode) {
case 0:
obj->cpol = SPI_CPOL_Low;
obj->cpha = SPI_CPHA_1Edge;
break;
case 1:
obj->cpol = SPI_CPOL_Low;
obj->cpha = SPI_CPHA_2Edge;
break;
case 2:
obj->cpol = SPI_CPOL_High;
obj->cpha = SPI_CPHA_1Edge;
break;
default:
obj->cpol = SPI_CPOL_High;
obj->cpha = SPI_CPHA_2Edge;
break;
}
if (slave == 0) {
obj->mode = SPI_Mode_Master;
obj->nss = SPI_NSS_Soft;
}
else {
obj->mode = SPI_Mode_Slave;
obj->nss = SPI_NSS_Hard;
}
init_spi(obj);
}
void spi_frequency(spi_t *obj, int hz) {
// Get SPI clock frequency
uint32_t PCLK = SystemCoreClock >> 1;
// Choose the baud rate divisor (between 2 and 256)
uint32_t divisor = PCLK / hz;
// Find the nearest power-of-2
divisor = (divisor > 0 ? divisor-1 : 0);
divisor |= divisor >> 1;
divisor |= divisor >> 2;
divisor |= divisor >> 4;
divisor |= divisor >> 8;
divisor |= divisor >> 16;
divisor++;
uint32_t baud_rate = __builtin_ffs(divisor) - 2;
// Save new value
obj->br_presc = ((baud_rate > 7) ? (7 << 3) : (baud_rate << 3));
init_spi(obj);
}
static inline int ssp_readable(spi_t *obj) {
int status;
SPI_TypeDef *spi = (SPI_TypeDef *)(obj->spi);
// Check if data is received
status = ((SPI_I2S_GetFlagStatus(spi, SPI_I2S_FLAG_RXNE) != RESET) ? 1 : 0);
return status;
}
static inline int ssp_writeable(spi_t *obj) {
int status;
SPI_TypeDef *spi = (SPI_TypeDef *)(obj->spi);
// Check if data is transmitted
status = ((SPI_I2S_GetFlagStatus(spi, SPI_I2S_FLAG_TXE) != RESET) ? 1 : 0);
return status;
}
static inline void ssp_write(spi_t *obj, int value) {
SPI_TypeDef *spi = (SPI_TypeDef *)(obj->spi);
while (!ssp_writeable(obj));
SPI_I2S_SendData(spi, (uint16_t)value);
}
static inline int ssp_read(spi_t *obj) {
SPI_TypeDef *spi = (SPI_TypeDef *)(obj->spi);
while (!ssp_readable(obj));
return (int)SPI_I2S_ReceiveData(spi);
}
static inline int ssp_busy(spi_t *obj) {
int status;
SPI_TypeDef *spi = (SPI_TypeDef *)(obj->spi);
status = ((SPI_I2S_GetFlagStatus(spi, SPI_I2S_FLAG_BSY) != RESET) ? 1 : 0);
return status;
}
int spi_master_write(spi_t *obj, int value) {
ssp_write(obj, value);
return ssp_read(obj);
}
int spi_slave_receive(spi_t *obj) {
return (ssp_readable(obj) && !ssp_busy(obj)) ? (1) : (0);
};
int spi_slave_read(spi_t *obj) {
SPI_TypeDef *spi = (SPI_TypeDef *)(obj->spi);
return (int)SPI_I2S_ReceiveData(spi);
}
void spi_slave_write(spi_t *obj, int value) {
SPI_TypeDef *spi = (SPI_TypeDef *)(obj->spi);
while (!ssp_writeable(obj));
SPI_I2S_SendData(spi, (uint16_t)value);
}
int spi_busy(spi_t *obj) {
return ssp_busy(obj);
}
#endif

View File

@ -0,0 +1,118 @@
/* mbed Microcontroller Library
* Copyright (c) 2014, STMicroelectronics
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* 3. Neither the name of STMicroelectronics nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <stddef.h>
#include "us_ticker_api.h"
#include "PeripheralNames.h"
int us_ticker_inited = 0;
void us_ticker_init(void) {
TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure;
TIM_OCInitTypeDef TIM_OCInitStructure;
if (us_ticker_inited) return;
us_ticker_inited = 1;
// Enable Timers clock
RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM3, ENABLE);
RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM4, ENABLE);
// Time base configuration
// TIM3 is used as "master", "TIM4" as "slave". TIM4 is clocked by TIM3.
TIM_TimeBaseStructInit(&TIM_TimeBaseStructure);
TIM_TimeBaseStructure.TIM_Period = 0xFFFF;
TIM_TimeBaseStructure.TIM_Prescaler = (uint16_t)(SystemCoreClock / 1000000) - 1; // 1 µs tick
TIM_TimeBaseStructure.TIM_ClockDivision = 0;
TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;
TIM_TimeBaseInit(TIM3, &TIM_TimeBaseStructure);
TIM_TimeBaseStructure.TIM_Prescaler = 0;
TIM_TimeBaseInit(TIM4, &TIM_TimeBaseStructure);
// Master timer configuration
TIM_OCStructInit(&TIM_OCInitStructure);
TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_Toggle;
TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;
TIM_OCInitStructure.TIM_Pulse = 0;
TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High;
TIM_OC1Init(TIM3, &TIM_OCInitStructure);
TIM_SelectMasterSlaveMode(TIM3, TIM_MasterSlaveMode_Enable);
TIM_SelectOutputTrigger(TIM3, TIM_TRGOSource_Update);
// Slave timer configuration
TIM_SelectSlaveMode(TIM4, TIM_SlaveMode_External1);
TIM_SelectInputTrigger(TIM4, TIM_TS_ITR2); // Warning: connection between TIM3 and TIM4
// Enable timers
TIM_Cmd(TIM4, ENABLE);
TIM_Cmd(TIM3, ENABLE);
}
uint32_t us_ticker_read() {
uint32_t counter, counter2;
if (!us_ticker_inited) us_ticker_init();
// A situation might appear when Master overflows right after Slave is read and before the
// new (overflowed) value of Master is read. Which would make the code below consider the
// previous (incorrect) value of Slave and the new value of Master, which would return a
// value in the past. Avoid this by computing consecutive values of the timer until they
// are properly ordered.
counter = counter2 = (uint32_t)((uint32_t)TIM_GetCounter(TIM4) << 16) + (uint32_t)TIM_GetCounter(TIM3);
while (1) {
counter2 = (uint32_t)((uint32_t)TIM_GetCounter(TIM4) << 16) + (uint32_t)TIM_GetCounter(TIM3);
if (counter2 > counter) {
break;
}
counter = counter2;
}
return counter2;
}
void us_ticker_set_interrupt(unsigned int timestamp) {
if (timestamp > 0xFFFF) {
TIM_SetCompare1(TIM4, (uint16_t)((timestamp >> 16) & 0xFFFF));
TIM_ITConfig(TIM4, TIM_IT_CC1, ENABLE);
NVIC_SetVector(TIM4_IRQn, (uint32_t)us_ticker_irq_handler);
NVIC_EnableIRQ(TIM4_IRQn);
}
else {
TIM_SetCompare1(TIM3, (uint16_t)timestamp);
TIM_ITConfig(TIM3, TIM_IT_CC1, ENABLE);
NVIC_SetVector(TIM3_IRQn, (uint32_t)us_ticker_irq_handler);
NVIC_EnableIRQ(TIM3_IRQn);
}
}
void us_ticker_disable_interrupt(void) {
TIM_ITConfig(TIM3, TIM_IT_CC1, DISABLE);
TIM_ITConfig(TIM4, TIM_IT_CC1, DISABLE);
}
void us_ticker_clear_interrupt(void) {
TIM_ClearITPendingBit(TIM3, TIM_IT_CC1);
TIM_ClearITPendingBit(TIM4, TIM_IT_CC1);
}

View File

@ -35,8 +35,11 @@ OFFICIAL_MBED_LIBRARY_BUILD = (
('LPC4088', ('ARM', 'GCC_ARM', 'GCC_CR')),
('LPC1114', ('uARM',)),
('KL46Z', ('ARM', 'GCC_ARM')),
('NUCLEO_F103RB', ('ARM',)),
('LPC11U35_401', ('ARM', 'uARM')),
('NUCLEO_F103RB', ('ARM',)),
('NUCLEO_L152RE', ('ARM',)),
('NUCLEO_F401RE', ('ARM',)),
('NUCLEO_F030R8', ('ARM',)),
)

View File

@ -19,7 +19,7 @@ from exporters import Exporter
class IAREmbeddedWorkbench(Exporter):
NAME = 'IAR'
TARGETS = ['LPC1768']
TARGETS = ['LPC1768', 'NUCLEO_F401RE']
TOOLCHAIN = 'IAR'
def generate(self):

View File

@ -21,9 +21,9 @@ from os.path import basename
class Uvision4(Exporter):
NAME = 'uVision4'
TARGETS = ['LPC1768', 'LPC11U24', 'KL05Z', 'KL25Z', 'KL46Z', 'K20D5M', 'LPC1347', 'LPC1114', 'LPC11C24', 'LPC4088', 'LPC812', 'NUCLEO_F103RB']
TARGETS = ['LPC1768', 'LPC11U24', 'KL05Z', 'KL25Z', 'KL46Z', 'K20D5M', 'LPC1347', 'LPC1114', 'LPC11C24', 'LPC4088', 'LPC812', 'NUCLEO_F103RB', 'NUCLEO_L152RE', 'NUCLEO_F030R8']
USING_MICROLIB = ['LPC11U24', 'LPC1114', 'LPC11C24', 'LPC812', 'NUCLEO_F103RB']
USING_MICROLIB = ['LPC11U24', 'LPC1114', 'LPC11C24', 'LPC812', 'NUCLEO_F103RB', 'NUCLEO_L152RE', 'NUCLEO_F030R8']
FILE_TYPES = {
'c_sources':'1',

View File

@ -0,0 +1,235 @@
<?xml version="1.0" encoding="UTF-8" standalone="no" ?>
<ProjectOpt xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSchemaLocation="project_opt.xsd">
<SchemaVersion>1.0</SchemaVersion>
<Header>### uVision Project, (C) Keil Software</Header>
<Extensions>
<cExt>*.c</cExt>
<aExt>*.s*; *.src; *.a*</aExt>
<oExt>*.obj</oExt>
<lExt>*.lib</lExt>
<tExt>*.txt; *.h; *.inc</tExt>
<pExt>*.plm</pExt>
<CppX>*.cpp</CppX>
</Extensions>
<DaveTm>
<dwLowDateTime>0</dwLowDateTime>
<dwHighDateTime>0</dwHighDateTime>
</DaveTm>
<Target>
<TargetName>mbed NUCLEO_L152RE</TargetName>
<ToolsetNumber>0x4</ToolsetNumber>
<ToolsetName>ARM-ADS</ToolsetName>
<TargetOption>
<CLKADS>8000000</CLKADS>
<OPTTT>
<gFlags>1</gFlags>
<BeepAtEnd>1</BeepAtEnd>
<RunSim>1</RunSim>
<RunTarget>0</RunTarget>
</OPTTT>
<OPTHX>
<HexSelection>1</HexSelection>
<FlashByte>65535</FlashByte>
<HexRangeLowAddress>0</HexRangeLowAddress>
<HexRangeHighAddress>0</HexRangeHighAddress>
<HexOffset>0</HexOffset>
</OPTHX>
<OPTLEX>
<PageWidth>79</PageWidth>
<PageLength>66</PageLength>
<TabStop>8</TabStop>
<ListingPath>.\build\</ListingPath>
</OPTLEX>
<ListingPage>
<CreateCListing>1</CreateCListing>
<CreateAListing>1</CreateAListing>
<CreateLListing>1</CreateLListing>
<CreateIListing>0</CreateIListing>
<AsmCond>1</AsmCond>
<AsmSymb>1</AsmSymb>
<AsmXref>0</AsmXref>
<CCond>1</CCond>
<CCode>0</CCode>
<CListInc>0</CListInc>
<CSymb>0</CSymb>
<LinkerCodeListing>0</LinkerCodeListing>
</ListingPage>
<OPTXL>
<LMap>1</LMap>
<LComments>1</LComments>
<LGenerateSymbols>1</LGenerateSymbols>
<LLibSym>1</LLibSym>
<LLines>1</LLines>
<LLocSym>1</LLocSym>
<LPubSym>1</LPubSym>
<LXref>0</LXref>
<LExpSel>0</LExpSel>
</OPTXL>
<OPTFL>
<tvExp>1</tvExp>
<tvExpOptDlg>0</tvExpOptDlg>
<IsCurrentTarget>1</IsCurrentTarget>
</OPTFL>
<CpuCode>255</CpuCode>
<Books>
<Book>
<Number>0</Number>
<Title>Datasheet</Title>
<Path>DATASHTS\ST\STM32L151_152xE_DS.PDF</Path>
</Book>
<Book>
<Number>1</Number>
<Title>Technical Reference Manual</Title>
<Path>datashts\arm\cortex_m3\r1p1\DDI0337E_CORTEX_M3_R1P1_TRM.PDF</Path>
</Book>
<Book>
<Number>2</Number>
<Title>Generic User Guide</Title>
<Path>datashts\arm\cortex_m3\r2p1\DUI0552A_CORTEX_M3_DGUG.PDF</Path>
</Book>
</Books>
<DllOpt>
<SimDllName>SARMCM3.DLL</SimDllName>
<SimDllArguments></SimDllArguments>
<SimDlgDllName>DARMSTM.DLL</SimDlgDllName>
<SimDlgDllArguments>-pSTM32L152RE</SimDlgDllArguments>
<TargetDllName>SARMCM3.DLL</TargetDllName>
<TargetDllArguments></TargetDllArguments>
<TargetDlgDllName>TARMSTM.DLL</TargetDlgDllName>
<TargetDlgDllArguments>-pSTM32L152RE</TargetDlgDllArguments>
</DllOpt>
<DebugOpt>
<uSim>0</uSim>
<uTrg>1</uTrg>
<sLdApp>1</sLdApp>
<sGomain>1</sGomain>
<sRbreak>1</sRbreak>
<sRwatch>1</sRwatch>
<sRmem>1</sRmem>
<sRfunc>1</sRfunc>
<sRbox>1</sRbox>
<tLdApp>1</tLdApp>
<tGomain>1</tGomain>
<tRbreak>1</tRbreak>
<tRwatch>1</tRwatch>
<tRmem>1</tRmem>
<tRfunc>0</tRfunc>
<tRbox>1</tRbox>
<tRtrace>0</tRtrace>
<sRunDeb>0</sRunDeb>
<sLrtime>0</sLrtime>
<nTsel>13</nTsel>
<sDll></sDll>
<sDllPa></sDllPa>
<sDlgDll></sDlgDll>
<sDlgPa></sDlgPa>
<sIfile></sIfile>
<tDll></tDll>
<tDllPa></tDllPa>
<tDlgDll></tDlgDll>
<tDlgPa></tDlgPa>
<tIfile></tIfile>
<pMon>STLink\ST-LINKIII-KEIL_SWO.dll</pMon>
</DebugOpt>
<TargetDriverDllRegistry>
<SetRegEntry>
<Number>0</Number>
<Key>DLGTARM</Key>
<Name>(1010=-1,-1,-1,-1,0)(1007=-1,-1,-1,-1,0)(1008=-1,-1,-1,-1,0)(1009=-1,-1,-1,-1,0)(100=-1,-1,-1,-1,0)(110=-1,-1,-1,-1,0)(111=-1,-1,-1,-1,0)(1011=-1,-1,-1,-1,0)(180=-1,-1,-1,-1,0)(120=-1,-1,-1,-1,0)(121=-1,-1,-1,-1,0)(122=-1,-1,-1,-1,0)(123=-1,-1,-1,-1,0)(140=-1,-1,-1,-1,0)(240=-1,-1,-1,-1,0)(190=-1,-1,-1,-1,0)(200=-1,-1,-1,-1,0)(170=-1,-1,-1,-1,0)(130=-1,-1,-1,-1,0)(131=-1,-1,-1,-1,0)(132=-1,-1,-1,-1,0)(133=-1,-1,-1,-1,0)(160=-1,-1,-1,-1,0)(161=-1,-1,-1,-1,0)(162=-1,-1,-1,-1,0)(210=-1,-1,-1,-1,0)(211=-1,-1,-1,-1,0)(220=-1,-1,-1,-1,0)(221=-1,-1,-1,-1,0)(230=-1,-1,-1,-1,0)(231=-1,-1,-1,-1,0)(232=-1,-1,-1,-1,0)(233=-1,-1,-1,-1,0)(150=-1,-1,-1,-1,0)(151=-1,-1,-1,-1,0)</Name>
</SetRegEntry>
<SetRegEntry>
<Number>0</Number>
<Key>ARMDBGFLAGS</Key>
<Name></Name>
</SetRegEntry>
<SetRegEntry>
<Number>0</Number>
<Key>DLGUARM</Key>
<Name>(105=-1,-1,-1,-1,0)</Name>
</SetRegEntry>
<SetRegEntry>
<Number>0</Number>
<Key>ST-LINKIII-KEIL_SWO</Key>
<Name>-U-O206 -O206 -S3 -C0 -N00("ARM CoreSight SW-DP") -D00(1BA01477) -L00(0) -TO18 -TC10000000 -TP21 -TDS8004 -TDT0 -TDC1F -TIEFFFFFFFF -TIP8 -FO15 -FD20000000 -FC800 -FN1 -FF0STM32F10x_128 -FS08000000 -FL020000</Name>
</SetRegEntry>
<SetRegEntry>
<Number>0</Number>
<Key>UL2CM3</Key>
<Name>UL2CM3(-O14 -S0 -C0 -N00("ARM Cortex-M3") -D00(1BA00477) -L00(4) -FO7 -FN1 -FC800 -FD20000000 -FF0STM32F10x_128 -FL020000 -FS08000000</Name>
</SetRegEntry>
<SetRegEntry>
<Number>0</Number>
<Key>ULP2CM3</Key>
<Name>-O2510 -S0 -C0 -FO15 -FN1 -FC800 -FD20000000 -FF0MK_P128_48MHZ -FL020000 -FS00</Name>
</SetRegEntry>
<SetRegEntry>
<Number>0</Number>
<Key>CMSIS_AGDI</Key>
<Name>-X"MBED CMSIS-DAP" -UA000000001 -O462 -S0 -C0 -N00("ARM CoreSight SW-DP") -D00(0BC11477) -L00(0) -FO15 -FD20000000 -FC800 -FN1 -FF0MK_P128_48MHZ -FS00 -FL020000</Name>
</SetRegEntry>
</TargetDriverDllRegistry>
<Breakpoint/>
<Tracepoint>
<THDelay>0</THDelay>
</Tracepoint>
<DebugFlag>
<trace>0</trace>
<periodic>0</periodic>
<aLwin>0</aLwin>
<aCover>0</aCover>
<aSer1>0</aSer1>
<aSer2>0</aSer2>
<aPa>0</aPa>
<viewmode>0</viewmode>
<vrSel>0</vrSel>
<aSym>0</aSym>
<aTbox>0</aTbox>
<AscS1>0</AscS1>
<AscS2>0</AscS2>
<AscS3>0</AscS3>
<aSer3>0</aSer3>
<eProf>0</eProf>
<aLa>0</aLa>
<aPa1>0</aPa1>
<AscS4>0</AscS4>
<aSer4>0</aSer4>
<StkLoc>0</StkLoc>
<TrcWin>0</TrcWin>
<newCpu>0</newCpu>
<uProt>0</uProt>
</DebugFlag>
<LintExecutable></LintExecutable>
<LintConfigFile></LintConfigFile>
</TargetOption>
</Target>
<Group>
<GroupName>src</GroupName>
<tvExp>1</tvExp>
<tvExpOptDlg>0</tvExpOptDlg>
<cbSel>0</cbSel>
<RteFlg>0</RteFlg>
<File>
<GroupNumber>1</GroupNumber>
<FileNumber>1</FileNumber>
<FileType>0</FileType>
<tvExp>0</tvExp>
<Focus>0</Focus>
<ColumnNumber>0</ColumnNumber>
<tvExpOptDlg>0</tvExpOptDlg>
<TopLine>0</TopLine>
<CurrentLine>0</CurrentLine>
<bDave2>0</bDave2>
<PathWithFileName>main.cpp</PathWithFileName>
<FilenameWithoutPath>main.cpp</FilenameWithoutPath>
<RteFlg>0</RteFlg>
<bShared>0</bShared>
</File>
</Group>
</ProjectOpt>

View File

@ -0,0 +1,432 @@
<?xml version="1.0" encoding="UTF-8" standalone="no" ?>
<Project xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSchemaLocation="project_proj.xsd">
<SchemaVersion>1.1</SchemaVersion>
<Header>### uVision Project, (C) Keil Software</Header>
<Targets>
<Target>
<TargetName>mbed NUCLEO_L152RE</TargetName>
<ToolsetNumber>0x4</ToolsetNumber>
<ToolsetName>ARM-ADS</ToolsetName>
<TargetOption>
<TargetCommonOption>
<Device>STM32L152RE</Device>
<Vendor>STMicroelectronics</Vendor>
<Cpu>IRAM(0x20000000-0x20003FFF) IROM(0x8000000-0x801FFFF) CLOCK(8000000) CPUTYPE("Cortex-M3")</Cpu>
<FlashUtilSpec></FlashUtilSpec>
<StartupFile>"STARTUP\ST\STM32L1xx\startup_stm32l1xx_hd.s" ("STM32L15xx High density Startup Code")</StartupFile>
<FlashDriverDll>UL2CM3(-O14 -S0 -C0 -N00("ARM Cortex-M3") -D00(1BA00477) -L00(4) -FO7 -FD20000000 -FC800 -FN1 -FF0STM32L15x_128 -FS08000000 -FL020000)</FlashDriverDll>
<DeviceId>5249</DeviceId>
<RegisterFile>stm32l1xx.h</RegisterFile>
<MemoryEnv></MemoryEnv>
<Cmp></Cmp>
<Asm></Asm>
<Linker></Linker>
<OHString></OHString>
<InfinionOptionDll></InfinionOptionDll>
<SLE66CMisc></SLE66CMisc>
<SLE66AMisc></SLE66AMisc>
<SLE66LinkerMisc></SLE66LinkerMisc>
<SFDFile>SFD\ST\STM32L15x\STM32L15x.sfr</SFDFile>
<UseEnv>0</UseEnv>
<BinPath></BinPath>
<IncludePath></IncludePath>
<LibPath></LibPath>
<RegisterFilePath>ST\STM32L1xx\</RegisterFilePath>
<DBRegisterFilePath>ST\STM32L1xx\</DBRegisterFilePath>
<TargetStatus>
<Error>0</Error>
<ExitCodeStop>0</ExitCodeStop>
<ButtonStop>0</ButtonStop>
<NotGenerated>0</NotGenerated>
<InvalidFlash>1</InvalidFlash>
</TargetStatus>
<OutputDirectory>.\build\</OutputDirectory>
<OutputName>{{name}}</OutputName>
<CreateExecutable>1</CreateExecutable>
<CreateLib>0</CreateLib>
<CreateHexFile>0</CreateHexFile>
<DebugInformation>1</DebugInformation>
<BrowseInformation>1</BrowseInformation>
<ListingPath>.\build\</ListingPath>
<HexFormatSelection>1</HexFormatSelection>
<Merge32K>0</Merge32K>
<CreateBatchFile>0</CreateBatchFile>
<BeforeCompile>
<RunUserProg1>0</RunUserProg1>
<RunUserProg2>0</RunUserProg2>
<UserProg1Name></UserProg1Name>
<UserProg2Name></UserProg2Name>
<UserProg1Dos16Mode>0</UserProg1Dos16Mode>
<UserProg2Dos16Mode>0</UserProg2Dos16Mode>
<nStopU1X>0</nStopU1X>
<nStopU2X>0</nStopU2X>
</BeforeCompile>
<BeforeMake>
<RunUserProg1>0</RunUserProg1>
<RunUserProg2>0</RunUserProg2>
<UserProg1Name></UserProg1Name>
<UserProg2Name></UserProg2Name>
<UserProg1Dos16Mode>0</UserProg1Dos16Mode>
<UserProg2Dos16Mode>0</UserProg2Dos16Mode>
</BeforeMake>
<AfterMake>
<RunUserProg1>1</RunUserProg1>
<RunUserProg2>0</RunUserProg2>
<UserProg1Name>fromelf --bin -o build\{{name}}_NUCLEO_L152RE.bin build\{{name}}.axf</UserProg1Name>
<UserProg2Name></UserProg2Name>
<UserProg1Dos16Mode>0</UserProg1Dos16Mode>
<UserProg2Dos16Mode>0</UserProg2Dos16Mode>
</AfterMake>
<SelectedForBatchBuild>0</SelectedForBatchBuild>
<SVCSIdString></SVCSIdString>
</TargetCommonOption>
<CommonProperty>
<UseCPPCompiler>0</UseCPPCompiler>
<RVCTCodeConst>0</RVCTCodeConst>
<RVCTZI>0</RVCTZI>
<RVCTOtherData>0</RVCTOtherData>
<ModuleSelection>0</ModuleSelection>
<IncludeInBuild>1</IncludeInBuild>
<AlwaysBuild>0</AlwaysBuild>
<GenerateAssemblyFile>0</GenerateAssemblyFile>
<AssembleAssemblyFile>0</AssembleAssemblyFile>
<PublicsOnly>0</PublicsOnly>
<StopOnExitCode>3</StopOnExitCode>
<CustomArgument></CustomArgument>
<IncludeLibraryModules></IncludeLibraryModules>
</CommonProperty>
<DllOption>
<SimDllName>SARMCM3.DLL</SimDllName>
<SimDllArguments></SimDllArguments>
<SimDlgDll>DARMSTM.DLL</SimDlgDll>
<SimDlgDllArguments>-pSTM32L152RE</SimDlgDllArguments>
<TargetDllName>SARMCM3.DLL</TargetDllName>
<TargetDllArguments></TargetDllArguments>
<TargetDlgDll>TARMSTM.DLL</TargetDlgDll>
<TargetDlgDllArguments>-pSTM32L152RE</TargetDlgDllArguments>
</DllOption>
<DebugOption>
<OPTHX>
<HexSelection>1</HexSelection>
<HexRangeLowAddress>0</HexRangeLowAddress>
<HexRangeHighAddress>0</HexRangeHighAddress>
<HexOffset>0</HexOffset>
<Oh166RecLen>16</Oh166RecLen>
</OPTHX>
<Simulator>
<UseSimulator>0</UseSimulator>
<LoadApplicationAtStartup>1</LoadApplicationAtStartup>
<RunToMain>1</RunToMain>
<RestoreBreakpoints>1</RestoreBreakpoints>
<RestoreWatchpoints>1</RestoreWatchpoints>
<RestoreMemoryDisplay>1</RestoreMemoryDisplay>
<RestoreFunctions>1</RestoreFunctions>
<RestoreToolbox>1</RestoreToolbox>
<LimitSpeedToRealTime>0</LimitSpeedToRealTime>
</Simulator>
<Target>
<UseTarget>1</UseTarget>
<LoadApplicationAtStartup>1</LoadApplicationAtStartup>
<RunToMain>1</RunToMain>
<RestoreBreakpoints>1</RestoreBreakpoints>
<RestoreWatchpoints>1</RestoreWatchpoints>
<RestoreMemoryDisplay>1</RestoreMemoryDisplay>
<RestoreFunctions>0</RestoreFunctions>
<RestoreToolbox>1</RestoreToolbox>
<RestoreTracepoints>0</RestoreTracepoints>
</Target>
<RunDebugAfterBuild>0</RunDebugAfterBuild>
<TargetSelection>13</TargetSelection>
<SimDlls>
<CpuDll></CpuDll>
<CpuDllArguments></CpuDllArguments>
<PeripheralDll></PeripheralDll>
<PeripheralDllArguments></PeripheralDllArguments>
<InitializationFile></InitializationFile>
</SimDlls>
<TargetDlls>
<CpuDll></CpuDll>
<CpuDllArguments></CpuDllArguments>
<PeripheralDll></PeripheralDll>
<PeripheralDllArguments></PeripheralDllArguments>
<InitializationFile></InitializationFile>
<Driver>STLink\ST-LINKIII-KEIL_SWO.dll</Driver>
</TargetDlls>
</DebugOption>
<Utilities>
<Flash1>
<UseTargetDll>1</UseTargetDll>
<UseExternalTool>0</UseExternalTool>
<RunIndependent>0</RunIndependent>
<UpdateFlashBeforeDebugging>1</UpdateFlashBeforeDebugging>
<Capability>1</Capability>
<DriverSelection>4104</DriverSelection>
</Flash1>
<bUseTDR>1</bUseTDR>
<Flash2>BIN\CMSIS_AGDI.dll</Flash2>
<Flash3>"" ()</Flash3>
<Flash4></Flash4>
</Utilities>
<TargetArmAds>
<ArmAdsMisc>
<GenerateListings>0</GenerateListings>
<asHll>1</asHll>
<asAsm>1</asAsm>
<asMacX>1</asMacX>
<asSyms>1</asSyms>
<asFals>1</asFals>
<asDbgD>1</asDbgD>
<asForm>1</asForm>
<ldLst>0</ldLst>
<ldmm>1</ldmm>
<ldXref>1</ldXref>
<BigEnd>0</BigEnd>
<AdsALst>1</AdsALst>
<AdsACrf>1</AdsACrf>
<AdsANop>0</AdsANop>
<AdsANot>0</AdsANot>
<AdsLLst>1</AdsLLst>
<AdsLmap>1</AdsLmap>
<AdsLcgr>1</AdsLcgr>
<AdsLsym>1</AdsLsym>
<AdsLszi>1</AdsLszi>
<AdsLtoi>1</AdsLtoi>
<AdsLsun>1</AdsLsun>
<AdsLven>1</AdsLven>
<AdsLsxf>1</AdsLsxf>
<RvctClst>0</RvctClst>
<GenPPlst>0</GenPPlst>
<AdsCpuType>"Cortex-M3"</AdsCpuType>
<RvctDeviceName></RvctDeviceName>
<mOS>0</mOS>
<uocRom>0</uocRom>
<uocRam>0</uocRam>
<hadIROM>1</hadIROM>
<hadIRAM>1</hadIRAM>
<hadXRAM>0</hadXRAM>
<uocXRam>0</uocXRam>
<RvdsVP>0</RvdsVP>
<hadIRAM2>0</hadIRAM2>
<hadIROM2>0</hadIROM2>
<StupSel>8</StupSel>
<useUlib>1</useUlib>
<EndSel>0</EndSel>
<uLtcg>0</uLtcg>
<RoSelD>3</RoSelD>
<RwSelD>3</RwSelD>
<CodeSel>0</CodeSel>
<OptFeed>0</OptFeed>
<NoZi1>0</NoZi1>
<NoZi2>0</NoZi2>
<NoZi3>0</NoZi3>
<NoZi4>0</NoZi4>
<NoZi5>0</NoZi5>
<Ro1Chk>0</Ro1Chk>
<Ro2Chk>0</Ro2Chk>
<Ro3Chk>0</Ro3Chk>
<Ir1Chk>1</Ir1Chk>
<Ir2Chk>0</Ir2Chk>
<Ra1Chk>0</Ra1Chk>
<Ra2Chk>0</Ra2Chk>
<Ra3Chk>0</Ra3Chk>
<Im1Chk>1</Im1Chk>
<Im2Chk>0</Im2Chk>
<OnChipMemories>
<Ocm1>
<Type>0</Type>
<StartAddress>0x0</StartAddress>
<Size>0x0</Size>
</Ocm1>
<Ocm2>
<Type>0</Type>
<StartAddress>0x0</StartAddress>
<Size>0x0</Size>
</Ocm2>
<Ocm3>
<Type>0</Type>
<StartAddress>0x0</StartAddress>
<Size>0x0</Size>
</Ocm3>
<Ocm4>
<Type>0</Type>
<StartAddress>0x0</StartAddress>
<Size>0x0</Size>
</Ocm4>
<Ocm5>
<Type>0</Type>
<StartAddress>0x0</StartAddress>
<Size>0x0</Size>
</Ocm5>
<Ocm6>
<Type>0</Type>
<StartAddress>0x0</StartAddress>
<Size>0x0</Size>
</Ocm6>
<IRAM>
<Type>0</Type>
<StartAddress>0x20000000</StartAddress>
<Size>0x4000</Size>
</IRAM>
<IROM>
<Type>1</Type>
<StartAddress>0x8000000</StartAddress>
<Size>0x20000</Size>
</IROM>
<XRAM>
<Type>0</Type>
<StartAddress>0x0</StartAddress>
<Size>0x0</Size>
</XRAM>
<OCR_RVCT1>
<Type>1</Type>
<StartAddress>0x0</StartAddress>
<Size>0x0</Size>
</OCR_RVCT1>
<OCR_RVCT2>
<Type>1</Type>
<StartAddress>0x0</StartAddress>
<Size>0x0</Size>
</OCR_RVCT2>
<OCR_RVCT3>
<Type>1</Type>
<StartAddress>0x0</StartAddress>
<Size>0x0</Size>
</OCR_RVCT3>
<OCR_RVCT4>
<Type>1</Type>
<StartAddress>0x8000000</StartAddress>
<Size>0x20000</Size>
</OCR_RVCT4>
<OCR_RVCT5>
<Type>1</Type>
<StartAddress>0x0</StartAddress>
<Size>0x0</Size>
</OCR_RVCT5>
<OCR_RVCT6>
<Type>0</Type>
<StartAddress>0x0</StartAddress>
<Size>0x0</Size>
</OCR_RVCT6>
<OCR_RVCT7>
<Type>0</Type>
<StartAddress>0x0</StartAddress>
<Size>0x0</Size>
</OCR_RVCT7>
<OCR_RVCT8>
<Type>0</Type>
<StartAddress>0x0</StartAddress>
<Size>0x0</Size>
</OCR_RVCT8>
<OCR_RVCT9>
<Type>0</Type>
<StartAddress>0x20000000</StartAddress>
<Size>0x4000</Size>
</OCR_RVCT9>
<OCR_RVCT10>
<Type>0</Type>
<StartAddress>0x0</StartAddress>
<Size>0x0</Size>
</OCR_RVCT10>
</OnChipMemories>
<RvctStartVector></RvctStartVector>
</ArmAdsMisc>
<Cads>
<interw>1</interw>
<Optim>1</Optim>
<oTime>0</oTime>
<SplitLS>0</SplitLS>
<OneElfS>0</OneElfS>
<Strict>0</Strict>
<EnumInt>0</EnumInt>
<PlainCh>0</PlainCh>
<Ropi>0</Ropi>
<Rwpi>0</Rwpi>
<wLevel>0</wLevel>
<uThumb>0</uThumb>
<uSurpInc>0</uSurpInc>
<VariousControls>
<MiscControls>--gnu</MiscControls>
<Define>{% for s in symbols %} {{s}}, {% endfor %}</Define>
<Undefine></Undefine>
<IncludePath> {% for path in include_paths %} {{path}}; {% endfor %} </IncludePath>
</VariousControls>
</Cads>
<Aads>
<interw>1</interw>
<Ropi>0</Ropi>
<Rwpi>0</Rwpi>
<thumb>0</thumb>
<SplitLS>0</SplitLS>
<SwStkChk>0</SwStkChk>
<NoWarn>0</NoWarn>
<uSurpInc>0</uSurpInc>
<VariousControls>
<MiscControls></MiscControls>
<Define></Define>
<Undefine></Undefine>
<IncludePath></IncludePath>
</VariousControls>
</Aads>
<LDads>
<umfTarg>0</umfTarg>
<Ropi>0</Ropi>
<Rwpi>0</Rwpi>
<noStLib>0</noStLib>
<RepFail>1</RepFail>
<useFile>0</useFile>
<TextAddressRange>0x00000000</TextAddressRange>
<DataAddressRange>0x10000000</DataAddressRange>
<ScatterFile>{{scatter_file}}</ScatterFile>
<IncludeLibs></IncludeLibs>
<IncludeLibsPath></IncludeLibsPath>
<Misc>
{% for file in object_files %}
{{file}}
{% endfor %}
</Misc>
<LinkerInputFile></LinkerInputFile>
<DisabledWarnings></DisabledWarnings>
</LDads>
</TargetArmAds>
</TargetOption>
<Groups>
{% for group,files in source_files %}
<Group>
<GroupName>{{group}}</GroupName>
<Files>
{% for file in files %}
<File>
<FileName>{{file.name}}</FileName>
<FileType>{{file.type}}</FileType>
<FilePath>{{file.path}}</FilePath>
<FileOption>
<CommonProperty>
<UseCPPCompiler>2</UseCPPCompiler>
<RVCTCodeConst>0</RVCTCodeConst>
<RVCTZI>0</RVCTZI>
<RVCTOtherData>0</RVCTOtherData>
<ModuleSelection>0</ModuleSelection>
<IncludeInBuild>1</IncludeInBuild>
<AlwaysBuild>0</AlwaysBuild>
<GenerateAssemblyFile>0</GenerateAssemblyFile>
<AssembleAssemblyFile>0</AssembleAssemblyFile>
<PublicsOnly>0</PublicsOnly>
<StopOnExitCode>3</StopOnExitCode>
<CustomArgument></CustomArgument>
<IncludeLibraryModules></IncludeLibraryModules>
</CommonProperty>
<FileArmAds/>
</FileOption>
</File>
{% endfor %}
</Files>
</Group>
{% endfor %}
</Groups>
</Target>
</Targets>
</Project>

View File

@ -77,7 +77,7 @@ if __name__ == '__main__':
for toolchain, target in [
('uvision', 'LPC1768'), ('uvision', 'LPC11U24'), ('uvision', 'KL25Z'), ('uvision', 'LPC1347'), ('uvision', 'LPC1114'), ('uvision', 'LPC4088'),
('uvision', 'NUCLEO_F103RB'),
('uvision', 'NUCLEO_F103RB'), ('uvision', 'NUCLEO_L152RE'), ('uvision', 'NUCLEO_F401RE'), ('uvision', 'NUCLEO_F030R8'),
('codered', 'LPC1768'), ('codered', 'LPC4088'),

View File

@ -267,11 +267,44 @@ class NUCLEO_F103RB(Target):
self.core = "Cortex-M3"
self.extra_labels = ['STM', 'STM32F10X', 'STM32F103RB']
self.extra_labels = ['STM', 'STM32F1', 'STM32F103RB']
self.supported_toolchains = ["ARM", "uARM", "GCC_ARM"]
class NUCLEO_L152RE(Target):
def __init__(self):
Target.__init__(self)
self.core = "Cortex-M3"
self.extra_labels = ['STM', 'STM32L1', 'STM32L152RE']
self.supported_toolchains = ["ARM", "uARM", "GCC_ARM"]
class NUCLEO_F401RE(Target):
def __init__(self):
Target.__init__(self)
self.core = "Cortex-M4"
self.extra_labels = ['STM', 'STM32F4', 'STM32F401RE']
self.supported_toolchains = ["ARM", "uARM", "GCC_ARM"]
class NUCLEO_F030R8(Target):
def __init__(self):
Target.__init__(self)
self.core = "Cortex-M0"
self.extra_labels = ['STM', 'STM32F0', 'STM32F030R8']
self.supported_toolchains = ["ARM", "uARM", "GCC_ARM"]
class MBED_MCU(Target):
def __init__(self):
Target.__init__(self)
@ -354,6 +387,9 @@ TARGETS = [
LPC4330_M4(),
STM32F407(),
NUCLEO_F103RB(),
NUCLEO_L152RE(),
NUCLEO_F401RE(),
NUCLEO_F030R8(),
MBED_MCU(),
LPC1347(),
LPC1114(),